xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision 31af04cd)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static struct dentry *nt_debugfs_dir;
97 
98 /* Only two-ports NTB devices are supported */
99 #define PIDX		NTB_DEF_PEER_IDX
100 
101 struct ntb_queue_entry {
102 	/* ntb_queue list reference */
103 	struct list_head entry;
104 	/* pointers to data to be transferred */
105 	void *cb_data;
106 	void *buf;
107 	unsigned int len;
108 	unsigned int flags;
109 	int retries;
110 	int errors;
111 	unsigned int tx_index;
112 	unsigned int rx_index;
113 
114 	struct ntb_transport_qp *qp;
115 	union {
116 		struct ntb_payload_header __iomem *tx_hdr;
117 		struct ntb_payload_header *rx_hdr;
118 	};
119 };
120 
121 struct ntb_rx_info {
122 	unsigned int entry;
123 };
124 
125 struct ntb_transport_qp {
126 	struct ntb_transport_ctx *transport;
127 	struct ntb_dev *ndev;
128 	void *cb_data;
129 	struct dma_chan *tx_dma_chan;
130 	struct dma_chan *rx_dma_chan;
131 
132 	bool client_ready;
133 	bool link_is_up;
134 	bool active;
135 
136 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
137 	u64 qp_bit;
138 
139 	struct ntb_rx_info __iomem *rx_info;
140 	struct ntb_rx_info *remote_rx_info;
141 
142 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
143 			   void *data, int len);
144 	struct list_head tx_free_q;
145 	spinlock_t ntb_tx_free_q_lock;
146 	void __iomem *tx_mw;
147 	dma_addr_t tx_mw_phys;
148 	unsigned int tx_index;
149 	unsigned int tx_max_entry;
150 	unsigned int tx_max_frame;
151 
152 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
153 			   void *data, int len);
154 	struct list_head rx_post_q;
155 	struct list_head rx_pend_q;
156 	struct list_head rx_free_q;
157 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
158 	spinlock_t ntb_rx_q_lock;
159 	void *rx_buff;
160 	unsigned int rx_index;
161 	unsigned int rx_max_entry;
162 	unsigned int rx_max_frame;
163 	unsigned int rx_alloc_entry;
164 	dma_cookie_t last_cookie;
165 	struct tasklet_struct rxc_db_work;
166 
167 	void (*event_handler)(void *data, int status);
168 	struct delayed_work link_work;
169 	struct work_struct link_cleanup;
170 
171 	struct dentry *debugfs_dir;
172 	struct dentry *debugfs_stats;
173 
174 	/* Stats */
175 	u64 rx_bytes;
176 	u64 rx_pkts;
177 	u64 rx_ring_empty;
178 	u64 rx_err_no_buf;
179 	u64 rx_err_oflow;
180 	u64 rx_err_ver;
181 	u64 rx_memcpy;
182 	u64 rx_async;
183 	u64 tx_bytes;
184 	u64 tx_pkts;
185 	u64 tx_ring_full;
186 	u64 tx_err_no_buf;
187 	u64 tx_memcpy;
188 	u64 tx_async;
189 };
190 
191 struct ntb_transport_mw {
192 	phys_addr_t phys_addr;
193 	resource_size_t phys_size;
194 	void __iomem *vbase;
195 	size_t xlat_size;
196 	size_t buff_size;
197 	size_t alloc_size;
198 	void *alloc_addr;
199 	void *virt_addr;
200 	dma_addr_t dma_addr;
201 };
202 
203 struct ntb_transport_client_dev {
204 	struct list_head entry;
205 	struct ntb_transport_ctx *nt;
206 	struct device dev;
207 };
208 
209 struct ntb_transport_ctx {
210 	struct list_head entry;
211 	struct list_head client_devs;
212 
213 	struct ntb_dev *ndev;
214 
215 	struct ntb_transport_mw *mw_vec;
216 	struct ntb_transport_qp *qp_vec;
217 	unsigned int mw_count;
218 	unsigned int qp_count;
219 	u64 qp_bitmap;
220 	u64 qp_bitmap_free;
221 
222 	bool link_is_up;
223 	struct delayed_work link_work;
224 	struct work_struct link_cleanup;
225 
226 	struct dentry *debugfs_node_dir;
227 };
228 
229 enum {
230 	DESC_DONE_FLAG = BIT(0),
231 	LINK_DOWN_FLAG = BIT(1),
232 };
233 
234 struct ntb_payload_header {
235 	unsigned int ver;
236 	unsigned int len;
237 	unsigned int flags;
238 };
239 
240 enum {
241 	VERSION = 0,
242 	QP_LINKS,
243 	NUM_QPS,
244 	NUM_MWS,
245 	MW0_SZ_HIGH,
246 	MW0_SZ_LOW,
247 };
248 
249 #define dev_client_dev(__dev) \
250 	container_of((__dev), struct ntb_transport_client_dev, dev)
251 
252 #define drv_client(__drv) \
253 	container_of((__drv), struct ntb_transport_client, driver)
254 
255 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
256 #define NTB_QP_DEF_NUM_ENTRIES	100
257 #define NTB_LINK_DOWN_TIMEOUT	10
258 
259 static void ntb_transport_rxc_db(unsigned long data);
260 static const struct ntb_ctx_ops ntb_transport_ops;
261 static struct ntb_client ntb_transport_client;
262 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
263 			       struct ntb_queue_entry *entry);
264 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
265 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
266 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
267 
268 
269 static int ntb_transport_bus_match(struct device *dev,
270 				   struct device_driver *drv)
271 {
272 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
273 }
274 
275 static int ntb_transport_bus_probe(struct device *dev)
276 {
277 	const struct ntb_transport_client *client;
278 	int rc = -EINVAL;
279 
280 	get_device(dev);
281 
282 	client = drv_client(dev->driver);
283 	rc = client->probe(dev);
284 	if (rc)
285 		put_device(dev);
286 
287 	return rc;
288 }
289 
290 static int ntb_transport_bus_remove(struct device *dev)
291 {
292 	const struct ntb_transport_client *client;
293 
294 	client = drv_client(dev->driver);
295 	client->remove(dev);
296 
297 	put_device(dev);
298 
299 	return 0;
300 }
301 
302 static struct bus_type ntb_transport_bus = {
303 	.name = "ntb_transport",
304 	.match = ntb_transport_bus_match,
305 	.probe = ntb_transport_bus_probe,
306 	.remove = ntb_transport_bus_remove,
307 };
308 
309 static LIST_HEAD(ntb_transport_list);
310 
311 static int ntb_bus_init(struct ntb_transport_ctx *nt)
312 {
313 	list_add_tail(&nt->entry, &ntb_transport_list);
314 	return 0;
315 }
316 
317 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
318 {
319 	struct ntb_transport_client_dev *client_dev, *cd;
320 
321 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
322 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
323 			dev_name(&client_dev->dev));
324 		list_del(&client_dev->entry);
325 		device_unregister(&client_dev->dev);
326 	}
327 
328 	list_del(&nt->entry);
329 }
330 
331 static void ntb_transport_client_release(struct device *dev)
332 {
333 	struct ntb_transport_client_dev *client_dev;
334 
335 	client_dev = dev_client_dev(dev);
336 	kfree(client_dev);
337 }
338 
339 /**
340  * ntb_transport_unregister_client_dev - Unregister NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Unregister an NTB client device with the NTB transport layer
344  */
345 void ntb_transport_unregister_client_dev(char *device_name)
346 {
347 	struct ntb_transport_client_dev *client, *cd;
348 	struct ntb_transport_ctx *nt;
349 
350 	list_for_each_entry(nt, &ntb_transport_list, entry)
351 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
352 			if (!strncmp(dev_name(&client->dev), device_name,
353 				     strlen(device_name))) {
354 				list_del(&client->entry);
355 				device_unregister(&client->dev);
356 			}
357 }
358 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
359 
360 /**
361  * ntb_transport_register_client_dev - Register NTB client device
362  * @device_name: Name of NTB client device
363  *
364  * Register an NTB client device with the NTB transport layer
365  */
366 int ntb_transport_register_client_dev(char *device_name)
367 {
368 	struct ntb_transport_client_dev *client_dev;
369 	struct ntb_transport_ctx *nt;
370 	int node;
371 	int rc, i = 0;
372 
373 	if (list_empty(&ntb_transport_list))
374 		return -ENODEV;
375 
376 	list_for_each_entry(nt, &ntb_transport_list, entry) {
377 		struct device *dev;
378 
379 		node = dev_to_node(&nt->ndev->dev);
380 
381 		client_dev = kzalloc_node(sizeof(*client_dev),
382 					  GFP_KERNEL, node);
383 		if (!client_dev) {
384 			rc = -ENOMEM;
385 			goto err;
386 		}
387 
388 		dev = &client_dev->dev;
389 
390 		/* setup and register client devices */
391 		dev_set_name(dev, "%s%d", device_name, i);
392 		dev->bus = &ntb_transport_bus;
393 		dev->release = ntb_transport_client_release;
394 		dev->parent = &nt->ndev->dev;
395 
396 		rc = device_register(dev);
397 		if (rc) {
398 			kfree(client_dev);
399 			goto err;
400 		}
401 
402 		list_add_tail(&client_dev->entry, &nt->client_devs);
403 		i++;
404 	}
405 
406 	return 0;
407 
408 err:
409 	ntb_transport_unregister_client_dev(device_name);
410 
411 	return rc;
412 }
413 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
414 
415 /**
416  * ntb_transport_register_client - Register NTB client driver
417  * @drv: NTB client driver to be registered
418  *
419  * Register an NTB client driver with the NTB transport layer
420  *
421  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
422  */
423 int ntb_transport_register_client(struct ntb_transport_client *drv)
424 {
425 	drv->driver.bus = &ntb_transport_bus;
