xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision 8b5a22d8)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74 
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78 
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82 
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86 
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90 
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94 
95 static struct dentry *nt_debugfs_dir;
96 
97 struct ntb_queue_entry {
98 	/* ntb_queue list reference */
99 	struct list_head entry;
100 	/* pointers to data to be transferred */
101 	void *cb_data;
102 	void *buf;
103 	unsigned int len;
104 	unsigned int flags;
105 
106 	struct ntb_transport_qp *qp;
107 	union {
108 		struct ntb_payload_header __iomem *tx_hdr;
109 		struct ntb_payload_header *rx_hdr;
110 	};
111 	unsigned int index;
112 };
113 
114 struct ntb_rx_info {
115 	unsigned int entry;
116 };
117 
118 struct ntb_transport_qp {
119 	struct ntb_transport_ctx *transport;
120 	struct ntb_dev *ndev;
121 	void *cb_data;
122 	struct dma_chan *dma_chan;
123 
124 	bool client_ready;
125 	bool link_is_up;
126 
127 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
128 	u64 qp_bit;
129 
130 	struct ntb_rx_info __iomem *rx_info;
131 	struct ntb_rx_info *remote_rx_info;
132 
133 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134 			   void *data, int len);
135 	struct list_head tx_free_q;
136 	spinlock_t ntb_tx_free_q_lock;
137 	void __iomem *tx_mw;
138 	dma_addr_t tx_mw_phys;
139 	unsigned int tx_index;
140 	unsigned int tx_max_entry;
141 	unsigned int tx_max_frame;
142 
143 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144 			   void *data, int len);
145 	struct list_head rx_post_q;
146 	struct list_head rx_pend_q;
147 	struct list_head rx_free_q;
148 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
149 	spinlock_t ntb_rx_q_lock;
150 	void *rx_buff;
151 	unsigned int rx_index;
152 	unsigned int rx_max_entry;
153 	unsigned int rx_max_frame;
154 	dma_cookie_t last_cookie;
155 	struct tasklet_struct rxc_db_work;
156 
157 	void (*event_handler)(void *data, int status);
158 	struct delayed_work link_work;
159 	struct work_struct link_cleanup;
160 
161 	struct dentry *debugfs_dir;
162 	struct dentry *debugfs_stats;
163 
164 	/* Stats */
165 	u64 rx_bytes;
166 	u64 rx_pkts;
167 	u64 rx_ring_empty;
168 	u64 rx_err_no_buf;
169 	u64 rx_err_oflow;
170 	u64 rx_err_ver;
171 	u64 rx_memcpy;
172 	u64 rx_async;
173 	u64 tx_bytes;
174 	u64 tx_pkts;
175 	u64 tx_ring_full;
176 	u64 tx_err_no_buf;
177 	u64 tx_memcpy;
178 	u64 tx_async;
179 };
180 
181 struct ntb_transport_mw {
182 	phys_addr_t phys_addr;
183 	resource_size_t phys_size;
184 	resource_size_t xlat_align;
185 	resource_size_t xlat_align_size;
186 	void __iomem *vbase;
187 	size_t xlat_size;
188 	size_t buff_size;
189 	void *virt_addr;
190 	dma_addr_t dma_addr;
191 };
192 
193 struct ntb_transport_client_dev {
194 	struct list_head entry;
195 	struct ntb_transport_ctx *nt;
196 	struct device dev;
197 };
198 
199 struct ntb_transport_ctx {
200 	struct list_head entry;
201 	struct list_head client_devs;
202 
203 	struct ntb_dev *ndev;
204 
205 	struct ntb_transport_mw *mw_vec;
206 	struct ntb_transport_qp *qp_vec;
207 	unsigned int mw_count;
208 	unsigned int qp_count;
209 	u64 qp_bitmap;
210 	u64 qp_bitmap_free;
211 
212 	bool link_is_up;
213 	struct delayed_work link_work;
214 	struct work_struct link_cleanup;
215 
216 	struct dentry *debugfs_node_dir;
217 };
218 
219 enum {
220 	DESC_DONE_FLAG = BIT(0),
221 	LINK_DOWN_FLAG = BIT(1),
222 };
223 
224 struct ntb_payload_header {
225 	unsigned int ver;
226 	unsigned int len;
227 	unsigned int flags;
228 };
229 
230 enum {
231 	VERSION = 0,
232 	QP_LINKS,
233 	NUM_QPS,
234 	NUM_MWS,
235 	MW0_SZ_HIGH,
236 	MW0_SZ_LOW,
237 	MW1_SZ_HIGH,
238 	MW1_SZ_LOW,
239 	MAX_SPAD,
240 };
241 
242 #define dev_client_dev(__dev) \
243 	container_of((__dev), struct ntb_transport_client_dev, dev)
244 
245 #define drv_client(__drv) \
246 	container_of((__drv), struct ntb_transport_client, driver)
247 
248 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
249 #define NTB_QP_DEF_NUM_ENTRIES	100
250 #define NTB_LINK_DOWN_TIMEOUT	10
251 
252 static void ntb_transport_rxc_db(unsigned long data);
253 static const struct ntb_ctx_ops ntb_transport_ops;
254 static struct ntb_client ntb_transport_client;
255 
256 static int ntb_transport_bus_match(struct device *dev,
257 				   struct device_driver *drv)
258 {
259 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
260 }
261 
262 static int ntb_transport_bus_probe(struct device *dev)
263 {
264 	const struct ntb_transport_client *client;
265 	int rc = -EINVAL;
266 
267 	get_device(dev);
268 
269 	client = drv_client(dev->driver);
270 	rc = client->probe(dev);
271 	if (rc)
272 		put_device(dev);
273 
274 	return rc;
275 }
276 
277 static int ntb_transport_bus_remove(struct device *dev)
278 {
279 	const struct ntb_transport_client *client;
280 
281 	client = drv_client(dev->driver);
282 	client->remove(dev);
283 
284 	put_device(dev);
285 
286 	return 0;
287 }
288 
289 static struct bus_type ntb_transport_bus = {
290 	.name = "ntb_transport",
291 	.match = ntb_transport_bus_match,
292 	.probe = ntb_transport_bus_probe,
293 	.remove = ntb_transport_bus_remove,
294 };
295 
296 static LIST_HEAD(ntb_transport_list);
297 
298 static int ntb_bus_init(struct ntb_transport_ctx *nt)
299 {
300 	list_add(&nt->entry, &ntb_transport_list);
301 	return 0;
302 }
303 
304 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
305 {
306 	struct ntb_transport_client_dev *client_dev, *cd;
307 
308 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
309 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
310 			dev_name(&client_dev->dev));
311 		list_del(&client_dev->entry);
312 		device_unregister(&client_dev->dev);
313 	}
314 
315 	list_del(&nt->entry);
316 }
317 
318 static void ntb_transport_client_release(struct device *dev)
319 {
320 	struct ntb_transport_client_dev *client_dev;
321 
322 	client_dev = dev_client_dev(dev);
323 	kfree(client_dev);
324 }
325 
326 /**
327  * ntb_transport_unregister_client_dev - Unregister NTB client device
328  * @device_name: Name of NTB client device
329  *
330  * Unregister an NTB client device with the NTB transport layer
331  */
332 void ntb_transport_unregister_client_dev(char *device_name)
333 {
334 	struct ntb_transport_client_dev *client, *cd;
335 	struct ntb_transport_ctx *nt;
336 
337 	list_for_each_entry(nt, &ntb_transport_list, entry)
338 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
339 			if (!strncmp(dev_name(&client->dev), device_name,
340 				     strlen(device_name))) {
341 				list_del(&client->entry);
342 				device_unregister(&client->dev);
343 			}
344 }
345 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
346 
347 /**
348  * ntb_transport_register_client_dev - Register NTB client device
349  * @device_name: Name of NTB client device
350  *
351  * Register an NTB client device with the NTB transport layer
352  */
353 int ntb_transport_register_client_dev(char *device_name)
354 {
355 	struct ntb_transport_client_dev *client_dev;
356 	struct ntb_transport_ctx *nt;
357 	int node;
358 	int rc, i = 0;
359 
360 	if (list_empty(&ntb_transport_list))
361 		return -ENODEV;
362 
363 	list_for_each_entry(nt, &ntb_transport_list, entry) {
364 		struct device *dev;
365 
366 		node = dev_to_node(&nt->ndev->dev);
367 
368 		client_dev = kzalloc_node(sizeof(*client_dev),
369 					  GFP_KERNEL, node);
370 		if (!client_dev) {
371 			rc = -ENOMEM;
372 			goto err;
373 		}
374 
375 		dev = &client_dev->dev;
376 
377 		/* setup and register client devices */
378 		dev_set_name(dev, "%s%d", device_name, i);
379 		dev->bus = &ntb_transport_bus;
380 		dev->release = ntb_transport_client_release;
381 		dev->parent = &nt->ndev->dev;
382 
383 		rc = device_register(dev);
384 		if (rc) {
385 			kfree(client_dev);
386 			goto err;
387 		}
388 
389 		list_add_tail(&client_dev->entry, &nt->client_devs);
