xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision efe4a1ac)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static struct dentry *nt_debugfs_dir;
97 
98 struct ntb_queue_entry {
99 	/* ntb_queue list reference */
100 	struct list_head entry;
101 	/* pointers to data to be transferred */
102 	void *cb_data;
103 	void *buf;
104 	unsigned int len;
105 	unsigned int flags;
106 	int retries;
107 	int errors;
108 	unsigned int tx_index;
109 	unsigned int rx_index;
110 
111 	struct ntb_transport_qp *qp;
112 	union {
113 		struct ntb_payload_header __iomem *tx_hdr;
114 		struct ntb_payload_header *rx_hdr;
115 	};
116 };
117 
118 struct ntb_rx_info {
119 	unsigned int entry;
120 };
121 
122 struct ntb_transport_qp {
123 	struct ntb_transport_ctx *transport;
124 	struct ntb_dev *ndev;
125 	void *cb_data;
126 	struct dma_chan *tx_dma_chan;
127 	struct dma_chan *rx_dma_chan;
128 
129 	bool client_ready;
130 	bool link_is_up;
131 	bool active;
132 
133 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
134 	u64 qp_bit;
135 
136 	struct ntb_rx_info __iomem *rx_info;
137 	struct ntb_rx_info *remote_rx_info;
138 
139 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
140 			   void *data, int len);
141 	struct list_head tx_free_q;
142 	spinlock_t ntb_tx_free_q_lock;
143 	void __iomem *tx_mw;
144 	dma_addr_t tx_mw_phys;
145 	unsigned int tx_index;
146 	unsigned int tx_max_entry;
147 	unsigned int tx_max_frame;
148 
149 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
150 			   void *data, int len);
151 	struct list_head rx_post_q;
152 	struct list_head rx_pend_q;
153 	struct list_head rx_free_q;
154 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
155 	spinlock_t ntb_rx_q_lock;
156 	void *rx_buff;
157 	unsigned int rx_index;
158 	unsigned int rx_max_entry;
159 	unsigned int rx_max_frame;
160 	unsigned int rx_alloc_entry;
161 	dma_cookie_t last_cookie;
162 	struct tasklet_struct rxc_db_work;
163 
164 	void (*event_handler)(void *data, int status);
165 	struct delayed_work link_work;
166 	struct work_struct link_cleanup;
167 
168 	struct dentry *debugfs_dir;
169 	struct dentry *debugfs_stats;
170 
171 	/* Stats */
172 	u64 rx_bytes;
173 	u64 rx_pkts;
174 	u64 rx_ring_empty;
175 	u64 rx_err_no_buf;
176 	u64 rx_err_oflow;
177 	u64 rx_err_ver;
178 	u64 rx_memcpy;
179 	u64 rx_async;
180 	u64 tx_bytes;
181 	u64 tx_pkts;
182 	u64 tx_ring_full;
183 	u64 tx_err_no_buf;
184 	u64 tx_memcpy;
185 	u64 tx_async;
186 };
187 
188 struct ntb_transport_mw {
189 	phys_addr_t phys_addr;
190 	resource_size_t phys_size;
191 	resource_size_t xlat_align;
192 	resource_size_t xlat_align_size;
193 	void __iomem *vbase;
194 	size_t xlat_size;
195 	size_t buff_size;
196 	void *virt_addr;
197 	dma_addr_t dma_addr;
198 };
199 
200 struct ntb_transport_client_dev {
201 	struct list_head entry;
202 	struct ntb_transport_ctx *nt;
203 	struct device dev;
204 };
205 
206 struct ntb_transport_ctx {
207 	struct list_head entry;
208 	struct list_head client_devs;
209 
210 	struct ntb_dev *ndev;
211 
212 	struct ntb_transport_mw *mw_vec;
213 	struct ntb_transport_qp *qp_vec;
214 	unsigned int mw_count;
215 	unsigned int qp_count;
216 	u64 qp_bitmap;
217 	u64 qp_bitmap_free;
218 
219 	bool link_is_up;
220 	struct delayed_work link_work;
221 	struct work_struct link_cleanup;
222 
223 	struct dentry *debugfs_node_dir;
224 };
225 
226 enum {
227 	DESC_DONE_FLAG = BIT(0),
228 	LINK_DOWN_FLAG = BIT(1),
229 };
230 
231 struct ntb_payload_header {
232 	unsigned int ver;
233 	unsigned int len;
234 	unsigned int flags;
235 };
236 
237 enum {
238 	VERSION = 0,
239 	QP_LINKS,
240 	NUM_QPS,
241 	NUM_MWS,
242 	MW0_SZ_HIGH,
243 	MW0_SZ_LOW,
244 };
245 
246 #define dev_client_dev(__dev) \
247 	container_of((__dev), struct ntb_transport_client_dev, dev)
248 
249 #define drv_client(__drv) \
250 	container_of((__drv), struct ntb_transport_client, driver)
251 
252 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
253 #define NTB_QP_DEF_NUM_ENTRIES	100
254 #define NTB_LINK_DOWN_TIMEOUT	10
255 
256 static void ntb_transport_rxc_db(unsigned long data);
257 static const struct ntb_ctx_ops ntb_transport_ops;
258 static struct ntb_client ntb_transport_client;
259 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
260 			       struct ntb_queue_entry *entry);
261 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
262 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
263 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
264 
265 
266 static int ntb_transport_bus_match(struct device *dev,
267 				   struct device_driver *drv)
268 {
269 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
270 }
271 
272 static int ntb_transport_bus_probe(struct device *dev)
273 {
274 	const struct ntb_transport_client *client;
275 	int rc = -EINVAL;
276 
277 	get_device(dev);
278 
279 	client = drv_client(dev->driver);
280 	rc = client->probe(dev);
281 	if (rc)
282 		put_device(dev);
283 
284 	return rc;
285 }
286 
287 static int ntb_transport_bus_remove(struct device *dev)
288 {
289 	const struct ntb_transport_client *client;
290 
291 	client = drv_client(dev->driver);
292 	client->remove(dev);
293 
294 	put_device(dev);
295 
296 	return 0;
297 }
298 
299 static struct bus_type ntb_transport_bus = {
300 	.name = "ntb_transport",
301 	.match = ntb_transport_bus_match,
302 	.probe = ntb_transport_bus_probe,
303 	.remove = ntb_transport_bus_remove,
304 };
305 
306 static LIST_HEAD(ntb_transport_list);
307 
308 static int ntb_bus_init(struct ntb_transport_ctx *nt)
309 {
310 	list_add_tail(&nt->entry, &ntb_transport_list);
311 	return 0;
312 }
313 
314 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
315 {
316 	struct ntb_transport_client_dev *client_dev, *cd;
317 
318 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
319 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
320 			dev_name(&client_dev->dev));
321 		list_del(&client_dev->entry);
322 		device_unregister(&client_dev->dev);
323 	}
324 
325 	list_del(&nt->entry);
326 }
327 
328 static void ntb_transport_client_release(struct device *dev)
329 {
330 	struct ntb_transport_client_dev *client_dev;
331 
332 	client_dev = dev_client_dev(dev);
333 	kfree(client_dev);
334 }
335 
336 /**
337  * ntb_transport_unregister_client_dev - Unregister NTB client device
338  * @device_name: Name of NTB client device
339  *
340  * Unregister an NTB client device with the NTB transport layer
341  */
342 void ntb_transport_unregister_client_dev(char *device_name)
343 {
344 	struct ntb_transport_client_dev *client, *cd;
345 	struct ntb_transport_ctx *nt;
346 
347 	list_for_each_entry(nt, &ntb_transport_list, entry)
348 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
349 			if (!strncmp(dev_name(&client->dev), device_name,
350 				     strlen(device_name))) {
351 				list_del(&client->entry);
352 				device_unregister(&client->dev);
353 			}
354 }
355 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
356 
357 /**
358  * ntb_transport_register_client_dev - Register NTB client device
359  * @device_name: Name of NTB client device
360  *
361  * Register an NTB client device with the NTB transport layer
362  */
363 int ntb_transport_register_client_dev(char *device_name)
364 {
365 	struct ntb_transport_client_dev *client_dev;
366 	struct ntb_transport_ctx *nt;
367 	int node;
368 	int rc, i = 0;
369 
370 	if (list_empty(&ntb_transport_list))
371 		return -ENODEV;
372 
373 	list_for_each_entry(nt, &ntb_transport_list, entry) {
374 		struct device *dev;
375 
376 		node = dev_to_node(&nt->ndev->dev);
377 
378 		client_dev = kzalloc_node(sizeof(*client_dev),
379 					  GFP_KERNEL, node);
380 		if (!client_dev) {