426 
427 	if (list_empty(&ntb_transport_list))
428 		return -ENODEV;
429 
430 	return driver_register(&drv->driver);
431 }
432 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
433 
434 /**
435  * ntb_transport_unregister_client - Unregister NTB client driver
436  * @drv: NTB client driver to be unregistered
437  *
438  * Unregister an NTB client driver with the NTB transport layer
439  *
440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
441  */
442 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
443 {
444 	driver_unregister(&drv->driver);
445 }
446 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
447 
448 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
449 			    loff_t *offp)
450 {
451 	struct ntb_transport_qp *qp;
452 	char *buf;
453 	ssize_t ret, out_offset, out_count;
454 
455 	qp = filp->private_data;
456 
457 	if (!qp || !qp->link_is_up)
458 		return 0;
459 
460 	out_count = 1000;
461 
462 	buf = kmalloc(out_count, GFP_KERNEL);
463 	if (!buf)
464 		return -ENOMEM;
465 
466 	out_offset = 0;
467 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 			       "\nNTB QP stats:\n\n");
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
471 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
472 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
473 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
474 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
475 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 			       "rx_async - \t%llu\n", qp->rx_async);
477 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
478 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
479 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
481 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
485 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 			       "rx_buff - \t0x%p\n", qp->rx_buff);
487 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 			       "rx_index - \t%u\n", qp->rx_index);
489 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
491 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
493 
494 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
495 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
496 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
497 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
498 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
500 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
501 			       "tx_async - \t%llu\n", qp->tx_async);
502 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
503 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
504 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
505 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
506 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
507 			       "tx_mw - \t0x%p\n", qp->tx_mw);
508 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
509 			       "tx_index (H) - \t%u\n", qp->tx_index);
510 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
511 			       "RRI (T) - \t%u\n",
512 			       qp->remote_rx_info->entry);
513 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
515 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
516 			       "free tx - \t%u\n",
517 			       ntb_transport_tx_free_entry(qp));
518 
519 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
520 			       "\n");
521 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 			       "Using TX DMA - \t%s\n",
523 			       qp->tx_dma_chan ? "Yes" : "No");
524 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
525 			       "Using RX DMA - \t%s\n",
526 			       qp->rx_dma_chan ? "Yes" : "No");
527 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 			       "QP Link - \t%s\n",
529 			       qp->link_is_up ? "Up" : "Down");
530 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
531 			       "\n");
532 
533 	if (out_offset > out_count)
534 		out_offset = out_count;
535 
536 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
537 	kfree(buf);
538 	return ret;
539 }
540 
541 static const struct file_operations ntb_qp_debugfs_stats = {
542 	.owner = THIS_MODULE,
543 	.open = simple_open,
544 	.read = debugfs_read,
545 };
546 
547 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
548 			 struct list_head *list)
549 {
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(lock, flags);
553 	list_add_tail(entry, list);
554 	spin_unlock_irqrestore(lock, flags);
555 }
556 
557 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
558 					   struct list_head *list)
559 {
560 	struct ntb_queue_entry *entry;
561 	unsigned long flags;
562 
563 	spin_lock_irqsave(lock, flags);
564 	if (list_empty(list)) {
565 		entry = NULL;
566 		goto out;
567 	}
568 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
569 	list_del(&entry->entry);
570 
571 out:
572 	spin_unlock_irqrestore(lock, flags);
573 
574 	return entry;
575 }
576 
577 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
578 					   struct list_head *list,
579 					   struct list_head *to_list)
580 {
581 	struct ntb_queue_entry *entry;
582 	unsigned long flags;
583 
584 	spin_lock_irqsave(lock, flags);
585 
586 	if (list_empty(list)) {
587 		entry = NULL;
588 	} else {
589 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
590 		list_move_tail(&entry->entry, to_list);
591 	}
592 
593 	spin_unlock_irqrestore(lock, flags);
594 
595 	return entry;
596 }
597 
598 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
599 				     unsigned int qp_num)
600 {
601 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
602 	struct ntb_transport_mw *mw;
603 	struct ntb_dev *ndev = nt->ndev;
604 	struct ntb_queue_entry *entry;
605 	unsigned int rx_size, num_qps_mw;
606 	unsigned int mw_num, mw_count, qp_count;
607 	unsigned int i;
608 	int node;
609 
610 	mw_count = nt->mw_count;
611 	qp_count = nt->qp_count;
612 
613 	mw_num = QP_TO_MW(nt, qp_num);
614 	mw = &nt->mw_vec[mw_num];
615 
616 	if (!mw->virt_addr)
617 		return -ENOMEM;
618 
619 	if (mw_num < qp_count % mw_count)
620 		num_qps_mw = qp_count / mw_count + 1;
621 	else
622 		num_qps_mw = qp_count / mw_count;
623 
624 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
625 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
626 	rx_size -= sizeof(struct ntb_rx_info);
627 
628 	qp->remote_rx_info = qp->rx_buff + rx_size;
629 
630 	/* Due to housekeeping, there must be atleast 2 buffs */
631 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
632 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
633 	qp->rx_index = 0;
634 
635 	/*
636 	 * Checking to see if we have more entries than the default.
637 	 * We should add additional entries if that is the case so we
638 	 * can be in sync with the transport frames.
639 	 */
640 	node = dev_to_node(&ndev->dev);
641 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
642 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
643 		if (!entry)
644 			return -ENOMEM;
645 
646 		entry->qp = qp;
647 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
648 			     &qp->rx_free_q);
649 		qp->rx_alloc_entry++;
650 	}
651 
652 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
653 
654 	/* setup the hdr offsets with 0's */
655 	for (i = 0; i < qp->rx_max_entry; i++) {
656 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
657 				sizeof(struct ntb_payload_header));
658 		memset(offset, 0, sizeof(struct ntb_payload_header));
659 	}
660 
661 	qp->rx_pkts = 0;
662 	qp->tx_pkts = 0;
663 	qp->tx_index = 0;
664 
665 	return 0;
666 }
667 
668 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
669 {
670 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
671 	struct pci_dev *pdev = nt->ndev->pdev;
672 
673 	if (!mw->virt_addr)
674 		return;
675 
676 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
677 	dma_free_coherent(&pdev->dev, mw->alloc_size,
678 			  mw->alloc_addr, mw->dma_addr);
679 	mw->xlat_size = 0;
680 	mw->buff_size = 0;
681 	mw->alloc_size = 0;
682 	mw->alloc_addr = NULL;
683 	mw->virt_addr = NULL;
684 }
685 
686 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
687 			       struct device *dma_dev, size_t align)
688 {
689 	dma_addr_t dma_addr;
690 	void *alloc_addr, *virt_addr;
691 	int rc;
692 
693 	alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
694 					&dma_addr, GFP_KERNEL);
695 	if (!alloc_addr) {
696 		dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
697 			mw->alloc_size);
698 		return -ENOMEM;
699 	}
700 	virt_addr = alloc_addr;
701 
702 	/*
703 	 * we must ensure that the memory address allocated is BAR size
704 	 * aligned in order for the XLAT register to take the value. This
705 	 * is a requirement of the hardware. It is recommended to setup CMA
706 	 * for BAR sizes equal or greater than 4MB.
