1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2012 Intel Corporation. All rights reserved. 8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * BSD LICENSE 15 * 16 * Copyright(c) 2012 Intel Corporation. All rights reserved. 17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * * Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * * Redistributions in binary form must reproduce the above copy 26 * notice, this list of conditions and the following disclaimer in 27 * the documentation and/or other materials provided with the 28 * distribution. 29 * * Neither the name of Intel Corporation nor the names of its 30 * contributors may be used to endorse or promote products derived 31 * from this software without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 44 * 45 * PCIe NTB Transport Linux driver 46 * 47 * Contact Information: 48 * Jon Mason <jon.mason@intel.com> 49 */ 50 #include <linux/debugfs.h> 51 #include <linux/delay.h> 52 #include <linux/dmaengine.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/errno.h> 55 #include <linux/export.h> 56 #include <linux/interrupt.h> 57 #include <linux/module.h> 58 #include <linux/pci.h> 59 #include <linux/slab.h> 60 #include <linux/types.h> 61 #include <linux/uaccess.h> 62 #include "linux/ntb.h" 63 #include "linux/ntb_transport.h" 64 65 #define NTB_TRANSPORT_VERSION 4 66 #define NTB_TRANSPORT_VER "4" 67 #define NTB_TRANSPORT_NAME "ntb_transport" 68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB" 69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2) 70 71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC); 72 MODULE_VERSION(NTB_TRANSPORT_VER); 73 MODULE_LICENSE("Dual BSD/GPL"); 74 MODULE_AUTHOR("Intel Corporation"); 75 76 static unsigned long max_mw_size; 77 module_param(max_mw_size, ulong, 0644); 78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows"); 79 80 static unsigned int transport_mtu = 0x10000; 81 module_param(transport_mtu, uint, 0644); 82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets"); 83 84 static unsigned char max_num_clients; 85 module_param(max_num_clients, byte, 0644); 86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients"); 87 88 static unsigned int copy_bytes = 1024; 89 module_param(copy_bytes, uint, 0644); 90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA"); 91 92 static bool use_dma; 93 module_param(use_dma, bool, 0644); 94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy"); 95 96 static bool use_msi; 97 #ifdef CONFIG_NTB_MSI 98 module_param(use_msi, bool, 0644); 99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells"); 100 #endif 101 102 static struct dentry *nt_debugfs_dir; 103 104 /* Only two-ports NTB devices are supported */ 105 #define PIDX NTB_DEF_PEER_IDX 106 107 struct ntb_queue_entry { 108 /* ntb_queue list reference */ 109 struct list_head entry; 110 /* pointers to data to be transferred */ 111 void *cb_data; 112 void *buf; 113 unsigned int len; 114 unsigned int flags; 115 int retries; 116 int errors; 117 unsigned int tx_index; 118 unsigned int rx_index; 119 120 struct ntb_transport_qp *qp; 121 union { 122 struct ntb_payload_header __iomem *tx_hdr; 123 struct ntb_payload_header *rx_hdr; 124 }; 125 }; 126 127 struct ntb_rx_info { 128 unsigned int entry; 129 }; 130 131 struct ntb_transport_qp { 132 struct ntb_transport_ctx *transport; 133 struct ntb_dev *ndev; 134 void *cb_data; 135 struct dma_chan *tx_dma_chan; 136 struct dma_chan *rx_dma_chan; 137 138 bool client_ready; 139 bool link_is_up; 140 bool active; 141 142 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */ 143 u64 qp_bit; 144 145 struct ntb_rx_info __iomem *rx_info; 146 struct ntb_rx_info *remote_rx_info; 147 148 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 149 void *data, int len); 150 struct list_head tx_free_q; 151 spinlock_t ntb_tx_free_q_lock; 152 void __iomem *tx_mw; 153 phys_addr_t tx_mw_phys; 154 size_t tx_mw_size; 155 dma_addr_t tx_mw_dma_addr; 156 unsigned int tx_index; 157 unsigned int tx_max_entry; 158 unsigned int tx_max_frame; 159 160 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 161 void *data, int len); 162 struct list_head rx_post_q; 163 struct list_head rx_pend_q; 164 struct list_head rx_free_q; 165 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 166 spinlock_t ntb_rx_q_lock; 167 void *rx_buff; 168 unsigned int rx_index; 169 unsigned int rx_max_entry; 170 unsigned int rx_max_frame; 171 unsigned int rx_alloc_entry; 172 dma_cookie_t last_cookie; 173 struct tasklet_struct rxc_db_work; 174 175 void (*event_handler)(void *data, int status); 176 struct delayed_work link_work; 177 struct work_struct link_cleanup; 178 179 struct dentry *debugfs_dir; 180 struct dentry *debugfs_stats; 181 182 /* Stats */ 183 u64 rx_bytes; 184 u64 rx_pkts; 185 u64 rx_ring_empty; 186 u64 rx_err_no_buf; 187 u64 rx_err_oflow; 188 u64 rx_err_ver; 189 u64 rx_memcpy; 190 u64 rx_async; 191 u64 tx_bytes; 192 u64 tx_pkts; 193 u64 tx_ring_full; 194 u64 tx_err_no_buf; 195 u64 tx_memcpy; 196 u64 tx_async; 197 198 bool use_msi; 199 int msi_irq; 200 struct ntb_msi_desc msi_desc; 201 struct ntb_msi_desc peer_msi_desc; 202 }; 203 204 struct ntb_transport_mw { 205 phys_addr_t phys_addr; 206 resource_size_t phys_size; 207 void __iomem *vbase; 208 size_t xlat_size; 209 size_t buff_size; 210 size_t alloc_size; 211 void *alloc_addr; 212 void *virt_addr; 213 dma_addr_t dma_addr; 214 }; 215 216 struct ntb_transport_client_dev { 217 struct list_head entry; 218 struct ntb_transport_ctx *nt; 219 struct device dev; 220 }; 221 222 struct ntb_transport_ctx { 223 struct list_head entry; 224 struct list_head client_devs; 225 226 struct ntb_dev *ndev; 227 228 struct ntb_transport_mw *mw_vec; 229 struct ntb_transport_qp *qp_vec; 230 unsigned int mw_count; 231 unsigned int qp_count; 232 u64 qp_bitmap; 233 u64 qp_bitmap_free; 234 235 bool use_msi; 236 unsigned int msi_spad_offset; 237 u64 msi_db_mask; 238 239 bool link_is_up; 240 struct delayed_work link_work; 241 struct work_struct link_cleanup; 242 243 struct dentry *debugfs_node_dir; 244 }; 245 246 enum { 247 DESC_DONE_FLAG = BIT(0), 248 LINK_DOWN_FLAG = BIT(1), 249 }; 250 251 struct ntb_payload_header { 252 unsigned int ver; 253 unsigned int len; 254 unsigned int flags; 255 }; 256 257 enum { 258 VERSION = 0, 259 QP_LINKS, 260 NUM_QPS, 261 NUM_MWS, 262 MW0_SZ_HIGH, 263 MW0_SZ_LOW, 264 }; 265 266 #define dev_client_dev(__dev) \ 267 container_of((__dev), struct ntb_transport_client_dev, dev) 268 269 #define drv_client(__drv) \ 270 container_of((__drv), struct ntb_transport_client, driver) 271 272 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 273 #define NTB_QP_DEF_NUM_ENTRIES 100 274 #define NTB_LINK_DOWN_TIMEOUT 10 275 276 static void ntb_transport_rxc_db(unsigned long data); 277 static const struct ntb_ctx_ops ntb_transport_ops; 278 static struct ntb_client ntb_transport_client; 279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 280 struct ntb_queue_entry *entry); 281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset); 282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset); 283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset); 284 285 286 static int ntb_transport_bus_match(struct device *dev, 287 struct device_driver *drv) 288 { 289 return !strncmp(dev_name(dev), drv->name, strlen(drv->name)); 290 } 291 292 static int ntb_transport_bus_probe(struct device *dev) 293 { 294 const struct ntb_transport_client *client; 295 int rc; 296 297 get_device(dev); 298 299 client = drv_client(dev->driver); 300 rc = client->probe(dev); 301 if (rc) 302 put_device(dev); 303 304 return rc; 305 } 306 307 static void ntb_transport_bus_remove(struct device *dev) 308 { 309 const struct ntb_transport_client *client; 310 311 client = drv_client(dev->driver); 312 client->remove(dev); 313 314 put_device(dev); 315 } 316 317 static struct bus_type ntb_transport_bus = { 318 .name = "ntb_transport", 319 .match = ntb_transport_bus_match, 320 .probe = ntb_transport_bus_probe, 321 .remove = ntb_transport_bus_remove, 322 }; 323 324 static LIST_HEAD(ntb_transport_list); 325 326 static int ntb_bus_init(struct ntb_transport_ctx *nt) 327 { 328 list_add_tail(&nt->entry, &ntb_transport_list); 329 return 0; 330 } 331 332 static void ntb_bus_remove(struct ntb_transport_ctx *nt) 333 { 334 struct ntb_transport_client_dev *client_dev, *cd; 335 336 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) { 337 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n", 338 