381 			rc = -ENOMEM;
382 			goto err;
383 		}
384 
385 		dev = &client_dev->dev;
386 
387 		/* setup and register client devices */
388 		dev_set_name(dev, "%s%d", device_name, i);
389 		dev->bus = &ntb_transport_bus;
390 		dev->release = ntb_transport_client_release;
391 		dev->parent = &nt->ndev->dev;
392 
393 		rc = device_register(dev);
394 		if (rc) {
395 			kfree(client_dev);
396 			goto err;
397 		}
398 
399 		list_add_tail(&client_dev->entry, &nt->client_devs);
400 		i++;
401 	}
402 
403 	return 0;
404 
405 err:
406 	ntb_transport_unregister_client_dev(device_name);
407 
408 	return rc;
409 }
410 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
411 
412 /**
413  * ntb_transport_register_client - Register NTB client driver
414  * @drv: NTB client driver to be registered
415  *
416  * Register an NTB client driver with the NTB transport layer
417  *
418  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
419  */
420 int ntb_transport_register_client(struct ntb_transport_client *drv)
421 {
422 	drv->driver.bus = &ntb_transport_bus;
423 
424 	if (list_empty(&ntb_transport_list))
425 		return -ENODEV;
426 
427 	return driver_register(&drv->driver);
428 }
429 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
430 
431 /**
432  * ntb_transport_unregister_client - Unregister NTB client driver
433  * @drv: NTB client driver to be unregistered
434  *
435  * Unregister an NTB client driver with the NTB transport layer
436  *
437  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
438  */
439 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
440 {
441 	driver_unregister(&drv->driver);
442 }
443 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
444 
445 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
446 			    loff_t *offp)
447 {
448 	struct ntb_transport_qp *qp;
449 	char *buf;
450 	ssize_t ret, out_offset, out_count;
451 
452 	qp = filp->private_data;
453 
454 	if (!qp || !qp->link_is_up)
455 		return 0;
456 
457 	out_count = 1000;
458 
459 	buf = kmalloc(out_count, GFP_KERNEL);
460 	if (!buf)
461 		return -ENOMEM;
462 
463 	out_offset = 0;
464 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 			       "\nNTB QP stats:\n\n");
466 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
468 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
470 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "rx_async - \t%llu\n", qp->rx_async);
474 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
476 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
478 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
480 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
482 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 			       "rx_buff - \t0x%p\n", qp->rx_buff);
484 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 			       "rx_index - \t%u\n", qp->rx_index);
486 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
488 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
490 
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
493 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
494 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
495 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
496 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
497 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
498 			       "tx_async - \t%llu\n", qp->tx_async);
499 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
500 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
501 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
502 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
503 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
504 			       "tx_mw - \t0x%p\n", qp->tx_mw);
505 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
506 			       "tx_index (H) - \t%u\n", qp->tx_index);
507 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
508 			       "RRI (T) - \t%u\n",
509 			       qp->remote_rx_info->entry);
510 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
511 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
512 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
513 			       "free tx - \t%u\n",
514 			       ntb_transport_tx_free_entry(qp));
515 
516 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
517 			       "\n");
518 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
519 			       "Using TX DMA - \t%s\n",
520 			       qp->tx_dma_chan ? "Yes" : "No");
521 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 			       "Using RX DMA - \t%s\n",
523 			       qp->rx_dma_chan ? "Yes" : "No");
524 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
525 			       "QP Link - \t%s\n",
526 			       qp->link_is_up ? "Up" : "Down");
527 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 			       "\n");
529 
530 	if (out_offset > out_count)
531 		out_offset = out_count;
532 
533 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
534 	kfree(buf);
535 	return ret;
536 }
537 
538 static const struct file_operations ntb_qp_debugfs_stats = {
539 	.owner = THIS_MODULE,
540 	.open = simple_open,
541 	.read = debugfs_read,
542 };
543 
544 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
545 			 struct list_head *list)
546 {
547 	unsigned long flags;
548 
549 	spin_lock_irqsave(lock, flags);
550 	list_add_tail(entry, list);
551 	spin_unlock_irqrestore(lock, flags);
552 }
553 
554 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
555 					   struct list_head *list)
556 {
557 	struct ntb_queue_entry *entry;
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(lock, flags);
561 	if (list_empty(list)) {
562 		entry = NULL;
563 		goto out;
564 	}
565 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
566 	list_del(&entry->entry);
567 
568 out:
569 	spin_unlock_irqrestore(lock, flags);
570 
571 	return entry;
572 }
573 
574 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
575 					   struct list_head *list,
576 					   struct list_head *to_list)
577 {
578 	struct ntb_queue_entry *entry;
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(lock, flags);
582 
583 	if (list_empty(list)) {
584 		entry = NULL;
585 	} else {
586 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
587 		list_move_tail(&entry->entry, to_list);
588 	}
589 
590 	spin_unlock_irqrestore(lock, flags);
591 
592 	return entry;
593 }
594 
595 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
596 				     unsigned int qp_num)
597 {
598 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
599 	struct ntb_transport_mw *mw;
600 	struct ntb_dev *ndev = nt->ndev;
601 	struct ntb_queue_entry *entry;
602 	unsigned int rx_size, num_qps_mw;
603 	unsigned int mw_num, mw_count, qp_count;
604 	unsigned int i;
605 	int node;
606 
607 	mw_count = nt->mw_count;
608 	qp_count = nt->qp_count;
609 
610 	mw_num = QP_TO_MW(nt, qp_num);
611 	mw = &nt->mw_vec[mw_num];
612 
613 	if (!mw->virt_addr)
614 		return -ENOMEM;
615 
616 	if (mw_num < qp_count % mw_count)
617 		num_qps_mw = qp_count / mw_count + 1;
618 	else
619 		num_qps_mw = qp_count / mw_count;
620 
621 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
622 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
623 	rx_size -= sizeof(struct ntb_rx_info);
624 
625 	qp->remote_rx_info = qp->rx_buff + rx_size;
626 
627 	/* Due to housekeeping, there must be atleast 2 buffs */
628 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
629 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
630 	qp->rx_index = 0;
631 
632 	/*
633 	 * Checking to see if we have more entries than the default.
634 	 * We should add additional entries if that is the case so we
635 	 * can be in sync with the transport frames.
