xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision a41ef053)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74 
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78 
79 static unsigned int transport_mtu = 0x401E;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82 
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86 
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90 
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94 
95 static struct dentry *nt_debugfs_dir;
96 
97 struct ntb_queue_entry {
98 	/* ntb_queue list reference */
99 	struct list_head entry;
100 	/* pointers to data to be transferred */
101 	void *cb_data;
102 	void *buf;
103 	unsigned int len;
104 	unsigned int flags;
105 
106 	struct ntb_transport_qp *qp;
107 	union {
108 		struct ntb_payload_header __iomem *tx_hdr;
109 		struct ntb_payload_header *rx_hdr;
110 	};
111 	unsigned int index;
112 };
113 
114 struct ntb_rx_info {
115 	unsigned int entry;
116 };
117 
118 struct ntb_transport_qp {
119 	struct ntb_transport_ctx *transport;
120 	struct ntb_dev *ndev;
121 	void *cb_data;
122 	struct dma_chan *dma_chan;
123 
124 	bool client_ready;
125 	bool link_is_up;
126 
127 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
128 	u64 qp_bit;
129 
130 	struct ntb_rx_info __iomem *rx_info;
131 	struct ntb_rx_info *remote_rx_info;
132 
133 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134 			   void *data, int len);
135 	struct list_head tx_free_q;
136 	spinlock_t ntb_tx_free_q_lock;
137 	void __iomem *tx_mw;
138 	dma_addr_t tx_mw_phys;
139 	unsigned int tx_index;
140 	unsigned int tx_max_entry;
141 	unsigned int tx_max_frame;
142 
143 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144 			   void *data, int len);
145 	struct list_head rx_pend_q;
146 	struct list_head rx_free_q;
147 	spinlock_t ntb_rx_pend_q_lock;
148 	spinlock_t ntb_rx_free_q_lock;
149 	void *rx_buff;
150 	unsigned int rx_index;
151 	unsigned int rx_max_entry;
152 	unsigned int rx_max_frame;
153 	dma_cookie_t last_cookie;
154 	struct tasklet_struct rxc_db_work;
155 
156 	void (*event_handler)(void *data, int status);
157 	struct delayed_work link_work;
158 	struct work_struct link_cleanup;
159 
160 	struct dentry *debugfs_dir;
161 	struct dentry *debugfs_stats;
162 
163 	/* Stats */
164 	u64 rx_bytes;
165 	u64 rx_pkts;
166 	u64 rx_ring_empty;
167 	u64 rx_err_no_buf;
168 	u64 rx_err_oflow;
169 	u64 rx_err_ver;
170 	u64 rx_memcpy;
171 	u64 rx_async;
172 	u64 tx_bytes;
173 	u64 tx_pkts;
174 	u64 tx_ring_full;
175 	u64 tx_err_no_buf;
176 	u64 tx_memcpy;
177 	u64 tx_async;
178 };
179 
180 struct ntb_transport_mw {
181 	phys_addr_t phys_addr;
182 	resource_size_t phys_size;
183 	resource_size_t xlat_align;
184 	resource_size_t xlat_align_size;
185 	void __iomem *vbase;
186 	size_t xlat_size;
187 	size_t buff_size;
188 	void *virt_addr;
189 	dma_addr_t dma_addr;
190 };
191 
192 struct ntb_transport_client_dev {
193 	struct list_head entry;
194 	struct ntb_transport_ctx *nt;
195 	struct device dev;
196 };
197 
198 struct ntb_transport_ctx {
199 	struct list_head entry;
200 	struct list_head client_devs;
201 
202 	struct ntb_dev *ndev;
203 
204 	struct ntb_transport_mw *mw_vec;
205 	struct ntb_transport_qp *qp_vec;
206 	unsigned int mw_count;
207 	unsigned int qp_count;
208 	u64 qp_bitmap;
209 	u64 qp_bitmap_free;
210 
211 	bool link_is_up;
212 	struct delayed_work link_work;
213 	struct work_struct link_cleanup;
214 };
215 
216 enum {
217 	DESC_DONE_FLAG = BIT(0),
218 	LINK_DOWN_FLAG = BIT(1),
219 };
220 
221 struct ntb_payload_header {
222 	unsigned int ver;
223 	unsigned int len;
224 	unsigned int flags;
225 };
226 
227 enum {
228 	VERSION = 0,
229 	QP_LINKS,
230 	NUM_QPS,
231 	NUM_MWS,
232 	MW0_SZ_HIGH,
233 	MW0_SZ_LOW,
234 	MW1_SZ_HIGH,
235 	MW1_SZ_LOW,
236 	MAX_SPAD,
237 };
238 
239 #define dev_client_dev(__dev) \
240 	container_of((__dev), struct ntb_transport_client_dev, dev)
241 
242 #define drv_client(__drv) \
243 	container_of((__drv), struct ntb_transport_client, driver)
244 
245 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
246 #define NTB_QP_DEF_NUM_ENTRIES	100
247 #define NTB_LINK_DOWN_TIMEOUT	10
248 
249 static void ntb_transport_rxc_db(unsigned long data);
250 static const struct ntb_ctx_ops ntb_transport_ops;
251 static struct ntb_client ntb_transport_client;
252 
253 static int ntb_transport_bus_match(struct device *dev,
254 				   struct device_driver *drv)
255 {
256 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
257 }
258 
259 static int ntb_transport_bus_probe(struct device *dev)
260 {
261 	const struct ntb_transport_client *client;
262 	int rc = -EINVAL;
263 
264 	get_device(dev);
265 
266 	client = drv_client(dev->driver);
267 	rc = client->probe(dev);
268 	if (rc)
269 		put_device(dev);
270 
271 	return rc;
272 }
273 
274 static int ntb_transport_bus_remove(struct device *dev)
275 {
276 	const struct ntb_transport_client *client;
277 
278 	client = drv_client(dev->driver);
279 	client->remove(dev);
280 
281 	put_device(dev);
282 
283 	return 0;
284 }
285 
286 static struct bus_type ntb_transport_bus = {
287 	.name = "ntb_transport",
288 	.match = ntb_transport_bus_match,
289 	.probe = ntb_transport_bus_probe,
290 	.remove = ntb_transport_bus_remove,
291 };
292 
293 static LIST_HEAD(ntb_transport_list);
294 
295 static int ntb_bus_init(struct ntb_transport_ctx *nt)
296 {
297 	list_add(&nt->entry, &ntb_transport_list);
298 	return 0;
299 }
300 
301 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
302 {
303 	struct ntb_transport_client_dev *client_dev, *cd;
304 
305 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
306 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
307 			dev_name(&client_dev->dev));
308 		list_del(&client_dev->entry);
309 		device_unregister(&client_dev->dev);
310 	}
311 
312 	list_del(&nt->entry);
313 }
314 
315 static void ntb_transport_client_release(struct device *dev)
316 {
317 	struct ntb_transport_client_dev *client_dev;
318 
319 	client_dev = dev_client_dev(dev);
320 	kfree(client_dev);
321 }
322 
323 /**
324  * ntb_transport_unregister_client_dev - Unregister NTB client device
325  * @device_name: Name of NTB client device
326  *
327  * Unregister an NTB client device with the NTB transport layer
328  */
329 void ntb_transport_unregister_client_dev(char *device_name)
330 {
331 	struct ntb_transport_client_dev *client, *cd;
332 	struct ntb_transport_ctx *nt;
333 
334 	list_for_each_entry(nt, &ntb_transport_list, entry)
335 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
336 			if (!strncmp(dev_name(&client->dev), device_name,
337 				     strlen(device_name))) {
338 				list_del(&client->entry);
339 				device_unregister(&client->dev);
340 			}
341 }
342 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
343 
344 /**
345  * ntb_transport_register_client_dev - Register NTB client device
346  * @device_name: Name of NTB client device
347  *
348  * Register an NTB client device with the NTB transport layer
349  */
350 int ntb_transport_register_client_dev(char *device_name)
351 {
352 	struct ntb_transport_client_dev *client_dev;
353 	struct ntb_transport_ctx *nt;
354 	int node;
355 	int rc, i = 0;
356 
357 	if (list_empty(&ntb_transport_list))
358 		return -ENODEV;
359 
360 	list_for_each_entry(nt, &ntb_transport_list, entry) {
361 		struct device *dev;
362 
363 		node = dev_to_node(&nt->ndev->dev);
364 
365 		client_dev = kzalloc_node(sizeof(*client_dev),
366 					  GFP_KERNEL, node);
367 		if (!client_dev) {
368 			rc = -ENOMEM;
369 			goto err;
370 		}
371 
372 		dev = &client_dev->dev;
373 
374 		/* setup and register client devices */
375 		dev_set_name(dev, "%s%d", device_name, i);
376 		dev->bus = &ntb_transport_bus;
377 		dev->release = ntb_transport_client_release;
378 		dev->parent = &nt->ndev->dev;
379 
380 		rc = device_register(dev);
381 		if (rc) {
382 			kfree(client_dev);