dev_name(&client_dev->dev)); 339 list_del(&client_dev->entry); 340 device_unregister(&client_dev->dev); 341 } 342 343 list_del(&nt->entry); 344 } 345 346 static void ntb_transport_client_release(struct device *dev) 347 { 348 struct ntb_transport_client_dev *client_dev; 349 350 client_dev = dev_client_dev(dev); 351 kfree(client_dev); 352 } 353 354 /** 355 * ntb_transport_unregister_client_dev - Unregister NTB client device 356 * @device_name: Name of NTB client device 357 * 358 * Unregister an NTB client device with the NTB transport layer 359 */ 360 void ntb_transport_unregister_client_dev(char *device_name) 361 { 362 struct ntb_transport_client_dev *client, *cd; 363 struct ntb_transport_ctx *nt; 364 365 list_for_each_entry(nt, &ntb_transport_list, entry) 366 list_for_each_entry_safe(client, cd, &nt->client_devs, entry) 367 if (!strncmp(dev_name(&client->dev), device_name, 368 strlen(device_name))) { 369 list_del(&client->entry); 370 device_unregister(&client->dev); 371 } 372 } 373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev); 374 375 /** 376 * ntb_transport_register_client_dev - Register NTB client device 377 * @device_name: Name of NTB client device 378 * 379 * Register an NTB client device with the NTB transport layer 380 */ 381 int ntb_transport_register_client_dev(char *device_name) 382 { 383 struct ntb_transport_client_dev *client_dev; 384 struct ntb_transport_ctx *nt; 385 int node; 386 int rc, i = 0; 387 388 if (list_empty(&ntb_transport_list)) 389 return -ENODEV; 390 391 list_for_each_entry(nt, &ntb_transport_list, entry) { 392 struct device *dev; 393 394 node = dev_to_node(&nt->ndev->dev); 395 396 client_dev = kzalloc_node(sizeof(*client_dev), 397 GFP_KERNEL, node); 398 if (!client_dev) { 399 rc = -ENOMEM; 400 goto err; 401 } 402 403 dev = &client_dev->dev; 404 405 /* setup and register client devices */ 406 dev_set_name(dev, "%s%d", device_name, i); 407 dev->bus = &ntb_transport_bus; 408 dev->release = ntb_transport_client_release; 409 dev->parent = &nt->ndev->dev; 410 411 rc = device_register(dev); 412 if (rc) { 413 kfree(client_dev); 414 goto err; 415 } 416 417 list_add_tail(&client_dev->entry, &nt->client_devs); 418 i++; 419 } 420 421 return 0; 422 423 err: 424 ntb_transport_unregister_client_dev(device_name); 425 426 return rc; 427 } 428 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev); 429 430 /** 431 * ntb_transport_register_client - Register NTB client driver 432 * @drv: NTB client driver to be registered 433 * 434 * Register an NTB client driver with the NTB transport layer 435 * 436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 437 */ 438 int ntb_transport_register_client(struct ntb_transport_client *drv) 439 { 440 drv->driver.bus = &ntb_transport_bus; 441 442 if (list_empty(&ntb_transport_list)) 443 return -ENODEV; 444 445 return driver_register(&drv->driver); 446 } 447 EXPORT_SYMBOL_GPL(ntb_transport_register_client); 448 449 /** 450 * ntb_transport_unregister_client - Unregister NTB client driver 451 * @drv: NTB client driver to be unregistered 452 * 453 * Unregister an NTB client driver with the NTB transport layer 454 * 455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 456 */ 457 void ntb_transport_unregister_client(struct ntb_transport_client *drv) 458 { 459 driver_unregister(&drv->driver); 460 } 461 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client); 462 463 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count, 464 loff_t *offp) 465 { 466 struct ntb_transport_qp *qp; 467 char *buf; 468 ssize_t ret, out_offset, out_count; 469 470 qp = filp->private_data; 471 472 if (!qp || !qp->link_is_up) 473 return 0; 474 475 out_count = 1000; 476 477 buf = kmalloc(out_count, GFP_KERNEL); 478 if (!buf) 479 return -ENOMEM; 480 481 out_offset = 0; 482 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 483 "\nNTB QP stats:\n\n"); 484 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 485 "rx_bytes - \t%llu\n", qp->rx_bytes); 486 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 487 "rx_pkts - \t%llu\n", qp->rx_pkts); 488 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 489 "rx_memcpy - \t%llu\n", qp->rx_memcpy); 490 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 491 "rx_async - \t%llu\n", qp->rx_async); 492 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 493 "rx_ring_empty - %llu\n", qp->rx_ring_empty); 494 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 495 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf); 496 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 497 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow); 498 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 499 "rx_err_ver - \t%llu\n", qp->rx_err_ver); 500 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 501 "rx_buff - \t0x%p\n", qp->rx_buff); 502 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 503 "rx_index - \t%u\n", qp->rx_index); 504 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 505 "rx_max_entry - \t%u\n", qp->rx_max_entry); 506 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 507 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry); 508 509 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 510 "tx_bytes - \t%llu\n", qp->tx_bytes); 511 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 512 "tx_pkts - \t%llu\n", qp->tx_pkts); 513 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 514 "tx_memcpy - \t%llu\n", qp->tx_memcpy); 515 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 516 "tx_async - \t%llu\n", qp->tx_async); 517 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 518 "tx_ring_full - \t%llu\n", qp->tx_ring_full); 519 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 520 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf); 521 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 522 "tx_mw - \t0x%p\n", qp->tx_mw); 523 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 524 "tx_index (H) - \t%u\n", qp->tx_index); 525 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 526 "RRI (T) - \t%u\n", 527 qp->remote_rx_info->entry); 528 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 529 "tx_max_entry - \t%u\n", qp->tx_max_entry); 530 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 531 "free tx - \t%u\n", 532 ntb_transport_tx_free_entry(qp)); 533 534 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 535 "\n"); 536 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 537 "Using TX DMA - \t%s\n", 538 qp->tx_dma_chan ? "Yes" : "No"); 539 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 540 "Using RX DMA - \t%s\n", 541 qp->rx_dma_chan ? "Yes" : "No"); 542 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 543 "QP Link - \t%s\n", 544 qp->link_is_up ? "Up" : "Down"); 545 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 546 "\n"); 547 548 if (out_offset > out_count) 549 out_offset = out_count; 550 551 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 552 kfree(buf); 553 return ret; 554 } 555 556 static const struct file_operations ntb_qp_debugfs_stats = { 557 .owner = THIS_MODULE, 558 .open = simple_open, 559 .read = debugfs_read, 560 }; 561 562 static void ntb_list_add(spinlock_t *lock, struct list_head *entry, 563 struct list_head *list) 564 { 565 unsigned long flags; 566 567 spin_lock_irqsave(lock, flags); 568 list_add_tail(entry, list); 569 spin_unlock_irqrestore(lock, flags); 570 } 571 572 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock, 573 struct list_head *list) 574 { 575 struct ntb_queue_entry *entry; 576 unsigned long flags; 577 578 spin_lock_irqsave(lock, flags); 579 if (list_empty(list)) { 580 entry = NULL; 581 goto out; 582 } 583 entry = list_first_entry(list, struct ntb_queue_entry, entry); 584 list_del(&entry->entry); 585 586 out: 587 spin_unlock_irqrestore(lock, flags); 588 589 return entry; 590 } 591 592 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock, 593 struct list_head *list, 594 struct list_head *to_list) 595 { 596 struct ntb_queue_entry *entry; 597 unsigned long flags; 598 599 spin_lock_irqsave(lock, flags); 600 601 if (list_empty(list)) { 602 entry = NULL; 603 } else { 604 entry = list_first_entry(list, struct ntb_queue_entry, entry); 605 list_move_tail(&entry->entry, to_list); 606 } 607 608 spin_unlock_irqrestore(lock, flags); 609 610 return entry; 611 } 612 613 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 614 unsigned int qp_num) 615 { 616 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 617 struct ntb_transport_mw *mw; 618 struct ntb_dev *ndev = nt->ndev; 619 struct ntb_queue_entry *entry; 620 unsigned int rx_size, num_qps_mw; 621 unsigned int mw_num, mw_count, qp_count; 622 unsigned int i; 623 int node; 624 625 mw_count = nt->mw_count; 626 qp_count = nt->qp_count; 627 628 mw_num = QP_TO_MW(nt, qp_num); 629 mw = &nt->mw_vec[mw_num]; 630 631 if (!mw->virt_addr) 632 return -ENOMEM; 633 634 if (mw_num < qp_count % mw_count) 635 num_qps_mw = qp_count / mw_count + 1; 636 else 637 num_qps_mw = qp_count / mw_count; 638 639 rx_size = (unsigned int)mw->xlat_size / num_qps_mw; 640 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 641 rx_size -= sizeof(struct ntb_rx_info); 642 643 qp->remote_rx_info = qp->rx_buff + rx_size; 644 645 /* Due to housekeeping, there must be atleast 2 buffs */ 646 qp->rx_max_frame = min(transport_mtu, rx_size / 2); 647 qp->rx_max_entry = rx_size / qp->rx_max_frame; 648 qp->rx_index = 0; 649 650 /* 651 * Checking to see if we have more entries than the default. 