390 		i++;
391 	}
392 
393 	return 0;
394 
395 err:
396 	ntb_transport_unregister_client_dev(device_name);
397 
398 	return rc;
399 }
400 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
401 
402 /**
403  * ntb_transport_register_client - Register NTB client driver
404  * @drv: NTB client driver to be registered
405  *
406  * Register an NTB client driver with the NTB transport layer
407  *
408  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
409  */
410 int ntb_transport_register_client(struct ntb_transport_client *drv)
411 {
412 	drv->driver.bus = &ntb_transport_bus;
413 
414 	if (list_empty(&ntb_transport_list))
415 		return -ENODEV;
416 
417 	return driver_register(&drv->driver);
418 }
419 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
420 
421 /**
422  * ntb_transport_unregister_client - Unregister NTB client driver
423  * @drv: NTB client driver to be unregistered
424  *
425  * Unregister an NTB client driver with the NTB transport layer
426  *
427  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
428  */
429 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
430 {
431 	driver_unregister(&drv->driver);
432 }
433 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
434 
435 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
436 			    loff_t *offp)
437 {
438 	struct ntb_transport_qp *qp;
439 	char *buf;
440 	ssize_t ret, out_offset, out_count;
441 
442 	qp = filp->private_data;
443 
444 	if (!qp || !qp->link_is_up)
445 		return 0;
446 
447 	out_count = 1000;
448 
449 	buf = kmalloc(out_count, GFP_KERNEL);
450 	if (!buf)
451 		return -ENOMEM;
452 
453 	out_offset = 0;
454 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
455 			       "NTB QP stats\n");
456 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
457 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
458 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
459 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
460 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
461 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
462 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
463 			       "rx_async - \t%llu\n", qp->rx_async);
464 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
466 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
468 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
470 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "rx_buff - \t%p\n", qp->rx_buff);
474 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 			       "rx_index - \t%u\n", qp->rx_index);
476 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
478 
479 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
481 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
485 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 			       "tx_async - \t%llu\n", qp->tx_async);
487 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
489 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "tx_mw - \t%p\n", qp->tx_mw);
493 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
494 			       "tx_index - \t%u\n", qp->tx_index);
495 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
496 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
497 
498 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 			       "\nQP Link %s\n",
500 			       qp->link_is_up ? "Up" : "Down");
501 	if (out_offset > out_count)
502 		out_offset = out_count;
503 
504 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
505 	kfree(buf);
506 	return ret;
507 }
508 
509 static const struct file_operations ntb_qp_debugfs_stats = {
510 	.owner = THIS_MODULE,
511 	.open = simple_open,
512 	.read = debugfs_read,
513 };
514 
515 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
516 			 struct list_head *list)
517 {
518 	unsigned long flags;
519 
520 	spin_lock_irqsave(lock, flags);
521 	list_add_tail(entry, list);
522 	spin_unlock_irqrestore(lock, flags);
523 }
524 
525 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
526 					   struct list_head *list)
527 {
528 	struct ntb_queue_entry *entry;
529 	unsigned long flags;
530 
531 	spin_lock_irqsave(lock, flags);
532 	if (list_empty(list)) {
533 		entry = NULL;
534 		goto out;
535 	}
536 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
537 	list_del(&entry->entry);
538 out:
539 	spin_unlock_irqrestore(lock, flags);
540 
541 	return entry;
542 }
543 
544 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
545 					   struct list_head *list,
546 					   struct list_head *to_list)
547 {
548 	struct ntb_queue_entry *entry;
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(lock, flags);
552 
553 	if (list_empty(list)) {
554 		entry = NULL;
555 	} else {
556 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
557 		list_move_tail(&entry->entry, to_list);
558 	}
559 
560 	spin_unlock_irqrestore(lock, flags);
561 
562 	return entry;
563 }
564 
565 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
566 				     unsigned int qp_num)
567 {
568 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
569 	struct ntb_transport_mw *mw;
570 	unsigned int rx_size, num_qps_mw;
571 	unsigned int mw_num, mw_count, qp_count;
572 	unsigned int i;
573 
574 	mw_count = nt->mw_count;
575 	qp_count = nt->qp_count;
576 
577 	mw_num = QP_TO_MW(nt, qp_num);
578 	mw = &nt->mw_vec[mw_num];
579 
580 	if (!mw->virt_addr)
581 		return -ENOMEM;
582 
583 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
584 		num_qps_mw = qp_count / mw_count + 1;
585 	else
586 		num_qps_mw = qp_count / mw_count;
587 
588 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
589 	qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
590 	rx_size -= sizeof(struct ntb_rx_info);
591 
592 	qp->remote_rx_info = qp->rx_buff + rx_size;
593 
594 	/* Due to housekeeping, there must be atleast 2 buffs */
595 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
596 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
597 	qp->rx_index = 0;
598 
599 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
600 
601 	/* setup the hdr offsets with 0's */
602 	for (i = 0; i < qp->rx_max_entry; i++) {
603 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
604 				sizeof(struct ntb_payload_header));
605 		memset(offset, 0, sizeof(struct ntb_payload_header));
606 	}
607 
608 	qp->rx_pkts = 0;
609 	qp->tx_pkts = 0;
610 	qp->tx_index = 0;
611 
612 	return 0;
613 }
614 
615 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
616 {
617 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
618 	struct pci_dev *pdev = nt->ndev->pdev;
619 
620 	if (!mw->virt_addr)
621 		return;
622 
623 	ntb_mw_clear_trans(nt->ndev, num_mw);
624 	dma_free_coherent(&pdev->dev, mw->buff_size,
625 			  mw->virt_addr, mw->dma_addr);
626 	mw->xlat_size = 0;
627 	mw->buff_size = 0;
628 	mw->virt_addr = NULL;
629 }
630 
631 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
632 		      unsigned int size)
633 {
634 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
635 	struct pci_dev *pdev = nt->ndev->pdev;
636 	unsigned int xlat_size, buff_size;
637 	int rc;
638 
639 	xlat_size = round_up(size, mw->xlat_align_size);
640 	buff_size = round_up(size, mw->xlat_align);
641 
642 	/* No need to re-setup */
643 	if (mw->xlat_size == xlat_size)
644 		return 0;
645 
646 	if (mw->buff_size)
647 		ntb_free_mw(nt, num_mw);
648 
649 	/* Alloc memory for receiving data.  Must be aligned */
650 	mw->xlat_size = xlat_size;
651 	mw->buff_size = buff_size;
652 
653 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
654 					   &mw->dma_addr, GFP_KERNEL);
655 	if (!mw->virt_addr) {
656 		mw->xlat_size = 0;
657 		mw->buff_size = 0;
658 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %d\n",
659 			buff_size);
660 		return -ENOMEM;
661 	}
662 
663 	/*
664 	 * we must ensure that the memory address allocated is BAR size
665 	 * aligned in order for the XLAT register to take the value. This
666 	 * is a requirement of the hardware. It is recommended to setup CMA
667 	 * for BAR sizes equal or greater than 4MB.
