xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision f3fd2afe)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static struct dentry *nt_debugfs_dir;
97 
98 /* Only two-ports NTB devices are supported */
99 #define PIDX		NTB_DEF_PEER_IDX
100 
101 struct ntb_queue_entry {
102 	/* ntb_queue list reference */
103 	struct list_head entry;
104 	/* pointers to data to be transferred */
105 	void *cb_data;
106 	void *buf;
107 	unsigned int len;
108 	unsigned int flags;
109 	int retries;
110 	int errors;
111 	unsigned int tx_index;
112 	unsigned int rx_index;
113 
114 	struct ntb_transport_qp *qp;
115 	union {
116 		struct ntb_payload_header __iomem *tx_hdr;
117 		struct ntb_payload_header *rx_hdr;
118 	};
119 };
120 
121 struct ntb_rx_info {
122 	unsigned int entry;
123 };
124 
125 struct ntb_transport_qp {
126 	struct ntb_transport_ctx *transport;
127 	struct ntb_dev *ndev;
128 	void *cb_data;
129 	struct dma_chan *tx_dma_chan;
130 	struct dma_chan *rx_dma_chan;
131 
132 	bool client_ready;
133 	bool link_is_up;
134 	bool active;
135 
136 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
137 	u64 qp_bit;
138 
139 	struct ntb_rx_info __iomem *rx_info;
140 	struct ntb_rx_info *remote_rx_info;
141 
142 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
143 			   void *data, int len);
144 	struct list_head tx_free_q;
145 	spinlock_t ntb_tx_free_q_lock;
146 	void __iomem *tx_mw;
147 	dma_addr_t tx_mw_phys;
148 	unsigned int tx_index;
149 	unsigned int tx_max_entry;
150 	unsigned int tx_max_frame;
151 
152 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
153 			   void *data, int len);
154 	struct list_head rx_post_q;
155 	struct list_head rx_pend_q;
156 	struct list_head rx_free_q;
157 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
158 	spinlock_t ntb_rx_q_lock;
159 	void *rx_buff;
160 	unsigned int rx_index;
161 	unsigned int rx_max_entry;
162 	unsigned int rx_max_frame;
163 	unsigned int rx_alloc_entry;
164 	dma_cookie_t last_cookie;
165 	struct tasklet_struct rxc_db_work;
166 
167 	void (*event_handler)(void *data, int status);
168 	struct delayed_work link_work;
169 	struct work_struct link_cleanup;
170 
171 	struct dentry *debugfs_dir;
172 	struct dentry *debugfs_stats;
173 
174 	/* Stats */
175 	u64 rx_bytes;
176 	u64 rx_pkts;
177 	u64 rx_ring_empty;
178 	u64 rx_err_no_buf;
179 	u64 rx_err_oflow;
180 	u64 rx_err_ver;
181 	u64 rx_memcpy;
182 	u64 rx_async;
183 	u64 tx_bytes;
184 	u64 tx_pkts;
185 	u64 tx_ring_full;
186 	u64 tx_err_no_buf;
187 	u64 tx_memcpy;
188 	u64 tx_async;
189 };
190 
191 struct ntb_transport_mw {
192 	phys_addr_t phys_addr;
193 	resource_size_t phys_size;
194 	resource_size_t xlat_align;
195 	resource_size_t xlat_align_size;
196 	void __iomem *vbase;
197 	size_t xlat_size;
198 	size_t buff_size;
199 	void *virt_addr;
200 	dma_addr_t dma_addr;
201 };
202 
203 struct ntb_transport_client_dev {
204 	struct list_head entry;
205 	struct ntb_transport_ctx *nt;
206 	struct device dev;
207 };
208 
209 struct ntb_transport_ctx {
210 	struct list_head entry;
211 	struct list_head client_devs;
212 
213 	struct ntb_dev *ndev;
214 
215 	struct ntb_transport_mw *mw_vec;
216 	struct ntb_transport_qp *qp_vec;
217 	unsigned int mw_count;
218 	unsigned int qp_count;
219 	u64 qp_bitmap;
220 	u64 qp_bitmap_free;
221 
222 	bool link_is_up;
223 	struct delayed_work link_work;
224 	struct work_struct link_cleanup;
225 
226 	struct dentry *debugfs_node_dir;
227 };
228 
229 enum {
230 	DESC_DONE_FLAG = BIT(0),
231 	LINK_DOWN_FLAG = BIT(1),
232 };
233 
234 struct ntb_payload_header {
235 	unsigned int ver;
236 	unsigned int len;
237 	unsigned int flags;
238 };
239 
240 enum {
241 	VERSION = 0,
242 	QP_LINKS,
243 	NUM_QPS,
244 	NUM_MWS,
245 	MW0_SZ_HIGH,
246 	MW0_SZ_LOW,
247 };
248 
249 #define dev_client_dev(__dev) \
250 	container_of((__dev), struct ntb_transport_client_dev, dev)
251 
252 #define drv_client(__drv) \
253 	container_of((__drv), struct ntb_transport_client, driver)
254 
255 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
256 #define NTB_QP_DEF_NUM_ENTRIES	100
257 #define NTB_LINK_DOWN_TIMEOUT	10
258 
259 static void ntb_transport_rxc_db(unsigned long data);
260 static const struct ntb_ctx_ops ntb_transport_ops;
261 static struct ntb_client ntb_transport_client;
262 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
263 			       struct ntb_queue_entry *entry);
264 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
265 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
266 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
267 
268 
269 static int ntb_transport_bus_match(struct device *dev,
270 				   struct device_driver *drv)
271 {
272 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
273 }
274 
275 static int ntb_transport_bus_probe(struct device *dev)
276 {
277 	const struct ntb_transport_client *client;
278 	int rc = -EINVAL;
279 
280 	get_device(dev);
281 
282 	client = drv_client(dev->driver);
283 	rc = client->probe(dev);
284 	if (rc)
285 		put_device(dev);
286 
287 	return rc;
288 }
289 
290 static int ntb_transport_bus_remove(struct device *dev)
291 {
292 	const struct ntb_transport_client *client;
293 
294 	client = drv_client(dev->driver);
295 	client->remove(dev);
296 
297 	put_device(dev);
298 
299 	return 0;
300 }
301 
302 static struct bus_type ntb_transport_bus = {
303 	.name = "ntb_transport",
304 	.match = ntb_transport_bus_match,
305 	.probe = ntb_transport_bus_probe,
306 	.remove = ntb_transport_bus_remove,
307 };
308 
309 static LIST_HEAD(ntb_transport_list);
310 
311 static int ntb_bus_init(struct ntb_transport_ctx *nt)
312 {
313 	list_add_tail(&nt->entry, &ntb_transport_list);
314 	return 0;
315 }
316 
317 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
318 {
319 	struct ntb_transport_client_dev *client_dev, *cd;
320 
321 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
322 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
323 			dev_name(&client_dev->dev));
324 		list_del(&client_dev->entry);
325 		device_unregister(&client_dev->dev);
326 	}
327 
328 	list_del(&nt->entry);
329 }
330 
331 static void ntb_transport_client_release(struct device *dev)
332 {
333 	struct ntb_transport_client_dev *client_dev;
334 
335 	client_dev = dev_client_dev(dev);
336 	kfree(client_dev);
337 }
338 
339 /**
340  * ntb_transport_unregister_client_dev - Unregister NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Unregister an NTB client device with the NTB transport layer
344  */
345 void ntb_transport_unregister_client_dev(char *device_name)
346 {
347 	struct ntb_transport_client_dev *client, *cd;
348 	struct ntb_transport_ctx *nt;
349 
350 	list_for_each_entry(nt, &ntb_transport_list, entry)
351 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
352 			if (!strncmp(dev_name(&client->dev), device_name,
353 				     strlen(device_name))) {
354 				list_del(&client->entry);
355 				device_unregister(&client->dev);
356 			}
357 }
358 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
359 
360 /**
361  * ntb_transport_register_client_dev - Register NTB client device
362  * @device_name: Name of NTB client device
363  *
364  * Register an NTB client device with the NTB transport layer
365  */
366 int ntb_transport_register_client_dev(char *device_name)
367 {
368 	struct ntb_transport_client_dev *client_dev;
369 	struct ntb_transport_ctx *nt;
370 	int node;
371 	int rc, i = 0;
372 
373 	if (list_empty(&ntb_transport_list))
374 		return -ENODEV;
375 
376 	list_for_each_entry(nt, &ntb_transport_list, entry) {
377 		struct device *dev;
378 
379 		node = dev_to_node(&nt->ndev->dev);
380 
381 		client_dev = kzalloc_node(sizeof(*client_dev),
382 					  GFP_KERNEL, node);
383 		if (!client_dev) {