652 * We should add additional entries if that is the case so we 653 * can be in sync with the transport frames. 654 */ 655 node = dev_to_node(&ndev->dev); 656 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) { 657 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 658 if (!entry) 659 return -ENOMEM; 660 661 entry->qp = qp; 662 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 663 &qp->rx_free_q); 664 qp->rx_alloc_entry++; 665 } 666 667 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 668 669 /* setup the hdr offsets with 0's */ 670 for (i = 0; i < qp->rx_max_entry; i++) { 671 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) - 672 sizeof(struct ntb_payload_header)); 673 memset(offset, 0, sizeof(struct ntb_payload_header)); 674 } 675 676 qp->rx_pkts = 0; 677 qp->tx_pkts = 0; 678 qp->tx_index = 0; 679 680 return 0; 681 } 682 683 static irqreturn_t ntb_transport_isr(int irq, void *dev) 684 { 685 struct ntb_transport_qp *qp = dev; 686 687 tasklet_schedule(&qp->rxc_db_work); 688 689 return IRQ_HANDLED; 690 } 691 692 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt, 693 unsigned int qp_num) 694 { 695 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 696 int spad = qp_num * 2 + nt->msi_spad_offset; 697 698 if (!nt->use_msi) 699 return; 700 701 if (spad >= ntb_spad_count(nt->ndev)) 702 return; 703 704 qp->peer_msi_desc.addr_offset = 705 ntb_peer_spad_read(qp->ndev, PIDX, spad); 706 qp->peer_msi_desc.data = 707 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1); 708 709 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n", 710 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data); 711 712 if (qp->peer_msi_desc.addr_offset) { 713 qp->use_msi = true; 714 dev_info(&qp->ndev->pdev->dev, 715 "Using MSI interrupts for QP%d\n", qp_num); 716 } 717 } 718 719 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt, 720 unsigned int qp_num) 721 { 722 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 723 int spad = qp_num * 2 + nt->msi_spad_offset; 724 int rc; 725 726 if (!nt->use_msi) 727 return; 728 729 if (spad >= ntb_spad_count(nt->ndev)) { 730 dev_warn_once(&qp->ndev->pdev->dev, 731 "Not enough SPADS to use MSI interrupts\n"); 732 return; 733 } 734 735 ntb_spad_write(qp->ndev, spad, 0); 736 ntb_spad_write(qp->ndev, spad + 1, 0); 737 738 if (!qp->msi_irq) { 739 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr, 740 KBUILD_MODNAME, qp, 741 &qp->msi_desc); 742 if (qp->msi_irq < 0) { 743 dev_warn(&qp->ndev->pdev->dev, 744 "Unable to allocate MSI interrupt for qp%d\n", 745 qp_num); 746 return; 747 } 748 } 749 750 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset); 751 if (rc) 752 goto err_free_interrupt; 753 754 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data); 755 if (rc) 756 goto err_free_interrupt; 757 758 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n", 759 qp_num, qp->msi_irq, qp->msi_desc.addr_offset, 760 qp->msi_desc.data); 761 762 return; 763 764 err_free_interrupt: 765 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp); 766 } 767 768 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt) 769 { 770 int i; 771 772 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed"); 773 774 for (i = 0; i < nt->qp_count; i++) 775 ntb_transport_setup_qp_peer_msi(nt, i); 776 } 777 778 static void ntb_transport_msi_desc_changed(void *data) 779 { 780 struct ntb_transport_ctx *nt = data; 781 int i; 782 783 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed"); 784 785 for (i = 0; i < nt->qp_count; i++) 786 ntb_transport_setup_qp_msi(nt, i); 787 788 ntb_peer_db_set(nt->ndev, nt->msi_db_mask); 789 } 790 791 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 792 { 793 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 794 struct pci_dev *pdev = nt->ndev->pdev; 795 796 if (!mw->virt_addr) 797 return; 798 799 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw); 800 dma_free_coherent(&pdev->dev, mw->alloc_size, 801 mw->alloc_addr, mw->dma_addr); 802 mw->xlat_size = 0; 803 mw->buff_size = 0; 804 mw->alloc_size = 0; 805 mw->alloc_addr = NULL; 806 mw->virt_addr = NULL; 807 } 808 809 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw, 810 struct device *dma_dev, size_t align) 811 { 812 dma_addr_t dma_addr; 813 void *alloc_addr, *virt_addr; 814 int rc; 815 816 alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size, 817 &dma_addr, GFP_KERNEL); 818 if (!alloc_addr) { 819 dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n", 820 mw->alloc_size); 821 return -ENOMEM; 822 } 823 virt_addr = alloc_addr; 824 825 /* 826 * we must ensure that the memory address allocated is BAR size 827 * aligned in order for the XLAT register to take the value. This 828 * is a requirement of the hardware. It is recommended to setup CMA 829 * for BAR sizes equal or greater than 4MB. 830 */ 831 if (!IS_ALIGNED(dma_addr, align)) { 832 if (mw->alloc_size > mw->buff_size) { 833 virt_addr = PTR_ALIGN(alloc_addr, align); 834 dma_addr = ALIGN(dma_addr, align); 835 } else { 836 rc = -ENOMEM; 837 goto err; 838 } 839 } 840 841 mw->alloc_addr = alloc_addr; 842 mw->virt_addr = virt_addr; 843 mw->dma_addr = dma_addr; 844 845 return 0; 846 847 err: 848 dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr); 849 850 return rc; 851 } 852 853 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, 854 resource_size_t size) 855 { 856 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 857 struct pci_dev *pdev = nt->ndev->pdev; 858 size_t xlat_size, buff_size; 859 resource_size_t xlat_align; 860 resource_size_t xlat_align_size; 861 int rc; 862 863 if (!size) 864 return -EINVAL; 865 866 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align, 867 &xlat_align_size, NULL); 868 if (rc) 869 return rc; 870 871 xlat_size = round_up(size, xlat_align_size); 872 buff_size = round_up(size, xlat_align); 873 874 /* No need to re-setup */ 875 if (mw->xlat_size == xlat_size) 876 return 0; 877 878 if (mw->buff_size) 879 ntb_free_mw(nt, num_mw); 880 881 /* Alloc memory for receiving data. Must be aligned */ 882 mw->xlat_size = xlat_size; 883 mw->buff_size = buff_size; 884 mw->alloc_size = buff_size; 885 886 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 887 if (rc) { 888 mw->alloc_size *= 2; 889 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 890 if (rc) { 891 dev_err(&pdev->dev, 892 "Unable to alloc aligned MW buff\n"); 893 mw->xlat_size = 0; 894 mw->buff_size = 0; 895 mw->alloc_size = 0; 896 return rc; 897 } 898 } 899 900 /* Notify HW the memory location of the receive buffer */ 901 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr, 902 mw->xlat_size); 903 if (rc) { 904 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw); 905 ntb_free_mw(nt, num_mw); 906 return -EIO; 907 } 908 909 return 0; 910 } 911 912 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 913 { 914 qp->link_is_up = false; 915 qp->active = false; 916 917 qp->tx_index = 0; 918 qp->rx_index = 0; 919 qp->rx_bytes = 0; 920 qp->rx_pkts = 0; 921 qp->rx_ring_empty = 0; 922 qp->rx_err_no_buf = 0; 923 qp->rx_err_oflow = 0; 924 qp->rx_err_ver = 0; 925 qp->rx_memcpy = 0; 926 qp->rx_async = 0; 927 qp->tx_bytes = 0; 928 qp->tx_pkts = 0; 929 qp->tx_ring_full = 0; 930 qp->tx_err_no_buf = 0; 931 qp->tx_memcpy = 0; 932 qp->tx_async = 0; 933 } 934 935 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 936 { 937 struct ntb_transport_ctx *nt = qp->transport; 938 struct pci_dev *pdev = nt->ndev->pdev; 939 940 