383 			goto err;
384 		}
385 
386 		list_add_tail(&client_dev->entry, &nt->client_devs);
387 		i++;
388 	}
389 
390 	return 0;
391 
392 err:
393 	ntb_transport_unregister_client_dev(device_name);
394 
395 	return rc;
396 }
397 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
398 
399 /**
400  * ntb_transport_register_client - Register NTB client driver
401  * @drv: NTB client driver to be registered
402  *
403  * Register an NTB client driver with the NTB transport layer
404  *
405  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
406  */
407 int ntb_transport_register_client(struct ntb_transport_client *drv)
408 {
409 	drv->driver.bus = &ntb_transport_bus;
410 
411 	if (list_empty(&ntb_transport_list))
412 		return -ENODEV;
413 
414 	return driver_register(&drv->driver);
415 }
416 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
417 
418 /**
419  * ntb_transport_unregister_client - Unregister NTB client driver
420  * @drv: NTB client driver to be unregistered
421  *
422  * Unregister an NTB client driver with the NTB transport layer
423  *
424  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
425  */
426 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
427 {
428 	driver_unregister(&drv->driver);
429 }
430 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
431 
432 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
433 			    loff_t *offp)
434 {
435 	struct ntb_transport_qp *qp;
436 	char *buf;
437 	ssize_t ret, out_offset, out_count;
438 
439 	out_count = 1000;
440 
441 	buf = kmalloc(out_count, GFP_KERNEL);
442 	if (!buf)
443 		return -ENOMEM;
444 
445 	qp = filp->private_data;
446 	out_offset = 0;
447 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
448 			       "NTB QP stats\n");
449 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
450 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
451 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
452 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
453 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
454 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
455 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
456 			       "rx_async - \t%llu\n", qp->rx_async);
457 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
458 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
459 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
460 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
461 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
462 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
463 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
464 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
465 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
466 			       "rx_buff - \t%p\n", qp->rx_buff);
467 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 			       "rx_index - \t%u\n", qp->rx_index);
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
471 
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
474 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
476 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
478 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 			       "tx_async - \t%llu\n", qp->tx_async);
480 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
482 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
484 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 			       "tx_mw - \t%p\n", qp->tx_mw);
486 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 			       "tx_index - \t%u\n", qp->tx_index);
488 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
490 
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "\nQP Link %s\n",
493 			       qp->link_is_up ? "Up" : "Down");
494 	if (out_offset > out_count)
495 		out_offset = out_count;
496 
497 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
498 	kfree(buf);
499 	return ret;
500 }
501 
502 static const struct file_operations ntb_qp_debugfs_stats = {
503 	.owner = THIS_MODULE,
504 	.open = simple_open,
505 	.read = debugfs_read,
506 };
507 
508 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
509 			 struct list_head *list)
510 {
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(lock, flags);
514 	list_add_tail(entry, list);
515 	spin_unlock_irqrestore(lock, flags);
516 }
517 
518 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
519 					   struct list_head *list)
520 {
521 	struct ntb_queue_entry *entry;
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(lock, flags);
525 	if (list_empty(list)) {
526 		entry = NULL;
527 		goto out;
528 	}
529 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
530 	list_del(&entry->entry);
531 out:
532 	spin_unlock_irqrestore(lock, flags);
533 
534 	return entry;
535 }
536 
537 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
538 				     unsigned int qp_num)
539 {
540 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
541 	struct ntb_transport_mw *mw;
542 	unsigned int rx_size, num_qps_mw;
543 	unsigned int mw_num, mw_count, qp_count;
544 	unsigned int i;
545 
546 	mw_count = nt->mw_count;
547 	qp_count = nt->qp_count;
548 
549 	mw_num = QP_TO_MW(nt, qp_num);
550 	mw = &nt->mw_vec[mw_num];
551 
552 	if (!mw->virt_addr)
553 		return -ENOMEM;
554 
555 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
556 		num_qps_mw = qp_count / mw_count + 1;
557 	else
558 		num_qps_mw = qp_count / mw_count;
559 
560 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
561 	qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
562 	rx_size -= sizeof(struct ntb_rx_info);
563 
564 	qp->remote_rx_info = qp->rx_buff + rx_size;
565 
566 	/* Due to housekeeping, there must be atleast 2 buffs */
567 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
568 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
569 	qp->rx_index = 0;
570 
571 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
572 
573 	/* setup the hdr offsets with 0's */
574 	for (i = 0; i < qp->rx_max_entry; i++) {
575 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
576 				sizeof(struct ntb_payload_header));
577 		memset(offset, 0, sizeof(struct ntb_payload_header));
578 	}
579 
580 	qp->rx_pkts = 0;
581 	qp->tx_pkts = 0;
582 	qp->tx_index = 0;
583 
584 	return 0;
585 }
586 
587 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
588 {
589 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
590 	struct pci_dev *pdev = nt->ndev->pdev;
591 
592 	if (!mw->virt_addr)
593 		return;
594 
595 	ntb_mw_clear_trans(nt->ndev, num_mw);
596 	dma_free_coherent(&pdev->dev, mw->buff_size,
597 			  mw->virt_addr, mw->dma_addr);
598 	mw->xlat_size = 0;
599 	mw->buff_size = 0;
600 	mw->virt_addr = NULL;
601 }
602 
603 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
604 		      unsigned int size)
605 {
606 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
607 	struct pci_dev *pdev = nt->ndev->pdev;
608 	unsigned int xlat_size, buff_size;
609 	int rc;
610 
611 	xlat_size = round_up(size, mw->xlat_align_size);
612 	buff_size = round_up(size, mw->xlat_align);
613 
614 	/* No need to re-setup */
615 	if (mw->xlat_size == xlat_size)
616 		return 0;
617 
618 	if (mw->buff_size)
619 		ntb_free_mw(nt, num_mw);
620 
621 	/* Alloc memory for receiving data.  Must be aligned */
622 	mw->xlat_size = xlat_size;
623 	mw->buff_size = buff_size;
624 
625 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
626 					   &mw->dma_addr, GFP_KERNEL);
627 	if (!mw->virt_addr) {
628 		mw->xlat_size = 0;
629 		mw->buff_size = 0;
630 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %d\n",
631 			buff_size);
632 		return -ENOMEM;
633 	}
634 
635 	/*
636 	 * we must ensure that the memory address allocated is BAR size
637 	 * aligned in order for the XLAT register to take the value. This
638 	 * is a requirement of the hardware. It is recommended to setup CMA
639 	 * for BAR sizes equal or greater than 4MB.