384 			rc = -ENOMEM;
385 			goto err;
386 		}
387 
388 		dev = &client_dev->dev;
389 
390 		/* setup and register client devices */
391 		dev_set_name(dev, "%s%d", device_name, i);
392 		dev->bus = &ntb_transport_bus;
393 		dev->release = ntb_transport_client_release;
394 		dev->parent = &nt->ndev->dev;
395 
396 		rc = device_register(dev);
397 		if (rc) {
398 			kfree(client_dev);
399 			goto err;
400 		}
401 
402 		list_add_tail(&client_dev->entry, &nt->client_devs);
403 		i++;
404 	}
405 
406 	return 0;
407 
408 err:
409 	ntb_transport_unregister_client_dev(device_name);
410 
411 	return rc;
412 }
413 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
414 
415 /**
416  * ntb_transport_register_client - Register NTB client driver
417  * @drv: NTB client driver to be registered
418  *
419  * Register an NTB client driver with the NTB transport layer
420  *
421  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
422  */
423 int ntb_transport_register_client(struct ntb_transport_client *drv)
424 {
425 	drv->driver.bus = &ntb_transport_bus;
426 
427 	if (list_empty(&ntb_transport_list))
428 		return -ENODEV;
429 
430 	return driver_register(&drv->driver);
431 }
432 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
433 
434 /**
435  * ntb_transport_unregister_client - Unregister NTB client driver
436  * @drv: NTB client driver to be unregistered
437  *
438  * Unregister an NTB client driver with the NTB transport layer
439  *
440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
441  */
442 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
443 {
444 	driver_unregister(&drv->driver);
445 }
446 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
447 
448 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
449 			    loff_t *offp)
450 {
451 	struct ntb_transport_qp *qp;
452 	char *buf;
453 	ssize_t ret, out_offset, out_count;
454 
455 	qp = filp->private_data;
456 
457 	if (!qp || !qp->link_is_up)
458 		return 0;
459 
460 	out_count = 1000;
461 
462 	buf = kmalloc(out_count, GFP_KERNEL);
463 	if (!buf)
464 		return -ENOMEM;
465 
466 	out_offset = 0;
467 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 			       "\nNTB QP stats:\n\n");
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
471 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
472 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
473 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
474 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
475 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 			       "rx_async - \t%llu\n", qp->rx_async);
477 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
478 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
479 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
481 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
485 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 			       "rx_buff - \t0x%p\n", qp->rx_buff);
487 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 			       "rx_index - \t%u\n", qp->rx_index);
489 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
493 
494 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
495 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
496 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
497 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
498 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
500 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
501 			       "tx_async - \t%llu\n", qp->tx_async);
502 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
503 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
504 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
505 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
506 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
507 			       "tx_mw - \t0x%p\n", qp->tx_mw);
508 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
509 			       "tx_index (H) - \t%u\n", qp->tx_index);
510 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
511 			       "RRI (T) - \t%u\n",
512 			       qp->remote_rx_info->entry);
513 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
515 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
516 			       "free tx - \t%u\n",
517 			       ntb_transport_tx_free_entry(qp));
518 
519 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
520 			       "\n");
521 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 			       "Using TX DMA - \t%s\n",
523 			       qp->tx_dma_chan ? "Yes" : "No");
524 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
525 			       "Using RX DMA - \t%s\n",
526 			       qp->rx_dma_chan ? "Yes" : "No");
527 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 			       "QP Link - \t%s\n",
529 			       qp->link_is_up ? "Up" : "Down");
530 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
531 			       "\n");
532 
533 	if (out_offset > out_count)
534 		out_offset = out_count;
535 
536 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
537 	kfree(buf);
538 	return ret;
539 }
540 
541 static const struct file_operations ntb_qp_debugfs_stats = {
542 	.owner = THIS_MODULE,
543 	.open = simple_open,
544 	.read = debugfs_read,
545 };
546 
547 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
548 			 struct list_head *list)
549 {
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(lock, flags);
553 	list_add_tail(entry, list);
554 	spin_unlock_irqrestore(lock, flags);
555 }
556 
557 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
558 					   struct list_head *list)
559 {
560 	struct ntb_queue_entry *entry;
561 	unsigned long flags;
562 
563 	spin_lock_irqsave(lock, flags);
564 	if (list_empty(list)) {
565 		entry = NULL;
566 		goto out;
567 	}
568 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
569 	list_del(&entry->entry);
570 
571 out:
572 	spin_unlock_irqrestore(lock, flags);
573 
574 	return entry;
575 }
576 
577 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
578 					   struct list_head *list,
579 					   struct list_head *to_list)
580 {
581 	struct ntb_queue_entry *entry;
582 	unsigned long flags;
583 
584 	spin_lock_irqsave(lock, flags);
585 
586 	if (list_empty(list)) {
587 		entry = NULL;
588 	} else {
589 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
590 		list_move_tail(&entry->entry, to_list);
591 	}
592 
593 	spin_unlock_irqrestore(lock, flags);
594 
595 	return entry;
596 }
597 
598 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
599 				     unsigned int qp_num)
600 {
601 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
602 	struct ntb_transport_mw *mw;
603 	struct ntb_dev *ndev = nt->ndev;
604 	struct ntb_queue_entry *entry;
605 	unsigned int rx_size, num_qps_mw;
606 	unsigned int mw_num, mw_count, qp_count;
607 	unsigned int i;
608 	int node;
609 
610 	mw_count = nt->mw_count;
611 	qp_count = nt->qp_count;
612 
613 	mw_num = QP_TO_MW(nt, qp_num);
614 	mw = &nt->mw_vec[mw_num];
615 
616 	if (!mw->virt_addr)
617 		return -ENOMEM;
618 
619 	if (mw_num < qp_count % mw_count)
620 		num_qps_mw = qp_count / mw_count + 1;
621 	else
622 		num_qps_mw = qp_count / mw_count;
623 
624 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
625 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
626 	rx_size -= sizeof(struct ntb_rx_info);
627 
628 	qp->remote_rx_info = qp->rx_buff + rx_size;
629 
630 	/* Due to housekeeping, there must be atleast 2 buffs */
631 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
632 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
633 	qp->rx_index = 0;
634 
635 	/*
636 	 * Checking to see if we have more entries than the default.
637 	 * We should add additional entries if that is the case so we
638 	 * can be in sync with the transport frames.