636 	 */
637 	node = dev_to_node(&ndev->dev);
638 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
639 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
640 		if (!entry)
641 			return -ENOMEM;
642 
643 		entry->qp = qp;
644 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
645 			     &qp->rx_free_q);
646 		qp->rx_alloc_entry++;
647 	}
648 
649 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
650 
651 	/* setup the hdr offsets with 0's */
652 	for (i = 0; i < qp->rx_max_entry; i++) {
653 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
654 				sizeof(struct ntb_payload_header));
655 		memset(offset, 0, sizeof(struct ntb_payload_header));
656 	}
657 
658 	qp->rx_pkts = 0;
659 	qp->tx_pkts = 0;
660 	qp->tx_index = 0;
661 
662 	return 0;
663 }
664 
665 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
666 {
667 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
668 	struct pci_dev *pdev = nt->ndev->pdev;
669 
670 	if (!mw->virt_addr)
671 		return;
672 
673 	ntb_mw_clear_trans(nt->ndev, num_mw);
674 	dma_free_coherent(&pdev->dev, mw->buff_size,
675 			  mw->virt_addr, mw->dma_addr);
676 	mw->xlat_size = 0;
677 	mw->buff_size = 0;
678 	mw->virt_addr = NULL;
679 }
680 
681 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
682 		      resource_size_t size)
683 {
684 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
685 	struct pci_dev *pdev = nt->ndev->pdev;
686 	size_t xlat_size, buff_size;
687 	int rc;
688 
689 	if (!size)
690 		return -EINVAL;
691 
692 	xlat_size = round_up(size, mw->xlat_align_size);
693 	buff_size = round_up(size, mw->xlat_align);
694 
695 	/* No need to re-setup */
696 	if (mw->xlat_size == xlat_size)
697 		return 0;
698 
699 	if (mw->buff_size)
700 		ntb_free_mw(nt, num_mw);
701 
702 	/* Alloc memory for receiving data.  Must be aligned */
703 	mw->xlat_size = xlat_size;
704 	mw->buff_size = buff_size;
705 
706 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
707 					   &mw->dma_addr, GFP_KERNEL);
708 	if (!mw->virt_addr) {
709 		mw->xlat_size = 0;
710 		mw->buff_size = 0;
711 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
712 			buff_size);
713 		return -ENOMEM;
714 	}
715 
716 	/*
717 	 * we must ensure that the memory address allocated is BAR size
718 	 * aligned in order for the XLAT register to take the value. This
719 	 * is a requirement of the hardware. It is recommended to setup CMA
720 	 * for BAR sizes equal or greater than 4MB.
721 	 */
722 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
723 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
724 			&mw->dma_addr);
725 		ntb_free_mw(nt, num_mw);
726 		return -ENOMEM;
727 	}
728 
729 	/* Notify HW the memory location of the receive buffer */
730 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
731 	if (rc) {
732 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
733 		ntb_free_mw(nt, num_mw);
734 		return -EIO;
735 	}
736 
737 	return 0;
738 }
739 
740 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
741 {
742 	qp->link_is_up = false;
743 	qp->active = false;
744 
745 	qp->tx_index = 0;
746 	qp->rx_index = 0;
747 	qp->rx_bytes = 0;
748 	qp->rx_pkts = 0;
749 	qp->rx_ring_empty = 0;
750 	qp->rx_err_no_buf = 0;
751 	qp->rx_err_oflow = 0;
752 	qp->rx_err_ver = 0;
753 	qp->rx_memcpy = 0;
754 	qp->rx_async = 0;
755 	qp->tx_bytes = 0;
756 	qp->tx_pkts = 0;
757 	qp->tx_ring_full = 0;
758 	qp->tx_err_no_buf = 0;
759 	qp->tx_memcpy = 0;
760 	qp->tx_async = 0;
761 }
762 
763 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
764 {
765 	struct ntb_transport_ctx *nt = qp->transport;
766 	struct pci_dev *pdev = nt->ndev->pdev;
767 
768 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
769 
770 	cancel_delayed_work_sync(&qp->link_work);
771 	ntb_qp_link_down_reset(qp);
772 
773 	if (qp->event_handler)
774 		qp->event_handler(qp->cb_data, qp->link_is_up);
775 }
776 
777 static void ntb_qp_link_cleanup_work(struct work_struct *work)
778 {
779 	struct ntb_transport_qp *qp = container_of(work,
780 						   struct ntb_transport_qp,
781 						   link_cleanup);
782 	struct ntb_transport_ctx *nt = qp->transport;
783 
784 	ntb_qp_link_cleanup(qp);
785 
786 	if (nt->link_is_up)
787 		schedule_delayed_work(&qp->link_work,
788 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
789 }
790 
791 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
792 {
793 	schedule_work(&qp->link_cleanup);
794 }
795 
796 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
797 {
798 	struct ntb_transport_qp *qp;
799 	u64 qp_bitmap_alloc;
800 	unsigned int i, count;
801 
802 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
803 
804 	/* Pass along the info to any clients */
805 	for (i = 0; i < nt->qp_count; i++)
806 		if (qp_bitmap_alloc & BIT_ULL(i)) {
807 			qp = &nt->qp_vec[i];
808 			ntb_qp_link_cleanup(qp);
809 			cancel_work_sync(&qp->link_cleanup);
810 			cancel_delayed_work_sync(&qp->link_work);
811 		}
812 
813 	if (!nt->link_is_up)
814 		cancel_delayed_work_sync(&nt->link_work);
815 
816 	/* The scratchpad registers keep the values if the remote side
817 	 * goes down, blast them now to give them a sane value the next
818 	 * time they are accessed
819 	 */
820 	count = ntb_spad_count(nt->ndev);
821 	for (i = 0; i < count; i++)
822 		ntb_spad_write(nt->ndev, i, 0);
823 }
824 
825 static void ntb_transport_link_cleanup_work(struct work_struct *work)
826 {
827 	struct ntb_transport_ctx *nt =
828 		container_of(work, struct ntb_transport_ctx, link_cleanup);
829 
830 	ntb_transport_link_cleanup(nt);
831 }
832 
833 static void ntb_transport_event_callback(void *data)
834 {
835 	struct ntb_transport_ctx *nt = data;
836 
837 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
838 		schedule_delayed_work(&nt->link_work, 0);
839 	else
840 		schedule_work(&nt->link_cleanup);
841 }
842 
843 static void ntb_transport_link_work(struct work_struct *work)
844 {
845 	struct ntb_transport_ctx *nt =
846 		container_of(work, struct ntb_transport_ctx, link_work.work);
847 	struct ntb_dev *ndev = nt->ndev;
848 	struct pci_dev *pdev = ndev->pdev;
849 	resource_size_t size;
850 	u32 val;
851 	int rc = 0, i, spad;
852 
853 	/* send the local info, in the opposite order of the way we read it */
854 	for (i = 0; i < nt->mw_count; i++) {
855 		size = nt->mw_vec[i].phys_size;
856 
857 		if (max_mw_size && size > max_mw_size)
858 			size = max_mw_size;
859 
860 		spad = MW0_SZ_HIGH + (i * 2);
861 		ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
862 
863 		spad = MW0_SZ_LOW + (i * 2);
864 		ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
865 	}
866 
867 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
868 
869 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
870 
871 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
872 
873 	/* Query the remote side for its info */
874 	val = ntb_spad_read(ndev, VERSION);
875 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
876 	if (val != NTB_TRANSPORT_VERSION)
877 		goto out;
878 
879 	val = ntb_spad_read(ndev, NUM_QPS);
880 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
881 	if (val != nt->qp_count)
882 		goto out;
883 
884 	val = ntb_spad_read(ndev, NUM_MWS);
885 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
886 	if (val != nt->mw_count)
887 		goto out;
888 
889 	for (i = 0; i < nt->mw_count; i++) {
890 		u64 val64;
891 
892 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
893 		val64 = (u64)val << 32;
894 
895 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
896 		val64 |= val;
897 
898 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
899 
900 		rc = ntb_set_mw(nt, i, val64);
901 		if (rc)
902 			goto out1;
903 	}
904 
905 	nt->link_is_up = true;
906 
907 	for (i = 0; i < nt->qp_count; i++) {
908 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
909 
910 		ntb_transport_setup_qp_mw(nt, i);
911 
912 		if (qp->client_ready)
913 			schedule_delayed_work(&qp->link_work, 0);