640 	 */
641 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
642 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
643 			&mw->dma_addr);
644 		ntb_free_mw(nt, num_mw);
645 		return -ENOMEM;
646 	}
647 
648 	/* Notify HW the memory location of the receive buffer */
649 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
650 	if (rc) {
651 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
652 		ntb_free_mw(nt, num_mw);
653 		return -EIO;
654 	}
655 
656 	return 0;
657 }
658 
659 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
660 {
661 	qp->link_is_up = false;
662 
663 	qp->tx_index = 0;
664 	qp->rx_index = 0;
665 	qp->rx_bytes = 0;
666 	qp->rx_pkts = 0;
667 	qp->rx_ring_empty = 0;
668 	qp->rx_err_no_buf = 0;
669 	qp->rx_err_oflow = 0;
670 	qp->rx_err_ver = 0;
671 	qp->rx_memcpy = 0;
672 	qp->rx_async = 0;
673 	qp->tx_bytes = 0;
674 	qp->tx_pkts = 0;
675 	qp->tx_ring_full = 0;
676 	qp->tx_err_no_buf = 0;
677 	qp->tx_memcpy = 0;
678 	qp->tx_async = 0;
679 }
680 
681 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
682 {
683 	struct ntb_transport_ctx *nt = qp->transport;
684 	struct pci_dev *pdev = nt->ndev->pdev;
685 
686 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
687 
688 	cancel_delayed_work_sync(&qp->link_work);
689 	ntb_qp_link_down_reset(qp);
690 
691 	if (qp->event_handler)
692 		qp->event_handler(qp->cb_data, qp->link_is_up);
693 }
694 
695 static void ntb_qp_link_cleanup_work(struct work_struct *work)
696 {
697 	struct ntb_transport_qp *qp = container_of(work,
698 						   struct ntb_transport_qp,
699 						   link_cleanup);
700 	struct ntb_transport_ctx *nt = qp->transport;
701 
702 	ntb_qp_link_cleanup(qp);
703 
704 	if (nt->link_is_up)
705 		schedule_delayed_work(&qp->link_work,
706 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
707 }
708 
709 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
710 {
711 	schedule_work(&qp->link_cleanup);
712 }
713 
714 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
715 {
716 	struct ntb_transport_qp *qp;
717 	u64 qp_bitmap_alloc;
718 	int i;
719 
720 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
721 
722 	/* Pass along the info to any clients */
723 	for (i = 0; i < nt->qp_count; i++)
724 		if (qp_bitmap_alloc & BIT_ULL(i)) {
725 			qp = &nt->qp_vec[i];
726 			ntb_qp_link_cleanup(qp);
727 			cancel_work_sync(&qp->link_cleanup);
728 			cancel_delayed_work_sync(&qp->link_work);
729 		}
730 
731 	if (!nt->link_is_up)
732 		cancel_delayed_work_sync(&nt->link_work);
733 
734 	/* The scratchpad registers keep the values if the remote side
735 	 * goes down, blast them now to give them a sane value the next
736 	 * time they are accessed
737 	 */
738 	for (i = 0; i < MAX_SPAD; i++)
739 		ntb_spad_write(nt->ndev, i, 0);
740 }
741 
742 static void ntb_transport_link_cleanup_work(struct work_struct *work)
743 {
744 	struct ntb_transport_ctx *nt =
745 		container_of(work, struct ntb_transport_ctx, link_cleanup);
746 
747 	ntb_transport_link_cleanup(nt);
748 }
749 
750 static void ntb_transport_event_callback(void *data)
751 {
752 	struct ntb_transport_ctx *nt = data;
753 
754 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
755 		schedule_delayed_work(&nt->link_work, 0);
756 	else
757 		schedule_work(&nt->link_cleanup);
758 }
759 
760 static void ntb_transport_link_work(struct work_struct *work)
761 {
762 	struct ntb_transport_ctx *nt =
763 		container_of(work, struct ntb_transport_ctx, link_work.work);
764 	struct ntb_dev *ndev = nt->ndev;
765 	struct pci_dev *pdev = ndev->pdev;
766 	resource_size_t size;
767 	u32 val;
768 	int rc, i, spad;
769 
770 	/* send the local info, in the opposite order of the way we read it */
771 	for (i = 0; i < nt->mw_count; i++) {
772 		size = nt->mw_vec[i].phys_size;
773 
774 		if (max_mw_size && size > max_mw_size)
775 			size = max_mw_size;
776 
777 		spad = MW0_SZ_HIGH + (i * 2);
778 		ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
779 
780 		spad = MW0_SZ_LOW + (i * 2);
781 		ntb_peer_spad_write(ndev, spad, (u32)size);
782 	}
783 
784 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
785 
786 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
787 
788 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
789 
790 	/* Query the remote side for its info */
791 	val = ntb_spad_read(ndev, VERSION);
792 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
793 	if (val != NTB_TRANSPORT_VERSION)
794 		goto out;
795 
796 	val = ntb_spad_read(ndev, NUM_QPS);
797 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
798 	if (val != nt->qp_count)
799 		goto out;
800 
801 	val = ntb_spad_read(ndev, NUM_MWS);
802 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
803 	if (val != nt->mw_count)
804 		goto out;
805 
806 	for (i = 0; i < nt->mw_count; i++) {
807 		u64 val64;
808 
809 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
810 		val64 = (u64)val << 32;
811 
812 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
813 		val64 |= val;
814 
815 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
816 
817 		rc = ntb_set_mw(nt, i, val64);
818 		if (rc)
819 			goto out1;
820 	}
821 
822 	nt->link_is_up = true;
823 
824 	for (i = 0; i < nt->qp_count; i++) {
825 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
826 
827 		ntb_transport_setup_qp_mw(nt, i);
828 
829 		if (qp->client_ready)
830 			schedule_delayed_work(&qp->link_work, 0);
831 	}
832 
833 	return;
834 
835 out1:
836 	for (i = 0; i < nt->mw_count; i++)
837 		ntb_free_mw(nt, i);
838 out:
839 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
840 		schedule_delayed_work(&nt->link_work,
841 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
842 }
843 
844 static void ntb_qp_link_work(struct work_struct *work)
845 {
846 	struct ntb_transport_qp *qp = container_of(work,
847 						   struct ntb_transport_qp,
848 						   link_work.work);
849 	struct pci_dev *pdev = qp->ndev->pdev;
850 	struct ntb_transport_ctx *nt = qp->transport;
851 	int val;
852 
853 	WARN_ON(!nt->link_is_up);
854 
855 	val = ntb_spad_read(nt->ndev, QP_LINKS);
856 
857 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
858 