639 	 */
640 	node = dev_to_node(&ndev->dev);
641 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
642 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
643 		if (!entry)
644 			return -ENOMEM;
645 
646 		entry->qp = qp;
647 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
648 			     &qp->rx_free_q);
649 		qp->rx_alloc_entry++;
650 	}
651 
652 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
653 
654 	/* setup the hdr offsets with 0's */
655 	for (i = 0; i < qp->rx_max_entry; i++) {
656 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
657 				sizeof(struct ntb_payload_header));
658 		memset(offset, 0, sizeof(struct ntb_payload_header));
659 	}
660 
661 	qp->rx_pkts = 0;
662 	qp->tx_pkts = 0;
663 	qp->tx_index = 0;
664 
665 	return 0;
666 }
667 
668 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
669 {
670 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
671 	struct pci_dev *pdev = nt->ndev->pdev;
672 
673 	if (!mw->virt_addr)
674 		return;
675 
676 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
677 	dma_free_coherent(&pdev->dev, mw->buff_size,
678 			  mw->virt_addr, mw->dma_addr);
679 	mw->xlat_size = 0;
680 	mw->buff_size = 0;
681 	mw->virt_addr = NULL;
682 }
683 
684 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
685 		      resource_size_t size)
686 {
687 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
688 	struct pci_dev *pdev = nt->ndev->pdev;
689 	size_t xlat_size, buff_size;
690 	int rc;
691 
692 	if (!size)
693 		return -EINVAL;
694 
695 	xlat_size = round_up(size, mw->xlat_align_size);
696 	buff_size = round_up(size, mw->xlat_align);
697 
698 	/* No need to re-setup */
699 	if (mw->xlat_size == xlat_size)
700 		return 0;
701 
702 	if (mw->buff_size)
703 		ntb_free_mw(nt, num_mw);
704 
705 	/* Alloc memory for receiving data.  Must be aligned */
706 	mw->xlat_size = xlat_size;
707 	mw->buff_size = buff_size;
708 
709 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
710 					   &mw->dma_addr, GFP_KERNEL);
711 	if (!mw->virt_addr) {
712 		mw->xlat_size = 0;
713 		mw->buff_size = 0;
714 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
715 			buff_size);
716 		return -ENOMEM;
717 	}
718 
719 	/*
720 	 * we must ensure that the memory address allocated is BAR size
721 	 * aligned in order for the XLAT register to take the value. This
722 	 * is a requirement of the hardware. It is recommended to setup CMA
723 	 * for BAR sizes equal or greater than 4MB.
724 	 */
725 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
726 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
727 			&mw->dma_addr);
728 		ntb_free_mw(nt, num_mw);
729 		return -ENOMEM;
730 	}
731 
732 	/* Notify HW the memory location of the receive buffer */
733 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
734 			      mw->xlat_size);
735 	if (rc) {
736 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
737 		ntb_free_mw(nt, num_mw);
738 		return -EIO;
739 	}
740 
741 	return 0;
742 }
743 
744 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
745 {
746 	qp->link_is_up = false;
747 	qp->active = false;
748 
749 	qp->tx_index = 0;
750 	qp->rx_index = 0;
751 	qp->rx_bytes = 0;
752 	qp->rx_pkts = 0;
753 	qp->rx_ring_empty = 0;
754 	qp->rx_err_no_buf = 0;
755 	qp->rx_err_oflow = 0;
756 	qp->rx_err_ver = 0;
757 	qp->rx_memcpy = 0;
758 	qp->rx_async = 0;
759 	qp->tx_bytes = 0;
760 	qp->tx_pkts = 0;
761 	qp->tx_ring_full = 0;
762 	qp->tx_err_no_buf = 0;
763 	qp->tx_memcpy = 0;
764 	qp->tx_async = 0;
765 }
766 
767 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
768 {
769 	struct ntb_transport_ctx *nt = qp->transport;
770 	struct pci_dev *pdev = nt->ndev->pdev;
771 
772 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
773 
774 	cancel_delayed_work_sync(&qp->link_work);
775 	ntb_qp_link_down_reset(qp);
776 
777 	if (qp->event_handler)
778 		qp->event_handler(qp->cb_data, qp->link_is_up);
779 }
780 
781 static void ntb_qp_link_cleanup_work(struct work_struct *work)
782 {
783 	struct ntb_transport_qp *qp = container_of(work,
784 						   struct ntb_transport_qp,
785 						   link_cleanup);
786 	struct ntb_transport_ctx *nt = qp->transport;
787 
788 	ntb_qp_link_cleanup(qp);
789 
790 	if (nt->link_is_up)
791 		schedule_delayed_work(&qp->link_work,
792 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
793 }
794 
795 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
796 {
797 	schedule_work(&qp->link_cleanup);
798 }
799 
800 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
801 {
802 	struct ntb_transport_qp *qp;
803 	u64 qp_bitmap_alloc;
804 	unsigned int i, count;
805 
806 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
807 
808 	/* Pass along the info to any clients */
809 	for (i = 0; i < nt->qp_count; i++)
810 		if (qp_bitmap_alloc & BIT_ULL(i)) {
811 			qp = &nt->qp_vec[i];
812 			ntb_qp_link_cleanup(qp);
813 			cancel_work_sync(&qp->link_cleanup);
814 			cancel_delayed_work_sync(&qp->link_work);
815 		}
816 
817 	if (!nt->link_is_up)
818 		cancel_delayed_work_sync(&nt->link_work);
819 
820 	/* The scratchpad registers keep the values if the remote side
821 	 * goes down, blast them now to give them a sane value the next
822 	 * time they are accessed
823 	 */
824 	count = ntb_spad_count(nt->ndev);
825 	for (i = 0; i < count; i++)
826 		ntb_spad_write(nt->ndev, i, 0);
827 }
828 
829 static void ntb_transport_link_cleanup_work(struct work_struct *work)
830 {
831 	struct ntb_transport_ctx *nt =
832 		container_of(work, struct ntb_transport_ctx, link_cleanup);
833 
834 	ntb_transport_link_cleanup(nt);
835 }
836 
837 static void ntb_transport_event_callback(void *data)
838 {
839 	struct ntb_transport_ctx *nt = data;
840 
841 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
842 		schedule_delayed_work(&nt->link_work, 0);
843 	else
844 		schedule_work(&nt->link_cleanup);
845 }
846 
847 static void ntb_transport_link_work(struct work_struct *work)
848 {
849 	struct ntb_transport_ctx *nt =
850 		container_of(work, struct ntb_transport_ctx, link_work.work);
851 	struct ntb_dev *ndev = nt->ndev;
852 	struct pci_dev *pdev = ndev->pdev;
853 	resource_size_t size;
854 	u32 val;
855 	int rc = 0, i, spad;
856 
857 	/* send the local info, in the opposite order of the way we read it */
858 	for (i = 0; i < nt->mw_count; i++) {
859 		size = nt->mw_vec[i].phys_size;
860 
861 		if (max_mw_size && size > max_mw_size)
862 			size = max_mw_size;
863 
864 		spad = MW0_SZ_HIGH + (i * 2);
865 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
866 
867 		spad = MW0_SZ_LOW + (i * 2);
868 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
869 	}
870 
871 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
872 
873 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
874 
875 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
876 
877 	/* Query the remote side for its info */
878 	val = ntb_spad_read(ndev, VERSION);
879 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
880 	if (val != NTB_TRANSPORT_VERSION)
881 		goto out;
882 
883 	val = ntb_spad_read(ndev, NUM_QPS);
884 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
885 	if (val != nt->qp_count)
886 		goto out;
887 
888 	val = ntb_spad_read(ndev, NUM_MWS);
889 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
890 	if (val != nt->mw_count)
891 		goto out;
892 
893 	for (i = 0; i < nt->mw_count; i++) {
894 		u64 val64;
895 
896 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
897 		val64 = (u64)val << 32;
898 
899 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
900 		val64 |= val;
901 
902 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
903 
904 		rc = ntb_set_mw(nt, i, val64);
905 		if (rc)
906 			goto out1;
907 	}
908 
909 	nt->link_is_up = true;
910 
911 	for (i = 0; i < nt->qp_count; i++) {
912 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
913 
914 		ntb_transport_setup_qp_mw(nt, i);
915 
916 		if (qp->client_ready)
917 			schedule_delayed_work(&qp->link_work, 0);
918 	}
919 
920 	return;
921 
922 out1:
923 	for (i = 0; i < nt->mw_count; i++)