707 	 */
708 	if (!IS_ALIGNED(dma_addr, align)) {
709 		if (mw->alloc_size > mw->buff_size) {
710 			virt_addr = PTR_ALIGN(alloc_addr, align);
711 			dma_addr = ALIGN(dma_addr, align);
712 		} else {
713 			rc = -ENOMEM;
714 			goto err;
715 		}
716 	}
717 
718 	mw->alloc_addr = alloc_addr;
719 	mw->virt_addr = virt_addr;
720 	mw->dma_addr = dma_addr;
721 
722 	return 0;
723 
724 err:
725 	dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
726 
727 	return rc;
728 }
729 
730 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
731 		      resource_size_t size)
732 {
733 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
734 	struct pci_dev *pdev = nt->ndev->pdev;
735 	size_t xlat_size, buff_size;
736 	resource_size_t xlat_align;
737 	resource_size_t xlat_align_size;
738 	int rc;
739 
740 	if (!size)
741 		return -EINVAL;
742 
743 	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
744 			      &xlat_align_size, NULL);
745 	if (rc)
746 		return rc;
747 
748 	xlat_size = round_up(size, xlat_align_size);
749 	buff_size = round_up(size, xlat_align);
750 
751 	/* No need to re-setup */
752 	if (mw->xlat_size == xlat_size)
753 		return 0;
754 
755 	if (mw->buff_size)
756 		ntb_free_mw(nt, num_mw);
757 
758 	/* Alloc memory for receiving data.  Must be aligned */
759 	mw->xlat_size = xlat_size;
760 	mw->buff_size = buff_size;
761 	mw->alloc_size = buff_size;
762 
763 	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
764 	if (rc) {
765 		mw->alloc_size *= 2;
766 		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
767 		if (rc) {
768 			dev_err(&pdev->dev,
769 				"Unable to alloc aligned MW buff\n");
770 			mw->xlat_size = 0;
771 			mw->buff_size = 0;
772 			mw->alloc_size = 0;
773 			return rc;
774 		}
775 	}
776 
777 	/* Notify HW the memory location of the receive buffer */
778 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
779 			      mw->xlat_size);
780 	if (rc) {
781 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
782 		ntb_free_mw(nt, num_mw);
783 		return -EIO;
784 	}
785 
786 	return 0;
787 }
788 
789 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
790 {
791 	qp->link_is_up = false;
792 	qp->active = false;
793 
794 	qp->tx_index = 0;
795 	qp->rx_index = 0;
796 	qp->rx_bytes = 0;
797 	qp->rx_pkts = 0;
798 	qp->rx_ring_empty = 0;
799 	qp->rx_err_no_buf = 0;
800 	qp->rx_err_oflow = 0;
801 	qp->rx_err_ver = 0;
802 	qp->rx_memcpy = 0;
803 	qp->rx_async = 0;
804 	qp->tx_bytes = 0;
805 	qp->tx_pkts = 0;
806 	qp->tx_ring_full = 0;
807 	qp->tx_err_no_buf = 0;
808 	qp->tx_memcpy = 0;
809 	qp->tx_async = 0;
810 }
811 
812 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
813 {
814 	struct ntb_transport_ctx *nt = qp->transport;
815 	struct pci_dev *pdev = nt->ndev->pdev;
816 
817 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
818 
819 	cancel_delayed_work_sync(&qp->link_work);
820 	ntb_qp_link_down_reset(qp);
821 
822 	if (qp->event_handler)
823 		qp->event_handler(qp->cb_data, qp->link_is_up);
824 }
825 
826 static void ntb_qp_link_cleanup_work(struct work_struct *work)
827 {
828 	struct ntb_transport_qp *qp = container_of(work,
829 						   struct ntb_transport_qp,
830 						   link_cleanup);
831 	struct ntb_transport_ctx *nt = qp->transport;
832 
833 	ntb_qp_link_cleanup(qp);
834 
835 	if (nt->link_is_up)
836 		schedule_delayed_work(&qp->link_work,
837 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
838 }
839 
840 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
841 {
842 	schedule_work(&qp->link_cleanup);
843 }
844 
845 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
846 {
847 	struct ntb_transport_qp *qp;
848 	u64 qp_bitmap_alloc;
849 	unsigned int i, count;
850 
851 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
852 
853 	/* Pass along the info to any clients */
854 	for (i = 0; i < nt->qp_count; i++)
855 		if (qp_bitmap_alloc & BIT_ULL(i)) {
856 			qp = &nt->qp_vec[i];
857 			ntb_qp_link_cleanup(qp);
858 			cancel_work_sync(&qp->link_cleanup);
859 			cancel_delayed_work_sync(&qp->link_work);
860 		}
861 
862 	if (!nt->link_is_up)
863 		cancel_delayed_work_sync(&nt->link_work);
864 
865 	/* The scratchpad registers keep the values if the remote side
866 	 * goes down, blast them now to give them a sane value the next
867 	 * time they are accessed
868 	 */
869 	count = ntb_spad_count(nt->ndev);
870 	for (i = 0; i < count; i++)
871 		ntb_spad_write(nt->ndev, i, 0);
872 }
873 
874 static void ntb_transport_link_cleanup_work(struct work_struct *work)
875 {
876 	struct ntb_transport_ctx *nt =
877 		container_of(work, struct ntb_transport_ctx, link_cleanup);
878 
879 	ntb_transport_link_cleanup(nt);
880 }
881 
882 static void ntb_transport_event_callback(void *data)
883 {
884 	struct ntb_transport_ctx *nt = data;
885 
886 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
887 		schedule_delayed_work(&nt->link_work, 0);
888 	else
889 		schedule_work(&nt->link_cleanup);
890 }
891 
892 static void ntb_transport_link_work(struct work_struct *work)
893 {
894 	struct ntb_transport_ctx *nt =
895 		container_of(work, struct ntb_transport_ctx, link_work.work);
896 	struct ntb_dev *ndev = nt->ndev;
897 	struct pci_dev *pdev = ndev->pdev;
898 	resource_size_t size;
899 	u32 val;
900 	int rc = 0, i, spad;
901 
902 	/* send the local info, in the opposite order of the way we read it */
903 	for (i = 0; i < nt->mw_count; i++) {
904 		size = nt->mw_vec[i].phys_size;
905 
906 		if (max_mw_size && size > max_mw_size)
907 			size = max_mw_size;
908 
909 		spad = MW0_SZ_HIGH + (i * 2);
910 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
911 
912 		spad = MW0_SZ_LOW + (i * 2);
913 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
914 	}
915 
916 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
917 
918 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
919 
920 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
921 
922 	/* Query the remote side for its info */
923 	val = ntb_spad_read(ndev, VERSION);
924 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
925 	if (val != NTB_TRANSPORT_VERSION)
926 		goto out;
927 
928 	val = ntb_spad_read(ndev, NUM_QPS);
929 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
930 	if (val != nt->qp_count)
931 		goto out;
932 
933 	val = ntb_spad_read(ndev, NUM_MWS);
934 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
935 	if (val != nt->mw_count)
936 		goto out;
937 
938 	for (i = 0; i < nt->mw_count; i++) {
939 		u64 val64;
940 
941 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
942 		val64 = (u64)val << 32;
943 
944 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
945 		val64 |= val;
946 
947 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
948 
949 		rc = ntb_set_mw(nt, i, val64);
950 		if (rc)
951 			goto out1;
952 	}
953 
954 	nt->link_is_up = true;
955 
956 	for (i = 0; i < nt->qp_count; i++) {
957 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
958 
959 		ntb_transport_setup_qp_mw(nt, i);
960 
961 		if (qp->client_ready)
962 			schedule_delayed_work(&qp->link_work, 0);
963 	}
964 
965 	return;
966 
967 out1:
968 	for (i = 0; i < nt->mw_count; i++)
969 		ntb_free_mw(nt, i);
970 
971 	/* if there's an actual failure, we should just bail */
972 	if (rc < 0)
973 		return;
974 
975 out:
976 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
977 		schedule_delayed_work(&nt->link_work,
978 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
979 }
980 
981 static void ntb_qp_link_work(struct work_struct *work)
982 {
983 	struct ntb_transport_qp *qp = container_of(work,