914 	}
915 
916 	return;
917 
918 out1:
919 	for (i = 0; i < nt->mw_count; i++)
920 		ntb_free_mw(nt, i);
921 
922 	/* if there's an actual failure, we should just bail */
923 	if (rc < 0) {
924 		ntb_link_disable(ndev);
925 		return;
926 	}
927 
928 out:
929 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
930 		schedule_delayed_work(&nt->link_work,
931 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
932 }
933 
934 static void ntb_qp_link_work(struct work_struct *work)
935 {
936 	struct ntb_transport_qp *qp = container_of(work,
937 						   struct ntb_transport_qp,
938 						   link_work.work);
939 	struct pci_dev *pdev = qp->ndev->pdev;
940 	struct ntb_transport_ctx *nt = qp->transport;
941 	int val;
942 
943 	WARN_ON(!nt->link_is_up);
944 
945 	val = ntb_spad_read(nt->ndev, QP_LINKS);
946 
947 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
948 
949 	/* query remote spad for qp ready bits */
950 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
951 
952 	/* See if the remote side is up */
953 	if (val & BIT(qp->qp_num)) {
954 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
955 		qp->link_is_up = true;
956 		qp->active = true;
957 
958 		if (qp->event_handler)
959 			qp->event_handler(qp->cb_data, qp->link_is_up);
960 
961 		if (qp->active)
962 			tasklet_schedule(&qp->rxc_db_work);
963 	} else if (nt->link_is_up)
964 		schedule_delayed_work(&qp->link_work,
965 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
966 }
967 
968 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
969 				    unsigned int qp_num)
970 {
971 	struct ntb_transport_qp *qp;
972 	phys_addr_t mw_base;
973 	resource_size_t mw_size;
974 	unsigned int num_qps_mw, tx_size;
975 	unsigned int mw_num, mw_count, qp_count;
976 	u64 qp_offset;
977 
978 	mw_count = nt->mw_count;
979 	qp_count = nt->qp_count;
980 
981 	mw_num = QP_TO_MW(nt, qp_num);
982 
983 	qp = &nt->qp_vec[qp_num];
984 	qp->qp_num = qp_num;
985 	qp->transport = nt;
986 	qp->ndev = nt->ndev;
987 	qp->client_ready = false;
988 	qp->event_handler = NULL;
989 	ntb_qp_link_down_reset(qp);
990 
991 	if (mw_num < qp_count % mw_count)
992 		num_qps_mw = qp_count / mw_count + 1;
993 	else
994 		num_qps_mw = qp_count / mw_count;
995 
996 	mw_base = nt->mw_vec[mw_num].phys_addr;
997 	mw_size = nt->mw_vec[mw_num].phys_size;
998 
999 	tx_size = (unsigned int)mw_size / num_qps_mw;
1000 	qp_offset = tx_size * (qp_num / mw_count);
1001 
1002 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1003 	if (!qp->tx_mw)
1004 		return -EINVAL;
1005 
1006 	qp->tx_mw_phys = mw_base + qp_offset;
1007 	if (!qp->tx_mw_phys)
1008 		return -EINVAL;
1009 
1010 	tx_size -= sizeof(struct ntb_rx_info);
1011 	qp->rx_info = qp->tx_mw + tx_size;
1012 
1013 	/* Due to housekeeping, there must be atleast 2 buffs */
1014 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1015 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1016 
1017 	if (nt->debugfs_node_dir) {
1018 		char debugfs_name[4];
1019 
1020 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1021 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1022 						     nt->debugfs_node_dir);
1023 
1024 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1025 							qp->debugfs_dir, qp,
1026 							&ntb_qp_debugfs_stats);
1027 	} else {
1028 		qp->debugfs_dir = NULL;
1029 		qp->debugfs_stats = NULL;
1030 	}
1031 
1032 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1033 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1034 
1035 	spin_lock_init(&qp->ntb_rx_q_lock);
1036 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1037 
1038 	INIT_LIST_HEAD(&qp->rx_post_q);
1039 	INIT_LIST_HEAD(&qp->rx_pend_q);
1040 	INIT_LIST_HEAD(&qp->rx_free_q);
1041 	INIT_LIST_HEAD(&qp->tx_free_q);
1042 
1043 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1044 		     (unsigned long)qp);
1045 
1046 	return 0;
1047 }
1048 
1049 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1050 {
1051 	struct ntb_transport_ctx *nt;
1052 	struct ntb_transport_mw *mw;
1053 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1054 	u64 qp_bitmap;
1055 	int node;
1056 	int rc, i;
1057 
1058 	mw_count = ntb_mw_count(ndev);
1059 
1060 	if (ntb_db_is_unsafe(ndev))
1061 		dev_dbg(&ndev->dev,
1062 			"doorbell is unsafe, proceed anyway...\n");
1063 	if (ntb_spad_is_unsafe(ndev))
1064 		dev_dbg(&ndev->dev,
1065 			"scratchpad is unsafe, proceed anyway...\n");
1066 
1067 	node = dev_to_node(&ndev->dev);
1068 
1069 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1070 	if (!nt)
1071 		return -ENOMEM;
1072 
1073 	nt->ndev = ndev;
1074 	spad_count = ntb_spad_count(ndev);
1075 
1076 	/* Limit the MW's based on the availability of scratchpads */
1077 
1078 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1079 		nt->mw_count = 0;
1080 		rc = -EINVAL;
1081 		goto err;
1082 	}
1083 
1084 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1085 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1086 
1087 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1088 				  GFP_KERNEL, node);
1089 	if (!nt->mw_vec) {
1090 		rc = -ENOMEM;
1091 		goto err;
1092 	}
1093 
1094 	for (i = 0; i < mw_count; i++) {
1095 		mw = &nt->mw_vec[i];
1096 
1097 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1098 				      &mw->xlat_align, &mw->xlat_align_size);
1099 		if (rc)
1100 			goto err1;
1101 
1102 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1103 		if (!mw->vbase) {
1104 			rc = -ENOMEM;
1105 			goto err1;
1106 		}
1107 
1108 		mw->buff_size = 0;
1109 		mw->xlat_size = 0;
1110 		mw->virt_addr = NULL;
1111 		mw->dma_addr = 0;
1112 	}
1113 
1114 	qp_bitmap = ntb_db_valid_mask(ndev);
1115 
1116 	qp_count = ilog2(qp_bitmap);
1117 	if (max_num_clients && max_num_clients < qp_count)
1118 		qp_count = max_num_clients;
1119 	else if (nt->mw_count < qp_count)
1120 		qp_count = nt->mw_count;
1121 
1122 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1123 
1124 	nt->qp_count = qp_count;
1125 	nt->qp_bitmap = qp_bitmap;
1126 	nt->qp_bitmap_free = qp_bitmap;
1127 
1128 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1129 				  GFP_KERNEL, node);
1130 	if (!nt->qp_vec) {
1131 		rc = -ENOMEM;
1132 		goto err1;
1133 	}
1134 
1135 	if (nt_debugfs_dir) {
1136 		nt->debugfs_node_dir =
1137 			debugfs_create_dir(pci_name(ndev->pdev),
1138 					   nt_debugfs_dir);
1139 	}
1140 
1141 	for (i = 0; i < qp_count; i++) {
1142 		rc = ntb_transport_init_queue(nt, i);
1143 		if (rc)
1144 			goto err2;
1145 	}
1146 
1147 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1148 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1149 
1150 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1151 	if (rc)
1152 		goto err2;
1153 
1154 	INIT_LIST_HEAD(&nt->client_devs);
1155 	rc = ntb_bus_init(nt);
1156 	if (rc)
1157 		goto err3;
1158 
1159 	nt->link_is_up = false;
1160 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1161 	ntb_link_event(ndev);
1162 
1163 	return 0;
1164 
1165 err3:
1166 	ntb_clear_ctx(ndev);
1167 err2:
1168 	kfree(nt->qp_vec);
1169 err1:
1170 	while (i--) {
1171 		mw = &nt->mw_vec[i];
1172 		iounmap(mw->vbase);
1173 	}
1174 	kfree(nt->mw_vec);
1175 err:
1176 	kfree(nt);
1177 	return rc;
1178 }
1179 
1180 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1181 {
1182 	struct ntb_transport_ctx *nt = ndev->ctx;
1183 	struct ntb_transport_qp *qp;
1184 	u64 qp_bitmap_alloc;
1185 	int i;
1186 
1187 	ntb_transport_link_cleanup(nt);
1188 	cancel_work_sync(&nt->link_cleanup);
1189 	cancel_delayed_work_sync(&nt->link_work);
1190 
1191 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1192 
1193 	/* verify that all the qp's are freed */
1194 	for (i = 0; i < nt->qp_count; i++) {
1195 		qp = &nt->qp_vec[i];
1196 		if (qp_bitmap_alloc & BIT_ULL(i))
1197 			ntb_transport_free_queue(qp);
1198 		debugfs_remove_recursive(qp->debugfs_dir);
1199 	}
1200 
1201 	ntb_link_disable(ndev);
1202 	ntb_clear_ctx(ndev);
