xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision 9cabc269)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74 
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78 
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82 
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86 
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90 
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94 
95 static struct dentry *nt_debugfs_dir;
96 
97 struct ntb_queue_entry {
98 	/* ntb_queue list reference */
99 	struct list_head entry;
100 	/* pointers to data to be transferred */
101 	void *cb_data;
102 	void *buf;
103 	unsigned int len;
104 	unsigned int flags;
105 	int retries;
106 	int errors;
107 	unsigned int tx_index;
108 
109 	struct ntb_transport_qp *qp;
110 	union {
111 		struct ntb_payload_header __iomem *tx_hdr;
112 		struct ntb_payload_header *rx_hdr;
113 	};
114 	unsigned int index;
115 };
116 
117 struct ntb_rx_info {
118 	unsigned int entry;
119 };
120 
121 struct ntb_transport_qp {
122 	struct ntb_transport_ctx *transport;
123 	struct ntb_dev *ndev;
124 	void *cb_data;
125 	struct dma_chan *tx_dma_chan;
126 	struct dma_chan *rx_dma_chan;
127 
128 	bool client_ready;
129 	bool link_is_up;
130 	bool active;
131 
132 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
133 	u64 qp_bit;
134 
135 	struct ntb_rx_info __iomem *rx_info;
136 	struct ntb_rx_info *remote_rx_info;
137 
138 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
139 			   void *data, int len);
140 	struct list_head tx_free_q;
141 	spinlock_t ntb_tx_free_q_lock;
142 	void __iomem *tx_mw;
143 	dma_addr_t tx_mw_phys;
144 	unsigned int tx_index;
145 	unsigned int tx_max_entry;
146 	unsigned int tx_max_frame;
147 
148 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 			   void *data, int len);
150 	struct list_head rx_post_q;
151 	struct list_head rx_pend_q;
152 	struct list_head rx_free_q;
153 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
154 	spinlock_t ntb_rx_q_lock;
155 	void *rx_buff;
156 	unsigned int rx_index;
157 	unsigned int rx_max_entry;
158 	unsigned int rx_max_frame;
159 	unsigned int rx_alloc_entry;
160 	dma_cookie_t last_cookie;
161 	struct tasklet_struct rxc_db_work;
162 
163 	void (*event_handler)(void *data, int status);
164 	struct delayed_work link_work;
165 	struct work_struct link_cleanup;
166 
167 	struct dentry *debugfs_dir;
168 	struct dentry *debugfs_stats;
169 
170 	/* Stats */
171 	u64 rx_bytes;
172 	u64 rx_pkts;
173 	u64 rx_ring_empty;
174 	u64 rx_err_no_buf;
175 	u64 rx_err_oflow;
176 	u64 rx_err_ver;
177 	u64 rx_memcpy;
178 	u64 rx_async;
179 	u64 dma_rx_prep_err;
180 	u64 tx_bytes;
181 	u64 tx_pkts;
182 	u64 tx_ring_full;
183 	u64 tx_err_no_buf;
184 	u64 tx_memcpy;
185 	u64 tx_async;
186 	u64 dma_tx_prep_err;
187 };
188 
189 struct ntb_transport_mw {
190 	phys_addr_t phys_addr;
191 	resource_size_t phys_size;
192 	resource_size_t xlat_align;
193 	resource_size_t xlat_align_size;
194 	void __iomem *vbase;
195 	size_t xlat_size;
196 	size_t buff_size;
197 	void *virt_addr;
198 	dma_addr_t dma_addr;
199 };
200 
201 struct ntb_transport_client_dev {
202 	struct list_head entry;
203 	struct ntb_transport_ctx *nt;
204 	struct device dev;
205 };
206 
207 struct ntb_transport_ctx {
208 	struct list_head entry;
209 	struct list_head client_devs;
210 
211 	struct ntb_dev *ndev;
212 
213 	struct ntb_transport_mw *mw_vec;
214 	struct ntb_transport_qp *qp_vec;
215 	unsigned int mw_count;
216 	unsigned int qp_count;
217 	u64 qp_bitmap;
218 	u64 qp_bitmap_free;
219 
220 	bool link_is_up;
221 	struct delayed_work link_work;
222 	struct work_struct link_cleanup;
223 
224 	struct dentry *debugfs_node_dir;
225 };
226 
227 enum {
228 	DESC_DONE_FLAG = BIT(0),
229 	LINK_DOWN_FLAG = BIT(1),
230 };
231 
232 struct ntb_payload_header {
233 	unsigned int ver;
234 	unsigned int len;
235 	unsigned int flags;
236 };
237 
238 enum {
239 	VERSION = 0,
240 	QP_LINKS,
241 	NUM_QPS,
242 	NUM_MWS,
243 	MW0_SZ_HIGH,
244 	MW0_SZ_LOW,
245 	MW1_SZ_HIGH,
246 	MW1_SZ_LOW,
247 	MAX_SPAD,
248 };
249 
250 #define dev_client_dev(__dev) \
251 	container_of((__dev), struct ntb_transport_client_dev, dev)
252 
253 #define drv_client(__drv) \
254 	container_of((__drv), struct ntb_transport_client, driver)
255 
256 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
257 #define NTB_QP_DEF_NUM_ENTRIES	100
258 #define NTB_LINK_DOWN_TIMEOUT	10
259 #define DMA_RETRIES		20
260 #define DMA_OUT_RESOURCE_TO	50
261 
262 static void ntb_transport_rxc_db(unsigned long data);
263 static const struct ntb_ctx_ops ntb_transport_ops;
264 static struct ntb_client ntb_transport_client;
265 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
266 			       struct ntb_queue_entry *entry);
267 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
268 
269 static int ntb_transport_bus_match(struct device *dev,
270 				   struct device_driver *drv)
271 {
272 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
273 }
274 
275 static int ntb_transport_bus_probe(struct device *dev)
276 {
277 	const struct ntb_transport_client *client;
278 	int rc = -EINVAL;
279 
280 	get_device(dev);
281 
282 	client = drv_client(dev->driver);
283 	rc = client->probe(dev);
284 	if (rc)
285 		put_device(dev);
286 
287 	return rc;
288 }
289 
290 static int ntb_transport_bus_remove(struct device *dev)
291 {
292 	const struct ntb_transport_client *client;
293 
294 	client = drv_client(dev->driver);
295 	client->remove(dev);
296 
297 	put_device(dev);
298 
299 	return 0;
300 }
301 
302 static struct bus_type ntb_transport_bus = {
303 	.name = "ntb_transport",
304 	.match = ntb_transport_bus_match,
305 	.probe = ntb_transport_bus_probe,
306 	.remove = ntb_transport_bus_remove,
307 };
308 
309 static LIST_HEAD(ntb_transport_list);
310 
311 static int ntb_bus_init(struct ntb_transport_ctx *nt)
312 {
313 	list_add_tail(&nt->entry, &ntb_transport_list);
314 	return 0;
315 }
316 
317 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
318 {
319 	struct ntb_transport_client_dev *client_dev, *cd;
320 
321 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
322 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
323 			dev_name(&client_dev->dev));
324 		list_del(&client_dev->entry);
325 		device_unregister(&client_dev->dev);
326 	}
327 
328 	list_del(&nt->entry);
329 }
330 
331 static void ntb_transport_client_release(struct device *dev)
332 {
333 	struct ntb_transport_client_dev *client_dev;
334 
335 	client_dev = dev_client_dev(dev);
336 	kfree(client_dev);
337 }
338 
339 /**
340  * ntb_transport_unregister_client_dev - Unregister NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Unregister an NTB client device with the NTB transport layer
344  */
345 void ntb_transport_unregister_client_dev(char *device_name)
346 {
347 	struct ntb_transport_client_dev *client, *cd;
348 	struct ntb_transport_ctx *nt;
349 
350 	list_for_each_entry(nt, &ntb_transport_list, entry)
351 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
352 			if (!strncmp(dev_name(&client->dev), device_name,
353 				     strlen(device_name))) {
354 				list_del(&client->entry);
355 				device_unregister(&client->dev);
356 			}
357 }
358 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
359 
360 /**
361  * ntb_transport_register_client_dev - Register NTB client device
362  * @device_name: Name of NTB client device
363  *
364  * Register an NTB client device with the NTB transport layer
365  */
366 int ntb_transport_register_client_dev(char *device_name)
367 {
368 	struct ntb_transport_client_dev *client_dev;
369 	struct ntb_transport_ctx *nt;
370 	int node;
371 	int rc, i = 0;
372 
373 	if (list_empty(&ntb_transport_list))
374 		return -ENODEV;
375 
376 	list_for_each_entry(nt, &ntb_transport_list, entry) {
377 		struct device *dev;
378 
379 		node = dev_to_node(&nt->ndev->dev);
380 
381 		client_dev = kzalloc_node(sizeof(*client_dev),
382 					  GFP_KERNEL, node);
383 		if (!client_dev) {
384 			rc = -ENOMEM;
385 			goto err;