984 						   struct ntb_transport_qp,
985 						   link_work.work);
986 	struct pci_dev *pdev = qp->ndev->pdev;
987 	struct ntb_transport_ctx *nt = qp->transport;
988 	int val;
989 
990 	WARN_ON(!nt->link_is_up);
991 
992 	val = ntb_spad_read(nt->ndev, QP_LINKS);
993 
994 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
995 
996 	/* query remote spad for qp ready bits */
997 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
998 
999 	/* See if the remote side is up */
1000 	if (val & BIT(qp->qp_num)) {
1001 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1002 		qp->link_is_up = true;
1003 		qp->active = true;
1004 
1005 		if (qp->event_handler)
1006 			qp->event_handler(qp->cb_data, qp->link_is_up);
1007 
1008 		if (qp->active)
1009 			tasklet_schedule(&qp->rxc_db_work);
1010 	} else if (nt->link_is_up)
1011 		schedule_delayed_work(&qp->link_work,
1012 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1013 }
1014 
1015 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1016 				    unsigned int qp_num)
1017 {
1018 	struct ntb_transport_qp *qp;
1019 	phys_addr_t mw_base;
1020 	resource_size_t mw_size;
1021 	unsigned int num_qps_mw, tx_size;
1022 	unsigned int mw_num, mw_count, qp_count;
1023 	u64 qp_offset;
1024 
1025 	mw_count = nt->mw_count;
1026 	qp_count = nt->qp_count;
1027 
1028 	mw_num = QP_TO_MW(nt, qp_num);
1029 
1030 	qp = &nt->qp_vec[qp_num];
1031 	qp->qp_num = qp_num;
1032 	qp->transport = nt;
1033 	qp->ndev = nt->ndev;
1034 	qp->client_ready = false;
1035 	qp->event_handler = NULL;
1036 	ntb_qp_link_down_reset(qp);
1037 
1038 	if (mw_num < qp_count % mw_count)
1039 		num_qps_mw = qp_count / mw_count + 1;
1040 	else
1041 		num_qps_mw = qp_count / mw_count;
1042 
1043 	mw_base = nt->mw_vec[mw_num].phys_addr;
1044 	mw_size = nt->mw_vec[mw_num].phys_size;
1045 
1046 	if (max_mw_size && mw_size > max_mw_size)
1047 		mw_size = max_mw_size;
1048 
1049 	tx_size = (unsigned int)mw_size / num_qps_mw;
1050 	qp_offset = tx_size * (qp_num / mw_count);
1051 
1052 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1053 	if (!qp->tx_mw)
1054 		return -EINVAL;
1055 
1056 	qp->tx_mw_phys = mw_base + qp_offset;
1057 	if (!qp->tx_mw_phys)
1058 		return -EINVAL;
1059 
1060 	tx_size -= sizeof(struct ntb_rx_info);
1061 	qp->rx_info = qp->tx_mw + tx_size;
1062 
1063 	/* Due to housekeeping, there must be atleast 2 buffs */
1064 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1065 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1066 
1067 	if (nt->debugfs_node_dir) {
1068 		char debugfs_name[4];
1069 
1070 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1071 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1072 						     nt->debugfs_node_dir);
1073 
1074 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1075 							qp->debugfs_dir, qp,
1076 							&ntb_qp_debugfs_stats);
1077 	} else {
1078 		qp->debugfs_dir = NULL;
1079 		qp->debugfs_stats = NULL;
1080 	}
1081 
1082 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1083 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1084 
1085 	spin_lock_init(&qp->ntb_rx_q_lock);
1086 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1087 
1088 	INIT_LIST_HEAD(&qp->rx_post_q);
1089 	INIT_LIST_HEAD(&qp->rx_pend_q);
1090 	INIT_LIST_HEAD(&qp->rx_free_q);
1091 	INIT_LIST_HEAD(&qp->tx_free_q);
1092 
1093 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1094 		     (unsigned long)qp);
1095 
1096 	return 0;
1097 }
1098 
1099 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1100 {
1101 	struct ntb_transport_ctx *nt;
1102 	struct ntb_transport_mw *mw;
1103 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1104 	u64 qp_bitmap;
1105 	int node;
1106 	int rc, i;
1107 
1108 	mw_count = ntb_peer_mw_count(ndev);
1109 
1110 	if (!ndev->ops->mw_set_trans) {
1111 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1112 		return -EINVAL;
1113 	}
1114 
1115 	if (ntb_db_is_unsafe(ndev))
1116 		dev_dbg(&ndev->dev,
1117 			"doorbell is unsafe, proceed anyway...\n");
1118 	if (ntb_spad_is_unsafe(ndev))
1119 		dev_dbg(&ndev->dev,
1120 			"scratchpad is unsafe, proceed anyway...\n");
1121 
1122 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1123 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1124 
1125 	node = dev_to_node(&ndev->dev);
1126 
1127 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1128 	if (!nt)
1129 		return -ENOMEM;
1130 
1131 	nt->ndev = ndev;
1132 	spad_count = ntb_spad_count(ndev);
1133 
1134 	/* Limit the MW's based on the availability of scratchpads */
1135 
1136 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1137 		nt->mw_count = 0;
1138 		rc = -EINVAL;
1139 		goto err;
1140 	}
1141 
1142 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1143 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1144 
1145 	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1146 				  GFP_KERNEL, node);
1147 	if (!nt->mw_vec) {
1148 		rc = -ENOMEM;
1149 		goto err;
1150 	}
1151 
1152 	for (i = 0; i < mw_count; i++) {
1153 		mw = &nt->mw_vec[i];
1154 
1155 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1156 					  &mw->phys_size);
1157 		if (rc)
1158 			goto err1;
1159 
1160 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1161 		if (!mw->vbase) {
1162 			rc = -ENOMEM;
1163 			goto err1;
1164 		}
1165 
1166 		mw->buff_size = 0;
1167 		mw->xlat_size = 0;
1168 		mw->virt_addr = NULL;
1169 		mw->dma_addr = 0;
1170 	}
1171 
1172 	qp_bitmap = ntb_db_valid_mask(ndev);
1173 
1174 	qp_count = ilog2(qp_bitmap);
1175 	if (max_num_clients && max_num_clients < qp_count)
1176 		qp_count = max_num_clients;
1177 	else if (nt->mw_count < qp_count)
1178 		qp_count = nt->mw_count;
1179 
1180 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1181 
1182 	nt->qp_count = qp_count;
1183 	nt->qp_bitmap = qp_bitmap;
1184 	nt->qp_bitmap_free = qp_bitmap;
1185 
1186 	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1187 				  GFP_KERNEL, node);
1188 	if (!nt->qp_vec) {
1189 		rc = -ENOMEM;
1190 		goto err1;
1191 	}
1192 
1193 	if (nt_debugfs_dir) {
1194 		nt->debugfs_node_dir =
1195 			debugfs_create_dir(pci_name(ndev->pdev),
1196 					   nt_debugfs_dir);
1197 	}
1198 
1199 	for (i = 0; i < qp_count; i++) {
1200 		rc = ntb_transport_init_queue(nt, i);
1201 		if (rc)
1202 			goto err2;
1203 	}
1204 
1205 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1206 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1207 
1208 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1209 	if (rc)
1210 		goto err2;
1211 
1212 	INIT_LIST_HEAD(&nt->client_devs);
1213 	rc = ntb_bus_init(nt);
1214 	if (rc)
1215 		goto err3;
1216 
1217 	nt->link_is_up = false;
1218 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1219 	ntb_link_event(ndev);
1220 
1221 	return 0;
1222 
1223 err3:
1224 	ntb_clear_ctx(ndev);
1225 err2:
1226 	kfree(nt->qp_vec);
1227 err1:
1228 	while (i--) {
1229 		mw = &nt->mw_vec[i];
1230 		iounmap(mw->vbase);
1231 	}
1232 	kfree(nt->mw_vec);
1233 err:
1234 	kfree(nt);
1235 	return rc;
1236 }
1237 
1238 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1239 {
1240 	struct ntb_transport_ctx *nt = ndev->ctx;
1241 	struct ntb_transport_qp *qp;
1242 	u64 qp_bitmap_alloc;
1243 	int i;
1244 
1245 	ntb_transport_link_cleanup(nt);
1246 	cancel_work_sync(&nt->link_cleanup);
1247 	cancel_delayed_work_sync(&nt->link_work);
1248 
1249 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1250 
1251 	/* verify that all the qp's are freed */
1252 	for (i = 0; i < nt->qp_count; i++) {
1253 		qp = &nt->qp_vec[i];