1203 
1204 	ntb_bus_remove(nt);
1205 
1206 	for (i = nt->mw_count; i--; ) {
1207 		ntb_free_mw(nt, i);
1208 		iounmap(nt->mw_vec[i].vbase);
1209 	}
1210 
1211 	kfree(nt->qp_vec);
1212 	kfree(nt->mw_vec);
1213 	kfree(nt);
1214 }
1215 
1216 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1217 {
1218 	struct ntb_queue_entry *entry;
1219 	void *cb_data;
1220 	unsigned int len;
1221 	unsigned long irqflags;
1222 
1223 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1224 
1225 	while (!list_empty(&qp->rx_post_q)) {
1226 		entry = list_first_entry(&qp->rx_post_q,
1227 					 struct ntb_queue_entry, entry);
1228 		if (!(entry->flags & DESC_DONE_FLAG))
1229 			break;
1230 
1231 		entry->rx_hdr->flags = 0;
1232 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1233 
1234 		cb_data = entry->cb_data;
1235 		len = entry->len;
1236 
1237 		list_move_tail(&entry->entry, &qp->rx_free_q);
1238 
1239 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1240 
1241 		if (qp->rx_handler && qp->client_ready)
1242 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1243 
1244 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1245 	}
1246 
1247 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1248 }
1249 
1250 static void ntb_rx_copy_callback(void *data,
1251 				 const struct dmaengine_result *res)
1252 {
1253 	struct ntb_queue_entry *entry = data;
1254 
1255 	/* we need to check DMA results if we are using DMA */
1256 	if (res) {
1257 		enum dmaengine_tx_result dma_err = res->result;
1258 
1259 		switch (dma_err) {
1260 		case DMA_TRANS_READ_FAILED:
1261 		case DMA_TRANS_WRITE_FAILED:
1262 			entry->errors++;
1263 		case DMA_TRANS_ABORTED:
1264 		{
1265 			struct ntb_transport_qp *qp = entry->qp;
1266 			void *offset = qp->rx_buff + qp->rx_max_frame *
1267 					qp->rx_index;
1268 
1269 			ntb_memcpy_rx(entry, offset);
1270 			qp->rx_memcpy++;
1271 			return;
1272 		}
1273 
1274 		case DMA_TRANS_NOERROR:
1275 		default:
1276 			break;
1277 		}
1278 	}
1279 
1280 	entry->flags |= DESC_DONE_FLAG;
1281 
1282 	ntb_complete_rxc(entry->qp);
1283 }
1284 
1285 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1286 {
1287 	void *buf = entry->buf;
1288 	size_t len = entry->len;
1289 
1290 	memcpy(buf, offset, len);
1291 
1292 	/* Ensure that the data is fully copied out before clearing the flag */
1293 	wmb();
1294 
1295 	ntb_rx_copy_callback(entry, NULL);
1296 }
1297 
1298 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1299 {
1300 	struct dma_async_tx_descriptor *txd;
1301 	struct ntb_transport_qp *qp = entry->qp;
1302 	struct dma_chan *chan = qp->rx_dma_chan;
1303 	struct dma_device *device;
1304 	size_t pay_off, buff_off, len;
1305 	struct dmaengine_unmap_data *unmap;
1306 	dma_cookie_t cookie;
1307 	void *buf = entry->buf;
1308 
1309 	len = entry->len;
1310 	device = chan->device;
1311 	pay_off = (size_t)offset & ~PAGE_MASK;
1312 	buff_off = (size_t)buf & ~PAGE_MASK;
1313 
1314 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1315 		goto err;
1316 
1317 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1318 	if (!unmap)
1319 		goto err;
1320 
1321 	unmap->len = len;
1322 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1323 				      pay_off, len, DMA_TO_DEVICE);
1324 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1325 		goto err_get_unmap;
1326 
1327 	unmap->to_cnt = 1;
1328 
1329 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1330 				      buff_off, len, DMA_FROM_DEVICE);
1331 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1332 		goto err_get_unmap;
1333 
1334 	unmap->from_cnt = 1;
1335 
1336 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1337 					     unmap->addr[0], len,
1338 					     DMA_PREP_INTERRUPT);
1339 	if (!txd)
1340 		goto err_get_unmap;
1341 
1342 	txd->callback_result = ntb_rx_copy_callback;
1343 	txd->callback_param = entry;
1344 	dma_set_unmap(txd, unmap);
1345 
1346 	cookie = dmaengine_submit(txd);
1347 	if (dma_submit_error(cookie))
1348 		goto err_set_unmap;
1349 
1350 	dmaengine_unmap_put(unmap);
1351 
1352 	qp->last_cookie = cookie;
1353 
1354 	qp->rx_async++;
1355 
1356 	return 0;
1357 
1358 err_set_unmap:
1359 	dmaengine_unmap_put(unmap);
1360 err_get_unmap:
1361 	dmaengine_unmap_put(unmap);
1362 err:
1363 	return -ENXIO;
1364 }
1365 
1366 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1367 {
1368 	struct ntb_transport_qp *qp = entry->qp;
1369 	struct dma_chan *chan = qp->rx_dma_chan;
1370 	int res;
1371 
1372 	if (!chan)
1373 		goto err;
1374 
1375 	if (entry->len < copy_bytes)
1376 		goto err;
1377 
1378 	res = ntb_async_rx_submit(entry, offset);
1379 	if (res < 0)
1380 		goto err;
1381 
1382 	if (!entry->retries)
1383 		qp->rx_async++;
1384 
1385 	return;
1386 
1387 err:
1388 	ntb_memcpy_rx(entry, offset);
1389 	qp->rx_memcpy++;
1390 }
1391 
1392 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1393 {
1394 	struct ntb_payload_header *hdr;
1395 	struct ntb_queue_entry *entry;
1396 	void *offset;
1397 
1398 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1399 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1400 
1401 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1402 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1403 
1404 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1405 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1406 		qp->rx_ring_empty++;
1407 		return -EAGAIN;
1408 	}
1409 
1410 	if (hdr->flags & LINK_DOWN_FLAG) {
1411 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1412 		ntb_qp_link_down(qp);
1413 		hdr->flags = 0;
1414 		return -EAGAIN;
1415 	}
1416 
1417 	if (hdr->ver != (u32)qp->rx_pkts) {
1418 		dev_dbg(&qp->ndev->pdev->dev,
1419 			"version mismatch, expected %llu - got %u\n",
1420 			qp->rx_pkts, hdr->ver);
1421 		qp->rx_err_ver++;
1422 		return -EIO;
1423 	}
1424 
1425 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1426 	if (!entry) {
1427 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1428 		qp->rx_err_no_buf++;
1429 		return -EAGAIN;
1430 	}
1431 
1432 	entry->rx_hdr = hdr;
1433 	entry->rx_index = qp->rx_index;
1434 
1435 	if (hdr->len > entry->len) {
1436 		dev_dbg(&qp->ndev->pdev->dev,
1437 			"receive buffer overflow! Wanted %d got %d\n",
1438 			hdr->len, entry->len);
1439 		qp->rx_err_oflow++;
1440 
1441 		entry->len = -EIO;
1442 		entry->flags |= DESC_DONE_FLAG;
1443 
1444 		ntb_complete_rxc(qp);
1445 	} else {
1446 		dev_dbg(&qp->ndev->pdev->dev,
1447 			"RX OK index %u ver %u size %d into buf size %d\n",
1448 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1449 
1450 		qp->rx_bytes += hdr->len;
1451 		qp->rx_pkts++;
1452 
1453 		entry->len = hdr->len;
1454 
1455 		ntb_async_rx(entry, offset);
1456 	}
1457 
1458 	qp->rx_index++;
1459 	qp->rx_index %= qp->rx_max_entry;
1460 
1461 	return 0;
1462 }
1463 
1464 static void ntb_transport_rxc_db(unsigned long data)
1465 {
1466 	struct ntb_transport_qp *qp = (void *)data;
1467 	int rc, i;
1468 
1469 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1470 		__func__, qp->qp_num);
1471 
1472 	/* Limit the number of packets processed in a single interrupt to
1473 	 * provide fairness to others
1474 	 */
1475 	for (i = 0; i < qp->rx_max_entry; i++) {
1476 		rc = ntb_process_rxc(qp);
1477 		if (rc)
1478 			break;
1479 	}
1480 
1481 	if (i && qp->rx_dma_chan)
1482 		dma_async_issue_pending(qp->rx_dma_chan);
1483 
1484 	if (i == qp->rx_max_entry) {
1485 		/* there is more work to do */
1486 		if (qp->active)
1487 			tasklet_schedule(&qp->rxc_db_work);
1488 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1489 		/* the doorbell bit is set: clear it */
1490 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1491 		/* ntb_db_read ensures ntb_db_clear write is committed */
1492 		ntb_db_read(qp->ndev);
1493 
1494 		/* an interrupt may have arrived between finishing
1495 		 * ntb_process_rxc and clearing the doorbell bit:
1496 		 * there might be some more work to do.