859 	/* query remote spad for qp ready bits */
860 	ntb_peer_spad_read(nt->ndev, QP_LINKS);
861 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
862 
863 	/* See if the remote side is up */
864 	if (val & BIT(qp->qp_num)) {
865 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
866 		qp->link_is_up = true;
867 
868 		if (qp->event_handler)
869 			qp->event_handler(qp->cb_data, qp->link_is_up);
870 	} else if (nt->link_is_up)
871 		schedule_delayed_work(&qp->link_work,
872 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
873 }
874 
875 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
876 				    unsigned int qp_num)
877 {
878 	struct ntb_transport_qp *qp;
879 	struct ntb_transport_mw *mw;
880 	phys_addr_t mw_base;
881 	resource_size_t mw_size;
882 	unsigned int num_qps_mw, tx_size;
883 	unsigned int mw_num, mw_count, qp_count;
884 	u64 qp_offset;
885 
886 	mw_count = nt->mw_count;
887 	qp_count = nt->qp_count;
888 
889 	mw_num = QP_TO_MW(nt, qp_num);
890 	mw = &nt->mw_vec[mw_num];
891 
892 	qp = &nt->qp_vec[qp_num];
893 	qp->qp_num = qp_num;
894 	qp->transport = nt;
895 	qp->ndev = nt->ndev;
896 	qp->client_ready = false;
897 	qp->event_handler = NULL;
898 	ntb_qp_link_down_reset(qp);
899 
900 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
901 		num_qps_mw = qp_count / mw_count + 1;
902 	else
903 		num_qps_mw = qp_count / mw_count;
904 
905 	mw_base = nt->mw_vec[mw_num].phys_addr;
906 	mw_size = nt->mw_vec[mw_num].phys_size;
907 
908 	tx_size = (unsigned int)mw_size / num_qps_mw;
909 	qp_offset = tx_size * qp_num / mw_count;
910 
911 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
912 	if (!qp->tx_mw)
913 		return -EINVAL;
914 
915 	qp->tx_mw_phys = mw_base + qp_offset;
916 	if (!qp->tx_mw_phys)
917 		return -EINVAL;
918 
919 	tx_size -= sizeof(struct ntb_rx_info);
920 	qp->rx_info = qp->tx_mw + tx_size;
921 
922 	/* Due to housekeeping, there must be atleast 2 buffs */
923 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
924 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
925 
926 	if (nt_debugfs_dir) {
927 		char debugfs_name[4];
928 
929 		snprintf(debugfs_name, 4, "qp%d", qp_num);
930 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
931 						     nt_debugfs_dir);
932 
933 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
934 							qp->debugfs_dir, qp,
935 							&ntb_qp_debugfs_stats);
936 	} else {
937 		qp->debugfs_dir = NULL;
938 		qp->debugfs_stats = NULL;
939 	}
940 
941 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
942 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
943 
944 	spin_lock_init(&qp->ntb_rx_pend_q_lock);
945 	spin_lock_init(&qp->ntb_rx_free_q_lock);
946 	spin_lock_init(&qp->ntb_tx_free_q_lock);
947 
948 	INIT_LIST_HEAD(&qp->rx_pend_q);
949 	INIT_LIST_HEAD(&qp->rx_free_q);
950 	INIT_LIST_HEAD(&qp->tx_free_q);
951 
952 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
953 		     (unsigned long)qp);
954 
955 	return 0;
956 }
957 
958 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
959 {
960 	struct ntb_transport_ctx *nt;
961 	struct ntb_transport_mw *mw;
962 	unsigned int mw_count, qp_count;
963 	u64 qp_bitmap;
964 	int node;
965 	int rc, i;
966 
967 	if (ntb_db_is_unsafe(ndev))
968 		dev_dbg(&ndev->dev,
969 			"doorbell is unsafe, proceed anyway...\n");
970 	if (ntb_spad_is_unsafe(ndev))
971 		dev_dbg(&ndev->dev,
972 			"scratchpad is unsafe, proceed anyway...\n");
973 
974 	node = dev_to_node(&ndev->dev);
975 
976 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
977 	if (!nt)
978 		return -ENOMEM;
979 
980 	nt->ndev = ndev;
981 
982 	mw_count = ntb_mw_count(ndev);
983 
984 	nt->mw_count = mw_count;
985 
986 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
987 				  GFP_KERNEL, node);
988 	if (!nt->mw_vec) {
989 		rc = -ENOMEM;
990 		goto err;
991 	}
992 
993 	for (i = 0; i < mw_count; i++) {
994 		mw = &nt->mw_vec[i];
995 
996 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
997 				      &mw->xlat_align, &mw->xlat_align_size);
998 		if (rc)
999 			goto err1;
1000 
1001 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1002 		if (!mw->vbase) {
1003 			rc = -ENOMEM;
1004 			goto err1;
1005 		}
1006 
1007 		mw->buff_size = 0;
1008 		mw->xlat_size = 0;
1009 		mw->virt_addr = NULL;
1010 		mw->dma_addr = 0;
1011 	}
1012 
1013 	qp_bitmap = ntb_db_valid_mask(ndev);
1014 
1015 	qp_count = ilog2(qp_bitmap);
1016 	if (max_num_clients && max_num_clients < qp_count)
1017 		qp_count = max_num_clients;
1018 	else if (mw_count < qp_count)
1019 		qp_count = mw_count;
1020 
1021 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1022 
1023 	nt->qp_count = qp_count;
1024 	nt->qp_bitmap = qp_bitmap;
1025 	nt->qp_bitmap_free = qp_bitmap;
1026 
1027 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1028 				  GFP_KERNEL, node);
1029 	if (!nt->qp_vec) {
1030 		rc = -ENOMEM;
1031 		goto err2;
1032 	}
1033 
1034 	for (i = 0; i < qp_count; i++) {
1035 		rc = ntb_transport_init_queue(nt, i);
1036 		if (rc)
1037 			goto err3;
1038 	}
1039 
1040 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1041 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1042 
1043 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1044 	if (rc)
1045 		goto err3;
1046 
1047 	INIT_LIST_HEAD(&nt->client_devs);
1048 	rc = ntb_bus_init(nt);
1049 	if (rc)
1050 		goto err4;
1051 
1052 	nt->link_is_up = false;
1053 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1054 	ntb_link_event(ndev);
1055 
1056 	return 0;
1057 
1058 err4:
1059 	ntb_clear_ctx(ndev);
1060 err3:
1061 	kfree(nt->qp_vec);
1062 err2:
1063 	kfree(nt->mw_vec);
1064 err1:
1065 	while (i--) {
1066 		mw = &nt->mw_vec[i];
1067 		iounmap(mw->vbase);
1068 	}
1069 err:
1070 	kfree(nt);
1071 	return rc;
1072 }
1073 
1074 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1075 {
1076 	struct ntb_transport_ctx *nt = ndev->ctx;
1077 	struct ntb_transport_qp *qp;
1078 	u64 qp_bitmap_alloc;
1079 	int i;
1080 
1081 	ntb_transport_link_cleanup(nt);
1082 	cancel_work_sync(&nt->link_cleanup);
1083 	cancel_delayed_work_sync(&nt->link_work);
1084 
1085 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1086 