668 	 */
669 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
670 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
671 			&mw->dma_addr);
672 		ntb_free_mw(nt, num_mw);
673 		return -ENOMEM;
674 	}
675 
676 	/* Notify HW the memory location of the receive buffer */
677 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
678 	if (rc) {
679 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
680 		ntb_free_mw(nt, num_mw);
681 		return -EIO;
682 	}
683 
684 	return 0;
685 }
686 
687 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
688 {
689 	qp->link_is_up = false;
690 
691 	qp->tx_index = 0;
692 	qp->rx_index = 0;
693 	qp->rx_bytes = 0;
694 	qp->rx_pkts = 0;
695 	qp->rx_ring_empty = 0;
696 	qp->rx_err_no_buf = 0;
697 	qp->rx_err_oflow = 0;
698 	qp->rx_err_ver = 0;
699 	qp->rx_memcpy = 0;
700 	qp->rx_async = 0;
701 	qp->tx_bytes = 0;
702 	qp->tx_pkts = 0;
703 	qp->tx_ring_full = 0;
704 	qp->tx_err_no_buf = 0;
705 	qp->tx_memcpy = 0;
706 	qp->tx_async = 0;
707 }
708 
709 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
710 {
711 	struct ntb_transport_ctx *nt = qp->transport;
712 	struct pci_dev *pdev = nt->ndev->pdev;
713 
714 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
715 
716 	cancel_delayed_work_sync(&qp->link_work);
717 	ntb_qp_link_down_reset(qp);
718 
719 	if (qp->event_handler)
720 		qp->event_handler(qp->cb_data, qp->link_is_up);
721 }
722 
723 static void ntb_qp_link_cleanup_work(struct work_struct *work)
724 {
725 	struct ntb_transport_qp *qp = container_of(work,
726 						   struct ntb_transport_qp,
727 						   link_cleanup);
728 	struct ntb_transport_ctx *nt = qp->transport;
729 
730 	ntb_qp_link_cleanup(qp);
731 
732 	if (nt->link_is_up)
733 		schedule_delayed_work(&qp->link_work,
734 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
735 }
736 
737 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
738 {
739 	schedule_work(&qp->link_cleanup);
740 }
741 
742 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
743 {
744 	struct ntb_transport_qp *qp;
745 	u64 qp_bitmap_alloc;
746 	int i;
747 
748 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
749 
750 	/* Pass along the info to any clients */
751 	for (i = 0; i < nt->qp_count; i++)
752 		if (qp_bitmap_alloc & BIT_ULL(i)) {
753 			qp = &nt->qp_vec[i];
754 			ntb_qp_link_cleanup(qp);
755 			cancel_work_sync(&qp->link_cleanup);
756 			cancel_delayed_work_sync(&qp->link_work);
757 		}
758 
759 	if (!nt->link_is_up)
760 		cancel_delayed_work_sync(&nt->link_work);
761 
762 	/* The scratchpad registers keep the values if the remote side
763 	 * goes down, blast them now to give them a sane value the next
764 	 * time they are accessed
765 	 */
766 	for (i = 0; i < MAX_SPAD; i++)
767 		ntb_spad_write(nt->ndev, i, 0);
768 }
769 
770 static void ntb_transport_link_cleanup_work(struct work_struct *work)
771 {
772 	struct ntb_transport_ctx *nt =
773 		container_of(work, struct ntb_transport_ctx, link_cleanup);
774 
775 	ntb_transport_link_cleanup(nt);
776 }
777 
778 static void ntb_transport_event_callback(void *data)
779 {
780 	struct ntb_transport_ctx *nt = data;
781 
782 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
783 		schedule_delayed_work(&nt->link_work, 0);
784 	else
785 		schedule_work(&nt->link_cleanup);
786 }
787 
788 static void ntb_transport_link_work(struct work_struct *work)
789 {
790 	struct ntb_transport_ctx *nt =
791 		container_of(work, struct ntb_transport_ctx, link_work.work);
792 	struct ntb_dev *ndev = nt->ndev;
793 	struct pci_dev *pdev = ndev->pdev;
794 	resource_size_t size;
795 	u32 val;
796 	int rc, i, spad;
797 
798 	/* send the local info, in the opposite order of the way we read it */
799 	for (i = 0; i < nt->mw_count; i++) {
800 		size = nt->mw_vec[i].phys_size;
801 
802 		if (max_mw_size && size > max_mw_size)
803 			size = max_mw_size;
804 
805 		spad = MW0_SZ_HIGH + (i * 2);
806 		ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
807 
808 		spad = MW0_SZ_LOW + (i * 2);
809 		ntb_peer_spad_write(ndev, spad, (u32)size);
810 	}
811 
812 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
813 
814 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
815 
816 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
817 
818 	/* Query the remote side for its info */
819 	val = ntb_spad_read(ndev, VERSION);
820 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
821 	if (val != NTB_TRANSPORT_VERSION)
822 		goto out;
823 
824 	val = ntb_spad_read(ndev, NUM_QPS);
825 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
826 	if (val != nt->qp_count)
827 		goto out;
828 
829 	val = ntb_spad_read(ndev, NUM_MWS);
830 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
831 	if (val != nt->mw_count)
832 		goto out;
833 
834 	for (i = 0; i < nt->mw_count; i++) {
835 		u64 val64;
836 
837 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
838 		val64 = (u64)val << 32;
839 
840 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
841 		val64 |= val;
842 
843 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
844 
845 		rc = ntb_set_mw(nt, i, val64);
846 		if (rc)
847 			goto out1;
848 	}
849 
850 	nt->link_is_up = true;
851 
852 	for (i = 0; i < nt->qp_count; i++) {
853 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
854 
855 		ntb_transport_setup_qp_mw(nt, i);
856 
857 		if (qp->client_ready)
858 			schedule_delayed_work(&qp->link_work, 0);
859 	}
860 
861 	return;
862 
863 out1:
864 	for (i = 0; i < nt->mw_count; i++)
865 		ntb_free_mw(nt, i);
866 out:
867 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