1497 		 */
1498 		if (qp->active)
1499 			tasklet_schedule(&qp->rxc_db_work);
1500 	}
1501 }
1502 
1503 static void ntb_tx_copy_callback(void *data,
1504 				 const struct dmaengine_result *res)
1505 {
1506 	struct ntb_queue_entry *entry = data;
1507 	struct ntb_transport_qp *qp = entry->qp;
1508 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1509 
1510 	/* we need to check DMA results if we are using DMA */
1511 	if (res) {
1512 		enum dmaengine_tx_result dma_err = res->result;
1513 
1514 		switch (dma_err) {
1515 		case DMA_TRANS_READ_FAILED:
1516 		case DMA_TRANS_WRITE_FAILED:
1517 			entry->errors++;
1518 		case DMA_TRANS_ABORTED:
1519 		{
1520 			void __iomem *offset =
1521 				qp->tx_mw + qp->tx_max_frame *
1522 				entry->tx_index;
1523 
1524 			/* resubmit via CPU */
1525 			ntb_memcpy_tx(entry, offset);
1526 			qp->tx_memcpy++;
1527 			return;
1528 		}
1529 
1530 		case DMA_TRANS_NOERROR:
1531 		default:
1532 			break;
1533 		}
1534 	}
1535 
1536 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1537 
1538 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1539 
1540 	/* The entry length can only be zero if the packet is intended to be a
1541 	 * "link down" or similar.  Since no payload is being sent in these
1542 	 * cases, there is nothing to add to the completion queue.
1543 	 */
1544 	if (entry->len > 0) {
1545 		qp->tx_bytes += entry->len;
1546 
1547 		if (qp->tx_handler)
1548 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1549 				       entry->len);
1550 	}
1551 
1552 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1553 }
1554 
1555 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1556 {
1557 #ifdef ARCH_HAS_NOCACHE_UACCESS
1558 	/*
1559 	 * Using non-temporal mov to improve performance on non-cached
1560 	 * writes, even though we aren't actually copying from user space.
1561 	 */
1562 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1563 #else
1564 	memcpy_toio(offset, entry->buf, entry->len);
1565 #endif
1566 
1567 	/* Ensure that the data is fully copied out before setting the flags */
1568 	wmb();
1569 
1570 	ntb_tx_copy_callback(entry, NULL);
1571 }
1572 
1573 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1574 			       struct ntb_queue_entry *entry)
1575 {
1576 	struct dma_async_tx_descriptor *txd;
1577 	struct dma_chan *chan = qp->tx_dma_chan;
1578 	struct dma_device *device;
1579 	size_t len = entry->len;
1580 	void *buf = entry->buf;
1581 	size_t dest_off, buff_off;
1582 	struct dmaengine_unmap_data *unmap;
1583 	dma_addr_t dest;
1584 	dma_cookie_t cookie;
1585 
1586 	device = chan->device;
1587 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1588 	buff_off = (size_t)buf & ~PAGE_MASK;
1589 	dest_off = (size_t)dest & ~PAGE_MASK;
1590 
1591 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1592 		goto err;
1593 
1594 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1595 	if (!unmap)
1596 		goto err;
1597 
1598 	unmap->len = len;
1599 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1600 				      buff_off, len, DMA_TO_DEVICE);
1601 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1602 		goto err_get_unmap;
1603 
1604 	unmap->to_cnt = 1;
1605 
1606 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1607 					     DMA_PREP_INTERRUPT);
1608 	if (!txd)
1609 		goto err_get_unmap;
1610 
1611 	txd->callback_result = ntb_tx_copy_callback;
1612 	txd->callback_param = entry;
1613 	dma_set_unmap(txd, unmap);
1614 
1615 	cookie = dmaengine_submit(txd);
1616 	if (dma_submit_error(cookie))
1617 		goto err_set_unmap;
1618 
1619 	dmaengine_unmap_put(unmap);
1620 
1621 	dma_async_issue_pending(chan);
1622 
1623 	return 0;
1624 err_set_unmap:
1625 	dmaengine_unmap_put(unmap);
1626 err_get_unmap:
1627 	dmaengine_unmap_put(unmap);
1628 err:
1629 	return -ENXIO;
1630 }
1631 
1632 static void ntb_async_tx(struct ntb_transport_qp *qp,
1633 			 struct ntb_queue_entry *entry)
1634 {
1635 	struct ntb_payload_header __iomem *hdr;
1636 	struct dma_chan *chan = qp->tx_dma_chan;
1637 	void __iomem *offset;
1638 	int res;
1639 
1640 	entry->tx_index = qp->tx_index;
1641 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1642 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1643 	entry->tx_hdr = hdr;
1644 
1645 	iowrite32(entry->len, &hdr->len);
1646 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1647 
1648 	if (!chan)
1649 		goto err;
1650 
1651 	if (entry->len < copy_bytes)
1652 		goto err;
1653 
1654 	res = ntb_async_tx_submit(qp, entry);
1655 	if (res < 0)
1656 		goto err;
1657 
1658 	if (!entry->retries)
1659 		qp->tx_async++;
1660 
1661 	return;
1662 
1663 err:
1664 	ntb_memcpy_tx(entry, offset);
1665 	qp->tx_memcpy++;
1666 }
1667 
1668 static int ntb_process_tx(struct ntb_transport_qp *qp,
1669 			  struct ntb_queue_entry *entry)
1670 {
1671 	if (qp->tx_index == qp->remote_rx_info->entry) {
1672 		qp->tx_ring_full++;
1673 		return -EAGAIN;
1674 	}
1675 
1676 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1677 		if (qp->tx_handler)
1678 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1679 
1680 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1681 			     &qp->tx_free_q);
1682 		return 0;
1683 	}
1684 
1685 	ntb_async_tx(qp, entry);
1686 
1687 	qp->tx_index++;
1688 	qp->tx_index %= qp->tx_max_entry;
1689 
1690 	qp->tx_pkts++;
1691 
1692 	return 0;
1693 }
1694 
1695 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1696 {
1697 	struct pci_dev *pdev = qp->ndev->pdev;
1698 	struct ntb_queue_entry *entry;
1699 	int i, rc;
1700 
1701 	if (!qp->link_is_up)
1702 		return;
1703 
1704 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1705 
1706 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1707 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1708 		if (entry)
1709 			break;
1710 		msleep(100);
1711 	}
1712 
1713 	if (!entry)
1714 		return;
1715 
1716 	entry->cb_data = NULL;
1717 	entry->buf = NULL;
1718 	entry->len = 0;
1719 	entry->flags = LINK_DOWN_FLAG;
1720 
1721 	rc = ntb_process_tx(qp, entry);
1722 	if (rc)
1723 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1724 			qp->qp_num);
1725 
1726 	ntb_qp_link_down_reset(qp);
1727 }
1728 
1729 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1730 {
1731 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1732 }
1733 
1734 /**
1735  * ntb_transport_create_queue - Create a new NTB transport layer queue
1736  * @rx_handler: receive callback function
1737  * @tx_handler: transmit callback function
1738  * @event_handler: event callback function
1739  *
1740  * Create a new NTB transport layer queue and provide the queue with a callback
1741  * routine for both transmit and receive.  The receive callback routine will be
1742  * used to pass up data when the transport has received it on the queue.   The
1743  * transmit callback routine will be called when the transport has completed the
1744  * transmission of the data on the queue and the data is ready to be freed.