386 		}
387 
388 		dev = &client_dev->dev;
389 
390 		/* setup and register client devices */
391 		dev_set_name(dev, "%s%d", device_name, i);
392 		dev->bus = &ntb_transport_bus;
393 		dev->release = ntb_transport_client_release;
394 		dev->parent = &nt->ndev->dev;
395 
396 		rc = device_register(dev);
397 		if (rc) {
398 			kfree(client_dev);
399 			goto err;
400 		}
401 
402 		list_add_tail(&client_dev->entry, &nt->client_devs);
403 		i++;
404 	}
405 
406 	return 0;
407 
408 err:
409 	ntb_transport_unregister_client_dev(device_name);
410 
411 	return rc;
412 }
413 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
414 
415 /**
416  * ntb_transport_register_client - Register NTB client driver
417  * @drv: NTB client driver to be registered
418  *
419  * Register an NTB client driver with the NTB transport layer
420  *
421  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
422  */
423 int ntb_transport_register_client(struct ntb_transport_client *drv)
424 {
425 	drv->driver.bus = &ntb_transport_bus;
426 
427 	if (list_empty(&ntb_transport_list))
428 		return -ENODEV;
429 
430 	return driver_register(&drv->driver);
431 }
432 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
433 
434 /**
435  * ntb_transport_unregister_client - Unregister NTB client driver
436  * @drv: NTB client driver to be unregistered
437  *
438  * Unregister an NTB client driver with the NTB transport layer
439  *
440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
441  */
442 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
443 {
444 	driver_unregister(&drv->driver);
445 }
446 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
447 
448 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
449 			    loff_t *offp)
450 {
451 	struct ntb_transport_qp *qp;
452 	char *buf;
453 	ssize_t ret, out_offset, out_count;
454 
455 	qp = filp->private_data;
456 
457 	if (!qp || !qp->link_is_up)
458 		return 0;
459 
460 	out_count = 1000;
461 
462 	buf = kmalloc(out_count, GFP_KERNEL);
463 	if (!buf)
464 		return -ENOMEM;
465 
466 	out_offset = 0;
467 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 			       "\nNTB QP stats:\n\n");
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
471 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
472 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
473 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
474 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
475 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 			       "rx_async - \t%llu\n", qp->rx_async);
477 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
478 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
479 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
481 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
485 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 			       "rx_buff - \t0x%p\n", qp->rx_buff);
487 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 			       "rx_index - \t%u\n", qp->rx_index);
489 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
493 
494 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
495 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
496 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
497 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
498 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
500 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
501 			       "tx_async - \t%llu\n", qp->tx_async);
502 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
503 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
504 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
505 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
506 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
507 			       "tx_mw - \t0x%p\n", qp->tx_mw);
508 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
509 			       "tx_index (H) - \t%u\n", qp->tx_index);
510 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
511 			       "RRI (T) - \t%u\n",
512 			       qp->remote_rx_info->entry);
513 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
515 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
516 			       "free tx - \t%u\n",
517 			       ntb_transport_tx_free_entry(qp));
518 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
519 			       "DMA tx prep err - \t%llu\n",
520 			       qp->dma_tx_prep_err);
521 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 			       "DMA rx prep err - \t%llu\n",
523 			       qp->dma_rx_prep_err);
524 
525 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
526 			       "\n");
527 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 			       "Using TX DMA - \t%s\n",
529 			       qp->tx_dma_chan ? "Yes" : "No");
530 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
531 			       "Using RX DMA - \t%s\n",
532 			       qp->rx_dma_chan ? "Yes" : "No");
533 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
534 			       "QP Link - \t%s\n",
535 			       qp->link_is_up ? "Up" : "Down");
536 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
537 			       "\n");
538 
539 	if (out_offset > out_count)
540 		out_offset = out_count;
541 
542 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
543 	kfree(buf);
544 	return ret;
545 }
546 
547 static const struct file_operations ntb_qp_debugfs_stats = {
548 	.owner = THIS_MODULE,
549 	.open = simple_open,
550 	.read = debugfs_read,
551 };
552 
553 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
554 			 struct list_head *list)
555 {
556 	unsigned long flags;
557 
558 	spin_lock_irqsave(lock, flags);
559 	list_add_tail(entry, list);
560 	spin_unlock_irqrestore(lock, flags);
561 }
562 
563 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
564 					   struct list_head *list)
565 {
566 	struct ntb_queue_entry *entry;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(lock, flags);
570 	if (list_empty(list)) {
571 		entry = NULL;
572 		goto out;
573 	}
574 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
575 	list_del(&entry->entry);
576 
577 out:
578 	spin_unlock_irqrestore(lock, flags);
579 
580 	return entry;
581 }
582 
583 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
584 					   struct list_head *list,
585 					   struct list_head *to_list)
586 {
587 	struct ntb_queue_entry *entry;
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(lock, flags);
591 
592 	if (list_empty(list)) {
593 		entry = NULL;
594 	} else {
595 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
596 		list_move_tail(&entry->entry, to_list);
597 	}
598 
599 	spin_unlock_irqrestore(lock, flags);
600 
601 	return entry;
602 }
603 
604 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
605 				     unsigned int qp_num)
606 {
607 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
608 	struct ntb_transport_mw *mw;
609 	struct ntb_dev *ndev = nt->ndev;
610 	struct ntb_queue_entry *entry;
611 	unsigned int rx_size, num_qps_mw;
612 	unsigned int mw_num, mw_count, qp_count;
613 	unsigned int i;
614 	int node;
615 
616 	mw_count = nt->mw_count;
617 	qp_count = nt->qp_count;
618 
619 	mw_num = QP_TO_MW(nt, qp_num);
620 	mw = &nt->mw_vec[mw_num];
621 
622 	if (!mw->virt_addr)
623 		return -ENOMEM;
624 
625 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
626 		num_qps_mw = qp_count / mw_count + 1;
627 	else
628 		num_qps_mw = qp_count / mw_count;
629 
630 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
631 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
632 	rx_size -= sizeof(struct ntb_rx_info);
633 
634 	qp->remote_rx_info = qp->rx_buff + rx_size;
635 
636 	/* Due to housekeeping, there must be atleast 2 buffs */
637 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
638 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
639 	qp->rx_index = 0;
640 
641 	/*
642 	 * Checking to see if we have more entries than the default.
643 	 * We should add additional entries if that is the case so we
644 	 * can be in sync with the transport frames.