868 		schedule_delayed_work(&nt->link_work,
869 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
870 }
871 
872 static void ntb_qp_link_work(struct work_struct *work)
873 {
874 	struct ntb_transport_qp *qp = container_of(work,
875 						   struct ntb_transport_qp,
876 						   link_work.work);
877 	struct pci_dev *pdev = qp->ndev->pdev;
878 	struct ntb_transport_ctx *nt = qp->transport;
879 	int val;
880 
881 	WARN_ON(!nt->link_is_up);
882 
883 	val = ntb_spad_read(nt->ndev, QP_LINKS);
884 
885 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
886 
887 	/* query remote spad for qp ready bits */
888 	ntb_peer_spad_read(nt->ndev, QP_LINKS);
889 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
890 
891 	/* See if the remote side is up */
892 	if (val & BIT(qp->qp_num)) {
893 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
894 		qp->link_is_up = true;
895 
896 		if (qp->event_handler)
897 			qp->event_handler(qp->cb_data, qp->link_is_up);
898 
899 		tasklet_schedule(&qp->rxc_db_work);
900 	} else if (nt->link_is_up)
901 		schedule_delayed_work(&qp->link_work,
902 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
903 }
904 
905 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
906 				    unsigned int qp_num)
907 {
908 	struct ntb_transport_qp *qp;
909 	struct ntb_transport_mw *mw;
910 	phys_addr_t mw_base;
911 	resource_size_t mw_size;
912 	unsigned int num_qps_mw, tx_size;
913 	unsigned int mw_num, mw_count, qp_count;
914 	u64 qp_offset;
915 
916 	mw_count = nt->mw_count;
917 	qp_count = nt->qp_count;
918 
919 	mw_num = QP_TO_MW(nt, qp_num);
920 	mw = &nt->mw_vec[mw_num];
921 
922 	qp = &nt->qp_vec[qp_num];
923 	qp->qp_num = qp_num;
924 	qp->transport = nt;
925 	qp->ndev = nt->ndev;
926 	qp->client_ready = false;
927 	qp->event_handler = NULL;
928 	ntb_qp_link_down_reset(qp);
929 
930 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
931 		num_qps_mw = qp_count / mw_count + 1;
932 	else
933 		num_qps_mw = qp_count / mw_count;
934 
935 	mw_base = nt->mw_vec[mw_num].phys_addr;
936 	mw_size = nt->mw_vec[mw_num].phys_size;
937 
938 	tx_size = (unsigned int)mw_size / num_qps_mw;
939 	qp_offset = tx_size * qp_num / mw_count;
940 
941 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
942 	if (!qp->tx_mw)
943 		return -EINVAL;
944 
945 	qp->tx_mw_phys = mw_base + qp_offset;
946 	if (!qp->tx_mw_phys)
947 		return -EINVAL;
948 
949 	tx_size -= sizeof(struct ntb_rx_info);
950 	qp->rx_info = qp->tx_mw + tx_size;
951 
952 	/* Due to housekeeping, there must be atleast 2 buffs */
953 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
954 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
955 
956 	if (nt->debugfs_node_dir) {
957 		char debugfs_name[4];
958 
959 		snprintf(debugfs_name, 4, "qp%d", qp_num);
960 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
961 						     nt->debugfs_node_dir);
962 
963 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
964 							qp->debugfs_dir, qp,
965 							&ntb_qp_debugfs_stats);
966 	} else {
967 		qp->debugfs_dir = NULL;
968 		qp->debugfs_stats = NULL;
969 	}
970 
971 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
972 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
973 
974 	spin_lock_init(&qp->ntb_rx_q_lock);
975 	spin_lock_init(&qp->ntb_tx_free_q_lock);
976 
977 	INIT_LIST_HEAD(&qp->rx_post_q);
978 	INIT_LIST_HEAD(&qp->rx_pend_q);
979 	INIT_LIST_HEAD(&qp->rx_free_q);
980 	INIT_LIST_HEAD(&qp->tx_free_q);
981 
982 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
983 		     (unsigned long)qp);
984 
985 	return 0;
986 }
987 
988 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
989 {
990 	struct ntb_transport_ctx *nt;
991 	struct ntb_transport_mw *mw;
992 	unsigned int mw_count, qp_count;
993 	u64 qp_bitmap;
994 	int node;
995 	int rc, i;
996 
997 	if (ntb_db_is_unsafe(ndev))
998 		dev_dbg(&ndev->dev,
999 			"doorbell is unsafe, proceed anyway...\n");
1000 	if (ntb_spad_is_unsafe(ndev))
1001 		dev_dbg(&ndev->dev,
1002 			"scratchpad is unsafe, proceed anyway...\n");
1003 
1004 	node = dev_to_node(&ndev->dev);
1005 
1006 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1007 	if (!nt)
1008 		return -ENOMEM;
1009 
1010 	nt->ndev = ndev;
1011 
1012 	mw_count = ntb_mw_count(ndev);
1013 
1014 	nt->mw_count = mw_count;
1015 
1016 	nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1017 				  GFP_KERNEL, node);
1018 	if (!nt->mw_vec) {
1019 		rc = -ENOMEM;
1020 		goto err;
1021 	}
1022 
1023 	for (i = 0; i < mw_count; i++) {
1024 		mw = &nt->mw_vec[i];
1025 
1026 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1027 				      &mw->xlat_align, &mw->xlat_align_size);
1028 		if (rc)
1029 			goto err1;
1030 
1031 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1032 		if (!mw->vbase) {
1033 			rc = -ENOMEM;
1034 			goto err1;
1035 		}
1036 
1037 		mw->buff_size = 0;
1038 		mw->xlat_size = 0;
1039 		mw->virt_addr = NULL;
1040 		mw->dma_addr = 0;
1041 	}
1042 
1043 	qp_bitmap = ntb_db_valid_mask(ndev);
1044 
1045 	qp_count = ilog2(qp_bitmap);
1046 	if (max_num_clients && max_num_clients < qp_count)
1047 		qp_count = max_num_clients;
1048 	else if (mw_count < qp_count)
1049 		qp_count = mw_count;
1050 
1051 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1052 
1053 	nt->qp_count = qp_count;
1054 	nt->qp_bitmap = qp_bitmap;
1055 	nt->qp_bitmap_free = qp_bitmap;
1056 
1057 	nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1058 				  GFP_KERNEL, node);
1059 	if (!nt->qp_vec) {
1060 		rc = -ENOMEM;
1061 		goto err2;
1062 	}
1063 
1064 	if (nt_debugfs_dir) {