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num); 941 942 cancel_delayed_work_sync(&qp->link_work); 943 ntb_qp_link_down_reset(qp); 944 945 if (qp->event_handler) 946 qp->event_handler(qp->cb_data, qp->link_is_up); 947 } 948 949 static void ntb_qp_link_cleanup_work(struct work_struct *work) 950 { 951 struct ntb_transport_qp *qp = container_of(work, 952 struct ntb_transport_qp, 953 link_cleanup); 954 struct ntb_transport_ctx *nt = qp->transport; 955 956 ntb_qp_link_cleanup(qp); 957 958 if (nt->link_is_up) 959 schedule_delayed_work(&qp->link_work, 960 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 961 } 962 963 static void ntb_qp_link_down(struct ntb_transport_qp *qp) 964 { 965 schedule_work(&qp->link_cleanup); 966 } 967 968 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 969 { 970 struct ntb_transport_qp *qp; 971 u64 qp_bitmap_alloc; 972 unsigned int i, count; 973 974 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 975 976 /* Pass along the info to any clients */ 977 for (i = 0; i < nt->qp_count; i++) 978 if (qp_bitmap_alloc & BIT_ULL(i)) { 979 qp = &nt->qp_vec[i]; 980 ntb_qp_link_cleanup(qp); 981 cancel_work_sync(&qp->link_cleanup); 982 cancel_delayed_work_sync(&qp->link_work); 983 } 984 985 if (!nt->link_is_up) 986 cancel_delayed_work_sync(&nt->link_work); 987 988 for (i = 0; i < nt->mw_count; i++) 989 ntb_free_mw(nt, i); 990 991 /* The scratchpad registers keep the values if the remote side 992 * goes down, blast them now to give them a sane value the next 993 * time they are accessed 994 */ 995 count = ntb_spad_count(nt->ndev); 996 for (i = 0; i < count; i++) 997 ntb_spad_write(nt->ndev, i, 0); 998 } 999 1000 static void ntb_transport_link_cleanup_work(struct work_struct *work) 1001 { 1002 struct ntb_transport_ctx *nt = 1003 container_of(work, struct ntb_transport_ctx, link_cleanup); 1004 1005 ntb_transport_link_cleanup(nt); 1006 } 1007 1008 static void ntb_transport_event_callback(void *data) 1009 { 1010 struct ntb_transport_ctx *nt = data; 1011 1012 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1) 1013 schedule_delayed_work(&nt->link_work, 0); 1014 else 1015 schedule_work(&nt->link_cleanup); 1016 } 1017 1018 static void ntb_transport_link_work(struct work_struct *work) 1019 { 1020 struct ntb_transport_ctx *nt = 1021 container_of(work, struct ntb_transport_ctx, link_work.work); 1022 struct ntb_dev *ndev = nt->ndev; 1023 struct pci_dev *pdev = ndev->pdev; 1024 resource_size_t size; 1025 u32 val; 1026 int rc = 0, i, spad; 1027 1028 /* send the local info, in the opposite order of the way we read it */ 1029 1030 if (nt->use_msi) { 1031 rc = ntb_msi_setup_mws(ndev); 1032 if (rc) { 1033 dev_warn(&pdev->dev, 1034 "Failed to register MSI memory window: %d\n", 1035 rc); 1036 nt->use_msi = false; 1037 } 1038 } 1039 1040 for (i = 0; i < nt->qp_count; i++) 1041 ntb_transport_setup_qp_msi(nt, i); 1042 1043 for (i = 0; i < nt->mw_count; i++) { 1044 size = nt->mw_vec[i].phys_size; 1045 1046 if (max_mw_size && size > max_mw_size) 1047 size = max_mw_size; 1048 1049 spad = MW0_SZ_HIGH + (i * 2); 1050 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size)); 1051 1052 spad = MW0_SZ_LOW + (i * 2); 1053 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size)); 1054 } 1055 1056 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count); 1057 1058 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count); 1059 1060 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION); 1061 1062 /* Query the remote side for its info */ 1063 val = ntb_spad_read(ndev, VERSION); 1064 dev_dbg(&pdev->dev, "Remote version = %d\n", val); 1065 if (val != NTB_TRANSPORT_VERSION) 1066 goto out; 1067 1068 val = ntb_spad_read(ndev, NUM_QPS); 1069 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val); 1070 if (val != nt->qp_count) 1071 goto out; 1072 1073 val = ntb_spad_read(ndev, NUM_MWS); 1074 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val); 1075 if (val != nt->mw_count) 1076 goto out; 1077 1078 for (i = 0; i < nt->mw_count; i++) { 1079 u64 val64; 1080 1081 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2)); 1082 val64 = (u64)val << 32; 1083 1084 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2)); 1085 val64 |= val; 1086 1087 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64); 1088 1089 rc = ntb_set_mw(nt, i, val64); 1090 if (rc) 1091 goto out1; 1092 } 1093 1094 nt->link_is_up = true; 1095 1096 for (i = 0; i < nt->qp_count; i++) { 1097 struct ntb_transport_qp *qp = &nt->qp_vec[i]; 1098 1099 ntb_transport_setup_qp_mw(nt, i); 1100 ntb_transport_setup_qp_peer_msi(nt, i); 1101 1102 if (qp->client_ready) 1103 schedule_delayed_work(&qp->link_work, 0); 1104 } 1105 1106 return; 1107 1108 out1: 1109 for (i = 0; i < nt->mw_count; i++) 1110 ntb_free_mw(nt, i); 1111 1112 /* if there's an actual failure, we should just bail */ 1113 if (rc < 0) 1114 return; 1115 1116 out: 1117 if (ntb_link_is_up(ndev, NULL, NULL) == 1) 1118 schedule_delayed_work(&nt->link_work, 1119 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1120 } 1121 1122 static void ntb_qp_link_work(struct work_struct *work) 1123 { 1124 struct ntb_transport_qp *qp = container_of(work, 1125 struct ntb_transport_qp, 1126 link_work.work); 1127 struct pci_dev *pdev = qp->ndev->pdev; 1128 struct ntb_transport_ctx *nt = qp->transport; 1129 int val; 1130 1131 WARN_ON(!nt->link_is_up); 1132 1133 val = ntb_spad_read(nt->ndev, QP_LINKS); 1134 1135 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num)); 1136 1137 /* query remote spad for qp ready bits */ 1138 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val); 1139 1140 /* See if the remote side is up */ 1141 if (val & BIT(qp->qp_num)) { 1142 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num); 1143 qp->link_is_up = true; 1144 qp->active = true; 1145 1146 if (qp->event_handler) 1147 qp->event_handler(qp->cb_data, qp->link_is_up); 1148 1149 if (qp->active) 1150 tasklet_schedule(&qp->rxc_db_work); 1151 } else if (nt->link_is_up) 1152 schedule_delayed_work(&qp->link_work, 1153 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1154 } 1155 1156 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt, 1157 unsigned int qp_num) 1158 { 1159 struct ntb_transport_qp *qp; 1160 phys_addr_t mw_base; 1161 resource_size_t mw_size; 1162 unsigned int num_qps_mw, tx_size; 1163 unsigned int mw_num, mw_count, qp_count; 1164 u64 qp_offset; 1165 1166 mw_count = nt->mw_count; 1167 qp_count = nt->qp_count; 1168 1169 mw_num = QP_TO_MW(nt, qp_num); 1170 1171 qp = &nt->qp_vec[qp_num]; 1172 qp->qp_num = qp_num; 1173 qp->transport = nt; 1174 qp->ndev = nt->ndev; 1175 qp->client_ready = false; 1176 qp->event_handler = NULL; 1177 ntb_qp_link_down_reset(qp); 1178 1179 if (mw_num < qp_count % mw_count) 1180 num_qps_mw = qp_count / mw_count + 1; 1181 else 1182 num_qps_mw = qp_count / mw_count; 1183 1184 mw_base = nt->mw_vec[mw_num].phys_addr; 1185 mw_size = nt->mw_vec[mw_num].phys_size; 1186 1187 if (max_mw_size && mw_size > max_mw_size) 1188 mw_size = max_mw_size; 1189 1190 tx_size = (unsigned int)mw_size / num_qps_mw; 1191 qp_offset = tx_size * (qp_num / mw_count); 1192 1193 qp->tx_mw_size = tx_size; 1194 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset; 1195 if (!qp->tx_mw) 1196 return -EINVAL; 1197 1198 qp->tx_mw_phys = mw_base + qp_offset; 1199 if (!qp->tx_mw_phys) 1200 return -EINVAL; 1201 1202 tx_size -= sizeof(struct ntb_rx_info); 1203 qp->rx_info = qp->tx_mw + tx_size; 1204 1205 /* Due to housekeeping, there must be atleast 2 buffs */ 1206 qp->tx_max_frame = min(transport_mtu, tx_size / 2); 1207 qp->tx_max_entry = tx_size / qp->tx_max_frame; 1208 1209 if (nt->debugfs_node_dir) { 1210 char debugfs_name[4]; 1211 1212 snprintf(debugfs_name, 4, "qp%d", qp_num); 1213 qp->debugfs_dir = debugfs_create_dir(debugfs_name, 1214 nt->debugfs_node_dir); 1215 1216 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR, 1217 qp->debugfs_dir, qp, 1218 &ntb_qp_debugfs_stats); 1219 } else { 1220 qp->debugfs_dir = NULL; 1221 qp->debugfs_stats = NULL; 1222 } 1223 1224 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work); 1225 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work); 1226 1227 spin_lock_init(&qp->ntb_rx_q_lock); 1228 spin_lock_init(&qp->ntb_tx_free_q_lock); 1229 1230 INIT_LIST_HEAD(&qp->rx_post_q); 1231 INIT_LIST_HEAD(&qp->rx_pend_q); 1232 INIT_LIST_HEAD(&qp->rx_free_q); 1233 INIT_LIST_HEAD(&qp->tx_free_q); 1234 1235 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db, 1236 (unsigned long)qp); 1237 1238 return 0; 1239 } 1240 1241 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) 1242 { 1243 struct ntb_transport_ctx *nt; 1244 struct ntb_transport_mw *mw; 1245 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads; 1246 u64 qp_bitmap; 1247 int node; 1248 int rc, i; 1249 1250 mw_count = ntb_peer_mw_count(ndev); 1251 1252 if (!ndev->ops->mw_set_trans) { 1253 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n"); 1254 return -EINVAL; 1255 } 1256 1257 if (ntb_db_is_unsafe(ndev)) 1258 dev_dbg(&ndev->dev, 1259 "doorbell is unsafe, proceed anyway...