645 	 */
646 	node = dev_to_node(&ndev->dev);
647 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
648 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
649 		if (!entry)
650 			return -ENOMEM;
651 
652 		entry->qp = qp;
653 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
654 			     &qp->rx_free_q);
655 		qp->rx_alloc_entry++;
656 	}
657 
658 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
659 
660 	/* setup the hdr offsets with 0's */
661 	for (i = 0; i < qp->rx_max_entry; i++) {
662 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
663 				sizeof(struct ntb_payload_header));
664 		memset(offset, 0, sizeof(struct ntb_payload_header));
665 	}
666 
667 	qp->rx_pkts = 0;
668 	qp->tx_pkts = 0;
669 	qp->tx_index = 0;
670 
671 	return 0;
672 }
673 
674 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
675 {
676 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
677 	struct pci_dev *pdev = nt->ndev->pdev;
678 
679 	if (!mw->virt_addr)
680 		return;
681 
682 	ntb_mw_clear_trans(nt->ndev, num_mw);
683 	dma_free_coherent(&pdev->dev, mw->buff_size,
684 			  mw->virt_addr, mw->dma_addr);
685 	mw->xlat_size = 0;
686 	mw->buff_size = 0;
687 	mw->virt_addr = NULL;
688 }
689 
690 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
691 		      resource_size_t size)
692 {
693 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
694 	struct pci_dev *pdev = nt->ndev->pdev;
695 	size_t xlat_size, buff_size;
696 	int rc;
697 
698 	if (!size)
699 		return -EINVAL;
700 
701 	xlat_size = round_up(size, mw->xlat_align_size);
702 	buff_size = round_up(size, mw->xlat_align);
703 
704 	/* No need to re-setup */
705 	if (mw->xlat_size == xlat_size)
706 		return 0;
707 
708 	if (mw->buff_size)
709 		ntb_free_mw(nt, num_mw);
710 
711 	/* Alloc memory for receiving data.  Must be aligned */
712 	mw->xlat_size = xlat_size;
713 	mw->buff_size = buff_size;
714 
715 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
716 					   &mw->dma_addr, GFP_KERNEL);
717 	if (!mw->virt_addr) {
718 		mw->xlat_size = 0;
719 		mw->buff_size = 0;
720 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
721 			buff_size);
722 		return -ENOMEM;
723 	}
724 
725 	/*
726 	 * we must ensure that the memory address allocated is BAR size
727 	 * aligned in order for the XLAT register to take the value. This
728 	 * is a requirement of the hardware. It is recommended to setup CMA
729 	 * for BAR sizes equal or greater than 4MB.
730 	 */
731 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
732 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
733 			&mw->dma_addr);
734 		ntb_free_mw(nt, num_mw);
735 		return -ENOMEM;
736 	}
737 
738 	/* Notify HW the memory location of the receive buffer */
739 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
740 	if (rc) {
741 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
742 		ntb_free_mw(nt, num_mw);
743 		return -EIO;
744 	}
745 
746 	return 0;
747 }
748 
749 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
750 {
751 	qp->link_is_up = false;
752 	qp->active = false;
753 
754 	qp->tx_index = 0;
755 	qp->rx_index = 0;
756 	qp->rx_bytes = 0;
757 	qp->rx_pkts = 0;
758 	qp->rx_ring_empty = 0;
759 	qp->rx_err_no_buf = 0;
760 	qp->rx_err_oflow = 0;
761 	qp->rx_err_ver = 0;
762 	qp->rx_memcpy = 0;
763 	qp->rx_async = 0;
764 	qp->tx_bytes = 0;
765 	qp->tx_pkts = 0;
766 	qp->tx_ring_full = 0;
767 	qp->tx_err_no_buf = 0;
768 	qp->tx_memcpy = 0;
769 	qp->tx_async = 0;
770 	qp->dma_tx_prep_err = 0;
771 	qp->dma_rx_prep_err = 0;
772 }
773 
774 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
775 {
776 	struct ntb_transport_ctx *nt = qp->transport;
777 	struct pci_dev *pdev = nt->ndev->pdev;
778 
779 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
780 
781 	cancel_delayed_work_sync(&qp->link_work);
782 	ntb_qp_link_down_reset(qp);
783 
784 	if (qp->event_handler)
785 		qp->event_handler(qp->cb_data, qp->link_is_up);
786 }
787 
788 static void ntb_qp_link_cleanup_work(struct work_struct *work)
789 {
790 	struct ntb_transport_qp *qp = container_of(work,
791 						   struct ntb_transport_qp,
792 						   link_cleanup);
793 	struct ntb_transport_ctx *nt = qp->transport;
794 
795 	ntb_qp_link_cleanup(qp);
796 
797 	if (nt->link_is_up)
798 		schedule_delayed_work(&qp->link_work,
799 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
800 }
801 
802 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
803 {
804 	schedule_work(&qp->link_cleanup);
805 }
806 
807 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
808 {
809 	struct ntb_transport_qp *qp;
810 	u64 qp_bitmap_alloc;
811 	int i;
812 
813 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
814 
815 	/* Pass along the info to any clients */
816 	for (i = 0; i < nt->qp_count; i++)
817 		if (qp_bitmap_alloc & BIT_ULL(i)) {
818 			qp = &nt->qp_vec[i];
819 			ntb_qp_link_cleanup(qp);
820 			cancel_work_sync(&qp->link_cleanup);
821 			cancel_delayed_work_sync(&qp->link_work);
822 		}
823 
824 	if (!nt->link_is_up)
825 		cancel_delayed_work_sync(&nt->link_work);
826 
827 	/* The scratchpad registers keep the values if the remote side
828 	 * goes down, blast them now to give them a sane value the next
829 	 * time they are accessed
830 	 */
831 	for (i = 0; i < MAX_SPAD; i++)
832 		ntb_spad_write(nt->ndev, i, 0);
833 }
834 
835 static void ntb_transport_link_cleanup_work(struct work_struct *work)
836 {
837 	struct ntb_transport_ctx *nt =
838 		container_of(work, struct ntb_transport_ctx, link_cleanup);
839 
840 	ntb_transport_link_cleanup(nt);
841 }
842 
843 static void ntb_transport_event_callback(void *data)
844 {
845 	struct ntb_transport_ctx *nt = data;
846 
847 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
848 		schedule_delayed_work(&nt->link_work, 0);
849 	else
850 		schedule_work(&nt->link_cleanup);
851 }
852 
853 static void ntb_transport_link_work(struct work_struct *work)
854 {
855 	struct ntb_transport_ctx *nt =
856 		container_of(work, struct ntb_transport_ctx, link_work.work);
857 	struct ntb_dev *ndev = nt->ndev;
858 	struct pci_dev *pdev = ndev->pdev;
859 	resource_size_t size;
860 	u32 val;
861 	int rc = 0, i, spad;
862 
863 	/* send the local info, in the opposite order of the way we read it */
864 	for (i = 0; i < nt->mw_count; i++) {
865 		size = nt->mw_vec[i].phys_size;
866 
867 		if (max_mw_size && size > max_mw_size)
868 			size = max_mw_size;
869 
870 		spad = MW0_SZ_HIGH + (i * 2);
871 		ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
872 
873 		spad = MW0_SZ_LOW + (i * 2);
874 		ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
875 	}
876 
877 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
878 
879 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
880 
881 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
882 
883 	/* Query the remote side for its info */
884 	val = ntb_spad_read(ndev, VERSION);
885 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
886 	if (val != NTB_TRANSPORT_VERSION)
887 		goto out;
888 
889 	val = ntb_spad_read(ndev, NUM_QPS);
890 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
891 	if (val != nt->qp_count)
892 		goto out;
893 
894 	val = ntb_spad_read(ndev, NUM_MWS);
895 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
896 	if (val != nt->mw_count)
897 		goto out;
898 
899 	for (i = 0; i < nt->mw_count; i++) {
900 		u64 val64;
901 
902 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
903 		val64 = (u64)val << 32;
904 
905 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
906 		val64 |= val;
907 
908 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
909 
910 		rc = ntb_set_mw(nt, i, val64);