1254 		if (qp_bitmap_alloc & BIT_ULL(i))
1255 			ntb_transport_free_queue(qp);
1256 		debugfs_remove_recursive(qp->debugfs_dir);
1257 	}
1258 
1259 	ntb_link_disable(ndev);
1260 	ntb_clear_ctx(ndev);
1261 
1262 	ntb_bus_remove(nt);
1263 
1264 	for (i = nt->mw_count; i--; ) {
1265 		ntb_free_mw(nt, i);
1266 		iounmap(nt->mw_vec[i].vbase);
1267 	}
1268 
1269 	kfree(nt->qp_vec);
1270 	kfree(nt->mw_vec);
1271 	kfree(nt);
1272 }
1273 
1274 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1275 {
1276 	struct ntb_queue_entry *entry;
1277 	void *cb_data;
1278 	unsigned int len;
1279 	unsigned long irqflags;
1280 
1281 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1282 
1283 	while (!list_empty(&qp->rx_post_q)) {
1284 		entry = list_first_entry(&qp->rx_post_q,
1285 					 struct ntb_queue_entry, entry);
1286 		if (!(entry->flags & DESC_DONE_FLAG))
1287 			break;
1288 
1289 		entry->rx_hdr->flags = 0;
1290 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1291 
1292 		cb_data = entry->cb_data;
1293 		len = entry->len;
1294 
1295 		list_move_tail(&entry->entry, &qp->rx_free_q);
1296 
1297 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1298 
1299 		if (qp->rx_handler && qp->client_ready)
1300 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1301 
1302 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1303 	}
1304 
1305 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1306 }
1307 
1308 static void ntb_rx_copy_callback(void *data,
1309 				 const struct dmaengine_result *res)
1310 {
1311 	struct ntb_queue_entry *entry = data;
1312 
1313 	/* we need to check DMA results if we are using DMA */
1314 	if (res) {
1315 		enum dmaengine_tx_result dma_err = res->result;
1316 
1317 		switch (dma_err) {
1318 		case DMA_TRANS_READ_FAILED:
1319 		case DMA_TRANS_WRITE_FAILED:
1320 			entry->errors++;
1321 			/* fall through */
1322 		case DMA_TRANS_ABORTED:
1323 		{
1324 			struct ntb_transport_qp *qp = entry->qp;
1325 			void *offset = qp->rx_buff + qp->rx_max_frame *
1326 					qp->rx_index;
1327 
1328 			ntb_memcpy_rx(entry, offset);
1329 			qp->rx_memcpy++;
1330 			return;
1331 		}
1332 
1333 		case DMA_TRANS_NOERROR:
1334 		default:
1335 			break;
1336 		}
1337 	}
1338 
1339 	entry->flags |= DESC_DONE_FLAG;
1340 
1341 	ntb_complete_rxc(entry->qp);
1342 }
1343 
1344 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1345 {
1346 	void *buf = entry->buf;
1347 	size_t len = entry->len;
1348 
1349 	memcpy(buf, offset, len);
1350 
1351 	/* Ensure that the data is fully copied out before clearing the flag */
1352 	wmb();
1353 
1354 	ntb_rx_copy_callback(entry, NULL);
1355 }
1356 
1357 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1358 {
1359 	struct dma_async_tx_descriptor *txd;
1360 	struct ntb_transport_qp *qp = entry->qp;
1361 	struct dma_chan *chan = qp->rx_dma_chan;
1362 	struct dma_device *device;
1363 	size_t pay_off, buff_off, len;
1364 	struct dmaengine_unmap_data *unmap;
1365 	dma_cookie_t cookie;
1366 	void *buf = entry->buf;
1367 
1368 	len = entry->len;
1369 	device = chan->device;
1370 	pay_off = (size_t)offset & ~PAGE_MASK;
1371 	buff_off = (size_t)buf & ~PAGE_MASK;
1372 
1373 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1374 		goto err;
1375 
1376 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1377 	if (!unmap)
1378 		goto err;
1379 
1380 	unmap->len = len;
1381 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1382 				      pay_off, len, DMA_TO_DEVICE);
1383 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1384 		goto err_get_unmap;
1385 
1386 	unmap->to_cnt = 1;
1387 
1388 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1389 				      buff_off, len, DMA_FROM_DEVICE);
1390 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1391 		goto err_get_unmap;
1392 
1393 	unmap->from_cnt = 1;
1394 
1395 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1396 					     unmap->addr[0], len,
1397 					     DMA_PREP_INTERRUPT);
1398 	if (!txd)
1399 		goto err_get_unmap;
1400 
1401 	txd->callback_result = ntb_rx_copy_callback;
1402 	txd->callback_param = entry;
1403 	dma_set_unmap(txd, unmap);
1404 
1405 	cookie = dmaengine_submit(txd);
1406 	if (dma_submit_error(cookie))
1407 		goto err_set_unmap;
1408 
1409 	dmaengine_unmap_put(unmap);
1410 
1411 	qp->last_cookie = cookie;
1412 
1413 	qp->rx_async++;
1414 
1415 	return 0;
1416 
1417 err_set_unmap:
1418 	dmaengine_unmap_put(unmap);
1419 err_get_unmap:
1420 	dmaengine_unmap_put(unmap);
1421 err:
1422 	return -ENXIO;
1423 }
1424 
1425 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1426 {
1427 	struct ntb_transport_qp *qp = entry->qp;
1428 	struct dma_chan *chan = qp->rx_dma_chan;
1429 	int res;
1430 
1431 	if (!chan)
1432 		goto err;
1433 
1434 	if (entry->len < copy_bytes)
1435 		goto err;
1436 
1437 	res = ntb_async_rx_submit(entry, offset);
1438 	if (res < 0)
1439 		goto err;
1440 
1441 	if (!entry->retries)
1442 		qp->rx_async++;
1443 
1444 	return;
1445 
1446 err:
1447 	ntb_memcpy_rx(entry, offset);
1448 	qp->rx_memcpy++;
1449 }
1450 
1451 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1452 {
1453 	struct ntb_payload_header *hdr;
1454 	struct ntb_queue_entry *entry;
1455 	void *offset;
1456 
1457 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1458 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1459 
1460 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1461 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1462 
1463 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1464 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1465 		qp->rx_ring_empty++;
1466 		return -EAGAIN;
1467 	}
1468 
1469 	if (hdr->flags & LINK_DOWN_FLAG) {
1470 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1471 		ntb_qp_link_down(qp);
1472 		hdr->flags = 0;
1473 		return -EAGAIN;
1474 	}
1475 
1476 	if (hdr->ver != (u32)qp->rx_pkts) {
1477 		dev_dbg(&qp->ndev->pdev->dev,
1478 			"version mismatch, expected %llu - got %u\n",
1479 			qp->rx_pkts, hdr->ver);
1480 		qp->rx_err_ver++;
1481 		return -EIO;
1482 	}
1483 
1484 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1485 	if (!entry) {
1486 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1487 		qp->rx_err_no_buf++;
1488 		return -EAGAIN;
1489 	}
1490 
1491 	entry->rx_hdr = hdr;
1492 	entry->rx_index = qp->rx_index;
1493 
1494 	if (hdr->len > entry->len) {
1495 		dev_dbg(&qp->ndev->pdev->dev,
1496 			"receive buffer overflow! Wanted %d got %d\n",
1497 			hdr->len, entry->len);
1498 		qp->rx_err_oflow++;
1499 
1500 		entry->len = -EIO;
1501 		entry->flags |= DESC_DONE_FLAG;
1502 
1503 		ntb_complete_rxc(qp);
1504 	} else {
1505 		dev_dbg(&qp->ndev->pdev->dev,
1506 			"RX OK index %u ver %u size %d into buf size %d\n",
1507 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1508 
1509 		qp->rx_bytes += hdr->len;
1510 		qp->rx_pkts++;
1511 
1512 		entry->len = hdr->len;
1513 
1514 		ntb_async_rx(entry, offset);
1515 	}
1516 
1517 	qp->rx_index++;
1518 	qp->rx_index %= qp->rx_max_entry;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ntb_transport_rxc_db(unsigned long data)
1524 {
1525 	struct ntb_transport_qp *qp = (void *)data;
1526 	int rc, i;
1527 
1528 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1529 		__func__, qp->qp_num);
1530 
1531 	/* Limit the number of packets processed in a single interrupt to
1532 	 * provide fairness to others
1533 	 */
1534 	for (i = 0; i < qp->rx_max_entry; i++) {
1535 		rc = ntb_process_rxc(qp);
1536 		if (rc)
1537 			break;
1538 	}
1539 
1540 	if (i && qp->rx_dma_chan)
1541 		dma_async_issue_pending(qp->rx_dma_chan);