\n"); 1260 if (ntb_spad_is_unsafe(ndev)) 1261 dev_dbg(&ndev->dev, 1262 "scratchpad is unsafe, proceed anyway...\n"); 1263 1264 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT) 1265 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n"); 1266 1267 node = dev_to_node(&ndev->dev); 1268 1269 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node); 1270 if (!nt) 1271 return -ENOMEM; 1272 1273 nt->ndev = ndev; 1274 1275 /* 1276 * If we are using MSI, and have at least one extra memory window, 1277 * we will reserve the last MW for the MSI window. 1278 */ 1279 if (use_msi && mw_count > 1) { 1280 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed); 1281 if (!rc) { 1282 mw_count -= 1; 1283 nt->use_msi = true; 1284 } 1285 } 1286 1287 spad_count = ntb_spad_count(ndev); 1288 1289 /* Limit the MW's based on the availability of scratchpads */ 1290 1291 if (spad_count < NTB_TRANSPORT_MIN_SPADS) { 1292 nt->mw_count = 0; 1293 rc = -EINVAL; 1294 goto err; 1295 } 1296 1297 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2; 1298 nt->mw_count = min(mw_count, max_mw_count_for_spads); 1299 1300 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH; 1301 1302 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec), 1303 GFP_KERNEL, node); 1304 if (!nt->mw_vec) { 1305 rc = -ENOMEM; 1306 goto err; 1307 } 1308 1309 for (i = 0; i < mw_count; i++) { 1310 mw = &nt->mw_vec[i]; 1311 1312 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr, 1313 &mw->phys_size); 1314 if (rc) 1315 goto err1; 1316 1317 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size); 1318 if (!mw->vbase) { 1319 rc = -ENOMEM; 1320 goto err1; 1321 } 1322 1323 mw->buff_size = 0; 1324 mw->xlat_size = 0; 1325 mw->virt_addr = NULL; 1326 mw->dma_addr = 0; 1327 } 1328 1329 qp_bitmap = ntb_db_valid_mask(ndev); 1330 1331 qp_count = ilog2(qp_bitmap); 1332 if (nt->use_msi) { 1333 qp_count -= 1; 1334 nt->msi_db_mask = 1 << qp_count; 1335 ntb_db_clear_mask(ndev, nt->msi_db_mask); 1336 } 1337 1338 if (max_num_clients && max_num_clients < qp_count) 1339 qp_count = max_num_clients; 1340 else if (nt->mw_count < qp_count) 1341 qp_count = nt->mw_count; 1342 1343 qp_bitmap &= BIT_ULL(qp_count) - 1; 1344 1345 nt->qp_count = qp_count; 1346 nt->qp_bitmap = qp_bitmap; 1347 nt->qp_bitmap_free = qp_bitmap; 1348 1349 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec), 1350 GFP_KERNEL, node); 1351 if (!nt->qp_vec) { 1352 rc = -ENOMEM; 1353 goto err1; 1354 } 1355 1356 if (nt_debugfs_dir) { 1357 nt->debugfs_node_dir = 1358 debugfs_create_dir(pci_name(ndev->pdev), 1359 nt_debugfs_dir); 1360 } 1361 1362 for (i = 0; i < qp_count; i++) { 1363 rc = ntb_transport_init_queue(nt, i); 1364 if (rc) 1365 goto err2; 1366 } 1367 1368 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work); 1369 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work); 1370 1371 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops); 1372 if (rc) 1373 goto err2; 1374 1375 INIT_LIST_HEAD(&nt->client_devs); 1376 rc = ntb_bus_init(nt); 1377 if (rc) 1378 goto err3; 1379 1380 nt->link_is_up = false; 1381 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 1382 ntb_link_event(ndev); 1383 1384 return 0; 1385 1386 err3: 1387 ntb_clear_ctx(ndev); 1388 err2: 1389 kfree(nt->qp_vec); 1390 err1: 1391 while (i--) { 1392 mw = &nt->mw_vec[i]; 1393 iounmap(mw->vbase); 1394 } 1395 kfree(nt->mw_vec); 1396 err: 1397 kfree(nt); 1398 return rc; 1399 } 1400 1401 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev) 1402 { 1403 struct ntb_transport_ctx *nt = ndev->ctx; 1404 struct ntb_transport_qp *qp; 1405 u64 qp_bitmap_alloc; 1406 int i; 1407 1408 ntb_transport_link_cleanup(nt); 1409 cancel_work_sync(&nt->link_cleanup); 1410 cancel_delayed_work_sync(&nt->link_work); 1411 1412 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 1413 1414 /* verify that all the qp's are freed */ 1415 for (i = 0; i < nt->qp_count; i++) { 1416 qp = &nt->qp_vec[i]; 1417 if (qp_bitmap_alloc & BIT_ULL(i)) 1418 ntb_transport_free_queue(qp); 1419 debugfs_remove_recursive(qp->debugfs_dir); 1420 } 1421 1422 ntb_link_disable(ndev); 1423 ntb_clear_ctx(ndev); 1424 1425 ntb_bus_remove(nt); 1426 1427 for (i = nt->mw_count; i--; ) { 1428 ntb_free_mw(nt, i); 1429 iounmap(nt->mw_vec[i].vbase); 1430 } 1431 1432 kfree(nt->qp_vec); 1433 kfree(nt->mw_vec); 1434 kfree(nt); 1435 } 1436 1437 static void ntb_complete_rxc(struct ntb_transport_qp *qp) 1438 { 1439 struct ntb_queue_entry *entry; 1440 void *cb_data; 1441 unsigned int len; 1442 unsigned long irqflags; 1443 1444 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1445 1446 while (!list_empty(&qp->rx_post_q)) { 1447 entry = list_first_entry(&qp->rx_post_q, 1448 struct ntb_queue_entry, entry); 1449 if (!(entry->flags & DESC_DONE_FLAG)) 1450 break; 1451 1452 entry->rx_hdr->flags = 0; 1453 iowrite32(entry->rx_index, &qp->rx_info->entry); 1454 1455 cb_data = entry->cb_data; 1456 len = entry->len; 1457 1458 list_move_tail(&entry->entry, &qp->rx_free_q); 1459 1460 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1461 1462 if (qp->rx_handler && qp->client_ready) 1463 qp->rx_handler(qp, qp->cb_data, cb_data, len); 1464 1465 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1466 } 1467 1468 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1469 } 1470 1471 static void ntb_rx_copy_callback(void *data, 1472 const struct dmaengine_result *res) 1473 { 1474 struct ntb_queue_entry *entry = data; 1475 1476 /* we need to check DMA results if we are using DMA */ 1477 if (res) { 1478 enum dmaengine_tx_result dma_err = res->result; 1479 1480 switch (dma_err) { 1481 case DMA_TRANS_READ_FAILED: 1482 case DMA_TRANS_WRITE_FAILED: 1483 entry->errors++; 1484 fallthrough; 1485 case DMA_TRANS_ABORTED: 1486 { 1487 struct ntb_transport_qp *qp = entry->qp; 1488 void *offset = qp->rx_buff + qp->rx_max_frame * 1489 qp->rx_index; 1490 1491 ntb_memcpy_rx(entry, offset); 1492 qp->rx_memcpy++; 1493 return; 1494 } 1495 1496 case DMA_TRANS_NOERROR: 1497 default: 1498 break; 1499 } 1500 } 1501 1502 entry->flags |= DESC_DONE_FLAG; 1503 1504 ntb_complete_rxc(entry->qp); 1505 } 1506 1507 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset) 1508 { 1509 void *buf = entry->buf; 1510 size_t len = entry->len; 1511 1512 memcpy(buf, offset, len); 1513 1514 /* Ensure that the data is fully copied out before clearing the flag */ 1515 wmb(); 1516 1517 ntb_rx_copy_callback(entry, NULL); 1518 } 1519 1520 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset) 1521 { 1522 struct dma_async_tx_descriptor *txd; 1523 struct ntb_transport_qp *qp = entry->qp; 1524 struct dma_chan *chan = qp->rx_dma_chan; 1525 struct dma_device *device; 1526 size_t pay_off, buff_off, len; 1527 struct dmaengine_unmap_data *unmap; 1528 dma_cookie_t cookie; 1529 void *buf = entry->buf; 1530 1531 len = entry->len; 1532 device = chan->device; 1533 pay_off = (size_t)offset & ~PAGE_MASK; 1534 buff_off = (size_t)buf & ~PAGE_MASK; 1535 1536 if (!is_dma_copy_aligned(device, pay_off, buff_off, len)) 1537 goto err; 1538 1539 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT); 1540 if (!unmap) 1541 goto err; 1542 1543 unmap->len = len; 1544 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset), 1545 pay_off, len, DMA_TO_DEVICE); 1546 if (dma_mapping_error(device->dev, unmap->addr[0])) 1547 goto err_get_unmap; 1548 1549 unmap->to_cnt = 1; 1550 1551 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf), 1552 buff_off, len, DMA_FROM_DEVICE); 1553 if (dma_mapping_error(device->dev, unmap->addr[1])) 1554 goto err_get_unmap; 1555 1556 unmap->from_cnt = 1; 1557 1558 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1], 1559 unmap->addr[0], len, 1560 DMA_PREP_INTERRUPT); 1561 if (!txd) 1562 goto err_get_unmap; 1563 1564 txd->callback_result = ntb_rx_copy_callback; 1565 txd->callback_param = entry; 1566 dma_set_unmap(txd, unmap); 1567 1568 cookie = dmaengine_submit(txd); 1569 if (dma_submit_error(cookie)) 1570 goto err_set_unmap; 1571 1572 dmaengine_unmap_put(unmap); 1573 1574 qp->last_cookie = cookie; 1575 1576 qp->rx_async++; 1577 1578 return 0; 1579 1580 err_set_unmap: 1581 dmaengine_unmap_put(unmap); 1582 err_get_unmap: 1583 dmaengine_unmap_put(unmap); 1584 err: 1585 return -ENXIO; 1586 } 1587 1588 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset) 1589 { 1590 struct ntb_transport_qp *qp = entry->qp; 1591 struct dma_chan *chan = qp->rx_dma_chan; 1592 int res; 1593 1594 if (!chan) 1595 goto err; 1596 1597 if (entry->len < copy_bytes) 1598 goto err; 1599 1600 res = ntb_async_rx_submit(entry, offset); 1601 if (res < 0) 1602 goto err; 1603 1604 if (!entry->retries) 1605 qp->rx_async++; 1606 1607 return; 1608 1609 err: 1610 ntb_memcpy_rx(entry, offset); 1611 qp->rx_memcpy++; 1612 } 1613 1614 static int ntb_process_rxc(struct ntb_transport_qp *qp) 1615 { 1616 struct ntb_payload_header *hdr; 1617 struct ntb_queue_entry *entry; 1618 void *offset; 1619 1620 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 1621 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header); 1622 1623 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n", 1624 qp->qp_num, hdr->ver, hdr->len, hdr->flags); 1625 1626 if (!