924 		ntb_free_mw(nt, i);
925 
926 	/* if there's an actual failure, we should just bail */
927 	if (rc < 0)
928 		return;
929 
930 out:
931 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
932 		schedule_delayed_work(&nt->link_work,
933 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
934 }
935 
936 static void ntb_qp_link_work(struct work_struct *work)
937 {
938 	struct ntb_transport_qp *qp = container_of(work,
939 						   struct ntb_transport_qp,
940 						   link_work.work);
941 	struct pci_dev *pdev = qp->ndev->pdev;
942 	struct ntb_transport_ctx *nt = qp->transport;
943 	int val;
944 
945 	WARN_ON(!nt->link_is_up);
946 
947 	val = ntb_spad_read(nt->ndev, QP_LINKS);
948 
949 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
950 
951 	/* query remote spad for qp ready bits */
952 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
953 
954 	/* See if the remote side is up */
955 	if (val & BIT(qp->qp_num)) {
956 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
957 		qp->link_is_up = true;
958 		qp->active = true;
959 
960 		if (qp->event_handler)
961 			qp->event_handler(qp->cb_data, qp->link_is_up);
962 
963 		if (qp->active)
964 			tasklet_schedule(&qp->rxc_db_work);
965 	} else if (nt->link_is_up)
966 		schedule_delayed_work(&qp->link_work,
967 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
968 }
969 
970 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
971 				    unsigned int qp_num)
972 {
973 	struct ntb_transport_qp *qp;
974 	phys_addr_t mw_base;
975 	resource_size_t mw_size;
976 	unsigned int num_qps_mw, tx_size;
977 	unsigned int mw_num, mw_count, qp_count;
978 	u64 qp_offset;
979 
980 	mw_count = nt->mw_count;
981 	qp_count = nt->qp_count;
982 
983 	mw_num = QP_TO_MW(nt, qp_num);
984 
985 	qp = &nt->qp_vec[qp_num];
986 	qp->qp_num = qp_num;
987 	qp->transport = nt;
988 	qp->ndev = nt->ndev;
989 	qp->client_ready = false;
990 	qp->event_handler = NULL;
991 	ntb_qp_link_down_reset(qp);
992 
993 	if (mw_num < qp_count % mw_count)
994 		num_qps_mw = qp_count / mw_count + 1;
995 	else
996 		num_qps_mw = qp_count / mw_count;
997 
998 	mw_base = nt->mw_vec[mw_num].phys_addr;
999 	mw_size = nt->mw_vec[mw_num].phys_size;
1000 
1001 	tx_size = (unsigned int)mw_size / num_qps_mw;
1002 	qp_offset = tx_size * (qp_num / mw_count);
1003 
1004 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1005 	if (!qp->tx_mw)
1006 		return -EINVAL;
1007 
1008 	qp->tx_mw_phys = mw_base + qp_offset;
1009 	if (!qp->tx_mw_phys)
1010 		return -EINVAL;
1011 
1012 	tx_size -= sizeof(struct ntb_rx_info);
1013 	qp->rx_info = qp->tx_mw + tx_size;
1014 
1015 	/* Due to housekeeping, there must be atleast 2 buffs */
1016 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1017 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1018 
1019 	if (nt->debugfs_node_dir) {
1020 		char debugfs_name[4];
1021 
1022 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1023 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1024 						     nt->debugfs_node_dir);
1025 
1026 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1027 							qp->debugfs_dir, qp,
1028 							&ntb_qp_debugfs_stats);
1029 	} else {
1030 		qp->debugfs_dir = NULL;
1031 		qp->debugfs_stats = NULL;
1032 	}
1033 
1034 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1035 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1036 
1037 	spin_lock_init(&qp->ntb_rx_q_lock);
1038 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1039 
1040 	INIT_LIST_HEAD(&qp->rx_post_q);
1041 	INIT_LIST_HEAD(&qp->rx_pend_q);
1042 	INIT_LIST_HEAD(&qp->rx_free_q);
1043 	INIT_LIST_HEAD(&qp->tx_free_q);
1044 
1045 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1046 		     (unsigned long)qp);
1047 
1048 	return 0;
1049 }
1050 
1051 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1052 {
1053 	struct ntb_transport_ctx *nt;
1054 	struct ntb_transport_mw *mw;
1055 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1056 	u64 qp_bitmap;
1057 	int node;
1058 	int rc, i;
1059 
1060 	mw_count = ntb_peer_mw_count(ndev);
1061 
1062 	if (!ndev->ops->mw_set_trans) {
1063 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1064 		return -EINVAL;
1065 	}
1066 
1067 	if (ntb_db_is_unsafe(ndev))
1068 		dev_dbg(&ndev->dev,
1069 			"doorbell is unsafe, proceed anyway...\n");
1070 	if (ntb_spad_is_unsafe(ndev))
1071 		dev_dbg(&ndev->dev,
1072 			"scratchpad is unsafe, proceed anyway...\n");
1073 
1074 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1075 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1076 
1077 	node = dev_to_node(&ndev->dev);
1078 
1079 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1080 	if (!nt)
1081 		return -ENOMEM;
1082 
1083 	nt->ndev = ndev;
1084 	spad_count = ntb_spad_count(ndev);
1085 
1086 	/* Limit the MW's based on the availability of scratchpads */
1087 
1088 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1089 		nt->mw_count = 0;
1090 		rc = -EINVAL;
1091 		goto err;
1092 	}
1093 
1094 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1095 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1096 
1097 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1098 				  GFP_KERNEL, node);
1099 	if (!nt->mw_vec) {
1100 		rc = -ENOMEM;
1101 		goto err;
1102 	}
1103 
1104 	for (i = 0; i < mw_count; i++) {
1105 		mw = &nt->mw_vec[i];
1106 
1107 		rc = ntb_mw_get_align(ndev, PIDX, i, &mw->xlat_align,
1108 				      &mw->xlat_align_size, NULL);
1109 		if (rc)
1110 			goto err1;
1111 
1112 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1113 					  &mw->phys_size);
1114 		if (rc)
1115 			goto err1;
1116 
1117 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1118 		if (!mw->vbase) {
1119 			rc = -ENOMEM;
1120 			goto err1;
1121 		}
1122 
1123 		mw->buff_size = 0;
1124 		mw->xlat_size = 0;
1125 		mw->virt_addr = NULL;
1126 		mw->dma_addr = 0;
1127 	}
1128 
1129 	qp_bitmap = ntb_db_valid_mask(ndev);
1130 
1131 	qp_count = ilog2(qp_bitmap);
1132 	if (max_num_clients && max_num_clients < qp_count)
1133 		qp_count = max_num_clients;
1134 	else if (nt->mw_count < qp_count)
1135 		qp_count = nt->mw_count;
1136 
1137 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1138 
1139 	nt->qp_count = qp_count;
1140 	nt->qp_bitmap = qp_bitmap;
1141 	nt->qp_bitmap_free = qp_bitmap;
1142 
1143 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1144 				  GFP_KERNEL, node);
1145 	if (!nt->qp_vec) {
1146 		rc = -ENOMEM;
1147 		goto err1;
1148 	}
1149 
1150 	if (nt_debugfs_dir) {
1151 		nt->debugfs_node_dir =
1152 			debugfs_create_dir(pci_name(ndev->pdev),
1153 					   nt_debugfs_dir);
1154 	}
1155 
1156 	for (i = 0; i < qp_count; i++) {
1157 		rc = ntb_transport_init_queue(nt, i);
1158 		if (rc)
1159 			goto err2;
1160 	}
1161 
1162 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1163 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1164 
1165 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1166 	if (rc)
1167 		goto err2;
1168 
1169 	INIT_LIST_HEAD(&nt->client_devs);
1170 	rc = ntb_bus_init(nt);
1171 	if (rc)
1172 		goto err3;
1173 
1174 	nt->link_is_up = false;
1175 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1176 	ntb_link_event(ndev);
1177 
1178 	return 0;
1179 
1180 err3:
1181 	ntb_clear_ctx(ndev);
1182 err2:
1183 	kfree(nt->qp_vec);
1184 err1:
1185 	while (i--) {
1186 		mw = &nt->mw_vec[i];
1187 		iounmap(mw->vbase);
1188 	}
1189 	kfree(nt->mw_vec);
1190 err:
1191 	kfree(nt);
1192 	return rc;
1193 }
1194 
1195 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1196 {
1197 	struct ntb_transport_ctx *nt = ndev->ctx;
1198 	struct ntb_transport_qp *qp;
1199 	u64 qp_bitmap_alloc;
1200 	int i;
1201 
1202 	ntb_transport_link_cleanup(nt);
1203 	cancel_work_sync(&nt->link_cleanup);
1204 	cancel_delayed_work_sync(&nt->link_work);
1205 
1206 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1207 
1208 	/* verify that all the qp's are freed */
1209 	for (i = 0; i < nt->qp_count; i++) {
1210 		qp = &nt->qp_vec[i];
1211 		if (qp_bitmap_alloc & BIT_ULL(i))
1212 			ntb_transport_free_queue(qp);