1745  *
1746  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1747  */
1748 struct ntb_transport_qp *
1749 ntb_transport_create_queue(void *data, struct device *client_dev,
1750 			   const struct ntb_queue_handlers *handlers)
1751 {
1752 	struct ntb_dev *ndev;
1753 	struct pci_dev *pdev;
1754 	struct ntb_transport_ctx *nt;
1755 	struct ntb_queue_entry *entry;
1756 	struct ntb_transport_qp *qp;
1757 	u64 qp_bit;
1758 	unsigned int free_queue;
1759 	dma_cap_mask_t dma_mask;
1760 	int node;
1761 	int i;
1762 
1763 	ndev = dev_ntb(client_dev->parent);
1764 	pdev = ndev->pdev;
1765 	nt = ndev->ctx;
1766 
1767 	node = dev_to_node(&ndev->dev);
1768 
1769 	free_queue = ffs(nt->qp_bitmap_free);
1770 	if (!free_queue)
1771 		goto err;
1772 
1773 	/* decrement free_queue to make it zero based */
1774 	free_queue--;
1775 
1776 	qp = &nt->qp_vec[free_queue];
1777 	qp_bit = BIT_ULL(qp->qp_num);
1778 
1779 	nt->qp_bitmap_free &= ~qp_bit;
1780 
1781 	qp->cb_data = data;
1782 	qp->rx_handler = handlers->rx_handler;
1783 	qp->tx_handler = handlers->tx_handler;
1784 	qp->event_handler = handlers->event_handler;
1785 
1786 	dma_cap_zero(dma_mask);
1787 	dma_cap_set(DMA_MEMCPY, dma_mask);
1788 
1789 	if (use_dma) {
1790 		qp->tx_dma_chan =
1791 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1792 					    (void *)(unsigned long)node);
1793 		if (!qp->tx_dma_chan)
1794 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1795 
1796 		qp->rx_dma_chan =
1797 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1798 					    (void *)(unsigned long)node);
1799 		if (!qp->rx_dma_chan)
1800 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1801 	} else {
1802 		qp->tx_dma_chan = NULL;
1803 		qp->rx_dma_chan = NULL;
1804 	}
1805 
1806 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1807 		qp->tx_dma_chan ? "DMA" : "CPU");
1808 
1809 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1810 		qp->rx_dma_chan ? "DMA" : "CPU");
1811 
1812 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1813 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1814 		if (!entry)
1815 			goto err1;
1816 
1817 		entry->qp = qp;
1818 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1819 			     &qp->rx_free_q);
1820 	}
1821 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1822 
1823 	for (i = 0; i < qp->tx_max_entry; i++) {
1824 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1825 		if (!entry)
1826 			goto err2;
1827 
1828 		entry->qp = qp;
1829 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1830 			     &qp->tx_free_q);
1831 	}
1832 
1833 	ntb_db_clear(qp->ndev, qp_bit);
1834 	ntb_db_clear_mask(qp->ndev, qp_bit);
1835 
1836 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1837 
1838 	return qp;
1839 
1840 err2:
1841 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1842 		kfree(entry);
1843 err1:
1844 	qp->rx_alloc_entry = 0;
1845 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1846 		kfree(entry);
1847 	if (qp->tx_dma_chan)
1848 		dma_release_channel(qp->tx_dma_chan);
1849 	if (qp->rx_dma_chan)
1850 		dma_release_channel(qp->rx_dma_chan);
1851 	nt->qp_bitmap_free |= qp_bit;
1852 err:
1853 	return NULL;
1854 }
1855 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1856 
1857 /**
1858  * ntb_transport_free_queue - Frees NTB transport queue
1859  * @qp: NTB queue to be freed
1860  *
1861  * Frees NTB transport queue
1862  */
1863 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1864 {
1865 	struct pci_dev *pdev;
1866 	struct ntb_queue_entry *entry;
1867 	u64 qp_bit;
1868 
1869 	if (!qp)
1870 		return;
1871 
1872 	pdev = qp->ndev->pdev;
1873 
1874 	qp->active = false;
1875 
1876 	if (qp->tx_dma_chan) {
1877 		struct dma_chan *chan = qp->tx_dma_chan;
1878 		/* Putting the dma_chan to NULL will force any new traffic to be
1879 		 * processed by the CPU instead of the DAM engine
1880 		 */
1881 		qp->tx_dma_chan = NULL;
1882 
1883 		/* Try to be nice and wait for any queued DMA engine
1884 		 * transactions to process before smashing it with a rock
1885 		 */
1886 		dma_sync_wait(chan, qp->last_cookie);
1887 		dmaengine_terminate_all(chan);
1888 		dma_release_channel(chan);
1889 	}
1890 
1891 	if (qp->rx_dma_chan) {
1892 		struct dma_chan *chan = qp->rx_dma_chan;
1893 		/* Putting the dma_chan to NULL will force any new traffic to be
1894 		 * processed by the CPU instead of the DAM engine
1895 		 */
1896 		qp->rx_dma_chan = NULL;
1897 
1898 		/* Try to be nice and wait for any queued DMA engine
1899 		 * transactions to process before smashing it with a rock
1900 		 */
1901 		dma_sync_wait(chan, qp->last_cookie);
1902 		dmaengine_terminate_all(chan);
1903 		dma_release_channel(chan);
1904 	}
1905 
1906 	qp_bit = BIT_ULL(qp->qp_num);
1907 
1908 	ntb_db_set_mask(qp->ndev, qp_bit);
1909 	tasklet_kill(&qp->rxc_db_work);
1910 
1911 	cancel_delayed_work_sync(&qp->link_work);
1912 
1913 	qp->cb_data = NULL;
1914 	qp->rx_handler = NULL;
1915 	qp->tx_handler = NULL;
1916 	qp->event_handler = NULL;
1917 
1918 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1919 		kfree(entry);
1920 
1921 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1922 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1923 		kfree(entry);
1924 	}
1925 
1926 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1927 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1928 		kfree(entry);
1929 	}
1930 
1931 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1932 		kfree(entry);
1933 
1934 	qp->transport->qp_bitmap_free |= qp_bit;
1935 
1936 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1937 }
1938 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1939 
1940 /**
1941  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1942  * @qp: NTB queue to be freed
1943  * @len: pointer to variable to write enqueued buffers length
1944  *
1945  * Dequeues unused buffers from receive queue.  Should only be used during
1946  * shutdown of qp.
1947  *
1948  * RETURNS: NULL error value on error, or void* for success.