911 		if (rc)
912 			goto out1;
913 	}
914 
915 	nt->link_is_up = true;
916 
917 	for (i = 0; i < nt->qp_count; i++) {
918 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
919 
920 		ntb_transport_setup_qp_mw(nt, i);
921 
922 		if (qp->client_ready)
923 			schedule_delayed_work(&qp->link_work, 0);
924 	}
925 
926 	return;
927 
928 out1:
929 	for (i = 0; i < nt->mw_count; i++)
930 		ntb_free_mw(nt, i);
931 
932 	/* if there's an actual failure, we should just bail */
933 	if (rc < 0) {
934 		ntb_link_disable(ndev);
935 		return;
936 	}
937 
938 out:
939 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
940 		schedule_delayed_work(&nt->link_work,
941 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
942 }
943 
944 static void ntb_qp_link_work(struct work_struct *work)
945 {
946 	struct ntb_transport_qp *qp = container_of(work,
947 						   struct ntb_transport_qp,
948 						   link_work.work);
949 	struct pci_dev *pdev = qp->ndev->pdev;
950 	struct ntb_transport_ctx *nt = qp->transport;
951 	int val;
952 
953 	WARN_ON(!nt->link_is_up);
954 
955 	val = ntb_spad_read(nt->ndev, QP_LINKS);
956 
957 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
958 
959 	/* query remote spad for qp ready bits */
960 	ntb_peer_spad_read(nt->ndev, QP_LINKS);
961 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
962 
963 	/* See if the remote side is up */
964 	if (val & BIT(qp->qp_num)) {
965 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
966 		qp->link_is_up = true;
967 		qp->active = true;
968 
969 		if (qp->event_handler)
970 			qp->event_handler(qp->cb_data, qp->link_is_up);
971 
972 		if (qp->active)
973 			tasklet_schedule(&qp->rxc_db_work);
974 	} else if (nt->link_is_up)
975 		schedule_delayed_work(&qp->link_work,
976 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
977 }
978 
979 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
980 				    unsigned int qp_num)
981 {
982 	struct ntb_transport_qp *qp;
983 	phys_addr_t mw_base;
984 	resource_size_t mw_size;
985 	unsigned int num_qps_mw, tx_size;
986 	unsigned int mw_num, mw_count, qp_count;
987 	u64 qp_offset;
988 
989 	mw_count = nt->mw_count;
990 	qp_count = nt->qp_count;
991 
992 	mw_num = QP_TO_MW(nt, qp_num);
993 
994 	qp = &nt->qp_vec[qp_num];
995 	qp->qp_num = qp_num;
996 	qp->transport = nt;
997 	qp->ndev = nt->ndev;
998 	qp->client_ready = false;
999 	qp->event_handler = NULL;
1000 	ntb_qp_link_down_reset(qp);
1001 
1002 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
1003 		num_qps_mw = qp_count / mw_count + 1;
1004 	else
1005 		num_qps_mw = qp_count / mw_count;
1006 
1007 	mw_base = nt->mw_vec[mw_num].phys_addr;
1008 	mw_size = nt->mw_vec[mw_num].phys_size;
1009 
1010 	tx_size = (unsigned int)mw_size / num_qps_mw;
1011 	qp_offset = tx_size * (qp_num / mw_count);
1012 
1013 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1014 	if (!qp->tx_mw)
1015 		return -EINVAL;
1016 
1017 	qp->tx_mw_phys = mw_base + qp_offset;
1018 	if (!qp->tx_mw_phys)
1019 		return -EINVAL;
1020 
1021 	tx_size -= sizeof(struct ntb_rx_info);
1022 	qp->rx_info = qp->tx_mw + tx_size;
1023 
1024 	/* Due to housekeeping, there must be atleast 2 buffs */
1025 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1026 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1027 
1028 	if (nt->debugfs_node_dir) {
1029 		char debugfs_name[4];
1030 
1031 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1032 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1033 						     nt->debugfs_node_dir);
1034 
1035 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1036 							qp->debugfs_dir, qp,
1037 							&ntb_qp_debugfs_stats);
1038 	} else {
1039 		qp->debugfs_dir = NULL;
1040 		qp->debugfs_stats = NULL;
1041 	}
1042 
1043 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1044 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1045 
1046 	spin_lock_init(&qp->ntb_rx_q_lock);
1047 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1048 
1049 	INIT_LIST_HEAD(&qp->rx_post_q);
1050 	INIT_LIST_HEAD(&qp->rx_pend_q);
1051 	INIT_LIST_HEAD(&qp->rx_free_q);
1052 	INIT_LIST_HEAD(&qp->tx_free_q);
1053 
1054 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1055 		     (unsigned long)qp);
1056 
1057 	return 0;
1058 }
1059 
1060 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1061 {
1062 	struct ntb_transport_ctx *nt;
1063 	struct ntb_transport_mw *mw;
1064 	unsigned int mw_count, qp_count;
1065 	u64 qp_bitmap;
1066 	int node;
1067 	int rc, i;
1068 
1069 	mw_count = ntb_mw_count(ndev);
1070 	if (ntb_spad_count(ndev) < (NUM_MWS + 1 + mw_count * 2)) {
1071 		dev_err(&ndev->dev, "Not enough scratch pad registers for %s",
1072 			NTB_TRANSPORT_NAME);
1073 		return -EIO;
1074 	}
1075 
1076 	if (ntb_db_is_unsafe(ndev))
1077 		dev_dbg(&ndev->dev,
1078 			"doorbell is unsafe, proceed anyway...\n");
1079 	if (ntb_spad_is_unsafe(ndev))
1080 		dev_dbg(&ndev->dev,
1081 			"scratchpad is unsafe, proceed anyway...\n");
1082 
1083 	node = dev_to_node(&ndev->dev);
1084 
1085 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1086 	if (!nt)
1087 		return -ENOMEM;
1088 
1089 	nt->ndev = ndev;
1090 
1091 	nt->mw_count = mw_count;
1092 
1093 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1094 				  GFP_KERNEL, node);
1095 	if (!nt->mw_vec) {
1096 		rc = -ENOMEM;
1097 		goto err;
1098 	}
1099 
1100 	for (i = 0; i < mw_count; i++) {
1101 		mw = &nt->mw_vec[i];
1102 
1103 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1104 				      &mw->xlat_align, &mw->xlat_align_size);
1105 		if (rc)
1106 			goto err1;
1107 
1108 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1109 		if (!mw->vbase) {
1110 			rc = -ENOMEM;
1111 			goto err1;
1112 		}
1113 
1114 		mw->buff_size = 0;
1115 		mw->xlat_size = 0;
1116 		mw->virt_addr = NULL;
1117 		mw->dma_addr = 0;
1118 	}
1119 
1120 	qp_bitmap = ntb_db_valid_mask(ndev);
1121 
1122 	qp_count = ilog2(qp_bitmap);
1123 	if (max_num_clients && max_num_clients < qp_count)
1124 		qp_count = max_num_clients;
1125 	else if (mw_count < qp_count)
1126 		qp_count = mw_count;
1127 
1128 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1129 
1130 	nt->qp_count = qp_count;
1131 	nt->qp_bitmap = qp_bitmap;
1132 	nt->qp_bitmap_free = qp_bitmap;
1133 
1134 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1135 				  GFP_KERNEL, node);
1136 	if (!nt->qp_vec) {
1137 		rc = -ENOMEM;
1138 		goto err1;
1139 	}
1140 
1141 	if (nt_debugfs_dir) {
1142 		nt->debugfs_node_dir =
1143 			debugfs_create_dir(pci_name(ndev->pdev),
1144 					   nt_debugfs_dir);
1145 	}
1146 
1147 	for (i = 0; i < qp_count; i++) {
1148 		rc = ntb_transport_init_queue(nt, i);
1149 		if (rc)
1150 			goto err2;
1151 	}
1152 
1153 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1154 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1155 
1156 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1157 	if (rc)
1158 		goto err2;
1159 
1160 	INIT_LIST_HEAD(&nt->client_devs);
1161 	rc = ntb_bus_init(nt);
1162 	if (rc)
1163 		goto err3;
1164 
1165 	nt->link_is_up = false;
1166 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1167 	ntb_link_event(ndev);
1168 
1169 	return 0;
1170 
1171 err3:
1172 	ntb_clear_ctx(ndev);
1173 err2:
1174 	kfree(nt->qp_vec);
1175 err1:
1176 	while (i--) {
1177 		mw = &nt->mw_vec[i];
1178 		iounmap(mw->vbase);
1179 	}
1180 	kfree(nt->mw_vec);
1181 err:
1182 	kfree(nt);
1183 	return rc;
1184 }
1185 
1186 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1187 {
1188 	struct ntb_transport_ctx *nt = ndev->ctx;
1189 	struct ntb_transport_qp *qp;
1190 	u64 qp_bitmap_alloc;
1191 	int i;
1192 