(hdr->flags & DESC_DONE_FLAG)) { 1627 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n"); 1628 qp->rx_ring_empty++; 1629 return -EAGAIN; 1630 } 1631 1632 if (hdr->flags & LINK_DOWN_FLAG) { 1633 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n"); 1634 ntb_qp_link_down(qp); 1635 hdr->flags = 0; 1636 return -EAGAIN; 1637 } 1638 1639 if (hdr->ver != (u32)qp->rx_pkts) { 1640 dev_dbg(&qp->ndev->pdev->dev, 1641 "version mismatch, expected %llu - got %u\n", 1642 qp->rx_pkts, hdr->ver); 1643 qp->rx_err_ver++; 1644 return -EIO; 1645 } 1646 1647 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 1648 if (!entry) { 1649 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n"); 1650 qp->rx_err_no_buf++; 1651 return -EAGAIN; 1652 } 1653 1654 entry->rx_hdr = hdr; 1655 entry->rx_index = qp->rx_index; 1656 1657 if (hdr->len > entry->len) { 1658 dev_dbg(&qp->ndev->pdev->dev, 1659 "receive buffer overflow! Wanted %d got %d\n", 1660 hdr->len, entry->len); 1661 qp->rx_err_oflow++; 1662 1663 entry->len = -EIO; 1664 entry->flags |= DESC_DONE_FLAG; 1665 1666 ntb_complete_rxc(qp); 1667 } else { 1668 dev_dbg(&qp->ndev->pdev->dev, 1669 "RX OK index %u ver %u size %d into buf size %d\n", 1670 qp->rx_index, hdr->ver, hdr->len, entry->len); 1671 1672 qp->rx_bytes += hdr->len; 1673 qp->rx_pkts++; 1674 1675 entry->len = hdr->len; 1676 1677 ntb_async_rx(entry, offset); 1678 } 1679 1680 qp->rx_index++; 1681 qp->rx_index %= qp->rx_max_entry; 1682 1683 return 0; 1684 } 1685 1686 static void ntb_transport_rxc_db(unsigned long data) 1687 { 1688 struct ntb_transport_qp *qp = (void *)data; 1689 int rc, i; 1690 1691 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n", 1692 __func__, qp->qp_num); 1693 1694 /* Limit the number of packets processed in a single interrupt to 1695 * provide fairness to others 1696 */ 1697 for (i = 0; i < qp->rx_max_entry; i++) { 1698 rc = ntb_process_rxc(qp); 1699 if (rc) 1700 break; 1701 } 1702 1703 if (i && qp->rx_dma_chan) 1704 dma_async_issue_pending(qp->rx_dma_chan); 1705 1706 if (i == qp->rx_max_entry) { 1707 /* there is more work to do */ 1708 if (qp->active) 1709 tasklet_schedule(&qp->rxc_db_work); 1710 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) { 1711 /* the doorbell bit is set: clear it */ 1712 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num)); 1713 /* ntb_db_read ensures ntb_db_clear write is committed */ 1714 ntb_db_read(qp->ndev); 1715 1716 /* an interrupt may have arrived between finishing 1717 * ntb_process_rxc and clearing the doorbell bit: 1718 * there might be some more work to do. 1719 */ 1720 if (qp->active) 1721 tasklet_schedule(&qp->rxc_db_work); 1722 } 1723 } 1724 1725 static void ntb_tx_copy_callback(void *data, 1726 const struct dmaengine_result *res) 1727 { 1728 struct ntb_queue_entry *entry = data; 1729 struct ntb_transport_qp *qp = entry->qp; 1730 struct ntb_payload_header __iomem *hdr = entry->tx_hdr; 1731 1732 /* we need to check DMA results if we are using DMA */ 1733 if (res) { 1734 enum dmaengine_tx_result dma_err = res->result; 1735 1736 switch (dma_err) { 1737 case DMA_TRANS_READ_FAILED: 1738 case DMA_TRANS_WRITE_FAILED: 1739 entry->errors++; 1740 fallthrough; 1741 case DMA_TRANS_ABORTED: 1742 { 1743 void __iomem *offset = 1744 qp->tx_mw + qp->tx_max_frame * 1745 entry->tx_index; 1746 1747 /* resubmit via CPU */ 1748 ntb_memcpy_tx(entry, offset); 1749 qp->tx_memcpy++; 1750 return; 1751 } 1752 1753 case DMA_TRANS_NOERROR: 1754 default: 1755 break; 1756 } 1757 } 1758 1759 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags); 1760 1761 if (qp->use_msi) 1762 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc); 1763 else 1764 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num)); 1765 1766 /* The entry length can only be zero if the packet is intended to be a 1767 * "link down" or similar. Since no payload is being sent in these 1768 * cases, there is nothing to add to the completion queue. 1769 */ 1770 if (entry->len > 0) { 1771 qp->tx_bytes += entry->len; 1772 1773 if (qp->tx_handler) 1774 qp->tx_handler(qp, qp->cb_data, entry->cb_data, 1775 entry->len); 1776 } 1777 1778 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q); 1779 } 1780 1781 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset) 1782 { 1783 #ifdef ARCH_HAS_NOCACHE_UACCESS 1784 /* 1785 * Using non-temporal mov to improve performance on non-cached 1786 * writes, even though we aren't actually copying from user space. 1787 */ 1788 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len); 1789 #else 1790 memcpy_toio(offset, entry->buf, entry->len); 1791 #endif 1792 1793 /* Ensure that the data is fully copied out before setting the flags */ 1794 wmb(); 1795 1796 ntb_tx_copy_callback(entry, NULL); 1797 } 1798 1799 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 1800 struct ntb_queue_entry *entry) 1801 { 1802 struct dma_async_tx_descriptor *txd; 1803 struct dma_chan *chan = qp->tx_dma_chan; 1804 struct dma_device *device; 1805 size_t len = entry->len; 1806 void *buf = entry->buf; 1807 size_t dest_off, buff_off; 1808 struct dmaengine_unmap_data *unmap; 1809 dma_addr_t dest; 1810 dma_cookie_t cookie; 1811 1812 device = chan->device; 1813 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index; 1814 buff_off = (size_t)buf & ~PAGE_MASK; 1815 dest_off = (size_t)dest & ~PAGE_MASK; 1816 1817 if (!is_dma_copy_aligned(device, buff_off, dest_off, len)) 1818 goto err; 1819 1820 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT); 1821 if (!unmap) 1822 goto err; 1823 1824 unmap->len = len; 1825 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf), 1826 buff_off, len, DMA_TO_DEVICE); 1827 if (dma_mapping_error(device->dev, unmap->addr[0])) 1828 goto err_get_unmap; 1829 1830 unmap->to_cnt = 1; 1831 1832 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len, 1833 DMA_PREP_INTERRUPT); 1834 if (!txd) 1835 goto err_get_unmap; 1836 1837 txd->callback_result = ntb_tx_copy_callback; 1838 txd->callback_param = entry; 1839 dma_set_unmap(txd, unmap); 1840 1841 cookie = dmaengine_submit(txd); 1842 if (dma_submit_error(cookie)) 1843 goto err_set_unmap; 1844 1845 dmaengine_unmap_put(unmap); 1846 1847 dma_async_issue_pending(chan); 1848 1849 return 0; 1850 err_set_unmap: 1851 dmaengine_unmap_put(unmap); 1852 err_get_unmap: 1853 dmaengine_unmap_put(unmap); 1854 err: 1855 return -ENXIO; 1856 } 1857 1858 static void ntb_async_tx(struct ntb_transport_qp *qp, 1859 struct ntb_queue_entry *entry) 1860 { 1861 struct ntb_payload_header __iomem *hdr; 1862 struct dma_chan *chan = qp->tx_dma_chan; 1863 void __iomem *offset; 1864 int res; 1865 1866 entry->tx_index = qp->tx_index; 1867 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index; 1868 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header); 1869 entry->tx_hdr = hdr; 1870 1871 iowrite32(entry->len, &hdr->len); 1872 iowrite32((u32)qp->tx_pkts, &hdr->ver); 1873 1874 if (!chan) 1875 goto err; 1876 1877 if (entry->len < copy_bytes) 1878 goto err; 1879 1880 res = ntb_async_tx_submit(qp, entry); 1881 if (res < 0) 1882 goto err; 1883 1884 if (!entry->retries) 1885 qp->tx_async++; 1886 1887 return; 1888 1889 err: 1890 ntb_memcpy_tx(entry, offset); 1891 qp->tx_memcpy++; 1892 } 1893 1894 static int