1087 	/* verify that all the qp's are freed */
1088 	for (i = 0; i < nt->qp_count; i++) {
1089 		qp = &nt->qp_vec[i];
1090 		if (qp_bitmap_alloc & BIT_ULL(i))
1091 			ntb_transport_free_queue(qp);
1092 		debugfs_remove_recursive(qp->debugfs_dir);
1093 	}
1094 
1095 	ntb_link_disable(ndev);
1096 	ntb_clear_ctx(ndev);
1097 
1098 	ntb_bus_remove(nt);
1099 
1100 	for (i = nt->mw_count; i--; ) {
1101 		ntb_free_mw(nt, i);
1102 		iounmap(nt->mw_vec[i].vbase);
1103 	}
1104 
1105 	kfree(nt->qp_vec);
1106 	kfree(nt->mw_vec);
1107 	kfree(nt);
1108 }
1109 
1110 static void ntb_rx_copy_callback(void *data)
1111 {
1112 	struct ntb_queue_entry *entry = data;
1113 	struct ntb_transport_qp *qp = entry->qp;
1114 	void *cb_data = entry->cb_data;
1115 	unsigned int len = entry->len;
1116 	struct ntb_payload_header *hdr = entry->rx_hdr;
1117 
1118 	hdr->flags = 0;
1119 
1120 	iowrite32(entry->index, &qp->rx_info->entry);
1121 
1122 	ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1123 
1124 	if (qp->rx_handler && qp->client_ready)
1125 		qp->rx_handler(qp, qp->cb_data, cb_data, len);
1126 }
1127 
1128 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1129 {
1130 	void *buf = entry->buf;
1131 	size_t len = entry->len;
1132 
1133 	memcpy(buf, offset, len);
1134 
1135 	/* Ensure that the data is fully copied out before clearing the flag */
1136 	wmb();
1137 
1138 	ntb_rx_copy_callback(entry);
1139 }
1140 
1141 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset,
1142 			 size_t len)
1143 {
1144 	struct dma_async_tx_descriptor *txd;
1145 	struct ntb_transport_qp *qp = entry->qp;
1146 	struct dma_chan *chan = qp->dma_chan;
1147 	struct dma_device *device;
1148 	size_t pay_off, buff_off;
1149 	struct dmaengine_unmap_data *unmap;
1150 	dma_cookie_t cookie;
1151 	void *buf = entry->buf;
1152 
1153 	entry->len = len;
1154 
1155 	if (!chan)
1156 		goto err;
1157 
1158 	if (len < copy_bytes)
1159 		goto err_wait;
1160 
1161 	device = chan->device;
1162 	pay_off = (size_t)offset & ~PAGE_MASK;
1163 	buff_off = (size_t)buf & ~PAGE_MASK;
1164 
1165 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1166 		goto err_wait;
1167 
1168 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1169 	if (!unmap)
1170 		goto err_wait;
1171 
1172 	unmap->len = len;
1173 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1174 				      pay_off, len, DMA_TO_DEVICE);
1175 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1176 		goto err_get_unmap;
1177 
1178 	unmap->to_cnt = 1;
1179 
1180 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1181 				      buff_off, len, DMA_FROM_DEVICE);
1182 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1183 		goto err_get_unmap;
1184 
1185 	unmap->from_cnt = 1;
1186 
1187 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1188 					     unmap->addr[0], len,
1189 					     DMA_PREP_INTERRUPT);
1190 	if (!txd)
1191 		goto err_get_unmap;
1192 
1193 	txd->callback = ntb_rx_copy_callback;
1194 	txd->callback_param = entry;
1195 	dma_set_unmap(txd, unmap);
1196 
1197 	cookie = dmaengine_submit(txd);
1198 	if (dma_submit_error(cookie))
1199 		goto err_set_unmap;
1200 
1201 	dmaengine_unmap_put(unmap);
1202 
1203 	qp->last_cookie = cookie;
1204 
1205 	qp->rx_async++;
1206 
1207 	return;
1208 
1209 err_set_unmap:
1210 	dmaengine_unmap_put(unmap);
1211 err_get_unmap:
1212 	dmaengine_unmap_put(unmap);
1213 err_wait:
1214 	/* If the callbacks come out of order, the writing of the index to the
1215 	 * last completed will be out of order.  This may result in the
1216 	 * receive stalling forever.
1217 	 */
1218 	dma_sync_wait(chan, qp->last_cookie);
1219 err:
1220 	ntb_memcpy_rx(entry, offset);
1221 	qp->rx_memcpy++;
1222 }
1223 
1224 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1225 {
1226 	struct ntb_payload_header *hdr;
1227 	struct ntb_queue_entry *entry;
1228 	void *offset;
1229 	int rc;
1230 
1231 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1232 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1233 
1234 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1235 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1236 
1237 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1238 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1239 		qp->rx_ring_empty++;
1240 		return -EAGAIN;
1241 	}
1242 
1243 	if (hdr->flags & LINK_DOWN_FLAG) {
1244 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1245 		ntb_qp_link_down(qp);
1246 		hdr->flags = 0;
1247 		return -EAGAIN;
1248 	}
1249 
1250 	if (hdr->ver != (u32)qp->rx_pkts) {
1251 		dev_dbg(&qp->ndev->pdev->dev,
1252 			"version mismatch, expected %llu - got %u\n",
1253 			qp->rx_pkts, hdr->ver);
1254 		qp->rx_err_ver++;
1255 		return -EIO;
1256 	}
1257 
1258 	entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1259 	if (!entry) {
1260 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1261 		qp->rx_err_no_buf++;
1262 
1263 		rc = -ENOMEM;
1264 		goto err;
1265 	}
1266 
1267 	if (hdr->len > entry->len) {
1268 		dev_dbg(&qp->ndev->pdev->dev,
1269 			"receive buffer overflow! Wanted %d got %d\n",
1270 			hdr->len, entry->len);
1271 		qp->rx_err_oflow++;
1272 
1273 		rc = -EIO;
1274 		goto err;
1275 	}
1276 
1277 	dev_dbg(&qp->ndev->pdev->dev,
1278 		"RX OK index %u ver %u size %d into buf size %d\n",
1279 		qp->rx_index, hdr->ver, hdr->len, entry->len);
1280 
1281 	qp->rx_bytes += hdr->len;
1282 	qp->rx_pkts++;
1283 
1284 	entry->index = qp->rx_index;
1285 	entry->rx_hdr = hdr;
1286 
1287 	ntb_async_rx(entry, offset, hdr->len);
1288 
1289 	qp->rx_index++;
1290 	qp->rx_index %= qp->rx_max_entry;
1291 
1292 	return 0;
1293 
1294 err:
1295 	/* FIXME: if this syncrhonous update of the rx_index gets ahead of
1296 	 * asyncrhonous ntb_rx_copy_callback of previous entry, there are three
1297 	 * scenarios:
1298 	 *
1299 	 * 1) The peer might miss this update, but observe the update
1300 	 * from the memcpy completion callback.  In this case, the buffer will
1301 	 * not be freed on the peer to be reused for a different packet.  The
1302 	 * successful rx of a later packet would clear the condition, but the
1303 	 * condition could persist if several rx fail in a row.