1213 		debugfs_remove_recursive(qp->debugfs_dir);
1214 	}
1215 
1216 	ntb_link_disable(ndev);
1217 	ntb_clear_ctx(ndev);
1218 
1219 	ntb_bus_remove(nt);
1220 
1221 	for (i = nt->mw_count; i--; ) {
1222 		ntb_free_mw(nt, i);
1223 		iounmap(nt->mw_vec[i].vbase);
1224 	}
1225 
1226 	kfree(nt->qp_vec);
1227 	kfree(nt->mw_vec);
1228 	kfree(nt);
1229 }
1230 
1231 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1232 {
1233 	struct ntb_queue_entry *entry;
1234 	void *cb_data;
1235 	unsigned int len;
1236 	unsigned long irqflags;
1237 
1238 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1239 
1240 	while (!list_empty(&qp->rx_post_q)) {
1241 		entry = list_first_entry(&qp->rx_post_q,
1242 					 struct ntb_queue_entry, entry);
1243 		if (!(entry->flags & DESC_DONE_FLAG))
1244 			break;
1245 
1246 		entry->rx_hdr->flags = 0;
1247 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1248 
1249 		cb_data = entry->cb_data;
1250 		len = entry->len;
1251 
1252 		list_move_tail(&entry->entry, &qp->rx_free_q);
1253 
1254 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1255 
1256 		if (qp->rx_handler && qp->client_ready)
1257 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1258 
1259 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1260 	}
1261 
1262 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1263 }
1264 
1265 static void ntb_rx_copy_callback(void *data,
1266 				 const struct dmaengine_result *res)
1267 {
1268 	struct ntb_queue_entry *entry = data;
1269 
1270 	/* we need to check DMA results if we are using DMA */
1271 	if (res) {
1272 		enum dmaengine_tx_result dma_err = res->result;
1273 
1274 		switch (dma_err) {
1275 		case DMA_TRANS_READ_FAILED:
1276 		case DMA_TRANS_WRITE_FAILED:
1277 			entry->errors++;
1278 		case DMA_TRANS_ABORTED:
1279 		{
1280 			struct ntb_transport_qp *qp = entry->qp;
1281 			void *offset = qp->rx_buff + qp->rx_max_frame *
1282 					qp->rx_index;
1283 
1284 			ntb_memcpy_rx(entry, offset);
1285 			qp->rx_memcpy++;
1286 			return;
1287 		}
1288 
1289 		case DMA_TRANS_NOERROR:
1290 		default:
1291 			break;
1292 		}
1293 	}
1294 
1295 	entry->flags |= DESC_DONE_FLAG;
1296 
1297 	ntb_complete_rxc(entry->qp);
1298 }
1299 
1300 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1301 {
1302 	void *buf = entry->buf;
1303 	size_t len = entry->len;
1304 
1305 	memcpy(buf, offset, len);
1306 
1307 	/* Ensure that the data is fully copied out before clearing the flag */
1308 	wmb();
1309 
1310 	ntb_rx_copy_callback(entry, NULL);
1311 }
1312 
1313 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1314 {
1315 	struct dma_async_tx_descriptor *txd;
1316 	struct ntb_transport_qp *qp = entry->qp;
1317 	struct dma_chan *chan = qp->rx_dma_chan;
1318 	struct dma_device *device;
1319 	size_t pay_off, buff_off, len;
1320 	struct dmaengine_unmap_data *unmap;
1321 	dma_cookie_t cookie;
1322 	void *buf = entry->buf;
1323 
1324 	len = entry->len;
1325 	device = chan->device;
1326 	pay_off = (size_t)offset & ~PAGE_MASK;
1327 	buff_off = (size_t)buf & ~PAGE_MASK;
1328 
1329 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1330 		goto err;
1331 
1332 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1333 	if (!unmap)
1334 		goto err;
1335 
1336 	unmap->len = len;
1337 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1338 				      pay_off, len, DMA_TO_DEVICE);
1339 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1340 		goto err_get_unmap;
1341 
1342 	unmap->to_cnt = 1;
1343 
1344 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1345 				      buff_off, len, DMA_FROM_DEVICE);
1346 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1347 		goto err_get_unmap;
1348 
1349 	unmap->from_cnt = 1;
1350 
1351 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1352 					     unmap->addr[0], len,
1353 					     DMA_PREP_INTERRUPT);
1354 	if (!txd)
1355 		goto err_get_unmap;
1356 
1357 	txd->callback_result = ntb_rx_copy_callback;
1358 	txd->callback_param = entry;
1359 	dma_set_unmap(txd, unmap);
1360 
1361 	cookie = dmaengine_submit(txd);
1362 	if (dma_submit_error(cookie))
1363 		goto err_set_unmap;
1364 
1365 	dmaengine_unmap_put(unmap);
1366 
1367 	qp->last_cookie = cookie;
1368 
1369 	qp->rx_async++;
1370 
1371 	return 0;
1372 
1373 err_set_unmap:
1374 	dmaengine_unmap_put(unmap);
1375 err_get_unmap:
1376 	dmaengine_unmap_put(unmap);
1377 err:
1378 	return -ENXIO;
1379 }
1380 
1381 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1382 {
1383 	struct ntb_transport_qp *qp = entry->qp;
1384 	struct dma_chan *chan = qp->rx_dma_chan;
1385 	int res;
1386 
1387 	if (!chan)
1388 		goto err;
1389 
1390 	if (entry->len < copy_bytes)
1391 		goto err;
1392 
1393 	res = ntb_async_rx_submit(entry, offset);
1394 	if (res < 0)
1395 		goto err;
1396 
1397 	if (!entry->retries)
1398 		qp->rx_async++;
1399 
1400 	return;
1401 
1402 err:
1403 	ntb_memcpy_rx(entry, offset);
1404 	qp->rx_memcpy++;
1405 }
1406 
1407 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1408 {
1409 	struct ntb_payload_header *hdr;
1410 	struct ntb_queue_entry *entry;
1411 	void *offset;
1412 
1413 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1414 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1415 
1416 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1417 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1418 
1419 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1420 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1421 		qp->rx_ring_empty++;
1422 		return -EAGAIN;
1423 	}
1424 
1425 	if (hdr->flags & LINK_DOWN_FLAG) {
1426 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1427 		ntb_qp_link_down(qp);
1428 		hdr->flags = 0;
1429 		return -EAGAIN;
1430 	}
1431 
1432 	if (hdr->ver != (u32)qp->rx_pkts) {
1433 		dev_dbg(&qp->ndev->pdev->dev,
1434 			"version mismatch, expected %llu - got %u\n",
1435 			qp->rx_pkts, hdr->ver);
1436 		qp->rx_err_ver++;
1437 		return -EIO;
1438 	}
1439 
1440 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1441 	if (!entry) {
1442 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1443 		qp->rx_err_no_buf++;
1444 		return -EAGAIN;
1445 	}
1446 
1447 	entry->rx_hdr = hdr;
1448 	entry->rx_index = qp->rx_index;
1449 
1450 	if (hdr->len > entry->len) {
1451 		dev_dbg(&qp->ndev->pdev->dev,
1452 			"receive buffer overflow! Wanted %d got %d\n",
1453 			hdr->len, entry->len);
1454 		qp->rx_err_oflow++;
1455 
1456 		entry->len = -EIO;
1457 		entry->flags |= DESC_DONE_FLAG;
1458 
1459 		ntb_complete_rxc(qp);
1460 	} else {
1461 		dev_dbg(&qp->ndev->pdev->dev,
1462 			"RX OK index %u ver %u size %d into buf size %d\n",
1463 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1464 
1465 		qp->rx_bytes += hdr->len;
1466 		qp->rx_pkts++;
1467 
1468 		entry->len = hdr->len;
1469 
1470 		ntb_async_rx(entry, offset);
1471 	}
1472 
1473 	qp->rx_index++;
1474 	qp->rx_index %= qp->rx_max_entry;
1475 
1476 	return 0;
1477 }
1478 
1479 static void ntb_transport_rxc_db(unsigned long data)
1480 {
1481 	struct ntb_transport_qp *qp = (void *)data;
1482 	int rc, i;
1483 
1484 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1485 		__func__, qp->qp_num);
1486 
1487 	/* Limit the number of packets processed in a single interrupt to
1488 	 * provide fairness to others
1489 	 */
1490 	for (i = 0; i < qp->rx_max_entry; i++) {
1491 		rc = ntb_process_rxc(qp);
1492 		if (rc)
1493 			break;
1494 	}
1495 
1496 	if (i && qp->rx_dma_chan)
1497 		dma_async_issue_pending(qp->rx_dma_chan);
1498 
1499 	if (i == qp->rx_max_entry) {
1500 		/* there is more work to do */
1501 		if (qp->active)
1502 			tasklet_schedule(&qp->rxc_db_work);
1503 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1504 		/* the doorbell bit is set: clear it */
1505 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1506 		/* ntb_db_read ensures ntb_db_clear write is committed */
1507 		ntb_db_read(qp->ndev);
1508 
1509 		/* an interrupt may have arrived between finishing
1510 		 * ntb_process_rxc and clearing the doorbell bit:
1511 		 * there might be some more work to do.