1193 	ntb_transport_link_cleanup(nt);
1194 	cancel_work_sync(&nt->link_cleanup);
1195 	cancel_delayed_work_sync(&nt->link_work);
1196 
1197 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1198 
1199 	/* verify that all the qp's are freed */
1200 	for (i = 0; i < nt->qp_count; i++) {
1201 		qp = &nt->qp_vec[i];
1202 		if (qp_bitmap_alloc & BIT_ULL(i))
1203 			ntb_transport_free_queue(qp);
1204 		debugfs_remove_recursive(qp->debugfs_dir);
1205 	}
1206 
1207 	ntb_link_disable(ndev);
1208 	ntb_clear_ctx(ndev);
1209 
1210 	ntb_bus_remove(nt);
1211 
1212 	for (i = nt->mw_count; i--; ) {
1213 		ntb_free_mw(nt, i);
1214 		iounmap(nt->mw_vec[i].vbase);
1215 	}
1216 
1217 	kfree(nt->qp_vec);
1218 	kfree(nt->mw_vec);
1219 	kfree(nt);
1220 }
1221 
1222 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1223 {
1224 	struct ntb_queue_entry *entry;
1225 	void *cb_data;
1226 	unsigned int len;
1227 	unsigned long irqflags;
1228 
1229 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1230 
1231 	while (!list_empty(&qp->rx_post_q)) {
1232 		entry = list_first_entry(&qp->rx_post_q,
1233 					 struct ntb_queue_entry, entry);
1234 		if (!(entry->flags & DESC_DONE_FLAG))
1235 			break;
1236 
1237 		entry->rx_hdr->flags = 0;
1238 		iowrite32(entry->index, &qp->rx_info->entry);
1239 
1240 		cb_data = entry->cb_data;
1241 		len = entry->len;
1242 
1243 		list_move_tail(&entry->entry, &qp->rx_free_q);
1244 
1245 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1246 
1247 		if (qp->rx_handler && qp->client_ready)
1248 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1249 
1250 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1251 	}
1252 
1253 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1254 }
1255 
1256 static void ntb_rx_copy_callback(void *data)
1257 {
1258 	struct ntb_queue_entry *entry = data;
1259 
1260 	entry->flags |= DESC_DONE_FLAG;
1261 
1262 	ntb_complete_rxc(entry->qp);
1263 }
1264 
1265 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1266 {
1267 	void *buf = entry->buf;
1268 	size_t len = entry->len;
1269 
1270 	memcpy(buf, offset, len);
1271 
1272 	/* Ensure that the data is fully copied out before clearing the flag */
1273 	wmb();
1274 
1275 	ntb_rx_copy_callback(entry);
1276 }
1277 
1278 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1279 {
1280 	struct dma_async_tx_descriptor *txd;
1281 	struct ntb_transport_qp *qp = entry->qp;
1282 	struct dma_chan *chan = qp->rx_dma_chan;
1283 	struct dma_device *device;
1284 	size_t pay_off, buff_off, len;
1285 	struct dmaengine_unmap_data *unmap;
1286 	dma_cookie_t cookie;
1287 	void *buf = entry->buf;
1288 	int retries = 0;
1289 
1290 	len = entry->len;
1291 
1292 	if (!chan)
1293 		goto err;
1294 
1295 	if (len < copy_bytes)
1296 		goto err;
1297 
1298 	device = chan->device;
1299 	pay_off = (size_t)offset & ~PAGE_MASK;
1300 	buff_off = (size_t)buf & ~PAGE_MASK;
1301 
1302 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1303 		goto err;
1304 
1305 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1306 	if (!unmap)
1307 		goto err;
1308 
1309 	unmap->len = len;
1310 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1311 				      pay_off, len, DMA_TO_DEVICE);
1312 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1313 		goto err_get_unmap;
1314 
1315 	unmap->to_cnt = 1;
1316 
1317 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1318 				      buff_off, len, DMA_FROM_DEVICE);
1319 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1320 		goto err_get_unmap;
1321 
1322 	unmap->from_cnt = 1;
1323 
1324 	for (retries = 0; retries < DMA_RETRIES; retries++) {
1325 		txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1326 						     unmap->addr[0], len,
1327 						     DMA_PREP_INTERRUPT);
1328 		if (txd)
1329 			break;
1330 
1331 		set_current_state(TASK_INTERRUPTIBLE);
1332 		schedule_timeout(DMA_OUT_RESOURCE_TO);
1333 	}
1334 
1335 	if (!txd) {
1336 		qp->dma_rx_prep_err++;
1337 		goto err_get_unmap;
1338 	}
1339 
1340 	txd->callback = ntb_rx_copy_callback;
1341 	txd->callback_param = entry;
1342 	dma_set_unmap(txd, unmap);
1343 
1344 	cookie = dmaengine_submit(txd);
1345 	if (dma_submit_error(cookie))
1346 		goto err_set_unmap;
1347 
1348 	dmaengine_unmap_put(unmap);
1349 
1350 	qp->last_cookie = cookie;
1351 
1352 	qp->rx_async++;
1353 
1354 	return;
1355 
1356 err_set_unmap:
1357 	dmaengine_unmap_put(unmap);
1358 err_get_unmap:
1359 	dmaengine_unmap_put(unmap);
1360 err:
1361 	ntb_memcpy_rx(entry, offset);
1362 	qp->rx_memcpy++;
1363 }
1364 
1365 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1366 {
1367 	struct ntb_payload_header *hdr;
1368 	struct ntb_queue_entry *entry;
1369 	void *offset;
1370 
1371 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1372 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1373 
1374 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1375 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1376 
1377 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1378 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1379 		qp->rx_ring_empty++;
1380 		return -EAGAIN;
1381 	}
1382 
1383 	if (hdr->flags & LINK_DOWN_FLAG) {
1384 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1385 		ntb_qp_link_down(qp);
1386 		hdr->flags = 0;
1387 		return -EAGAIN;
1388 	}
1389 
1390 	if (hdr->ver != (u32)qp->rx_pkts) {
1391 		dev_dbg(&qp->ndev->pdev->dev,
1392 			"version mismatch, expected %llu - got %u\n",
1393 			qp->rx_pkts, hdr->ver);
1394 		qp->rx_err_ver++;
1395 		return -EIO;
1396 	}
1397 
1398 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1399 	if (!entry) {
1400 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1401 		qp->rx_err_no_buf++;
1402 		return -EAGAIN;
1403 	}
1404 
1405 	entry->rx_hdr = hdr;
1406 	entry->index = qp->rx_index;
1407 
1408 	if (hdr->len > entry->len) {
1409 		dev_dbg(&qp->ndev->pdev->dev,
1410 			"receive buffer overflow! Wanted %d got %d\n",
1411 			hdr->len, entry->len);
1412 		qp->rx_err_oflow++;
1413 
1414 		entry->len = -EIO;
1415 		entry->flags |= DESC_DONE_FLAG;
1416 
1417 		ntb_complete_rxc(qp);
1418 	} else {
1419 		dev_dbg(&qp->ndev->pdev->dev,
1420 			"RX OK index %u ver %u size %d into buf size %d\n",
1421 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1422 
1423 		qp->rx_bytes += hdr->len;
1424 		qp->rx_pkts++;
1425 
1426 		entry->len = hdr->len;
1427 
1428 		ntb_async_rx(entry, offset);
1429 	}
1430 
1431 	qp->rx_index++;
1432 	qp->rx_index %= qp->rx_max_entry;
1433 
1434 	return 0;
1435 }
1436 
1437 static void ntb_transport_rxc_db(unsigned long data)
1438 {
1439 	struct ntb_transport_qp *qp = (void *)data;
1440 	int rc, i;
1441 
1442 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1443 		__func__, qp->qp_num);
1444 
1445 	/* Limit the number of packets processed in a single interrupt to
1446 	 * provide fairness to others
1447 	 */
1448 	for (i = 0; i < qp->rx_max_entry; i++) {
1449 		rc = ntb_process_rxc(qp);
1450 		if (rc)
1451 			break;
1452 	}
1453 
1454 	if (i && qp->rx_dma_chan)
1455 		dma_async_issue_pending(qp->rx_dma_chan);
1456 
1457 	if (i == qp->rx_max_entry) {
1458 		/* there is more work to do */
1459 		if (qp->active)
1460 			tasklet_schedule(&qp->rxc_db_work);
1461 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1462 		/* the doorbell bit is set: clear it */
1463 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1464 		/* ntb_db_read ensures ntb_db_clear write is committed */
1465 		ntb_db_read(qp->ndev);
1466 
1467 		/* an interrupt may have arrived between finishing
1468 		 * ntb_process_rxc and clearing the doorbell bit:
1469 		 * there might be some more work to do.