1304 	 *
1305 	 * 2) The peer may observe this update before the asyncrhonous copy of
1306 	 * prior packets is completed.  The peer may overwrite the buffers of
1307 	 * the prior packets before they are copied.
1308 	 *
1309 	 * 3) Both: the peer may observe the update, and then observe the index
1310 	 * decrement by the asynchronous completion callback.  Who knows what
1311 	 * badness that will cause.
1312 	 */
1313 	hdr->flags = 0;
1314 	iowrite32(qp->rx_index, &qp->rx_info->entry);
1315 
1316 	return rc;
1317 }
1318 
1319 static void ntb_transport_rxc_db(unsigned long data)
1320 {
1321 	struct ntb_transport_qp *qp = (void *)data;
1322 	int rc, i;
1323 
1324 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1325 		__func__, qp->qp_num);
1326 
1327 	/* Limit the number of packets processed in a single interrupt to
1328 	 * provide fairness to others
1329 	 */
1330 	for (i = 0; i < qp->rx_max_entry; i++) {
1331 		rc = ntb_process_rxc(qp);
1332 		if (rc)
1333 			break;
1334 	}
1335 
1336 	if (qp->dma_chan)
1337 		dma_async_issue_pending(qp->dma_chan);
1338 
1339 	if (i == qp->rx_max_entry) {
1340 		/* there is more work to do */
1341 		tasklet_schedule(&qp->rxc_db_work);
1342 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1343 		/* the doorbell bit is set: clear it */
1344 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1345 		/* ntb_db_read ensures ntb_db_clear write is committed */
1346 		ntb_db_read(qp->ndev);
1347 
1348 		/* an interrupt may have arrived between finishing
1349 		 * ntb_process_rxc and clearing the doorbell bit:
1350 		 * there might be some more work to do.
1351 		 */
1352 		tasklet_schedule(&qp->rxc_db_work);
1353 	}
1354 }
1355 
1356 static void ntb_tx_copy_callback(void *data)
1357 {
1358 	struct ntb_queue_entry *entry = data;
1359 	struct ntb_transport_qp *qp = entry->qp;
1360 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1361 
1362 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1363 
1364 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1365 
1366 	/* The entry length can only be zero if the packet is intended to be a
1367 	 * "link down" or similar.  Since no payload is being sent in these
1368 	 * cases, there is nothing to add to the completion queue.
1369 	 */
1370 	if (entry->len > 0) {
1371 		qp->tx_bytes += entry->len;
1372 
1373 		if (qp->tx_handler)
1374 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1375 				       entry->len);
1376 	}
1377 
1378 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1379 }
1380 
1381 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1382 {
1383 #ifdef ARCH_HAS_NOCACHE_UACCESS
1384 	/*
1385 	 * Using non-temporal mov to improve performance on non-cached
1386 	 * writes, even though we aren't actually copying from user space.
1387 	 */
1388 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1389 #else
1390 	memcpy_toio(offset, entry->buf, entry->len);
1391 #endif
1392 
1393 	/* Ensure that the data is fully copied out before setting the flags */
1394 	wmb();
1395 
1396 	ntb_tx_copy_callback(entry);
1397 }
1398 
1399 static void ntb_async_tx(struct ntb_transport_qp *qp,
1400 			 struct ntb_queue_entry *entry)
1401 {
1402 	struct ntb_payload_header __iomem *hdr;
1403 	struct dma_async_tx_descriptor *txd;
1404 	struct dma_chan *chan = qp->dma_chan;
1405 	struct dma_device *device;
1406 	size_t dest_off, buff_off;
1407 	struct dmaengine_unmap_data *unmap;
1408 	dma_addr_t dest;
1409 	dma_cookie_t cookie;
1410 	void __iomem *offset;
1411 	size_t len = entry->len;
1412 	void *buf = entry->buf;
1413 
1414 	offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1415 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1416 	entry->tx_hdr = hdr;
1417 
1418 	iowrite32(entry->len, &hdr->len);
1419 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1420 
1421 	if (!chan)
1422 		goto err;
1423 
1424 	if (len < copy_bytes)
1425 		goto err;
1426 
1427 	device = chan->device;
1428 	dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1429 	buff_off = (size_t)buf & ~PAGE_MASK;
1430 	dest_off = (size_t)dest & ~PAGE_MASK;
1431 
1432 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1433 		goto err;
1434 
1435 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1436 	if (!unmap)
1437 		goto err;
1438 
1439 	unmap->len = len;
1440 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1441 				      buff_off, len, DMA_TO_DEVICE);
1442 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1443 		goto err_get_unmap;
1444 
1445 	unmap->to_cnt = 1;
1446 
1447 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1448 					     DMA_PREP_INTERRUPT);
1449 	if (!txd)
1450 		goto err_get_unmap;
1451 
1452 	txd->callback = ntb_tx_copy_callback;
1453 	txd->callback_param = entry;
1454 	dma_set_unmap(txd, unmap);
1455 
1456 	cookie = dmaengine_submit(txd);
1457 	if (dma_submit_error(cookie))
1458 		goto err_set_unmap;
1459 
1460 	dmaengine_unmap_put(unmap);
1461 
1462 	dma_async_issue_pending(chan);
1463 	qp->tx_async++;
1464 
1465 	return;
1466 err_set_unmap:
1467 	dmaengine_unmap_put(unmap);
1468 err_get_unmap:
1469 	dmaengine_unmap_put(unmap);
1470 err:
1471 	ntb_memcpy_tx(entry, offset);
1472 	qp->tx_memcpy++;
1473 }
1474 
1475 static int ntb_process_tx(struct ntb_transport_qp *qp,
1476 			  struct ntb_queue_entry *entry)
1477 {
1478 	if (qp->tx_index == qp->remote_rx_info->entry) {
1479 		qp->tx_ring_full++;
1480 		return -EAGAIN;
1481 	}
1482 
1483 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1484 		if (qp->tx_handler)
1485 			qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1486 
1487 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1488 			     &qp->tx_free_q);
1489 		return 0;
1490 	}
1491 
1492 	ntb_async_tx(qp, entry);
1493 
1494 	qp->tx_index++;
1495 	qp->tx_index %= qp->tx_max_entry;
1496 
1497 	qp->tx_pkts++;
1498 
1499 	return 0;
1500 }
1501 
1502 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1503 {
1504 	struct pci_dev *pdev = qp->ndev->pdev;
1505 	struct ntb_queue_entry *entry;
1506 	int i, rc;
1507 
1508 	if (!qp->link_is_up)
1509 		return;
1510 
1511 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1512 
1513 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1514 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1515 		if (entry)
1516 			break;
1517 		msleep(100);
1518 	}
1519 
1520 	if (!entry)
1521 		return;
1522 
1523 	entry->cb_data = NULL;
1524 	entry->buf = NULL;
1525 	entry->len = 0;
1526 	entry->flags = LINK_DOWN_FLAG;
1527 
1528 	rc = ntb_process_tx(qp, entry);
1529 	if (rc)
1530 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1531 			qp->qp_num);
1532 
1533 	ntb_qp_link_down_reset(qp);
1534 }
1535 
1536 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1537 {
1538 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1539 }
1540 
1541 /**
1542  * ntb_transport_create_queue - Create a new NTB transport layer queue
1543  * @rx_handler: receive callback function
1544  * @tx_handler: transmit callback function
1545  * @event_handler: event callback function
1546  *
1547  * Create a new NTB transport layer queue and provide the queue with a callback
1548  * routine for both transmit and receive.  The receive callback routine will be
1549  * used to pass up data when the transport has received it on the queue.   The
1550  * transmit callback routine will be called when the transport has completed the
1551  * transmission of the data on the queue and the data is ready to be freed.