1512 		 */
1513 		if (qp->active)
1514 			tasklet_schedule(&qp->rxc_db_work);
1515 	}
1516 }
1517 
1518 static void ntb_tx_copy_callback(void *data,
1519 				 const struct dmaengine_result *res)
1520 {
1521 	struct ntb_queue_entry *entry = data;
1522 	struct ntb_transport_qp *qp = entry->qp;
1523 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1524 
1525 	/* we need to check DMA results if we are using DMA */
1526 	if (res) {
1527 		enum dmaengine_tx_result dma_err = res->result;
1528 
1529 		switch (dma_err) {
1530 		case DMA_TRANS_READ_FAILED:
1531 		case DMA_TRANS_WRITE_FAILED:
1532 			entry->errors++;
1533 		case DMA_TRANS_ABORTED:
1534 		{
1535 			void __iomem *offset =
1536 				qp->tx_mw + qp->tx_max_frame *
1537 				entry->tx_index;
1538 
1539 			/* resubmit via CPU */
1540 			ntb_memcpy_tx(entry, offset);
1541 			qp->tx_memcpy++;
1542 			return;
1543 		}
1544 
1545 		case DMA_TRANS_NOERROR:
1546 		default:
1547 			break;
1548 		}
1549 	}
1550 
1551 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1552 
1553 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1554 
1555 	/* The entry length can only be zero if the packet is intended to be a
1556 	 * "link down" or similar.  Since no payload is being sent in these
1557 	 * cases, there is nothing to add to the completion queue.
1558 	 */
1559 	if (entry->len > 0) {
1560 		qp->tx_bytes += entry->len;
1561 
1562 		if (qp->tx_handler)
1563 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1564 				       entry->len);
1565 	}
1566 
1567 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1568 }
1569 
1570 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1571 {
1572 #ifdef ARCH_HAS_NOCACHE_UACCESS
1573 	/*
1574 	 * Using non-temporal mov to improve performance on non-cached
1575 	 * writes, even though we aren't actually copying from user space.
1576 	 */
1577 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1578 #else
1579 	memcpy_toio(offset, entry->buf, entry->len);
1580 #endif
1581 
1582 	/* Ensure that the data is fully copied out before setting the flags */
1583 	wmb();
1584 
1585 	ntb_tx_copy_callback(entry, NULL);
1586 }
1587 
1588 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1589 			       struct ntb_queue_entry *entry)
1590 {
1591 	struct dma_async_tx_descriptor *txd;
1592 	struct dma_chan *chan = qp->tx_dma_chan;
1593 	struct dma_device *device;
1594 	size_t len = entry->len;
1595 	void *buf = entry->buf;
1596 	size_t dest_off, buff_off;
1597 	struct dmaengine_unmap_data *unmap;
1598 	dma_addr_t dest;
1599 	dma_cookie_t cookie;
1600 
1601 	device = chan->device;
1602 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1603 	buff_off = (size_t)buf & ~PAGE_MASK;
1604 	dest_off = (size_t)dest & ~PAGE_MASK;
1605 
1606 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1607 		goto err;
1608 
1609 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1610 	if (!unmap)
1611 		goto err;
1612 
1613 	unmap->len = len;
1614 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1615 				      buff_off, len, DMA_TO_DEVICE);
1616 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1617 		goto err_get_unmap;
1618 
1619 	unmap->to_cnt = 1;
1620 
1621 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1622 					     DMA_PREP_INTERRUPT);
1623 	if (!txd)
1624 		goto err_get_unmap;
1625 
1626 	txd->callback_result = ntb_tx_copy_callback;
1627 	txd->callback_param = entry;
1628 	dma_set_unmap(txd, unmap);
1629 
1630 	cookie = dmaengine_submit(txd);
1631 	if (dma_submit_error(cookie))
1632 		goto err_set_unmap;
1633 
1634 	dmaengine_unmap_put(unmap);
1635 
1636 	dma_async_issue_pending(chan);
1637 
1638 	return 0;
1639 err_set_unmap:
1640 	dmaengine_unmap_put(unmap);
1641 err_get_unmap:
1642 	dmaengine_unmap_put(unmap);
1643 err:
1644 	return -ENXIO;
1645 }
1646 
1647 static void ntb_async_tx(struct ntb_transport_qp *qp,
1648 			 struct ntb_queue_entry *entry)
1649 {
1650 	struct ntb_payload_header __iomem *hdr;
1651 	struct dma_chan *chan = qp->tx_dma_chan;
1652 	void __iomem *offset;
1653 	int res;
1654 
1655 	entry->tx_index = qp->tx_index;
1656 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1657 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1658 	entry->tx_hdr = hdr;
1659 
1660 	iowrite32(entry->len, &hdr->len);
1661 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1662 
1663 	if (!chan)
1664 		goto err;
1665 
1666 	if (entry->len < copy_bytes)
1667 		goto err;
1668 
1669 	res = ntb_async_tx_submit(qp, entry);
1670 	if (res < 0)
1671 		goto err;
1672 
1673 	if (!entry->retries)
1674 		qp->tx_async++;
1675 
1676 	return;
1677 
1678 err:
1679 	ntb_memcpy_tx(entry, offset);
1680 	qp->tx_memcpy++;
1681 }
1682 
1683 static int ntb_process_tx(struct ntb_transport_qp *qp,
1684 			  struct ntb_queue_entry *entry)
1685 {
1686 	if (qp->tx_index == qp->remote_rx_info->entry) {
1687 		qp->tx_ring_full++;
1688 		return -EAGAIN;
1689 	}
1690 
1691 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1692 		if (qp->tx_handler)
1693 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1694 
1695 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1696 			     &qp->tx_free_q);
1697 		return 0;
1698 	}
1699 
1700 	ntb_async_tx(qp, entry);
1701 
1702 	qp->tx_index++;
1703 	qp->tx_index %= qp->tx_max_entry;
1704 
1705 	qp->tx_pkts++;
1706 
1707 	return 0;
1708 }
1709 
1710 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1711 {
1712 	struct pci_dev *pdev = qp->ndev->pdev;
1713 	struct ntb_queue_entry *entry;
1714 	int i, rc;
1715 
1716 	if (!qp->link_is_up)
1717 		return;
1718 
1719 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1720 
1721 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1722 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1723 		if (entry)
1724 			break;
1725 		msleep(100);
1726 	}
1727 
1728 	if (!entry)
1729 		return;
1730 
1731 	entry->cb_data = NULL;
1732 	entry->buf = NULL;
1733 	entry->len = 0;
1734 	entry->flags = LINK_DOWN_FLAG;
1735 
1736 	rc = ntb_process_tx(qp, entry);
1737 	if (rc)
1738 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1739 			qp->qp_num);
1740 
1741 	ntb_qp_link_down_reset(qp);
1742 }
1743 
1744 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1745 {
1746 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1747 }
1748 
1749 /**
1750  * ntb_transport_create_queue - Create a new NTB transport layer queue
1751  * @rx_handler: receive callback function
1752  * @tx_handler: transmit callback function
1753  * @event_handler: event callback function
1754  *
1755  * Create a new NTB transport layer queue and provide the queue with a callback
1756  * routine for both transmit and receive.  The receive callback routine will be
1757  * used to pass up data when the transport has received it on the queue.   The
1758  * transmit callback routine will be called when the transport has completed the
1759  * transmission of the data on the queue and the data is ready to be freed.