1949  */
1950 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1951 {
1952 	struct ntb_queue_entry *entry;
1953 	void *buf;
1954 
1955 	if (!qp || qp->client_ready)
1956 		return NULL;
1957 
1958 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1959 	if (!entry)
1960 		return NULL;
1961 
1962 	buf = entry->cb_data;
1963 	*len = entry->len;
1964 
1965 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1966 
1967 	return buf;
1968 }
1969 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1970 
1971 /**
1972  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1973  * @qp: NTB transport layer queue the entry is to be enqueued on
1974  * @cb: per buffer pointer for callback function to use
1975  * @data: pointer to data buffer that incoming packets will be copied into
1976  * @len: length of the data buffer
1977  *
1978  * Enqueue a new receive buffer onto the transport queue into which a NTB
1979  * payload can be received into.
1980  *
1981  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1982  */
1983 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1984 			     unsigned int len)
1985 {
1986 	struct ntb_queue_entry *entry;
1987 
1988 	if (!qp)
1989 		return -EINVAL;
1990 
1991 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1992 	if (!entry)
1993 		return -ENOMEM;
1994 
1995 	entry->cb_data = cb;
1996 	entry->buf = data;
1997 	entry->len = len;
1998 	entry->flags = 0;
1999 	entry->retries = 0;
2000 	entry->errors = 0;
2001 	entry->rx_index = 0;
2002 
2003 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2004 
2005 	if (qp->active)
2006 		tasklet_schedule(&qp->rxc_db_work);
2007 
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2011 
2012 /**
2013  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2014  * @qp: NTB transport layer queue the entry is to be enqueued on
2015  * @cb: per buffer pointer for callback function to use
2016  * @data: pointer to data buffer that will be sent
2017  * @len: length of the data buffer
2018  *
2019  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2020  * payload will be transmitted.  This assumes that a lock is being held to
2021  * serialize access to the qp.
2022  *
2023  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2024  */
2025 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2026 			     unsigned int len)
2027 {
2028 	struct ntb_queue_entry *entry;
2029 	int rc;
2030 
2031 	if (!qp || !qp->link_is_up || !len)
2032 		return -EINVAL;
2033 
2034 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2035 	if (!entry) {
2036 		qp->tx_err_no_buf++;
2037 		return -EBUSY;
2038 	}
2039 
2040 	entry->cb_data = cb;
2041 	entry->buf = data;
2042 	entry->len = len;
2043 	entry->flags = 0;
2044 	entry->errors = 0;
2045 	entry->retries = 0;
2046 	entry->tx_index = 0;
2047 
2048 	rc = ntb_process_tx(qp, entry);
2049 	if (rc)
2050 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2051 			     &qp->tx_free_q);
2052 
2053 	return rc;
2054 }
2055 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2056 
2057 /**
2058  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2059  * @qp: NTB transport layer queue to be enabled
2060  *
2061  * Notify NTB transport layer of client readiness to use queue
2062  */
2063 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2064 {
2065 	if (!qp)
2066 		return;
2067 
2068 	qp->client_ready = true;
2069 
2070 	if (qp->transport->link_is_up)
2071 		schedule_delayed_work(&qp->link_work, 0);
2072 }
2073 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2074 
2075 /**
2076  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2077  * @qp: NTB transport layer queue to be disabled
2078  *
2079  * Notify NTB transport layer of client's desire to no longer receive data on
2080  * transport queue specified.  It is the client's responsibility to ensure all
2081  * entries on queue are purged or otherwise handled appropriately.
2082  */
2083 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2084 {
2085 	int val;
2086 
2087 	if (!qp)
2088 		return;
2089 
2090 	qp->client_ready = false;
2091 
2092 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2093 
2094 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
2095 			    val & ~BIT(qp->qp_num));
2096 
2097 	if (qp->link_is_up)
2098 		ntb_send_link_down(qp);
2099 	else
2100 		cancel_delayed_work_sync(&qp->link_work);
2101 }
2102 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2103 
2104 /**
2105  * ntb_transport_link_query - Query transport link state
2106  * @qp: NTB transport layer queue to be queried
2107  *
2108  * Query connectivity to the remote system of the NTB transport queue
2109  *
2110  * RETURNS: true for link up or false for link down
2111  */
2112 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2113 {
2114 	if (!qp)
2115 		return false;
2116 
2117 	return qp->link_is_up;
2118 }
2119 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2120 
2121 /**
2122  * ntb_transport_qp_num - Query the qp number
2123  * @qp: NTB transport layer queue to be queried
2124  *
2125  * Query qp number of the NTB transport queue
2126  *
2127  * RETURNS: a zero based number specifying the qp number
2128  */
2129 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2130 {
2131 	if (!qp)
2132 		return 0;
2133 
2134 	return qp->qp_num;
2135 }
2136 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2137 
2138 /**
2139  * ntb_transport_max_size - Query the max payload size of a qp
2140  * @qp: NTB transport layer queue to be queried
2141  *
2142  * Query the maximum payload size permissible on the given qp
2143  *
2144  * RETURNS: the max payload size of a qp
2145  */
2146 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2147 {
2148 	unsigned int max_size;
2149 	unsigned int copy_align;
2150 	struct dma_chan *rx_chan, *tx_chan;
2151 
2152 	if (!qp)
2153 		return 0;
2154 
2155 	rx_chan = qp->rx_dma_chan;
2156 	tx_chan = qp->tx_dma_chan;
2157 
2158 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2159 			 tx_chan ? tx_chan->device->copy_align : 0);
2160 
2161 	/* If DMA engine usage is possible, try to find the max size for that */
2162 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2163 	max_size = round_down(max_size, 1 << copy_align);
2164 
2165 	return max_size;
2166 }
2167 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2168 
2169 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2170 {
2171 	unsigned int head = qp->tx_index;
2172 	unsigned int tail = qp->remote_rx_info->entry;
2173 
2174 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2175 }
2176 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2177 
2178 static void ntb_transport_doorbell_callback(void *data, int vector)
2179 {
2180 	struct ntb_transport_ctx *nt = data;
2181 	struct ntb_transport_qp *qp;
2182 	u64 db_bits;
2183 	unsigned int qp_num;
2184 
2185 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2186 		   ntb_db_vector_mask(nt->ndev, vector));
2187 
2188 	while (db_bits) {
2189 		qp_num = __ffs(db_bits);
2190 		qp = &nt->qp_vec[qp_num];
2191 
2192 		if (qp->active)
2193 			tasklet_schedule(&qp->rxc_db_work);
2194 
2195 		db_bits &= ~BIT_ULL(qp_num);
2196 	}
2197 }
2198 
2199 static const struct ntb_ctx_ops ntb_transport_ops = {
2200 	.link_event = ntb_transport_event_callback,
2201 	.db_event = ntb_transport_doorbell_callback,
2202 };
2203 
2204 static struct ntb_client ntb_transport_client = {
2205 	.ops = {
2206 		.probe = ntb_transport_probe,
2207 		.remove = ntb_transport_free,
2208 	},
2209 };
2210 
2211 static int __init ntb_transport_init(void)
2212 {
2213 	int rc;
2214 
2215 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2216 
2217 	if (debugfs_initialized())
2218 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2219 
2220 	rc = bus_register(&ntb_transport_bus);
2221 	if (rc)
2222 		goto err_bus;
2223 
2224 	rc = ntb_register_client(&ntb_transport_client);
2225 	if (rc)
2226 		goto err_client;
2227 
2228 	return 0;
2229 
2230 err_client:
2231 	bus_unregister(&ntb_transport_bus);
2232 err_bus:
2233 	debugfs_remove_recursive(nt_debugfs_dir);
2234 	return rc;
2235 }
2236 module_init(ntb_transport_init);
2237 
2238 static void __exit ntb_transport_exit(void)
2239 {
2240 	ntb_unregister_client(&ntb_transport_client);
2241 	bus_unregister(&ntb_transport_bus);
2242 	debugfs_remove_recursive(nt_debugfs_dir);
2243 }
2244 module_exit(ntb_transport_exit);
2245