1470 		 */
1471 		if (qp->active)
1472 			tasklet_schedule(&qp->rxc_db_work);
1473 	}
1474 }
1475 
1476 static void ntb_tx_copy_callback(void *data,
1477 				 const struct dmaengine_result *res)
1478 {
1479 	struct ntb_queue_entry *entry = data;
1480 	struct ntb_transport_qp *qp = entry->qp;
1481 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1482 
1483 	/* we need to check DMA results if we are using DMA */
1484 	if (res) {
1485 		enum dmaengine_tx_result dma_err = res->result;
1486 
1487 		switch (dma_err) {
1488 		case DMA_TRANS_READ_FAILED:
1489 		case DMA_TRANS_WRITE_FAILED:
1490 			entry->errors++;
1491 		case DMA_TRANS_ABORTED:
1492 		{
1493 			void __iomem *offset =
1494 				qp->tx_mw + qp->tx_max_frame *
1495 				entry->tx_index;
1496 
1497 			/* resubmit via CPU */
1498 			ntb_memcpy_tx(entry, offset);
1499 			qp->tx_memcpy++;
1500 			return;
1501 		}
1502 
1503 		case DMA_TRANS_NOERROR:
1504 		default:
1505 			break;
1506 		}
1507 	}
1508 
1509 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1510 
1511 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1512 
1513 	/* The entry length can only be zero if the packet is intended to be a
1514 	 * "link down" or similar.  Since no payload is being sent in these
1515 	 * cases, there is nothing to add to the completion queue.
1516 	 */
1517 	if (entry->len > 0) {
1518 		qp->tx_bytes += entry->len;
1519 
1520 		if (qp->tx_handler)
1521 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1522 				       entry->len);
1523 	}
1524 
1525 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1526 }
1527 
1528 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1529 {
1530 #ifdef ARCH_HAS_NOCACHE_UACCESS
1531 	/*
1532 	 * Using non-temporal mov to improve performance on non-cached
1533 	 * writes, even though we aren't actually copying from user space.
1534 	 */
1535 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1536 #else
1537 	memcpy_toio(offset, entry->buf, entry->len);
1538 #endif
1539 
1540 	/* Ensure that the data is fully copied out before setting the flags */
1541 	wmb();
1542 
1543 	ntb_tx_copy_callback(entry, NULL);
1544 }
1545 
1546 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1547 			       struct ntb_queue_entry *entry)
1548 {
1549 	struct dma_async_tx_descriptor *txd;
1550 	struct dma_chan *chan = qp->tx_dma_chan;
1551 	struct dma_device *device;
1552 	size_t len = entry->len;
1553 	void *buf = entry->buf;
1554 	size_t dest_off, buff_off;
1555 	struct dmaengine_unmap_data *unmap;
1556 	dma_addr_t dest;
1557 	dma_cookie_t cookie;
1558 	int retries = 0;
1559 
1560 	device = chan->device;
1561 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1562 	buff_off = (size_t)buf & ~PAGE_MASK;
1563 	dest_off = (size_t)dest & ~PAGE_MASK;
1564 
1565 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1566 		goto err;
1567 
1568 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1569 	if (!unmap)
1570 		goto err;
1571 
1572 	unmap->len = len;
1573 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1574 				      buff_off, len, DMA_TO_DEVICE);
1575 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1576 		goto err_get_unmap;
1577 
1578 	unmap->to_cnt = 1;
1579 
1580 	for (retries = 0; retries < DMA_RETRIES; retries++) {
1581 		txd = device->device_prep_dma_memcpy(chan, dest,
1582 						     unmap->addr[0], len,
1583 						     DMA_PREP_INTERRUPT);
1584 		if (txd)
1585 			break;
1586 
1587 		set_current_state(TASK_INTERRUPTIBLE);
1588 		schedule_timeout(DMA_OUT_RESOURCE_TO);
1589 	}
1590 
1591 	if (!txd) {
1592 		qp->dma_tx_prep_err++;
1593 		goto err_get_unmap;
1594 	}
1595 
1596 	txd->callback_result = ntb_tx_copy_callback;
1597 	txd->callback_param = entry;
1598 	dma_set_unmap(txd, unmap);
1599 
1600 	cookie = dmaengine_submit(txd);
1601 	if (dma_submit_error(cookie))
1602 		goto err_set_unmap;
1603 
1604 	dmaengine_unmap_put(unmap);
1605 
1606 	dma_async_issue_pending(chan);
1607 
1608 	return 0;
1609 err_set_unmap:
1610 	dmaengine_unmap_put(unmap);
1611 err_get_unmap:
1612 	dmaengine_unmap_put(unmap);
1613 err:
1614 	return -ENXIO;
1615 }
1616 
1617 static void ntb_async_tx(struct ntb_transport_qp *qp,
1618 			 struct ntb_queue_entry *entry)
1619 {
1620 	struct ntb_payload_header __iomem *hdr;
1621 	struct dma_chan *chan = qp->tx_dma_chan;
1622 	void __iomem *offset;
1623 	int res;
1624 
1625 	entry->tx_index = qp->tx_index;
1626 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1627 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1628 	entry->tx_hdr = hdr;
1629 
1630 	iowrite32(entry->len, &hdr->len);
1631 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1632 
1633 	if (!chan)
1634 		goto err;
1635 
1636 	if (entry->len < copy_bytes)
1637 		goto err;
1638 
1639 	res = ntb_async_tx_submit(qp, entry);
1640 	if (res < 0)
1641 		goto err;
1642 
1643 	if (!entry->retries)
1644 		qp->tx_async++;
1645 
1646 	return;
1647 
1648 err:
1649 	ntb_memcpy_tx(entry, offset);
1650 	qp->tx_memcpy++;
1651 }
1652 
1653 static int ntb_process_tx(struct ntb_transport_qp *qp,
1654 			  struct ntb_queue_entry *entry)
1655 {
1656 	if (qp->tx_index == qp->remote_rx_info->entry) {
1657 		qp->tx_ring_full++;
1658 		return -EAGAIN;
1659 	}
1660 
1661 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1662 		if (qp->tx_handler)
1663 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1664 
1665 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1666 			     &qp->tx_free_q);
1667 		return 0;
1668 	}
1669 
1670 	ntb_async_tx(qp, entry);
1671 
1672 	qp->tx_index++;
1673 	qp->tx_index %= qp->tx_max_entry;
1674 
1675 	qp->tx_pkts++;
1676 
1677 	return 0;
1678 }
1679 
1680 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1681 {
1682 	struct pci_dev *pdev = qp->ndev->pdev;
1683 	struct ntb_queue_entry *entry;
1684 	int i, rc;
1685 
1686 	if (!qp->link_is_up)
1687 		return;
1688 
1689 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1690 
1691 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1692 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1693 		if (entry)
1694 			break;
1695 		msleep(100);
1696 	}
1697 
1698 	if (!entry)
1699 		return;
1700 
1701 	entry->cb_data = NULL;
1702 	entry->buf = NULL;
1703 	entry->len = 0;
1704 	entry->flags = LINK_DOWN_FLAG;
1705 
1706 	rc = ntb_process_tx(qp, entry);
1707 	if (rc)
1708 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1709 			qp->qp_num);
1710 
1711 	ntb_qp_link_down_reset(qp);
1712 }
1713 
1714 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1715 {
1716 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1717 }
1718 
1719 /**
1720  * ntb_transport_create_queue - Create a new NTB transport layer queue
1721  * @rx_handler: receive callback function
1722  * @tx_handler: transmit callback function
1723  * @event_handler: event callback function
1724  *
1725  * Create a new NTB transport layer queue and provide the queue with a callback
1726  * routine for both transmit and receive.  The receive callback routine will be
1727  * used to pass up data when the transport has received it on the queue.   The
1728  * transmit callback routine will be called when the transport has completed the
1729  * transmission of the data on the queue and the data is ready to be freed.
