xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision 28762289)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include "linux/ntb.h"
62 #include "linux/ntb_transport.h"
63 
64 #define NTB_TRANSPORT_VERSION	4
65 #define NTB_TRANSPORT_VER	"4"
66 #define NTB_TRANSPORT_NAME	"ntb_transport"
67 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
68 
69 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
70 MODULE_VERSION(NTB_TRANSPORT_VER);
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Intel Corporation");
73 
74 static unsigned long max_mw_size;
75 module_param(max_mw_size, ulong, 0644);
76 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
77 
78 static unsigned int transport_mtu = 0x401E;
79 module_param(transport_mtu, uint, 0644);
80 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
81 
82 static unsigned char max_num_clients;
83 module_param(max_num_clients, byte, 0644);
84 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
85 
86 static unsigned int copy_bytes = 1024;
87 module_param(copy_bytes, uint, 0644);
88 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
89 
90 static struct dentry *nt_debugfs_dir;
91 
92 struct ntb_queue_entry {
93 	/* ntb_queue list reference */
94 	struct list_head entry;
95 	/* pointers to data to be transferred */
96 	void *cb_data;
97 	void *buf;
98 	unsigned int len;
99 	unsigned int flags;
100 
101 	struct ntb_transport_qp *qp;
102 	union {
103 		struct ntb_payload_header __iomem *tx_hdr;
104 		struct ntb_payload_header *rx_hdr;
105 	};
106 	unsigned int index;
107 };
108 
109 struct ntb_rx_info {
110 	unsigned int entry;
111 };
112 
113 struct ntb_transport_qp {
114 	struct ntb_transport_ctx *transport;
115 	struct ntb_dev *ndev;
116 	void *cb_data;
117 	struct dma_chan *dma_chan;
118 
119 	bool client_ready;
120 	bool link_is_up;
121 
122 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
123 	u64 qp_bit;
124 
125 	struct ntb_rx_info __iomem *rx_info;
126 	struct ntb_rx_info *remote_rx_info;
127 
128 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
129 			   void *data, int len);
130 	struct list_head tx_free_q;
131 	spinlock_t ntb_tx_free_q_lock;
132 	void __iomem *tx_mw;
133 	dma_addr_t tx_mw_phys;
134 	unsigned int tx_index;
135 	unsigned int tx_max_entry;
136 	unsigned int tx_max_frame;
137 
138 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
139 			   void *data, int len);
140 	struct list_head rx_pend_q;
141 	struct list_head rx_free_q;
142 	spinlock_t ntb_rx_pend_q_lock;
143 	spinlock_t ntb_rx_free_q_lock;
144 	void *rx_buff;
145 	unsigned int rx_index;
146 	unsigned int rx_max_entry;
147 	unsigned int rx_max_frame;
148 	dma_cookie_t last_cookie;
149 	struct tasklet_struct rxc_db_work;
150 
151 	void (*event_handler)(void *data, int status);
152 	struct delayed_work link_work;
153 	struct work_struct link_cleanup;
154 
155 	struct dentry *debugfs_dir;
156 	struct dentry *debugfs_stats;
157 
158 	/* Stats */
159 	u64 rx_bytes;
160 	u64 rx_pkts;
161 	u64 rx_ring_empty;
162 	u64 rx_err_no_buf;
163 	u64 rx_err_oflow;
164 	u64 rx_err_ver;
165 	u64 rx_memcpy;
166 	u64 rx_async;
167 	u64 tx_bytes;
168 	u64 tx_pkts;
169 	u64 tx_ring_full;
170 	u64 tx_err_no_buf;
171 	u64 tx_memcpy;
172 	u64 tx_async;
173 };
174 
175 struct ntb_transport_mw {
176 	phys_addr_t phys_addr;
177 	resource_size_t phys_size;
178 	resource_size_t xlat_align;
179 	resource_size_t xlat_align_size;
180 	void __iomem *vbase;
181 	size_t xlat_size;
182 	size_t buff_size;
183 	void *virt_addr;
184 	dma_addr_t dma_addr;
185 };
186 
187 struct ntb_transport_client_dev {
188 	struct list_head entry;
189 	struct ntb_transport_ctx *nt;
190 	struct device dev;
191 };
192 
193 struct ntb_transport_ctx {
194 	struct list_head entry;
195 	struct list_head client_devs;
196 
197 	struct ntb_dev *ndev;
198 
199 	struct ntb_transport_mw *mw_vec;
200 	struct ntb_transport_qp *qp_vec;
201 	unsigned int mw_count;
202 	unsigned int qp_count;
203 	u64 qp_bitmap;
204 	u64 qp_bitmap_free;
205 
206 	bool link_is_up;
207 	struct delayed_work link_work;
208 	struct work_struct link_cleanup;
209 };
210 
211 enum {
212 	DESC_DONE_FLAG = BIT(0),
213 	LINK_DOWN_FLAG = BIT(1),
214 };
215 
216 struct ntb_payload_header {
217 	unsigned int ver;
218 	unsigned int len;
219 	unsigned int flags;
220 };
221 
222 enum {
223 	VERSION = 0,
224 	QP_LINKS,
225 	NUM_QPS,
226 	NUM_MWS,
227 	MW0_SZ_HIGH,
228 	MW0_SZ_LOW,
229 	MW1_SZ_HIGH,
230 	MW1_SZ_LOW,
231 	MAX_SPAD,
232 };
233 
234 #define dev_client_dev(__dev) \
235 	container_of((__dev), struct ntb_transport_client_dev, dev)
236 
237 #define drv_client(__drv) \
238 	container_of((__drv), struct ntb_transport_client, driver)
239 