1542 
1543 	if (i == qp->rx_max_entry) {
1544 		/* there is more work to do */
1545 		if (qp->active)
1546 			tasklet_schedule(&qp->rxc_db_work);
1547 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1548 		/* the doorbell bit is set: clear it */
1549 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1550 		/* ntb_db_read ensures ntb_db_clear write is committed */
1551 		ntb_db_read(qp->ndev);
1552 
1553 		/* an interrupt may have arrived between finishing
1554 		 * ntb_process_rxc and clearing the doorbell bit:
1555 		 * there might be some more work to do.
1556 		 */
1557 		if (qp->active)
1558 			tasklet_schedule(&qp->rxc_db_work);
1559 	}
1560 }
1561 
1562 static void ntb_tx_copy_callback(void *data,
1563 				 const struct dmaengine_result *res)
1564 {
1565 	struct ntb_queue_entry *entry = data;
1566 	struct ntb_transport_qp *qp = entry->qp;
1567 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1568 
1569 	/* we need to check DMA results if we are using DMA */
1570 	if (res) {
1571 		enum dmaengine_tx_result dma_err = res->result;
1572 
1573 		switch (dma_err) {
1574 		case DMA_TRANS_READ_FAILED:
1575 		case DMA_TRANS_WRITE_FAILED:
1576 			entry->errors++;
1577 			/* fall through */
1578 		case DMA_TRANS_ABORTED:
1579 		{
1580 			void __iomem *offset =
1581 				qp->tx_mw + qp->tx_max_frame *
1582 				entry->tx_index;
1583 
1584 			/* resubmit via CPU */
1585 			ntb_memcpy_tx(entry, offset);
1586 			qp->tx_memcpy++;
1587 			return;
1588 		}
1589 
1590 		case DMA_TRANS_NOERROR:
1591 		default:
1592 			break;
1593 		}
1594 	}
1595 
1596 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1597 
1598 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1599 
1600 	/* The entry length can only be zero if the packet is intended to be a
1601 	 * "link down" or similar.  Since no payload is being sent in these
1602 	 * cases, there is nothing to add to the completion queue.
1603 	 */
1604 	if (entry->len > 0) {
1605 		qp->tx_bytes += entry->len;
1606 
1607 		if (qp->tx_handler)
1608 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1609 				       entry->len);
1610 	}
1611 
1612 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1613 }
1614 
1615 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1616 {
1617 #ifdef ARCH_HAS_NOCACHE_UACCESS
1618 	/*
1619 	 * Using non-temporal mov to improve performance on non-cached
1620 	 * writes, even though we aren't actually copying from user space.
1621 	 */
1622 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1623 #else
1624 	memcpy_toio(offset, entry->buf, entry->len);
1625 #endif
1626 
1627 	/* Ensure that the data is fully copied out before setting the flags */
1628 	wmb();
1629 
1630 	ntb_tx_copy_callback(entry, NULL);
1631 }
1632 
1633 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1634 			       struct ntb_queue_entry *entry)
1635 {
1636 	struct dma_async_tx_descriptor *txd;
1637 	struct dma_chan *chan = qp->tx_dma_chan;
1638 	struct dma_device *device;
1639 	size_t len = entry->len;
1640 	void *buf = entry->buf;
1641 	size_t dest_off, buff_off;
1642 	struct dmaengine_unmap_data *unmap;
1643 	dma_addr_t dest;
1644 	dma_cookie_t cookie;
1645 
1646 	device = chan->device;
1647 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1648 	buff_off = (size_t)buf & ~PAGE_MASK;
1649 	dest_off = (size_t)dest & ~PAGE_MASK;
1650 
1651 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1652 		goto err;
1653 
1654 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1655 	if (!unmap)
1656 		goto err;
1657 
1658 	unmap->len = len;
1659 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1660 				      buff_off, len, DMA_TO_DEVICE);
1661 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1662 		goto err_get_unmap;
1663 
1664 	unmap->to_cnt = 1;
1665 
1666 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1667 					     DMA_PREP_INTERRUPT);
1668 	if (!txd)
1669 		goto err_get_unmap;
1670 
1671 	txd->callback_result = ntb_tx_copy_callback;
1672 	txd->callback_param = entry;
1673 	dma_set_unmap(txd, unmap);
1674 
1675 	cookie = dmaengine_submit(txd);
1676 	if (dma_submit_error(cookie))
1677 		goto err_set_unmap;
1678 
1679 	dmaengine_unmap_put(unmap);
1680 
1681 	dma_async_issue_pending(chan);
1682 
1683 	return 0;
1684 err_set_unmap:
1685 	dmaengine_unmap_put(unmap);
1686 err_get_unmap:
1687 	dmaengine_unmap_put(unmap);
1688 err:
1689 	return -ENXIO;
1690 }
1691 
1692 static void ntb_async_tx(struct ntb_transport_qp *qp,
1693 			 struct ntb_queue_entry *entry)
1694 {
1695 	struct ntb_payload_header __iomem *hdr;
1696 	struct dma_chan *chan = qp->tx_dma_chan;
1697 	void __iomem *offset;
1698 	int res;
1699 
1700 	entry->tx_index = qp->tx_index;
1701 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1702 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1703 	entry->tx_hdr = hdr;
1704 
1705 	iowrite32(entry->len, &hdr->len);
1706 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1707 
1708 	if (!chan)
1709 		goto err;
1710 
1711 	if (entry->len < copy_bytes)
1712 		goto err;
1713 
1714 	res = ntb_async_tx_submit(qp, entry);
1715 	if (res < 0)
1716 		goto err;
1717 
1718 	if (!entry->retries)
1719 		qp->tx_async++;
1720 
1721 	return;
1722 
1723 err:
1724 	ntb_memcpy_tx(entry, offset);
1725 	qp->tx_memcpy++;
1726 }
1727 
1728 static int ntb_process_tx(struct ntb_transport_qp *qp,
1729 			  struct ntb_queue_entry *entry)
1730 {
1731 	if (qp->tx_index == qp->remote_rx_info->entry) {
1732 		qp->tx_ring_full++;
1733 		return -EAGAIN;
1734 	}
1735 
1736 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1737 		if (qp->tx_handler)
1738 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1739 
1740 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1741 			     &qp->tx_free_q);
1742 		return 0;
1743 	}
1744 
1745 	ntb_async_tx(qp, entry);
1746 
1747 	qp->tx_index++;
1748 	qp->tx_index %= qp->tx_max_entry;
1749 
1750 	qp->tx_pkts++;
1751 
1752 	return 0;
1753 }
1754 
1755 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1756 {
1757 	struct pci_dev *pdev = qp->ndev->pdev;
1758 	struct ntb_queue_entry *entry;
1759 	int i, rc;
1760 
1761 	if (!qp->link_is_up)
1762 		return;
1763 
1764 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1765 
1766 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1767 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1768 		if (entry)
1769 			break;
1770 		msleep(100);
1771 	}
1772 
1773 	if (!entry)
1774 		return;
1775 
1776 	entry->cb_data = NULL;
1777 	entry->buf = NULL;
1778 	entry->len = 0;
1779 	entry->flags = LINK_DOWN_FLAG;
1780 
1781 	rc = ntb_process_tx(qp, entry);
1782 	if (rc)
1783 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1784 			qp->qp_num);
1785 
1786 	ntb_qp_link_down_reset(qp);
1787 }
1788 
1789 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1790 {
1791 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1792 }
1793 
1794 /**
1795  * ntb_transport_create_queue - Create a new NTB transport layer queue
1796  * @rx_handler: receive callback function
1797  * @tx_handler: transmit callback function
1798  * @event_handler: event callback function
1799  *
1800  * Create a new NTB transport layer queue and provide the queue with a callback
1801  * routine for both transmit and receive.  The receive callback routine will be
1802  * used to pass up data when the transport has received it on the queue.   The
1803  * transmit callback routine will be called when the transport has completed the
1804  * transmission of the data on the queue and the data is ready to be freed.