1065 		nt->debugfs_node_dir =
1066 			debugfs_create_dir(pci_name(ndev->pdev),
1067 					   nt_debugfs_dir);
1068 	}
1069 
1070 	for (i = 0; i < qp_count; i++) {
1071 		rc = ntb_transport_init_queue(nt, i);
1072 		if (rc)
1073 			goto err3;
1074 	}
1075 
1076 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1077 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1078 
1079 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1080 	if (rc)
1081 		goto err3;
1082 
1083 	INIT_LIST_HEAD(&nt->client_devs);
1084 	rc = ntb_bus_init(nt);
1085 	if (rc)
1086 		goto err4;
1087 
1088 	nt->link_is_up = false;
1089 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1090 	ntb_link_event(ndev);
1091 
1092 	return 0;
1093 
1094 err4:
1095 	ntb_clear_ctx(ndev);
1096 err3:
1097 	kfree(nt->qp_vec);
1098 err2:
1099 	kfree(nt->mw_vec);
1100 err1:
1101 	while (i--) {
1102 		mw = &nt->mw_vec[i];
1103 		iounmap(mw->vbase);
1104 	}
1105 err:
1106 	kfree(nt);
1107 	return rc;
1108 }
1109 
1110 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1111 {
1112 	struct ntb_transport_ctx *nt = ndev->ctx;
1113 	struct ntb_transport_qp *qp;
1114 	u64 qp_bitmap_alloc;
1115 	int i;
1116 
1117 	ntb_transport_link_cleanup(nt);
1118 	cancel_work_sync(&nt->link_cleanup);
1119 	cancel_delayed_work_sync(&nt->link_work);
1120 
1121 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1122 
1123 	/* verify that all the qp's are freed */
1124 	for (i = 0; i < nt->qp_count; i++) {
1125 		qp = &nt->qp_vec[i];
1126 		if (qp_bitmap_alloc & BIT_ULL(i))
1127 			ntb_transport_free_queue(qp);
1128 		debugfs_remove_recursive(qp->debugfs_dir);
1129 	}
1130 
1131 	ntb_link_disable(ndev);
1132 	ntb_clear_ctx(ndev);
1133 
1134 	ntb_bus_remove(nt);
1135 
1136 	for (i = nt->mw_count; i--; ) {
1137 		ntb_free_mw(nt, i);
1138 		iounmap(nt->mw_vec[i].vbase);
1139 	}
1140 
1141 	kfree(nt->qp_vec);
1142 	kfree(nt->mw_vec);
1143 	kfree(nt);
1144 }
1145 
1146 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1147 {
1148 	struct ntb_queue_entry *entry;
1149 	void *cb_data;
1150 	unsigned int len;
1151 	unsigned long irqflags;
1152 
1153 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1154 
1155 	while (!list_empty(&qp->rx_post_q)) {
1156 		entry = list_first_entry(&qp->rx_post_q,
1157 					 struct ntb_queue_entry, entry);
1158 		if (!(entry->flags & DESC_DONE_FLAG))
1159 			break;
1160 
1161 		entry->rx_hdr->flags = 0;
1162 		iowrite32(entry->index, &qp->rx_info->entry);
1163 
1164 		cb_data = entry->cb_data;
1165 		len = entry->len;
1166 
1167 		list_move_tail(&entry->entry, &qp->rx_free_q);
1168 
1169 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1170 
1171 		if (qp->rx_handler && qp->client_ready)
1172 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1173 
1174 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1175 	}
1176 
1177 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1178 }
1179 
1180 static void ntb_rx_copy_callback(void *data)
1181 {
1182 	struct ntb_queue_entry *entry = data;
1183 
1184 	entry->flags |= DESC_DONE_FLAG;
1185 
1186 	ntb_complete_rxc(entry->qp);
1187 }
1188 
1189 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1190 {
1191 	void *buf = entry->buf;
1192 	size_t len = entry->len;
1193 
1194 	memcpy(buf, offset, len);
1195 
1196 	/* Ensure that the data is fully copied out before clearing the flag */
1197 	wmb();
1198 
1199 	ntb_rx_copy_callback(entry);
1200 }
1201 
1202 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1203 {
1204 	struct dma_async_tx_descriptor *txd;
1205 	struct ntb_transport_qp *qp = entry->qp;
1206 	struct dma_chan *chan = qp->dma_chan;
1207 	struct dma_device *device;
1208 	size_t pay_off, buff_off, len;
1209 	struct dmaengine_unmap_data *unmap;
1210 	dma_cookie_t cookie;
1211 	void *buf = entry->buf;
1212 
1213 	len = entry->len;
1214 
1215 	if (!chan)
1216 		goto err;
1217 
1218 	if (len < copy_bytes)
1219 		goto err_wait;
1220 
1221 	device = chan->device;
1222 	pay_off = (size_t)offset & ~PAGE_MASK;
1223 	buff_off = (size_t)buf & ~PAGE_MASK;
1224 
1225 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1226 		goto err_wait;
1227 
1228 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1229 	if (!unmap)
1230 		goto err_wait;
1231 
1232 	unmap->len = len;
1233 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1234 				      pay_off, len, DMA_TO_DEVICE);
1235 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1236 		goto err_get_unmap;
1237 
1238 	unmap->to_cnt = 1;
1239 
1240 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1241 				      buff_off, len, DMA_FROM_DEVICE);
1242 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1243 		goto err_get_unmap;
1244 
1245 	unmap->from_cnt = 1;
1246 
1247 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1248 					     unmap->addr[0], len,
1249 					     DMA_PREP_INTERRUPT);
1250 	if (!txd)
1251 		goto err_get_unmap;
1252 
1253 	txd->callback = ntb_rx_copy_callback;
1254 	txd->callback_param = entry;
1255 	dma_set_unmap(txd, unmap);
1256 
1257 	cookie = dmaengine_submit(txd);
1258 	if (dma_submit_error(cookie))
1259 		goto err_set_unmap;
1260 
1261 	dmaengine_unmap_put(unmap);
1262 
1263 	qp->last_cookie = cookie;
1264 
1265 	qp->rx_async++;
1266 
1267 	return;
1268 
1269 err_set_unmap:
1270 	dmaengine_unmap_put(unmap);
1271 err_get_unmap:
1272 	dmaengine_unmap_put(unmap);
1273 err_wait:
1274 	/* If the callbacks come out of order, the writing of the index to the
1275 	 * last completed will be out of order.  This may result in the
1276 	 * receive stalling forever.