1760  *
1761  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1762  */
1763 struct ntb_transport_qp *
1764 ntb_transport_create_queue(void *data, struct device *client_dev,
1765 			   const struct ntb_queue_handlers *handlers)
1766 {
1767 	struct ntb_dev *ndev;
1768 	struct pci_dev *pdev;
1769 	struct ntb_transport_ctx *nt;
1770 	struct ntb_queue_entry *entry;
1771 	struct ntb_transport_qp *qp;
1772 	u64 qp_bit;
1773 	unsigned int free_queue;
1774 	dma_cap_mask_t dma_mask;
1775 	int node;
1776 	int i;
1777 
1778 	ndev = dev_ntb(client_dev->parent);
1779 	pdev = ndev->pdev;
1780 	nt = ndev->ctx;
1781 
1782 	node = dev_to_node(&ndev->dev);
1783 
1784 	free_queue = ffs(nt->qp_bitmap_free);
1785 	if (!free_queue)
1786 		goto err;
1787 
1788 	/* decrement free_queue to make it zero based */
1789 	free_queue--;
1790 
1791 	qp = &nt->qp_vec[free_queue];
1792 	qp_bit = BIT_ULL(qp->qp_num);
1793 
1794 	nt->qp_bitmap_free &= ~qp_bit;
1795 
1796 	qp->cb_data = data;
1797 	qp->rx_handler = handlers->rx_handler;
1798 	qp->tx_handler = handlers->tx_handler;
1799 	qp->event_handler = handlers->event_handler;
1800 
1801 	dma_cap_zero(dma_mask);
1802 	dma_cap_set(DMA_MEMCPY, dma_mask);
1803 
1804 	if (use_dma) {
1805 		qp->tx_dma_chan =
1806 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1807 					    (void *)(unsigned long)node);
1808 		if (!qp->tx_dma_chan)
1809 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1810 
1811 		qp->rx_dma_chan =
1812 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1813 					    (void *)(unsigned long)node);
1814 		if (!qp->rx_dma_chan)
1815 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1816 	} else {
1817 		qp->tx_dma_chan = NULL;
1818 		qp->rx_dma_chan = NULL;
1819 	}
1820 
1821 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1822 		qp->tx_dma_chan ? "DMA" : "CPU");
1823 
1824 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1825 		qp->rx_dma_chan ? "DMA" : "CPU");
1826 
1827 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1828 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1829 		if (!entry)
1830 			goto err1;
1831 
1832 		entry->qp = qp;
1833 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1834 			     &qp->rx_free_q);
1835 	}
1836 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1837 
1838 	for (i = 0; i < qp->tx_max_entry; i++) {
1839 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1840 		if (!entry)
1841 			goto err2;
1842 
1843 		entry->qp = qp;
1844 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1845 			     &qp->tx_free_q);
1846 	}
1847 
1848 	ntb_db_clear(qp->ndev, qp_bit);
1849 	ntb_db_clear_mask(qp->ndev, qp_bit);
1850 
1851 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1852 
1853 	return qp;
1854 
1855 err2:
1856 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1857 		kfree(entry);
1858 err1:
1859 	qp->rx_alloc_entry = 0;
1860 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1861 		kfree(entry);
1862 	if (qp->tx_dma_chan)
1863 		dma_release_channel(qp->tx_dma_chan);
1864 	if (qp->rx_dma_chan)
1865 		dma_release_channel(qp->rx_dma_chan);
1866 	nt->qp_bitmap_free |= qp_bit;
1867 err:
1868 	return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1871 
1872 /**
1873  * ntb_transport_free_queue - Frees NTB transport queue
1874  * @qp: NTB queue to be freed
1875  *
1876  * Frees NTB transport queue
1877  */
1878 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1879 {
1880 	struct pci_dev *pdev;
1881 	struct ntb_queue_entry *entry;
1882 	u64 qp_bit;
1883 
1884 	if (!qp)
1885 		return;
1886 
1887 	pdev = qp->ndev->pdev;
1888 
1889 	qp->active = false;
1890 
1891 	if (qp->tx_dma_chan) {
1892 		struct dma_chan *chan = qp->tx_dma_chan;
1893 		/* Putting the dma_chan to NULL will force any new traffic to be
1894 		 * processed by the CPU instead of the DAM engine
1895 		 */
1896 		qp->tx_dma_chan = NULL;
1897 
1898 		/* Try to be nice and wait for any queued DMA engine
1899 		 * transactions to process before smashing it with a rock
1900 		 */
1901 		dma_sync_wait(chan, qp->last_cookie);
1902 		dmaengine_terminate_all(chan);
1903 		dma_release_channel(chan);
1904 	}
1905 
1906 	if (qp->rx_dma_chan) {
1907 		struct dma_chan *chan = qp->rx_dma_chan;
1908 		/* Putting the dma_chan to NULL will force any new traffic to be
1909 		 * processed by the CPU instead of the DAM engine
1910 		 */
1911 		qp->rx_dma_chan = NULL;
1912 
1913 		/* Try to be nice and wait for any queued DMA engine
1914 		 * transactions to process before smashing it with a rock
1915 		 */
1916 		dma_sync_wait(chan, qp->last_cookie);
1917 		dmaengine_terminate_all(chan);
1918 		dma_release_channel(chan);
1919 	}
1920 
1921 	qp_bit = BIT_ULL(qp->qp_num);
1922 
1923 	ntb_db_set_mask(qp->ndev, qp_bit);
1924 	tasklet_kill(&qp->rxc_db_work);
1925 
1926 	cancel_delayed_work_sync(&qp->link_work);
1927 
1928 	qp->cb_data = NULL;
1929 	qp->rx_handler = NULL;
1930 	qp->tx_handler = NULL;
1931 	qp->event_handler = NULL;
1932 
1933 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1934 		kfree(entry);
1935 
1936 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1937 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1938 		kfree(entry);
1939 	}
1940 
1941 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1942 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1943 		kfree(entry);
1944 	}
1945 
1946 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1947 		kfree(entry);
1948 
1949 	qp->transport->qp_bitmap_free |= qp_bit;
1950 
1951 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1952 }
1953 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1954 
1955 /**
1956  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1957  * @qp: NTB queue to be freed
1958  * @len: pointer to variable to write enqueued buffers length
1959  *
1960  * Dequeues unused buffers from receive queue.  Should only be used during
1961  * shutdown of qp.
1962  *
1963  * RETURNS: NULL error value on error, or void* for success.