1552  *
1553  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1554  */
1555 struct ntb_transport_qp *
1556 ntb_transport_create_queue(void *data, struct device *client_dev,
1557 			   const struct ntb_queue_handlers *handlers)
1558 {
1559 	struct ntb_dev *ndev;
1560 	struct pci_dev *pdev;
1561 	struct ntb_transport_ctx *nt;
1562 	struct ntb_queue_entry *entry;
1563 	struct ntb_transport_qp *qp;
1564 	u64 qp_bit;
1565 	unsigned int free_queue;
1566 	dma_cap_mask_t dma_mask;
1567 	int node;
1568 	int i;
1569 
1570 	ndev = dev_ntb(client_dev->parent);
1571 	pdev = ndev->pdev;
1572 	nt = ndev->ctx;
1573 
1574 	node = dev_to_node(&ndev->dev);
1575 
1576 	free_queue = ffs(nt->qp_bitmap);
1577 	if (!free_queue)
1578 		goto err;
1579 
1580 	/* decrement free_queue to make it zero based */
1581 	free_queue--;
1582 
1583 	qp = &nt->qp_vec[free_queue];
1584 	qp_bit = BIT_ULL(qp->qp_num);
1585 
1586 	nt->qp_bitmap_free &= ~qp_bit;
1587 
1588 	qp->cb_data = data;
1589 	qp->rx_handler = handlers->rx_handler;
1590 	qp->tx_handler = handlers->tx_handler;
1591 	qp->event_handler = handlers->event_handler;
1592 
1593 	dma_cap_zero(dma_mask);
1594 	dma_cap_set(DMA_MEMCPY, dma_mask);
1595 
1596 	if (use_dma) {
1597 		qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1598 						   (void *)(unsigned long)node);
1599 		if (!qp->dma_chan)
1600 			dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1601 	} else {
1602 		qp->dma_chan = NULL;
1603 	}
1604 	dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1605 
1606 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1607 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1608 		if (!entry)
1609 			goto err1;
1610 
1611 		entry->qp = qp;
1612 		ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry,
1613 			     &qp->rx_free_q);
1614 	}
1615 
1616 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1617 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1618 		if (!entry)
1619 			goto err2;
1620 
1621 		entry->qp = qp;
1622 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1623 			     &qp->tx_free_q);
1624 	}
1625 
1626 	ntb_db_clear(qp->ndev, qp_bit);
1627 	ntb_db_clear_mask(qp->ndev, qp_bit);
1628 
1629 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1630 
1631 	return qp;
1632 
1633 err2:
1634 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1635 		kfree(entry);
1636 err1:
1637 	while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1638 		kfree(entry);
1639 	if (qp->dma_chan)
1640 		dma_release_channel(qp->dma_chan);
1641 	nt->qp_bitmap_free |= qp_bit;
1642 err:
1643 	return NULL;
1644 }
1645 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1646 
1647 /**
1648  * ntb_transport_free_queue - Frees NTB transport queue
1649  * @qp: NTB queue to be freed
1650  *
1651  * Frees NTB transport queue
1652  */
1653 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1654 {
1655 	struct ntb_transport_ctx *nt = qp->transport;
1656 	struct pci_dev *pdev;
1657 	struct ntb_queue_entry *entry;
1658 	u64 qp_bit;
1659 
1660 	if (!qp)
1661 		return;
1662 
1663 	pdev = qp->ndev->pdev;
1664 
1665 	if (qp->dma_chan) {
1666 		struct dma_chan *chan = qp->dma_chan;
1667 		/* Putting the dma_chan to NULL will force any new traffic to be
1668 		 * processed by the CPU instead of the DAM engine
1669 		 */
1670 		qp->dma_chan = NULL;
1671 
1672 		/* Try to be nice and wait for any queued DMA engine
1673 		 * transactions to process before smashing it with a rock
1674 		 */
1675 		dma_sync_wait(chan, qp->last_cookie);
1676 		dmaengine_terminate_all(chan);
1677 		dma_release_channel(chan);
1678 	}
1679 
1680 	qp_bit = BIT_ULL(qp->qp_num);
1681 
1682 	ntb_db_set_mask(qp->ndev, qp_bit);
1683 	tasklet_disable(&qp->rxc_db_work);
1684 
1685 	cancel_delayed_work_sync(&qp->link_work);
1686 
1687 	qp->cb_data = NULL;
1688 	qp->rx_handler = NULL;
1689 	qp->tx_handler = NULL;
1690 	qp->event_handler = NULL;
1691 
1692 	while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1693 		kfree(entry);
1694 
1695 	while ((entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q))) {
1696 		dev_warn(&pdev->dev, "Freeing item from a non-empty queue\n");
1697 		kfree(entry);
1698 	}
1699 
1700 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1701 		kfree(entry);
1702 
1703 	nt->qp_bitmap_free |= qp_bit;
1704 
1705 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1706 }
1707 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1708 
1709 /**
1710  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1711  * @qp: NTB queue to be freed
1712  * @len: pointer to variable to write enqueued buffers length
1713  *
1714  * Dequeues unused buffers from receive queue.  Should only be used during
1715  * shutdown of qp.
1716  *
1717  * RETURNS: NULL error value on error, or void* for success.
1718  */
1719 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1720 {
1721 	struct ntb_queue_entry *entry;
1722 	void *buf;
1723 
1724 	if (!qp || qp->client_ready)
1725 		return NULL;
1726 
1727 	entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1728 	if (!entry)
1729 		return NULL;
1730 
1731 	buf = entry->cb_data;
1732 	*len = entry->len;
1733 
1734 	ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1735 
1736 	return buf;
1737 }
1738 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1739 
1740 /**
1741  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1742  * @qp: NTB transport layer queue the entry is to be enqueued on
1743  * @cb: per buffer pointer for callback function to use
1744  * @data: pointer to data buffer that incoming packets will be copied into
1745  * @len: length of the data buffer
1746  *
1747  * Enqueue a new receive buffer onto the transport queue into which a NTB
1748  * payload can be received into.