ntb_process_tx(struct ntb_transport_qp *qp, 1895 struct ntb_queue_entry *entry) 1896 { 1897 if (qp->tx_index == qp->remote_rx_info->entry) { 1898 qp->tx_ring_full++; 1899 return -EAGAIN; 1900 } 1901 1902 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 1903 if (qp->tx_handler) 1904 qp->tx_handler(qp, qp->cb_data, NULL, -EIO); 1905 1906 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 1907 &qp->tx_free_q); 1908 return 0; 1909 } 1910 1911 ntb_async_tx(qp, entry); 1912 1913 qp->tx_index++; 1914 qp->tx_index %= qp->tx_max_entry; 1915 1916 qp->tx_pkts++; 1917 1918 return 0; 1919 } 1920 1921 static void ntb_send_link_down(struct ntb_transport_qp *qp) 1922 { 1923 struct pci_dev *pdev = qp->ndev->pdev; 1924 struct ntb_queue_entry *entry; 1925 int i, rc; 1926 1927 if (!qp->link_is_up) 1928 return; 1929 1930 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num); 1931 1932 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1933 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1934 if (entry) 1935 break; 1936 msleep(100); 1937 } 1938 1939 if (!entry) 1940 return; 1941 1942 entry->cb_data = NULL; 1943 entry->buf = NULL; 1944 entry->len = 0; 1945 entry->flags = LINK_DOWN_FLAG; 1946 1947 rc = ntb_process_tx(qp, entry); 1948 if (rc) 1949 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n", 1950 qp->qp_num); 1951 1952 ntb_qp_link_down_reset(qp); 1953 } 1954 1955 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node) 1956 { 1957 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; 1958 } 1959 1960 /** 1961 * ntb_transport_create_queue - Create a new NTB transport layer queue 1962 * @rx_handler: receive callback function 1963 * @tx_handler: transmit callback function 1964 * @event_handler: event callback function 1965 * 1966 * Create a new NTB transport layer queue and provide the queue with a callback 1967 * routine for both transmit and receive. The receive callback routine will be 1968 * used to pass up data when the transport has received it on the queue. The 1969 * transmit callback routine will be called when the transport has completed the 1970 * transmission of the data on the queue and the data is ready to be freed. 1971 * 1972 * RETURNS: pointer to newly created ntb_queue, NULL on error. 1973 */ 1974 struct ntb_transport_qp * 1975 ntb_transport_create_queue(void *data, struct device *client_dev, 1976 const struct ntb_queue_handlers *handlers) 1977 { 1978 struct ntb_dev *ndev; 1979 struct pci_dev *pdev; 1980 struct ntb_transport_ctx *nt; 1981 struct ntb_queue_entry *entry; 1982 struct ntb_transport_qp *qp; 1983 u64 qp_bit; 1984 unsigned int free_queue; 1985 dma_cap_mask_t dma_mask; 1986 int node; 1987 int i; 1988 1989 ndev = dev_ntb(client_dev->parent); 1990 pdev = ndev->pdev; 1991 nt = ndev->ctx; 1992 1993 node = dev_to_node(&ndev->dev); 1994 1995 free_queue = ffs(nt->qp_bitmap_free); 1996 if (!free_queue) 1997 goto err; 1998 1999 /* decrement free_queue to make it zero based */ 2000 free_queue--; 2001 2002 qp = &nt->qp_vec[free_queue]; 2003 qp_bit = BIT_ULL(qp->qp_num); 2004 2005 nt->qp_bitmap_free &= ~qp_bit; 2006 2007 qp->cb_data = data; 2008 qp->rx_handler = handlers->rx_handler; 2009 qp->tx_handler = handlers->tx_handler; 2010 qp->event_handler = handlers->event_handler; 2011 2012 dma_cap_zero(dma_mask); 2013 dma_cap_set(DMA_MEMCPY, dma_mask); 2014 2015 if (use_dma) { 2016 qp->tx_dma_chan = 2017 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2018 (void *)(unsigned long)node); 2019 if (!qp->tx_dma_chan) 2020 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n"); 2021 2022 qp->rx_dma_chan = 2023 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2024 (void *)(unsigned long)node); 2025 if (!qp->rx_dma_chan) 2026 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n"); 2027 } else { 2028 qp->tx_dma_chan = NULL; 2029 qp->rx_dma_chan = NULL; 2030 } 2031 2032 qp->tx_mw_dma_addr = 0; 2033 if (qp->tx_dma_chan) { 2034 qp->tx_mw_dma_addr = 2035 dma_map_resource(qp->tx_dma_chan->device->dev, 2036 qp->tx_mw_phys, qp->tx_mw_size, 2037 DMA_FROM_DEVICE, 0); 2038 if (dma_mapping_error(qp->tx_dma_chan->device->dev, 2039 qp->tx_mw_dma_addr)) { 2040 qp->tx_mw_dma_addr = 0; 2041 goto err1; 2042 } 2043 } 2044 2045 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n", 2046 qp->tx_dma_chan ? "DMA" : "CPU"); 2047 2048 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n", 2049 qp->rx_dma_chan ? "DMA" : "CPU"); 2050 2051 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 2052 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2053 if (!entry) 2054 goto err1; 2055 2056 entry->qp = qp; 2057 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 2058 &qp->rx_free_q); 2059 } 2060 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES; 2061 2062 for (i = 0; i < qp->tx_max_entry; i++) { 2063 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2064 if (!entry) 2065 goto err2; 2066 2067 entry->qp = qp; 2068 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2069 &qp->tx_free_q); 2070 } 2071 2072 ntb_db_clear(qp->ndev, qp_bit); 2073 ntb_db_clear_mask(qp->ndev, qp_bit); 2074 2075 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num); 2076 2077 return qp; 2078 2079 err2: 2080 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2081 kfree(entry); 2082 err1: 2083 qp->rx_alloc_entry = 0; 2084 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2085 kfree(entry); 2086 if (qp->tx_mw_dma_addr) 2087 dma_unmap_resource(qp->tx_dma_chan->device->dev, 2088 qp->tx_mw_dma_addr, qp->tx_mw_size, 2089 DMA_FROM_DEVICE, 0); 2090 if (qp->tx_dma_chan) 2091 dma_release_channel(qp->tx_dma_chan); 2092 if (qp->rx_dma_chan) 2093 dma_release_channel(qp->rx_dma_chan); 2094 nt->qp_bitmap_free |= qp_bit; 2095 err: 2096 return NULL; 2097 } 2098 EXPORT_SYMBOL_GPL(ntb_transport_create_queue); 2099 2100 /** 2101 * ntb_transport_free_queue - Frees NTB transport queue 2102 * @qp: NTB queue to be freed 2103 * 2104 * Frees NTB transport queue 2105 */ 2106 void ntb_transport_free_queue(struct ntb_transport_qp *qp) 2107 { 2108 struct pci_dev *pdev; 2109 struct ntb_queue_entry *entry; 2110 u64 qp_bit; 2111 2112 if (!qp) 2113 return; 2114 2115 pdev = qp->ndev->pdev; 2116 2117 qp->active = false; 2118 2119 if (qp->tx_dma_chan) { 2120 struct dma_chan *chan = qp->tx_dma_chan; 2121 /* Putting the dma_chan to NULL will force any new traffic to be 2122 * processed by the CPU instead of the DAM engine 2123 */ 2124 qp->tx_dma_chan = NULL; 2125 2126 /* Try to be nice and wait for any queued DMA engine 2127 * transactions to process before smashing it with a rock 2128 */ 2129 dma_sync_wait(chan, qp->last_cookie); 2130 dmaengine_terminate_all(chan); 2131 2132 dma_unmap_resource(chan->device->dev, 2133 qp->tx_mw_dma_addr, qp->tx_mw_size, 2134 DMA_FROM_DEVICE, 0); 2135 2136 dma_release_channel(chan); 2137 } 2138 2139 if (qp->rx_dma_chan) { 2140 struct dma_chan *chan = qp->rx_dma_chan; 2141 /* Putting the dma_chan to NULL will force any new traffic to be 2142 * processed by the CPU instead of the DAM engine 2143 */ 2144 qp->rx_dma_chan = NULL; 2145 2146 /* Try to be nice and wait for any queued DMA engine 2147 * transactions to process before smashing it with a rock 2148 */ 2149 dma_sync_wait(chan, qp->last_cookie); 2150 dmaengine_terminate_all(chan); 2151 dma_release_channel(chan); 2152 } 2153 2154 qp_bit = BIT_ULL(qp->qp_num); 2155 2156 ntb_db_set_mask(qp->ndev, qp_bit); 2157 tasklet_kill(&qp->rxc_db_work); 2158 2159 cancel_delayed_work_sync(&qp->link_work); 2160 2161 qp->cb_data = NULL; 2162 qp->rx_handler = NULL; 2163 qp->tx_handler = NULL; 2164 qp->event_handler = NULL; 2165 2166 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2167 kfree(entry); 2168 2169 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) { 2170 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n"); 2171 kfree(entry); 2172 } 2173 2174 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) { 2175 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n"); 2176 kfree(entry); 2177 } 2178 2179 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2180 kfree(entry); 2181 2182 qp->transport->qp_bitmap_free |= qp_bit; 2183 2184 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num); 2185 } 2186 EXPORT_SYMBOL_GPL(ntb_transport_free_queue); 2187 2188 /** 2189 * ntb_transport_rx_remove - Dequeues enqueued rx packet 2190 * @qp: NTB queue to be freed 2191 * @len: pointer to variable to write enqueued buffers length 2192 * 2193 * Dequeues unused buffers from receive queue. Should only be used during 2194 * shutdown of qp. 2195 * 2196 * RETURNS: NULL error value on error, or void* for success. 