1964  */
1965 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1966 {
1967 	struct ntb_queue_entry *entry;
1968 	void *buf;
1969 
1970 	if (!qp || qp->client_ready)
1971 		return NULL;
1972 
1973 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1974 	if (!entry)
1975 		return NULL;
1976 
1977 	buf = entry->cb_data;
1978 	*len = entry->len;
1979 
1980 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1981 
1982 	return buf;
1983 }
1984 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1985 
1986 /**
1987  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1988  * @qp: NTB transport layer queue the entry is to be enqueued on
1989  * @cb: per buffer pointer for callback function to use
1990  * @data: pointer to data buffer that incoming packets will be copied into
1991  * @len: length of the data buffer
1992  *
1993  * Enqueue a new receive buffer onto the transport queue into which a NTB
1994  * payload can be received into.
1995  *
1996  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1997  */
1998 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1999 			     unsigned int len)
2000 {
2001 	struct ntb_queue_entry *entry;
2002 
2003 	if (!qp)
2004 		return -EINVAL;
2005 
2006 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2007 	if (!entry)
2008 		return -ENOMEM;
2009 
2010 	entry->cb_data = cb;
2011 	entry->buf = data;
2012 	entry->len = len;
2013 	entry->flags = 0;
2014 	entry->retries = 0;
2015 	entry->errors = 0;
2016 	entry->rx_index = 0;
2017 
2018 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2019 
2020 	if (qp->active)
2021 		tasklet_schedule(&qp->rxc_db_work);
2022 
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2026 
2027 /**
2028  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2029  * @qp: NTB transport layer queue the entry is to be enqueued on
2030  * @cb: per buffer pointer for callback function to use
2031  * @data: pointer to data buffer that will be sent
2032  * @len: length of the data buffer
2033  *
2034  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2035  * payload will be transmitted.  This assumes that a lock is being held to
2036  * serialize access to the qp.
2037  *
2038  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2039  */
2040 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2041 			     unsigned int len)
2042 {
2043 	struct ntb_queue_entry *entry;
2044 	int rc;
2045 
2046 	if (!qp || !qp->link_is_up || !len)
2047 		return -EINVAL;
2048 
2049 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2050 	if (!entry) {
2051 		qp->tx_err_no_buf++;
2052 		return -EBUSY;
2053 	}
2054 
2055 	entry->cb_data = cb;
2056 	entry->buf = data;
2057 	entry->len = len;
2058 	entry->flags = 0;
2059 	entry->errors = 0;
2060 	entry->retries = 0;
2061 	entry->tx_index = 0;
2062 
2063 	rc = ntb_process_tx(qp, entry);
2064 	if (rc)
2065 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2066 			     &qp->tx_free_q);
2067 
2068 	return rc;
2069 }
2070 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2071 
2072 /**
2073  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2074  * @qp: NTB transport layer queue to be enabled
2075  *
2076  * Notify NTB transport layer of client readiness to use queue
2077  */
2078 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2079 {
2080 	if (!qp)
2081 		return;
2082 
2083 	qp->client_ready = true;
2084 
2085 	if (qp->transport->link_is_up)
2086 		schedule_delayed_work(&qp->link_work, 0);
2087 }
2088 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2089 
2090 /**
2091  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2092  * @qp: NTB transport layer queue to be disabled
2093  *
2094  * Notify NTB transport layer of client's desire to no longer receive data on
2095  * transport queue specified.  It is the client's responsibility to ensure all
2096  * entries on queue are purged or otherwise handled appropriately.
2097  */
2098 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2099 {
2100 	int val;
2101 
2102 	if (!qp)
2103 		return;
2104 
2105 	qp->client_ready = false;
2106 
2107 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2108 
2109 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2110 
2111 	if (qp->link_is_up)
2112 		ntb_send_link_down(qp);
2113 	else
2114 		cancel_delayed_work_sync(&qp->link_work);
2115 }
2116 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2117 
2118 /**
2119  * ntb_transport_link_query - Query transport link state
2120  * @qp: NTB transport layer queue to be queried
2121  *
2122  * Query connectivity to the remote system of the NTB transport queue
2123  *
2124  * RETURNS: true for link up or false for link down
2125  */
2126 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2127 {
2128 	if (!qp)
2129 		return false;
2130 
2131 	return qp->link_is_up;
2132 }
2133 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2134 
2135 /**
2136  * ntb_transport_qp_num - Query the qp number
2137  * @qp: NTB transport layer queue to be queried
2138  *
2139  * Query qp number of the NTB transport queue
2140  *
2141  * RETURNS: a zero based number specifying the qp number
2142  */
2143 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2144 {
2145 	if (!qp)
2146 		return 0;
2147 
2148 	return qp->qp_num;
2149 }
2150 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2151 
2152 /**
2153  * ntb_transport_max_size - Query the max payload size of a qp
2154  * @qp: NTB transport layer queue to be queried
2155  *
2156  * Query the maximum payload size permissible on the given qp
2157  *
2158  * RETURNS: the max payload size of a qp
2159  */
2160 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2161 {
2162 	unsigned int max_size;
2163 	unsigned int copy_align;
2164 	struct dma_chan *rx_chan, *tx_chan;
2165 
2166 	if (!qp)
2167 		return 0;
2168 
2169 	rx_chan = qp->rx_dma_chan;
2170 	tx_chan = qp->tx_dma_chan;
2171 
2172 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2173 			 tx_chan ? tx_chan->device->copy_align : 0);
2174 
2175 	/* If DMA engine usage is possible, try to find the max size for that */
2176 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2177 	max_size = round_down(max_size, 1 << copy_align);
2178 
2179 	return max_size;
2180 }
2181 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2182 
2183 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2184 {
2185 	unsigned int head = qp->tx_index;
2186 	unsigned int tail = qp->remote_rx_info->entry;
2187 
2188 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2189 }
2190 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2191 
2192 static void ntb_transport_doorbell_callback(void *data, int vector)
2193 {
2194 	struct ntb_transport_ctx *nt = data;
2195 	struct ntb_transport_qp *qp;
2196 	u64 db_bits;
2197 	unsigned int qp_num;
2198 
2199 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2200 		   ntb_db_vector_mask(nt->ndev, vector));
2201 
2202 	while (db_bits) {
2203 		qp_num = __ffs(db_bits);
2204 		qp = &nt->qp_vec[qp_num];
2205 
2206 		if (qp->active)
2207 			tasklet_schedule(&qp->rxc_db_work);
2208 
2209 		db_bits &= ~BIT_ULL(qp_num);
2210 	}
2211 }
2212 
2213 static const struct ntb_ctx_ops ntb_transport_ops = {
2214 	.link_event = ntb_transport_event_callback,
2215 	.db_event = ntb_transport_doorbell_callback,
2216 };
2217 
2218 static struct ntb_client ntb_transport_client = {
2219 	.ops = {
2220 		.probe = ntb_transport_probe,
2221 		.remove = ntb_transport_free,
2222 	},
2223 };
2224 
2225 static int __init ntb_transport_init(void)
2226 {
2227 	int rc;
2228 
2229 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2230 
2231 	if (debugfs_initialized())
2232 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2233 
2234 	rc = bus_register(&ntb_transport_bus);
2235 	if (rc)
2236 		goto err_bus;
2237 
2238 	rc = ntb_register_client(&ntb_transport_client);
2239 	if (rc)
2240 		goto err_client;
2241 
2242 	return 0;
2243 
2244 err_client:
2245 	bus_unregister(&ntb_transport_bus);
2246 err_bus:
2247 	debugfs_remove_recursive(nt_debugfs_dir);
2248 	return rc;
2249 }
2250 module_init(ntb_transport_init);
2251 
2252 static void __exit ntb_transport_exit(void)
2253 {
2254 	ntb_unregister_client(&ntb_transport_client);
2255 	bus_unregister(&ntb_transport_bus);
2256 	debugfs_remove_recursive(nt_debugfs_dir);
2257 }
2258 module_exit(ntb_transport_exit);
2259