1805  *
1806  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1807  */
1808 struct ntb_transport_qp *
1809 ntb_transport_create_queue(void *data, struct device *client_dev,
1810 			   const struct ntb_queue_handlers *handlers)
1811 {
1812 	struct ntb_dev *ndev;
1813 	struct pci_dev *pdev;
1814 	struct ntb_transport_ctx *nt;
1815 	struct ntb_queue_entry *entry;
1816 	struct ntb_transport_qp *qp;
1817 	u64 qp_bit;
1818 	unsigned int free_queue;
1819 	dma_cap_mask_t dma_mask;
1820 	int node;
1821 	int i;
1822 
1823 	ndev = dev_ntb(client_dev->parent);
1824 	pdev = ndev->pdev;
1825 	nt = ndev->ctx;
1826 
1827 	node = dev_to_node(&ndev->dev);
1828 
1829 	free_queue = ffs(nt->qp_bitmap_free);
1830 	if (!free_queue)
1831 		goto err;
1832 
1833 	/* decrement free_queue to make it zero based */
1834 	free_queue--;
1835 
1836 	qp = &nt->qp_vec[free_queue];
1837 	qp_bit = BIT_ULL(qp->qp_num);
1838 
1839 	nt->qp_bitmap_free &= ~qp_bit;
1840 
1841 	qp->cb_data = data;
1842 	qp->rx_handler = handlers->rx_handler;
1843 	qp->tx_handler = handlers->tx_handler;
1844 	qp->event_handler = handlers->event_handler;
1845 
1846 	dma_cap_zero(dma_mask);
1847 	dma_cap_set(DMA_MEMCPY, dma_mask);
1848 
1849 	if (use_dma) {
1850 		qp->tx_dma_chan =
1851 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1852 					    (void *)(unsigned long)node);
1853 		if (!qp->tx_dma_chan)
1854 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1855 
1856 		qp->rx_dma_chan =
1857 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1858 					    (void *)(unsigned long)node);
1859 		if (!qp->rx_dma_chan)
1860 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1861 	} else {
1862 		qp->tx_dma_chan = NULL;
1863 		qp->rx_dma_chan = NULL;
1864 	}
1865 
1866 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1867 		qp->tx_dma_chan ? "DMA" : "CPU");
1868 
1869 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1870 		qp->rx_dma_chan ? "DMA" : "CPU");
1871 
1872 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1873 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
1874 		if (!entry)
1875 			goto err1;
1876 
1877 		entry->qp = qp;
1878 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1879 			     &qp->rx_free_q);
1880 	}
1881 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1882 
1883 	for (i = 0; i < qp->tx_max_entry; i++) {
1884 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
1885 		if (!entry)
1886 			goto err2;
1887 
1888 		entry->qp = qp;
1889 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1890 			     &qp->tx_free_q);
1891 	}
1892 
1893 	ntb_db_clear(qp->ndev, qp_bit);
1894 	ntb_db_clear_mask(qp->ndev, qp_bit);
1895 
1896 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1897 
1898 	return qp;
1899 
1900 err2:
1901 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1902 		kfree(entry);
1903 err1:
1904 	qp->rx_alloc_entry = 0;
1905 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1906 		kfree(entry);
1907 	if (qp->tx_dma_chan)
1908 		dma_release_channel(qp->tx_dma_chan);
1909 	if (qp->rx_dma_chan)
1910 		dma_release_channel(qp->rx_dma_chan);
1911 	nt->qp_bitmap_free |= qp_bit;
1912 err:
1913 	return NULL;
1914 }
1915 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1916 
1917 /**
1918  * ntb_transport_free_queue - Frees NTB transport queue
1919  * @qp: NTB queue to be freed
1920  *
1921  * Frees NTB transport queue
1922  */
1923 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1924 {
1925 	struct pci_dev *pdev;
1926 	struct ntb_queue_entry *entry;
1927 	u64 qp_bit;
1928 
1929 	if (!qp)
1930 		return;
1931 
1932 	pdev = qp->ndev->pdev;
1933 
1934 	qp->active = false;
1935 
1936 	if (qp->tx_dma_chan) {
1937 		struct dma_chan *chan = qp->tx_dma_chan;
1938 		/* Putting the dma_chan to NULL will force any new traffic to be
1939 		 * processed by the CPU instead of the DAM engine
1940 		 */
1941 		qp->tx_dma_chan = NULL;
1942 
1943 		/* Try to be nice and wait for any queued DMA engine
1944 		 * transactions to process before smashing it with a rock
1945 		 */
1946 		dma_sync_wait(chan, qp->last_cookie);
1947 		dmaengine_terminate_all(chan);
1948 		dma_release_channel(chan);
1949 	}
1950 
1951 	if (qp->rx_dma_chan) {
1952 		struct dma_chan *chan = qp->rx_dma_chan;
1953 		/* Putting the dma_chan to NULL will force any new traffic to be
1954 		 * processed by the CPU instead of the DAM engine
1955 		 */
1956 		qp->rx_dma_chan = NULL;
1957 
1958 		/* Try to be nice and wait for any queued DMA engine
1959 		 * transactions to process before smashing it with a rock
1960 		 */
1961 		dma_sync_wait(chan, qp->last_cookie);
1962 		dmaengine_terminate_all(chan);
1963 		dma_release_channel(chan);
1964 	}
1965 
1966 	qp_bit = BIT_ULL(qp->qp_num);
1967 
1968 	ntb_db_set_mask(qp->ndev, qp_bit);
1969 	tasklet_kill(&qp->rxc_db_work);
1970 
1971 	cancel_delayed_work_sync(&qp->link_work);
1972 
1973 	qp->cb_data = NULL;
1974 	qp->rx_handler = NULL;
1975 	qp->tx_handler = NULL;
1976 	qp->event_handler = NULL;
1977 
1978 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1979 		kfree(entry);
1980 
1981 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1982 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1983 		kfree(entry);
1984 	}
1985 
1986 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1987 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1988 		kfree(entry);
1989 	}
1990 
1991 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1992 		kfree(entry);
1993 
1994 	qp->transport->qp_bitmap_free |= qp_bit;
1995 
1996 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1997 }
1998 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1999 
2000 /**
2001  * ntb_transport_rx_remove - Dequeues enqueued rx packet
2002  * @qp: NTB queue to be freed
2003  * @len: pointer to variable to write enqueued buffers length
2004  *
2005  * Dequeues unused buffers from receive queue.  Should only be used during
2006  * shutdown of qp.