1730  *
1731  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1732  */
1733 struct ntb_transport_qp *
1734 ntb_transport_create_queue(void *data, struct device *client_dev,
1735 			   const struct ntb_queue_handlers *handlers)
1736 {
1737 	struct ntb_dev *ndev;
1738 	struct pci_dev *pdev;
1739 	struct ntb_transport_ctx *nt;
1740 	struct ntb_queue_entry *entry;
1741 	struct ntb_transport_qp *qp;
1742 	u64 qp_bit;
1743 	unsigned int free_queue;
1744 	dma_cap_mask_t dma_mask;
1745 	int node;
1746 	int i;
1747 
1748 	ndev = dev_ntb(client_dev->parent);
1749 	pdev = ndev->pdev;
1750 	nt = ndev->ctx;
1751 
1752 	node = dev_to_node(&ndev->dev);
1753 
1754 	free_queue = ffs(nt->qp_bitmap);
1755 	if (!free_queue)
1756 		goto err;
1757 
1758 	/* decrement free_queue to make it zero based */
1759 	free_queue--;
1760 
1761 	qp = &nt->qp_vec[free_queue];
1762 	qp_bit = BIT_ULL(qp->qp_num);
1763 
1764 	nt->qp_bitmap_free &= ~qp_bit;
1765 
1766 	qp->cb_data = data;
1767 	qp->rx_handler = handlers->rx_handler;
1768 	qp->tx_handler = handlers->tx_handler;
1769 	qp->event_handler = handlers->event_handler;
1770 
1771 	dma_cap_zero(dma_mask);
1772 	dma_cap_set(DMA_MEMCPY, dma_mask);
1773 
1774 	if (use_dma) {
1775 		qp->tx_dma_chan =
1776 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1777 					    (void *)(unsigned long)node);
1778 		if (!qp->tx_dma_chan)
1779 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1780 
1781 		qp->rx_dma_chan =
1782 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1783 					    (void *)(unsigned long)node);
1784 		if (!qp->rx_dma_chan)
1785 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1786 	} else {
1787 		qp->tx_dma_chan = NULL;
1788 		qp->rx_dma_chan = NULL;
1789 	}
1790 
1791 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1792 		qp->tx_dma_chan ? "DMA" : "CPU");
1793 
1794 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1795 		qp->rx_dma_chan ? "DMA" : "CPU");
1796 
1797 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1798 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1799 		if (!entry)
1800 			goto err1;
1801 
1802 		entry->qp = qp;
1803 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1804 			     &qp->rx_free_q);
1805 	}
1806 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1807 
1808 	for (i = 0; i < qp->tx_max_entry; i++) {
1809 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1810 		if (!entry)
1811 			goto err2;
1812 
1813 		entry->qp = qp;
1814 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1815 			     &qp->tx_free_q);
1816 	}
1817 
1818 	ntb_db_clear(qp->ndev, qp_bit);
1819 	ntb_db_clear_mask(qp->ndev, qp_bit);
1820 
1821 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1822 
1823 	return qp;
1824 
1825 err2:
1826 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1827 		kfree(entry);
1828 err1:
1829 	qp->rx_alloc_entry = 0;
1830 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1831 		kfree(entry);
1832 	if (qp->tx_dma_chan)
1833 		dma_release_channel(qp->tx_dma_chan);
1834 	if (qp->rx_dma_chan)
1835 		dma_release_channel(qp->rx_dma_chan);
1836 	nt->qp_bitmap_free |= qp_bit;
1837 err:
1838 	return NULL;
1839 }
1840 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1841 
1842 /**
1843  * ntb_transport_free_queue - Frees NTB transport queue
1844  * @qp: NTB queue to be freed
1845  *
1846  * Frees NTB transport queue
1847  */
1848 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1849 {
1850 	struct pci_dev *pdev;
1851 	struct ntb_queue_entry *entry;
1852 	u64 qp_bit;
1853 
1854 	if (!qp)
1855 		return;
1856 
1857 	pdev = qp->ndev->pdev;
1858 
1859 	qp->active = false;
1860 
1861 	if (qp->tx_dma_chan) {
1862 		struct dma_chan *chan = qp->tx_dma_chan;
1863 		/* Putting the dma_chan to NULL will force any new traffic to be
1864 		 * processed by the CPU instead of the DAM engine
1865 		 */
1866 		qp->tx_dma_chan = NULL;
1867 
1868 		/* Try to be nice and wait for any queued DMA engine
1869 		 * transactions to process before smashing it with a rock
1870 		 */
1871 		dma_sync_wait(chan, qp->last_cookie);
1872 		dmaengine_terminate_all(chan);
1873 		dma_release_channel(chan);
1874 	}
1875 
1876 	if (qp->rx_dma_chan) {
1877 		struct dma_chan *chan = qp->rx_dma_chan;
1878 		/* Putting the dma_chan to NULL will force any new traffic to be
1879 		 * processed by the CPU instead of the DAM engine
1880 		 */
1881 		qp->rx_dma_chan = NULL;
1882 
1883 		/* Try to be nice and wait for any queued DMA engine
1884 		 * transactions to process before smashing it with a rock
1885 		 */
1886 		dma_sync_wait(chan, qp->last_cookie);
1887 		dmaengine_terminate_all(chan);
1888 		dma_release_channel(chan);
1889 	}
1890 
1891 	qp_bit = BIT_ULL(qp->qp_num);
1892 
1893 	ntb_db_set_mask(qp->ndev, qp_bit);
1894 	tasklet_kill(&qp->rxc_db_work);
1895 
1896 	cancel_delayed_work_sync(&qp->link_work);
1897 
1898 	qp->cb_data = NULL;
1899 	qp->rx_handler = NULL;
1900 	qp->tx_handler = NULL;
1901 	qp->event_handler = NULL;
1902 
1903 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1904 		kfree(entry);
1905 
1906 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1907 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1908 		kfree(entry);
1909 	}
1910 
1911 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1912 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1913 		kfree(entry);
1914 	}
1915 
1916 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1917 		kfree(entry);
1918 
1919 	qp->transport->qp_bitmap_free |= qp_bit;
1920 
1921 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1922 }
1923 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1924 
1925 /**
1926  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1927  * @qp: NTB queue to be freed
1928  * @len: pointer to variable to write enqueued buffers length
1929  *
1930  * Dequeues unused buffers from receive queue.  Should only be used during
1931  * shutdown of qp.
1932  *
1933  * RETURNS: NULL error value on error, or void* for success.