1277 	 */
1278 	dma_sync_wait(chan, qp->last_cookie);
1279 err:
1280 	ntb_memcpy_rx(entry, offset);
1281 	qp->rx_memcpy++;
1282 }
1283 
1284 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1285 {
1286 	struct ntb_payload_header *hdr;
1287 	struct ntb_queue_entry *entry;
1288 	void *offset;
1289 
1290 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1291 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1292 
1293 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1294 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1295 
1296 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1297 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1298 		qp->rx_ring_empty++;
1299 		return -EAGAIN;
1300 	}
1301 
1302 	if (hdr->flags & LINK_DOWN_FLAG) {
1303 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1304 		ntb_qp_link_down(qp);
1305 		hdr->flags = 0;
1306 		return -EAGAIN;
1307 	}
1308 
1309 	if (hdr->ver != (u32)qp->rx_pkts) {
1310 		dev_dbg(&qp->ndev->pdev->dev,
1311 			"version mismatch, expected %llu - got %u\n",
1312 			qp->rx_pkts, hdr->ver);
1313 		qp->rx_err_ver++;
1314 		return -EIO;
1315 	}
1316 
1317 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1318 	if (!entry) {
1319 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1320 		qp->rx_err_no_buf++;
1321 		return -EAGAIN;
1322 	}
1323 
1324 	entry->rx_hdr = hdr;
1325 	entry->index = qp->rx_index;
1326 
1327 	if (hdr->len > entry->len) {
1328 		dev_dbg(&qp->ndev->pdev->dev,
1329 			"receive buffer overflow! Wanted %d got %d\n",
1330 			hdr->len, entry->len);
1331 		qp->rx_err_oflow++;
1332 
1333 		entry->len = -EIO;
1334 		entry->flags |= DESC_DONE_FLAG;
1335 
1336 		ntb_complete_rxc(qp);
1337 	} else {
1338 		dev_dbg(&qp->ndev->pdev->dev,
1339 			"RX OK index %u ver %u size %d into buf size %d\n",
1340 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1341 
1342 		qp->rx_bytes += hdr->len;
1343 		qp->rx_pkts++;
1344 
1345 		entry->len = hdr->len;
1346 
1347 		ntb_async_rx(entry, offset);
1348 	}
1349 
1350 	qp->rx_index++;
1351 	qp->rx_index %= qp->rx_max_entry;
1352 
1353 	return 0;
1354 }
1355 
1356 static void ntb_transport_rxc_db(unsigned long data)
1357 {
1358 	struct ntb_transport_qp *qp = (void *)data;
1359 	int rc, i;
1360 
1361 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1362 		__func__, qp->qp_num);
1363 
1364 	/* Limit the number of packets processed in a single interrupt to
1365 	 * provide fairness to others
1366 	 */
1367 	for (i = 0; i < qp->rx_max_entry; i++) {
1368 		rc = ntb_process_rxc(qp);
1369 		if (rc)
1370 			break;
1371 	}
1372 
1373 	if (i && qp->dma_chan)
1374 		dma_async_issue_pending(qp->dma_chan);
1375 
1376 	if (i == qp->rx_max_entry) {
1377 		/* there is more work to do */
1378 		tasklet_schedule(&qp->rxc_db_work);
1379 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1380 		/* the doorbell bit is set: clear it */
1381 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1382 		/* ntb_db_read ensures ntb_db_clear write is committed */
1383 		ntb_db_read(qp->ndev);
1384 
1385 		/* an interrupt may have arrived between finishing
1386 		 * ntb_process_rxc and clearing the doorbell bit:
1387 		 * there might be some more work to do.
1388 		 */
1389 		tasklet_schedule(&qp->rxc_db_work);
1390 	}
1391 }
1392 
1393 static void ntb_tx_copy_callback(void *data)
1394 {
1395 	struct ntb_queue_entry *entry = data;
1396 	struct ntb_transport_qp *qp = entry->qp;
1397 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1398 
1399 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1400 
1401 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1402 
1403 	/* The entry length can only be zero if the packet is intended to be a
1404 	 * "link down" or similar.  Since no payload is being sent in these
1405 	 * cases, there is nothing to add to the completion queue.
1406 	 */
1407 	if (entry->len > 0) {
1408 		qp->tx_bytes += entry->len;
1409 
1410 		if (qp->tx_handler)
1411 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1412 				       entry->len);
1413 	}
1414 
1415 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1416 }
1417 
1418 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1419 {
1420 #ifdef ARCH_HAS_NOCACHE_UACCESS
1421 	/*
1422 	 * Using non-temporal mov to improve performance on non-cached
1423 	 * writes, even though we aren't actually copying from user space.
1424 	 */
1425 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1426 #else
1427 	memcpy_toio(offset, entry->buf, entry->len);
1428 #endif
1429 
1430 	/* Ensure that the data is fully copied out before setting the flags */
1431 	wmb();
1432 
1433 	ntb_tx_copy_callback(entry);
1434 }
1435 
1436 static void ntb_async_tx(struct ntb_transport_qp *qp,
1437 			 struct ntb_queue_entry *entry)
1438 {
1439 	struct ntb_payload_header __iomem *hdr;
1440 	struct dma_async_tx_descriptor *txd;
1441 	struct dma_chan *chan = qp->dma_chan;
1442 	struct dma_device *device;
1443 	size_t dest_off, buff_off;
1444 	struct dmaengine_unmap_data *unmap;
1445 	dma_addr_t dest;
1446 	dma_cookie_t cookie;
1447 	void __iomem *offset;
1448 	size_t len = entry->len;
1449 	void *buf = entry->buf;
1450 
1451 	offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1452 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1453 	entry->tx_hdr = hdr;
1454 
1455 	iowrite32(entry->len, &hdr->len);
1456 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1457 
1458 	if (!chan)
1459 		goto err;
1460 
1461 	if (len < copy_bytes)
1462 		goto err;
1463 
1464 	device = chan->device;
1465 	dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1466 	buff_off = (size_t)buf & ~PAGE_MASK;
1467 	dest_off = (size_t)dest & ~PAGE_MASK;
1468 
1469 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1470 		goto err;
1471 
1472 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1473 	if (!unmap)
1474 		goto err;
1475 
1476 	unmap->len = len;
1477 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1478 				      buff_off, len, DMA_TO_DEVICE);
1479 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1480 		goto err_get_unmap;
1481 
1482 	unmap->to_cnt = 1;
1483 
1484 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1485 					     DMA_PREP_INTERRUPT);
1486 	if (!txd)
1487 		goto err_get_unmap;
1488 
1489 	txd->callback = ntb_tx_copy_callback;
1490 	txd->callback_param = entry;
1491 	dma_set_unmap(txd, unmap);
1492 
1493 	cookie = dmaengine_submit(txd);
1494 	if (dma_submit_error(cookie))
1495 		goto err_set_unmap;
1496 
1497 	dmaengine_unmap_put(unmap);
1498 
1499 	dma_async_issue_pending(chan);
1500 	qp->tx_async++;
1501 
1502 	return;
1503 err_set_unmap:
1504 	dmaengine_unmap_put(unmap);
1505 err_get_unmap:
1506 	dmaengine_unmap_put(unmap);
1507 err:
1508 	ntb_memcpy_tx(entry, offset);
1509 	qp->tx_memcpy++;
1510 }
1511 
1512 static int ntb_process_tx(struct ntb_transport_qp *qp,
1513 			  struct ntb_queue_entry *entry)
1514 {
1515 	if (qp->tx_index == qp->remote_rx_info->entry) {
1516 		qp->tx_ring_full++;
1517 		return -EAGAIN;
1518 	}
1519 
1520 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1521 		if (qp->tx_handler)
1522 			qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1523 
1524 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1525 			     &qp->tx_free_q);
1526 		return 0;
1527 	}
1528 
1529 	ntb_async_tx(qp, entry);
1530 
1531 	qp->tx_index++;
1532 	qp->tx_index %= qp->tx_max_entry;
1533 
1534 	qp->tx_pkts++;
1535 
1536 	return 0;
1537 }
1538 
1539 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1540 {
1541 	struct pci_dev *pdev = qp->ndev->pdev;
1542 	struct ntb_queue_entry *entry;
1543 	int i, rc;
1544 
1545 	if (!qp->link_is_up)
1546 		return;
1547 
1548 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1549 
1550 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1551 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1552 		if (entry)
1553 			break;
1554 		msleep(100);
1555 	}
1556 
1557 	if (!entry)
1558 		return;
1559 
1560 	entry->cb_data = NULL;
1561 	entry->buf = NULL;
1562 	entry->len = 0;
1563 	entry->flags = LINK_DOWN_FLAG;
1564 
1565 	rc = ntb_process_tx(qp, entry);
1566 	if (rc)
1567 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1568 			qp->qp_num);
1569 
1570 	ntb_qp_link_down_reset(qp);
1571 }
1572 
1573 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1574 {
1575 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1576 }
1577 
1578 /**
1579  * ntb_transport_create_queue - Create a new NTB transport layer queue
1580  * @rx_handler: receive callback function
1581  * @tx_handler: transmit callback function
1582  * @event_handler: event callback function
1583  *
1584  * Create a new NTB transport layer queue and provide the queue with a callback
1585  * routine for both transmit and receive.  The receive callback routine will be
1586  * used to pass up data when the transport has received it on the queue.   The
1587  * transmit callback routine will be called when the transport has completed the
1588  * transmission of the data on the queue and the data is ready to be freed.