2197 */ 2198 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len) 2199 { 2200 struct ntb_queue_entry *entry; 2201 void *buf; 2202 2203 if (!qp || qp->client_ready) 2204 return NULL; 2205 2206 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q); 2207 if (!entry) 2208 return NULL; 2209 2210 buf = entry->cb_data; 2211 *len = entry->len; 2212 2213 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q); 2214 2215 return buf; 2216 } 2217 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove); 2218 2219 /** 2220 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry 2221 * @qp: NTB transport layer queue the entry is to be enqueued on 2222 * @cb: per buffer pointer for callback function to use 2223 * @data: pointer to data buffer that incoming packets will be copied into 2224 * @len: length of the data buffer 2225 * 2226 * Enqueue a new receive buffer onto the transport queue into which a NTB 2227 * payload can be received into. 2228 * 2229 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2230 */ 2231 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2232 unsigned int len) 2233 { 2234 struct ntb_queue_entry *entry; 2235 2236 if (!qp) 2237 return -EINVAL; 2238 2239 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q); 2240 if (!entry) 2241 return -ENOMEM; 2242 2243 entry->cb_data = cb; 2244 entry->buf = data; 2245 entry->len = len; 2246 entry->flags = 0; 2247 entry->retries = 0; 2248 entry->errors = 0; 2249 entry->rx_index = 0; 2250 2251 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q); 2252 2253 if (qp->active) 2254 tasklet_schedule(&qp->rxc_db_work); 2255 2256 return 0; 2257 } 2258 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue); 2259 2260 /** 2261 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 2262 * @qp: NTB transport layer queue the entry is to be enqueued on 2263 * @cb: per buffer pointer for callback function to use 2264 * @data: pointer to data buffer that will be sent 2265 * @len: length of the data buffer 2266 * 2267 * Enqueue a new transmit buffer onto the transport queue from which a NTB 2268 * payload will be transmitted. This assumes that a lock is being held to 2269 * serialize access to the qp. 2270 * 2271 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2272 */ 2273 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2274 unsigned int len) 2275 { 2276 struct ntb_queue_entry *entry; 2277 int rc; 2278 2279 if (!qp || !qp->link_is_up || !len) 2280 return -EINVAL; 2281 2282 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 2283 if (!entry) { 2284 qp->tx_err_no_buf++; 2285 return -EBUSY; 2286 } 2287 2288 entry->cb_data = cb; 2289 entry->buf = data; 2290 entry->len = len; 2291 entry->flags = 0; 2292 entry->errors = 0; 2293 entry->retries = 0; 2294 entry->tx_index = 0; 2295 2296 rc = ntb_process_tx(qp, entry); 2297 if (rc) 2298 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2299 &qp->tx_free_q); 2300 2301 return rc; 2302 } 2303 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue); 2304 2305 /** 2306 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 2307 * @qp: NTB transport layer queue to be enabled 2308 * 2309 * Notify NTB transport layer of client readiness to use queue 2310 */ 2311 void ntb_transport_link_up(struct ntb_transport_qp *qp) 2312 { 2313 if (!qp) 2314 return; 2315 2316 qp->client_ready = true; 2317 2318 if (qp->transport->link_is_up) 2319 schedule_delayed_work(&qp->link_work, 0); 2320 } 2321 EXPORT_SYMBOL_GPL(ntb_transport_link_up); 2322 2323 /** 2324 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 2325 * @qp: NTB transport layer queue to be disabled 2326 * 2327 * Notify NTB transport layer of client's desire to no longer receive data on 2328 * transport queue specified. It is the client's responsibility to ensure all 2329 * entries on queue are purged or otherwise handled appropriately. 2330 */ 2331 void ntb_transport_link_down(struct ntb_transport_qp *qp) 2332 { 2333 int val; 2334 2335 if (!qp) 2336 return; 2337 2338 qp->client_ready = false; 2339 2340 val = ntb_spad_read(qp->ndev, QP_LINKS); 2341 2342 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num)); 2343 2344 if (qp->link_is_up) 2345 ntb_send_link_down(qp); 2346 else 2347 cancel_delayed_work_sync(&qp->link_work); 2348 } 2349 EXPORT_SYMBOL_GPL(ntb_transport_link_down); 2350 2351 /** 2352 * ntb_transport_link_query - Query transport link state 2353 * @qp: NTB transport layer queue to be queried 2354 * 2355 * Query connectivity to the remote system of the NTB transport queue 2356 * 2357 * RETURNS: true for link up or false for link down 2358 */ 2359 bool ntb_transport_link_query(struct ntb_transport_qp *qp) 2360 { 2361 if (!qp) 2362 return false; 2363 2364 return qp->link_is_up; 2365 } 2366 EXPORT_SYMBOL_GPL(ntb_transport_link_query); 2367 2368 /** 2369 * ntb_transport_qp_num - Query the qp number 2370 * @qp: NTB transport layer queue to be queried 2371 * 2372 * Query qp number of the NTB transport queue 2373 * 2374 * RETURNS: a zero based number specifying the qp number 2375 */ 2376 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 2377 { 2378 if (!qp) 2379 return 0; 2380 2381 return qp->qp_num; 2382 } 2383 EXPORT_SYMBOL_GPL(ntb_transport_qp_num); 2384 2385 /** 2386 * ntb_transport_max_size - Query the max payload size of a qp 2387 * @qp: NTB transport layer queue to be queried 2388 * 2389 * Query the maximum payload size permissible on the given qp 2390 * 2391 * RETURNS: the max payload size of a qp 2392 */ 2393 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp) 2394 { 2395 unsigned int max_size; 2396 unsigned int copy_align; 2397 struct dma_chan *rx_chan, *tx_chan; 2398 2399 if (!qp) 2400 return 0; 2401 2402 rx_chan = qp->rx_dma_chan; 2403 tx_chan = qp->tx_dma_chan; 2404 2405 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0, 2406 tx_chan ? tx_chan->device->copy_align : 0); 2407 2408 /* If DMA engine usage is possible, try to find the max size for that */ 2409 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header); 2410 max_size = round_down(max_size, 1 << copy_align); 2411 2412 return max_size; 2413 } 2414 EXPORT_SYMBOL_GPL(ntb_transport_max_size); 2415 2416 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 2417 { 2418 unsigned int head = qp->tx_index; 2419 unsigned int tail = qp->remote_rx_info->entry; 2420 2421 return tail > head ? tail - head : qp->tx_max_entry + tail - head; 2422 } 2423 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry); 2424 2425 static void ntb_transport_doorbell_callback(void *data, int vector) 2426 { 2427 struct ntb_transport_ctx *nt = data; 2428 struct ntb_transport_qp *qp; 2429 u64 db_bits; 2430 unsigned int qp_num; 2431 2432 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) { 2433 ntb_transport_msi_peer_desc_changed(nt); 2434 ntb_db_clear(nt->ndev, nt->msi_db_mask); 2435 } 2436 2437 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free & 2438 ntb_db_vector_mask(nt->ndev, vector)); 2439 2440 while (db_bits) { 2441 qp_num = __ffs(db_bits); 2442 qp = &nt->qp_vec[qp_num]; 2443 2444 if (qp->active) 2445 tasklet_schedule(&qp->rxc_db_work); 2446 2447 db_bits &= ~BIT_ULL(qp_num); 2448 } 2449 } 2450 2451 static const struct ntb_ctx_ops ntb_transport_ops = { 2452 .link_event = ntb_transport_event_callback, 2453 .db_event = ntb_transport_doorbell_callback, 2454 }; 2455 2456 static struct ntb_client ntb_transport_client = { 2457 .ops = { 2458 .probe = ntb_transport_probe, 2459 .remove = ntb_transport_free, 2460 }, 2461 }; 2462 2463 static int __init ntb_transport_init(void) 2464 { 2465 int rc; 2466 2467 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER); 2468 2469 if (debugfs_initialized()) 2470 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 2471 2472 rc = bus_register(&ntb_transport_bus); 2473 if (rc) 2474 goto err_bus; 2475 2476 rc = ntb_register_client(&ntb_transport_client); 2477 if (rc) 2478 goto err_client; 2479 2480 return 0; 2481 2482 err_client: 2483 bus_unregister(&ntb_transport_bus); 2484 err_bus: 2485 debugfs_remove_recursive(nt_debugfs_dir); 2486 return rc; 2487 } 2488 module_init(ntb_transport_init); 2489 2490 static void __exit ntb_transport_exit(void) 2491 { 2492 ntb_unregister_client(&ntb_transport_client); 2493 bus_unregister(&ntb_transport_bus); 2494 debugfs_remove_recursive(nt_debugfs_dir); 2495 } 2496 module_exit(ntb_transport_exit); 2497