1749  *
1750  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1751  */
1752 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1753 			     unsigned int len)
1754 {
1755 	struct ntb_queue_entry *entry;
1756 
1757 	if (!qp)
1758 		return -EINVAL;
1759 
1760 	entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q);
1761 	if (!entry)
1762 		return -ENOMEM;
1763 
1764 	entry->cb_data = cb;
1765 	entry->buf = data;
1766 	entry->len = len;
1767 
1768 	ntb_list_add(&qp->ntb_rx_pend_q_lock, &entry->entry, &qp->rx_pend_q);
1769 
1770 	return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1773 
1774 /**
1775  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1776  * @qp: NTB transport layer queue the entry is to be enqueued on
1777  * @cb: per buffer pointer for callback function to use
1778  * @data: pointer to data buffer that will be sent
1779  * @len: length of the data buffer
1780  *
1781  * Enqueue a new transmit buffer onto the transport queue from which a NTB
1782  * payload will be transmitted.  This assumes that a lock is being held to
1783  * serialize access to the qp.
1784  *
1785  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1786  */
1787 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1788 			     unsigned int len)
1789 {
1790 	struct ntb_queue_entry *entry;
1791 	int rc;
1792 
1793 	if (!qp || !qp->link_is_up || !len)
1794 		return -EINVAL;
1795 
1796 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1797 	if (!entry) {
1798 		qp->tx_err_no_buf++;
1799 		return -ENOMEM;
1800 	}
1801 
1802 	entry->cb_data = cb;
1803 	entry->buf = data;
1804 	entry->len = len;
1805 	entry->flags = 0;
1806 
1807 	rc = ntb_process_tx(qp, entry);
1808 	if (rc)
1809 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1810 			     &qp->tx_free_q);
1811 
1812 	return rc;
1813 }
1814 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1815 
1816 /**
1817  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1818  * @qp: NTB transport layer queue to be enabled
1819  *
1820  * Notify NTB transport layer of client readiness to use queue
1821  */
1822 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1823 {
1824 	if (!qp)
1825 		return;
1826 
1827 	qp->client_ready = true;
1828 
1829 	if (qp->transport->link_is_up)
1830 		schedule_delayed_work(&qp->link_work, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1833 
1834 /**
1835  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1836  * @qp: NTB transport layer queue to be disabled
1837  *
1838  * Notify NTB transport layer of client's desire to no longer receive data on
1839  * transport queue specified.  It is the client's responsibility to ensure all
1840  * entries on queue are purged or otherwise handled appropriately.
1841  */
1842 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1843 {
1844 	struct pci_dev *pdev;
1845 	int val;
1846 
1847 	if (!qp)
1848 		return;
1849 
1850 	pdev = qp->ndev->pdev;
1851 	qp->client_ready = false;
1852 
1853 	val = ntb_spad_read(qp->ndev, QP_LINKS);
1854 
1855 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
1856 			    val & ~BIT(qp->qp_num));
1857 
1858 	if (qp->link_is_up)
1859 		ntb_send_link_down(qp);
1860 	else
1861 		cancel_delayed_work_sync(&qp->link_work);
1862 }
1863 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1864 
1865 /**
1866  * ntb_transport_link_query - Query transport link state
1867  * @qp: NTB transport layer queue to be queried
1868  *
1869  * Query connectivity to the remote system of the NTB transport queue
1870  *
1871  * RETURNS: true for link up or false for link down
1872  */
1873 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1874 {
1875 	if (!qp)
1876 		return false;
1877 
1878 	return qp->link_is_up;
1879 }
1880 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1881 
1882 /**
1883  * ntb_transport_qp_num - Query the qp number
1884  * @qp: NTB transport layer queue to be queried
1885  *
1886  * Query qp number of the NTB transport queue
1887  *
1888  * RETURNS: a zero based number specifying the qp number
1889  */
1890 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1891 {
1892 	if (!qp)
1893 		return 0;
1894 
1895 	return qp->qp_num;
1896 }
1897 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1898 
1899 /**
1900  * ntb_transport_max_size - Query the max payload size of a qp
1901  * @qp: NTB transport layer queue to be queried
1902  *
1903  * Query the maximum payload size permissible on the given qp
1904  *
1905  * RETURNS: the max payload size of a qp
1906  */
1907 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1908 {
1909 	unsigned int max;
1910 
1911 	if (!qp)
1912 		return 0;
1913 
1914 	if (!qp->dma_chan)
1915 		return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1916 
1917 	/* If DMA engine usage is possible, try to find the max size for that */
1918 	max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1919 	max -= max % (1 << qp->dma_chan->device->copy_align);
1920 
1921 	return max;
1922 }
1923 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1924 
1925 static void ntb_transport_doorbell_callback(void *data, int vector)
1926 {
1927 	struct ntb_transport_ctx *nt = data;
1928 	struct ntb_transport_qp *qp;
1929 	u64 db_bits;
1930 	unsigned int qp_num;
1931 
1932 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1933 		   ntb_db_vector_mask(nt->ndev, vector));
1934 
1935 	while (db_bits) {
1936 		qp_num = __ffs(db_bits);
1937 		qp = &nt->qp_vec[qp_num];
1938 
1939 		tasklet_schedule(&qp->rxc_db_work);
1940 
1941 		db_bits &= ~BIT_ULL(qp_num);
1942 	}
1943 }
1944 
1945 static const struct ntb_ctx_ops ntb_transport_ops = {
1946 	.link_event = ntb_transport_event_callback,
1947 	.db_event = ntb_transport_doorbell_callback,
1948 };
1949 
1950 static struct ntb_client ntb_transport_client = {
1951 	.ops = {
1952 		.probe = ntb_transport_probe,
1953 		.remove = ntb_transport_free,
1954 	},
1955 };
1956 
1957 static int __init ntb_transport_init(void)
1958 {
1959 	int rc;
1960 
1961 	if (debugfs_initialized())
1962 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1963 
1964 	rc = bus_register(&ntb_transport_bus);
1965 	if (rc)
1966 		goto err_bus;
1967 
1968 	rc = ntb_register_client(&ntb_transport_client);
1969 	if (rc)
1970 		goto err_client;
1971 
1972 	return 0;
1973 
1974 err_client:
1975 	bus_unregister(&ntb_transport_bus);
1976 err_bus:
1977 	debugfs_remove_recursive(nt_debugfs_dir);
1978 	return rc;
1979 }
1980 module_init(ntb_transport_init);
1981 
1982 static void __exit ntb_transport_exit(void)
1983 {
1984 	debugfs_remove_recursive(nt_debugfs_dir);
1985 
1986 	ntb_unregister_client(&ntb_transport_client);
1987 	bus_unregister(&ntb_transport_bus);
1988 }
1989 module_exit(ntb_transport_exit);
1990