1589  *
1590  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1591  */
1592 struct ntb_transport_qp *
1593 ntb_transport_create_queue(void *data, struct device *client_dev,
1594 			   const struct ntb_queue_handlers *handlers)
1595 {
1596 	struct ntb_dev *ndev;
1597 	struct pci_dev *pdev;
1598 	struct ntb_transport_ctx *nt;
1599 	struct ntb_queue_entry *entry;
1600 	struct ntb_transport_qp *qp;
1601 	u64 qp_bit;
1602 	unsigned int free_queue;
1603 	dma_cap_mask_t dma_mask;
1604 	int node;
1605 	int i;
1606 
1607 	ndev = dev_ntb(client_dev->parent);
1608 	pdev = ndev->pdev;
1609 	nt = ndev->ctx;
1610 
1611 	node = dev_to_node(&ndev->dev);
1612 
1613 	free_queue = ffs(nt->qp_bitmap);
1614 	if (!free_queue)
1615 		goto err;
1616 
1617 	/* decrement free_queue to make it zero based */
1618 	free_queue--;
1619 
1620 	qp = &nt->qp_vec[free_queue];
1621 	qp_bit = BIT_ULL(qp->qp_num);
1622 
1623 	nt->qp_bitmap_free &= ~qp_bit;
1624 
1625 	qp->cb_data = data;
1626 	qp->rx_handler = handlers->rx_handler;
1627 	qp->tx_handler = handlers->tx_handler;
1628 	qp->event_handler = handlers->event_handler;
1629 
1630 	dma_cap_zero(dma_mask);
1631 	dma_cap_set(DMA_MEMCPY, dma_mask);
1632 
1633 	if (use_dma) {
1634 		qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1635 						   (void *)(unsigned long)node);
1636 		if (!qp->dma_chan)
1637 			dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1638 	} else {
1639 		qp->dma_chan = NULL;
1640 	}
1641 	dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1642 
1643 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1644 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1645 		if (!entry)
1646 			goto err1;
1647 
1648 		entry->qp = qp;
1649 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1650 			     &qp->rx_free_q);
1651 	}
1652 
1653 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1654 		entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1655 		if (!entry)
1656 			goto err2;
1657 
1658 		entry->qp = qp;
1659 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1660 			     &qp->tx_free_q);
1661 	}
1662 
1663 	ntb_db_clear(qp->ndev, qp_bit);
1664 	ntb_db_clear_mask(qp->ndev, qp_bit);
1665 
1666 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1667 
1668 	return qp;
1669 
1670 err2:
1671 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1672 		kfree(entry);
1673 err1:
1674 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1675 		kfree(entry);
1676 	if (qp->dma_chan)
1677 		dma_release_channel(qp->dma_chan);
1678 	nt->qp_bitmap_free |= qp_bit;
1679 err:
1680 	return NULL;
1681 }
1682 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1683 
1684 /**
1685  * ntb_transport_free_queue - Frees NTB transport queue
1686  * @qp: NTB queue to be freed
1687  *
1688  * Frees NTB transport queue
1689  */
1690 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1691 {
1692 	struct ntb_transport_ctx *nt = qp->transport;
1693 	struct pci_dev *pdev;
1694 	struct ntb_queue_entry *entry;
1695 	u64 qp_bit;
1696 
1697 	if (!qp)
1698 		return;
1699 
1700 	pdev = qp->ndev->pdev;
1701 
1702 	if (qp->dma_chan) {
1703 		struct dma_chan *chan = qp->dma_chan;
1704 		/* Putting the dma_chan to NULL will force any new traffic to be
1705 		 * processed by the CPU instead of the DAM engine
1706 		 */
1707 		qp->dma_chan = NULL;
1708 
1709 		/* Try to be nice and wait for any queued DMA engine
1710 		 * transactions to process before smashing it with a rock
1711 		 */
1712 		dma_sync_wait(chan, qp->last_cookie);
1713 		dmaengine_terminate_all(chan);
1714 		dma_release_channel(chan);
1715 	}
1716 
1717 	qp_bit = BIT_ULL(qp->qp_num);
1718 
1719 	ntb_db_set_mask(qp->ndev, qp_bit);
1720 	tasklet_disable(&qp->rxc_db_work);
1721 
1722 	cancel_delayed_work_sync(&qp->link_work);
1723 
1724 	qp->cb_data = NULL;
1725 	qp->rx_handler = NULL;
1726 	qp->tx_handler = NULL;
1727 	qp->event_handler = NULL;
1728 
1729 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1730 		kfree(entry);
1731 
1732 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1733 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1734 		kfree(entry);
1735 	}
1736 
1737 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1738 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1739 		kfree(entry);
1740 	}
1741 
1742 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1743 		kfree(entry);
1744 
1745 	nt->qp_bitmap_free |= qp_bit;
1746 
1747 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1748 }
1749 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1750 
1751 /**
1752  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1753  * @qp: NTB queue to be freed
1754  * @len: pointer to variable to write enqueued buffers length
1755  *
1756  * Dequeues unused buffers from receive queue.  Should only be used during
1757  * shutdown of qp.
1758  *
1759  * RETURNS: NULL error value on error, or void* for success.
1760  */
1761 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1762 {
1763 	struct ntb_queue_entry *entry;
1764 	void *buf;
1765 
1766 	if (!qp || qp->client_ready)
1767 		return NULL;
1768 
1769 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1770 	if (!entry)
1771 		return NULL;
1772 
1773 	buf = entry->cb_data;
1774 	*len = entry->len;
1775 
1776 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1777 
1778 	return buf;
1779 }
1780 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1781 
1782 /**
1783  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1784  * @qp: NTB transport layer queue the entry is to be enqueued on
1785  * @cb: per buffer pointer for callback function to use
1786  * @data: pointer to data buffer that incoming packets will be copied into
1787  * @len: length of the data buffer
1788  *
1789  * Enqueue a new receive buffer onto the transport queue into which a NTB
1790  * payload can be received into.