1934  */
1935 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1936 {
1937 	struct ntb_queue_entry *entry;
1938 	void *buf;
1939 
1940 	if (!qp || qp->client_ready)
1941 		return NULL;
1942 
1943 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1944 	if (!entry)
1945 		return NULL;
1946 
1947 	buf = entry->cb_data;
1948 	*len = entry->len;
1949 
1950 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1951 
1952 	return buf;
1953 }
1954 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1955 
1956 /**
1957  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1958  * @qp: NTB transport layer queue the entry is to be enqueued on
1959  * @cb: per buffer pointer for callback function to use
1960  * @data: pointer to data buffer that incoming packets will be copied into
1961  * @len: length of the data buffer
1962  *
1963  * Enqueue a new receive buffer onto the transport queue into which a NTB
1964  * payload can be received into.
1965  *
1966  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1967  */
1968 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1969 			     unsigned int len)
1970 {
1971 	struct ntb_queue_entry *entry;
1972 
1973 	if (!qp)
1974 		return -EINVAL;
1975 
1976 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1977 	if (!entry)
1978 		return -ENOMEM;
1979 
1980 	entry->cb_data = cb;
1981 	entry->buf = data;
1982 	entry->len = len;
1983 	entry->flags = 0;
1984 
1985 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
1986 
1987 	if (qp->active)
1988 		tasklet_schedule(&qp->rxc_db_work);
1989 
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1993 
1994 /**
1995  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1996  * @qp: NTB transport layer queue the entry is to be enqueued on
1997  * @cb: per buffer pointer for callback function to use
1998  * @data: pointer to data buffer that will be sent
1999  * @len: length of the data buffer
2000  *
2001  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2002  * payload will be transmitted.  This assumes that a lock is being held to
2003  * serialize access to the qp.
2004  *
2005  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2006  */
2007 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2008 			     unsigned int len)
2009 {
2010 	struct ntb_queue_entry *entry;
2011 	int rc;
2012 
2013 	if (!qp || !qp->link_is_up || !len)
2014 		return -EINVAL;
2015 
2016 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2017 	if (!entry) {
2018 		qp->tx_err_no_buf++;
2019 		return -EBUSY;
2020 	}
2021 
2022 	entry->cb_data = cb;
2023 	entry->buf = data;
2024 	entry->len = len;
2025 	entry->flags = 0;
2026 	entry->errors = 0;
2027 	entry->retries = 0;
2028 	entry->tx_index = 0;
2029 
2030 	rc = ntb_process_tx(qp, entry);
2031 	if (rc)
2032 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2033 			     &qp->tx_free_q);
2034 
2035 	return rc;
2036 }
2037 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2038 
2039 /**
2040  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2041  * @qp: NTB transport layer queue to be enabled
2042  *
2043  * Notify NTB transport layer of client readiness to use queue
2044  */
2045 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2046 {
2047 	if (!qp)
2048 		return;
2049 
2050 	qp->client_ready = true;
2051 
2052 	if (qp->transport->link_is_up)
2053 		schedule_delayed_work(&qp->link_work, 0);
2054 }
2055 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2056 
2057 /**
2058  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2059  * @qp: NTB transport layer queue to be disabled
2060  *
2061  * Notify NTB transport layer of client's desire to no longer receive data on
2062  * transport queue specified.  It is the client's responsibility to ensure all
2063  * entries on queue are purged or otherwise handled appropriately.
2064  */
2065 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2066 {
2067 	int val;
2068 
2069 	if (!qp)
2070 		return;
2071 
2072 	qp->client_ready = false;
2073 
2074 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2075 
2076 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
2077 			    val & ~BIT(qp->qp_num));
2078 
2079 	if (qp->link_is_up)
2080 		ntb_send_link_down(qp);
2081 	else
2082 		cancel_delayed_work_sync(&qp->link_work);
2083 }
2084 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2085 
2086 /**
2087  * ntb_transport_link_query - Query transport link state
2088  * @qp: NTB transport layer queue to be queried
2089  *
2090  * Query connectivity to the remote system of the NTB transport queue
2091  *
2092  * RETURNS: true for link up or false for link down
2093  */
2094 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2095 {
2096 	if (!qp)
2097 		return false;
2098 
2099 	return qp->link_is_up;
2100 }
2101 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2102 
2103 /**
2104  * ntb_transport_qp_num - Query the qp number
2105  * @qp: NTB transport layer queue to be queried
2106  *
2107  * Query qp number of the NTB transport queue
2108  *
2109  * RETURNS: a zero based number specifying the qp number
2110  */
2111 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2112 {
2113 	if (!qp)
2114 		return 0;
2115 
2116 	return qp->qp_num;
2117 }
2118 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2119 
2120 /**
2121  * ntb_transport_max_size - Query the max payload size of a qp
2122  * @qp: NTB transport layer queue to be queried
2123  *
2124  * Query the maximum payload size permissible on the given qp
2125  *
2126  * RETURNS: the max payload size of a qp
2127  */
2128 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2129 {
2130 	unsigned int max_size;
2131 	unsigned int copy_align;
2132 	struct dma_chan *rx_chan, *tx_chan;
2133 
2134 	if (!qp)
2135 		return 0;
2136 
2137 	rx_chan = qp->rx_dma_chan;
2138 	tx_chan = qp->tx_dma_chan;
2139 
2140 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2141 			 tx_chan ? tx_chan->device->copy_align : 0);
2142 
2143 	/* If DMA engine usage is possible, try to find the max size for that */
2144 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2145 	max_size = round_down(max_size, 1 << copy_align);
2146 
2147 	return max_size;
2148 }
2149 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2150 
2151 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2152 {
2153 	unsigned int head = qp->tx_index;
2154 	unsigned int tail = qp->remote_rx_info->entry;
2155 
2156 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2157 }
2158 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2159 
2160 static void ntb_transport_doorbell_callback(void *data, int vector)
2161 {
2162 	struct ntb_transport_ctx *nt = data;
2163 	struct ntb_transport_qp *qp;
2164 	u64 db_bits;
2165 	unsigned int qp_num;
2166 
2167 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2168 		   ntb_db_vector_mask(nt->ndev, vector));
2169 
2170 	while (db_bits) {
2171 		qp_num = __ffs(db_bits);
2172 		qp = &nt->qp_vec[qp_num];
2173 
2174 		if (qp->active)
2175 			tasklet_schedule(&qp->rxc_db_work);
2176 
2177 		db_bits &= ~BIT_ULL(qp_num);
2178 	}
2179 }
2180 
2181 static const struct ntb_ctx_ops ntb_transport_ops = {
2182 	.link_event = ntb_transport_event_callback,
2183 	.db_event = ntb_transport_doorbell_callback,
2184 };
2185 
2186 static struct ntb_client ntb_transport_client = {
2187 	.ops = {
2188 		.probe = ntb_transport_probe,
2189 		.remove = ntb_transport_free,
2190 	},
2191 };
2192 
2193 static int __init ntb_transport_init(void)
2194 {
2195 	int rc;
2196 
2197 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2198 
2199 	if (debugfs_initialized())
2200 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2201 
2202 	rc = bus_register(&ntb_transport_bus);
2203 	if (rc)
2204 		goto err_bus;
2205 
2206 	rc = ntb_register_client(&ntb_transport_client);
2207 	if (rc)
2208 		goto err_client;
2209 
2210 	return 0;
2211 
2212 err_client:
2213 	bus_unregister(&ntb_transport_bus);
2214 err_bus:
2215 	debugfs_remove_recursive(nt_debugfs_dir);
2216 	return rc;
2217 }
2218 module_init(ntb_transport_init);
2219 
2220 static void __exit ntb_transport_exit(void)
2221 {
2222 	debugfs_remove_recursive(nt_debugfs_dir);
2223 
2224 	ntb_unregister_client(&ntb_transport_client);
2225 	bus_unregister(&ntb_transport_bus);
2226 }
2227 module_exit(ntb_transport_exit);
2228