2007  *
2008  * RETURNS: NULL error value on error, or void* for success.
2009  */
2010 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2011 {
2012 	struct ntb_queue_entry *entry;
2013 	void *buf;
2014 
2015 	if (!qp || qp->client_ready)
2016 		return NULL;
2017 
2018 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2019 	if (!entry)
2020 		return NULL;
2021 
2022 	buf = entry->cb_data;
2023 	*len = entry->len;
2024 
2025 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2026 
2027 	return buf;
2028 }
2029 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2030 
2031 /**
2032  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2033  * @qp: NTB transport layer queue the entry is to be enqueued on
2034  * @cb: per buffer pointer for callback function to use
2035  * @data: pointer to data buffer that incoming packets will be copied into
2036  * @len: length of the data buffer
2037  *
2038  * Enqueue a new receive buffer onto the transport queue into which a NTB
2039  * payload can be received into.
2040  *
2041  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2042  */
2043 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2044 			     unsigned int len)
2045 {
2046 	struct ntb_queue_entry *entry;
2047 
2048 	if (!qp)
2049 		return -EINVAL;
2050 
2051 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2052 	if (!entry)
2053 		return -ENOMEM;
2054 
2055 	entry->cb_data = cb;
2056 	entry->buf = data;
2057 	entry->len = len;
2058 	entry->flags = 0;
2059 	entry->retries = 0;
2060 	entry->errors = 0;
2061 	entry->rx_index = 0;
2062 
2063 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2064 
2065 	if (qp->active)
2066 		tasklet_schedule(&qp->rxc_db_work);
2067 
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2071 
2072 /**
2073  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2074  * @qp: NTB transport layer queue the entry is to be enqueued on
2075  * @cb: per buffer pointer for callback function to use
2076  * @data: pointer to data buffer that will be sent
2077  * @len: length of the data buffer
2078  *
2079  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2080  * payload will be transmitted.  This assumes that a lock is being held to
2081  * serialize access to the qp.
2082  *
2083  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2084  */
2085 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2086 			     unsigned int len)
2087 {
2088 	struct ntb_queue_entry *entry;
2089 	int rc;
2090 
2091 	if (!qp || !qp->link_is_up || !len)
2092 		return -EINVAL;
2093 
2094 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2095 	if (!entry) {
2096 		qp->tx_err_no_buf++;
2097 		return -EBUSY;
2098 	}
2099 
2100 	entry->cb_data = cb;
2101 	entry->buf = data;
2102 	entry->len = len;
2103 	entry->flags = 0;
2104 	entry->errors = 0;
2105 	entry->retries = 0;
2106 	entry->tx_index = 0;
2107 
2108 	rc = ntb_process_tx(qp, entry);
2109 	if (rc)
2110 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2111 			     &qp->tx_free_q);
2112 
2113 	return rc;
2114 }
2115 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2116 
2117 /**
2118  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2119  * @qp: NTB transport layer queue to be enabled
2120  *
2121  * Notify NTB transport layer of client readiness to use queue
2122  */
2123 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2124 {
2125 	if (!qp)
2126 		return;
2127 
2128 	qp->client_ready = true;
2129 
2130 	if (qp->transport->link_is_up)
2131 		schedule_delayed_work(&qp->link_work, 0);
2132 }
2133 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2134 
2135 /**
2136  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2137  * @qp: NTB transport layer queue to be disabled
2138  *
2139  * Notify NTB transport layer of client's desire to no longer receive data on
2140  * transport queue specified.  It is the client's responsibility to ensure all
2141  * entries on queue are purged or otherwise handled appropriately.
2142  */
2143 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2144 {
2145 	int val;
2146 
2147 	if (!qp)
2148 		return;
2149 
2150 	qp->client_ready = false;
2151 
2152 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2153 
2154 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2155 
2156 	if (qp->link_is_up)
2157 		ntb_send_link_down(qp);
2158 	else
2159 		cancel_delayed_work_sync(&qp->link_work);
2160 }
2161 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2162 
2163 /**
2164  * ntb_transport_link_query - Query transport link state
2165  * @qp: NTB transport layer queue to be queried
2166  *
2167  * Query connectivity to the remote system of the NTB transport queue
2168  *
2169  * RETURNS: true for link up or false for link down
2170  */
2171 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2172 {
2173 	if (!qp)
2174 		return false;
2175 
2176 	return qp->link_is_up;
2177 }
2178 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2179 
2180 /**
2181  * ntb_transport_qp_num - Query the qp number
2182  * @qp: NTB transport layer queue to be queried
2183  *
2184  * Query qp number of the NTB transport queue
2185  *
2186  * RETURNS: a zero based number specifying the qp number
2187  */
2188 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2189 {
2190 	if (!qp)
2191 		return 0;
2192 
2193 	return qp->qp_num;
2194 }
2195 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2196 
2197 /**
2198  * ntb_transport_max_size - Query the max payload size of a qp
2199  * @qp: NTB transport layer queue to be queried
2200  *
2201  * Query the maximum payload size permissible on the given qp
2202  *
2203  * RETURNS: the max payload size of a qp
2204  */
2205 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2206 {
2207 	unsigned int max_size;
2208 	unsigned int copy_align;
2209 	struct dma_chan *rx_chan, *tx_chan;
2210 
2211 	if (!qp)
2212 		return 0;
2213 
2214 	rx_chan = qp->rx_dma_chan;
2215 	tx_chan = qp->tx_dma_chan;
2216 
2217 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2218 			 tx_chan ? tx_chan->device->copy_align : 0);
2219 
2220 	/* If DMA engine usage is possible, try to find the max size for that */
2221 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2222 	max_size = round_down(max_size, 1 << copy_align);
2223 
2224 	return max_size;
2225 }
2226 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2227 
2228 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2229 {
2230 	unsigned int head = qp->tx_index;
2231 	unsigned int tail = qp->remote_rx_info->entry;
2232 
2233 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2234 }
2235 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2236 
2237 static void ntb_transport_doorbell_callback(void *data, int vector)
2238 {
2239 	struct ntb_transport_ctx *nt = data;
2240 	struct ntb_transport_qp *qp;
2241 	u64 db_bits;
2242 	unsigned int qp_num;
2243 
2244 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2245 		   ntb_db_vector_mask(nt->ndev, vector));
2246 
2247 	while (db_bits) {
2248 		qp_num = __ffs(db_bits);
2249 		qp = &nt->qp_vec[qp_num];
2250 
2251 		if (qp->active)
2252 			tasklet_schedule(&qp->rxc_db_work);
2253 
2254 		db_bits &= ~BIT_ULL(qp_num);
2255 	}
2256 }
2257 
2258 static const struct ntb_ctx_ops ntb_transport_ops = {
2259 	.link_event = ntb_transport_event_callback,
2260 	.db_event = ntb_transport_doorbell_callback,
2261 };
2262 
2263 static struct ntb_client ntb_transport_client = {
2264 	.ops = {
2265 		.probe = ntb_transport_probe,
2266 		.remove = ntb_transport_free,
2267 	},
2268 };
2269 
2270 static int __init ntb_transport_init(void)
2271 {
2272 	int rc;
2273 
2274 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2275 
2276 	if (debugfs_initialized())
2277 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2278 
2279 	rc = bus_register(&ntb_transport_bus);
2280 	if (rc)
2281 		goto err_bus;
2282 
2283 	rc = ntb_register_client(&ntb_transport_client);
2284 	if (rc)
2285 		goto err_client;
2286 
2287 	return 0;
2288 
2289 err_client:
2290 	bus_unregister(&ntb_transport_bus);
2291 err_bus:
2292 	debugfs_remove_recursive(nt_debugfs_dir);
2293 	return rc;
2294 }
2295 module_init(ntb_transport_init);
2296 
2297 static void __exit ntb_transport_exit(void)
2298 {
2299 	ntb_unregister_client(&ntb_transport_client);
2300 	bus_unregister(&ntb_transport_bus);
2301 	debugfs_remove_recursive(nt_debugfs_dir);
2302 }
2303 module_exit(ntb_transport_exit);
2304