1791  *
1792  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1793  */
1794 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1795 			     unsigned int len)
1796 {
1797 	struct ntb_queue_entry *entry;
1798 
1799 	if (!qp)
1800 		return -EINVAL;
1801 
1802 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1803 	if (!entry)
1804 		return -ENOMEM;
1805 
1806 	entry->cb_data = cb;
1807 	entry->buf = data;
1808 	entry->len = len;
1809 	entry->flags = 0;
1810 
1811 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
1812 
1813 	tasklet_schedule(&qp->rxc_db_work);
1814 
1815 	return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1818 
1819 /**
1820  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1821  * @qp: NTB transport layer queue the entry is to be enqueued on
1822  * @cb: per buffer pointer for callback function to use
1823  * @data: pointer to data buffer that will be sent
1824  * @len: length of the data buffer
1825  *
1826  * Enqueue a new transmit buffer onto the transport queue from which a NTB
1827  * payload will be transmitted.  This assumes that a lock is being held to
1828  * serialize access to the qp.
1829  *
1830  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1831  */
1832 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1833 			     unsigned int len)
1834 {
1835 	struct ntb_queue_entry *entry;
1836 	int rc;
1837 
1838 	if (!qp || !qp->link_is_up || !len)
1839 		return -EINVAL;
1840 
1841 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1842 	if (!entry) {
1843 		qp->tx_err_no_buf++;
1844 		return -ENOMEM;
1845 	}
1846 
1847 	entry->cb_data = cb;
1848 	entry->buf = data;
1849 	entry->len = len;
1850 	entry->flags = 0;
1851 
1852 	rc = ntb_process_tx(qp, entry);
1853 	if (rc)
1854 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1855 			     &qp->tx_free_q);
1856 
1857 	return rc;
1858 }
1859 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1860 
1861 /**
1862  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1863  * @qp: NTB transport layer queue to be enabled
1864  *
1865  * Notify NTB transport layer of client readiness to use queue
1866  */
1867 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1868 {
1869 	if (!qp)
1870 		return;
1871 
1872 	qp->client_ready = true;
1873 
1874 	if (qp->transport->link_is_up)
1875 		schedule_delayed_work(&qp->link_work, 0);
1876 }
1877 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1878 
1879 /**
1880  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1881  * @qp: NTB transport layer queue to be disabled
1882  *
1883  * Notify NTB transport layer of client's desire to no longer receive data on
1884  * transport queue specified.  It is the client's responsibility to ensure all
1885  * entries on queue are purged or otherwise handled appropriately.
1886  */
1887 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1888 {
1889 	struct pci_dev *pdev;
1890 	int val;
1891 
1892 	if (!qp)
1893 		return;
1894 
1895 	pdev = qp->ndev->pdev;
1896 	qp->client_ready = false;
1897 
1898 	val = ntb_spad_read(qp->ndev, QP_LINKS);
1899 
1900 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
1901 			    val & ~BIT(qp->qp_num));
1902 
1903 	if (qp->link_is_up)
1904 		ntb_send_link_down(qp);
1905 	else
1906 		cancel_delayed_work_sync(&qp->link_work);
1907 }
1908 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1909 
1910 /**
1911  * ntb_transport_link_query - Query transport link state
1912  * @qp: NTB transport layer queue to be queried
1913  *
1914  * Query connectivity to the remote system of the NTB transport queue
1915  *
1916  * RETURNS: true for link up or false for link down
1917  */
1918 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1919 {
1920 	if (!qp)
1921 		return false;
1922 
1923 	return qp->link_is_up;
1924 }
1925 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1926 
1927 /**
1928  * ntb_transport_qp_num - Query the qp number
1929  * @qp: NTB transport layer queue to be queried
1930  *
1931  * Query qp number of the NTB transport queue
1932  *
1933  * RETURNS: a zero based number specifying the qp number
1934  */
1935 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1936 {
1937 	if (!qp)
1938 		return 0;
1939 
1940 	return qp->qp_num;
1941 }
1942 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1943 
1944 /**
1945  * ntb_transport_max_size - Query the max payload size of a qp
1946  * @qp: NTB transport layer queue to be queried
1947  *
1948  * Query the maximum payload size permissible on the given qp
1949  *
1950  * RETURNS: the max payload size of a qp
1951  */
1952 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1953 {
1954 	unsigned int max;
1955 
1956 	if (!qp)
1957 		return 0;
1958 
1959 	if (!qp->dma_chan)
1960 		return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1961 
1962 	/* If DMA engine usage is possible, try to find the max size for that */
1963 	max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1964 	max -= max % (1 << qp->dma_chan->device->copy_align);
1965 
1966 	return max;
1967 }
1968 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1969 
1970 static void ntb_transport_doorbell_callback(void *data, int vector)
1971 {
1972 	struct ntb_transport_ctx *nt = data;
1973 	struct ntb_transport_qp *qp;
1974 	u64 db_bits;
1975 	unsigned int qp_num;
1976 
1977 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1978 		   ntb_db_vector_mask(nt->ndev, vector));
1979 
1980 	while (db_bits) {
1981 		qp_num = __ffs(db_bits);
1982 		qp = &nt->qp_vec[qp_num];
1983 
1984 		tasklet_schedule(&qp->rxc_db_work);
1985 
1986 		db_bits &= ~BIT_ULL(qp_num);
1987 	}
1988 }
1989 
1990 static const struct ntb_ctx_ops ntb_transport_ops = {
1991 	.link_event = ntb_transport_event_callback,
1992 	.db_event = ntb_transport_doorbell_callback,
1993 };
1994 
1995 static struct ntb_client ntb_transport_client = {
1996 	.ops = {
1997 		.probe = ntb_transport_probe,
1998 		.remove = ntb_transport_free,
1999 	},
2000 };
2001 
2002 static int __init ntb_transport_init(void)
2003 {
2004 	int rc;
2005 
2006 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2007 
2008 	if (debugfs_initialized())
2009 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2010 
2011 	rc = bus_register(&ntb_transport_bus);
2012 	if (rc)
2013 		goto err_bus;
2014 
2015 	rc = ntb_register_client(&ntb_transport_client);
2016 	if (rc)
2017 		goto err_client;
2018 
2019 	return 0;
2020 
2021 err_client:
2022 	bus_unregister(&ntb_transport_bus);
2023 err_bus:
2024 	debugfs_remove_recursive(nt_debugfs_dir);
2025 	return rc;
2026 }
2027 module_init(ntb_transport_init);
2028 
2029 static void __exit ntb_transport_exit(void)
2030 {
2031 	debugfs_remove_recursive(nt_debugfs_dir);
2032 
2033 	ntb_unregister_client(&ntb_transport_client);
2034 	bus_unregister(&ntb_transport_bus);
2035 }
2036 module_exit(ntb_transport_exit);
2037