240 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
241 #define NTB_QP_DEF_NUM_ENTRIES	100
242 #define NTB_LINK_DOWN_TIMEOUT	10
243 
244 static void ntb_transport_rxc_db(unsigned long data);
245 static const struct ntb_ctx_ops ntb_transport_ops;
246 static struct ntb_client ntb_transport_client;
247 
248 static int ntb_transport_bus_match(struct device *dev,
249 				   struct device_driver *drv)
250 {
251 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
252 }
253 
254 static int ntb_transport_bus_probe(struct device *dev)
255 {
256 	const struct ntb_transport_client *client;
257 	int rc = -EINVAL;
258 
259 	get_device(dev);
260 
261 	client = drv_client(dev->driver);
262 	rc = client->probe(dev);
263 	if (rc)
264 		put_device(dev);
265 
266 	return rc;
267 }
268 
269 static int ntb_transport_bus_remove(struct device *dev)
270 {
271 	const struct ntb_transport_client *client;
272 
273 	client = drv_client(dev->driver);
274 	client->remove(dev);
275 
276 	put_device(dev);
277 
278 	return 0;
279 }
280 
281 static struct bus_type ntb_transport_bus = {
282 	.name = "ntb_transport",
283 	.match = ntb_transport_bus_match,
284 	.probe = ntb_transport_bus_probe,
285 	.remove = ntb_transport_bus_remove,
286 };
287 
288 static LIST_HEAD(ntb_transport_list);
289 
290 static int ntb_bus_init(struct ntb_transport_ctx *nt)
291 {
292 	list_add(&nt->entry, &ntb_transport_list);
293 	return 0;
294 }
295 
296 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
297 {
298 	struct ntb_transport_client_dev *client_dev, *cd;
299 
300 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
301 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
302 			dev_name(&client_dev->dev));
303 		list_del(&client_dev->entry);
304 		device_unregister(&client_dev->dev);
305 	}
306 
307 	list_del(&nt->entry);
308 }
309 
310 static void ntb_transport_client_release(struct device *dev)
311 {
312 	struct ntb_transport_client_dev *client_dev;
313 
314 	client_dev = dev_client_dev(dev);
315 	kfree(client_dev);
316 }
317 
318 /**
319  * ntb_transport_unregister_client_dev - Unregister NTB client device
320  * @device_name: Name of NTB client device
321  *
322  * Unregister an NTB client device with the NTB transport layer
323  */
324 void ntb_transport_unregister_client_dev(char *device_name)
325 {
326 	struct ntb_transport_client_dev *client, *cd;
327 	struct ntb_transport_ctx *nt;
328 
329 	list_for_each_entry(nt, &ntb_transport_list, entry)
330 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
331 			if (!strncmp(dev_name(&client->dev), device_name,
332 				     strlen(device_name))) {
333 				list_del(&client->entry);
334 				device_unregister(&client->dev);
335 			}
336 }
337 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
338 
339 /**
340  * ntb_transport_register_client_dev - Register NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Register an NTB client device with the NTB transport layer
344  */
345 int ntb_transport_register_client_dev(char *device_name)
346 {
347 	struct ntb_transport_client_dev *client_dev;
348 	struct ntb_transport_ctx *nt;
349 	int rc, i = 0;
350 
351 	if (list_empty(&ntb_transport_list))
352 		return -ENODEV;
353 
354 	list_for_each_entry(nt, &ntb_transport_list, entry) {
355 		struct device *dev;
356 
357 		client_dev = kzalloc(sizeof(*client_dev),
358 				     GFP_KERNEL);
359 		if (!client_dev) {
360 			rc = -ENOMEM;
361 			goto err;
362 		}
363 
364 		dev = &client_dev->dev;
365 
366 		/* setup and register client devices */
367 		dev_set_name(dev, "%s%d", device_name, i);
368 		dev->bus = &ntb_transport_bus;
369 		dev->release = ntb_transport_client_release;
370 		dev->parent = &nt->ndev->dev;
371 
372 		rc = device_register(dev);
373 		if (rc) {
374 			kfree(client_dev);
375 			goto err;
376 		}
377 
378 		list_add_tail(&client_dev->entry, &nt->client_devs);
379 		i++;
380 	}
381 
382 	return 0;
383 
384 err:
385 	ntb_transport_unregister_client_dev(device_name);
386 
387 	return rc;
388 }
389 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
390 
391 /**
392  * ntb_transport_register_client - Register NTB client driver
393  * @drv: NTB client driver to be registered
394  *
395  * Register an NTB client driver with the NTB transport layer
396  *
397  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
398  */
399 int ntb_transport_register_client(struct ntb_transport_client *drv)
400 {
401 	drv->driver.bus = &ntb_transport_bus;
402 
403 	if (list_empty(&ntb_transport_list))
404 		return -ENODEV;
405 
406 	return driver_register(&drv->driver);
407 }
408 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
409 
410 /**
411  * ntb_transport_unregister_client - Unregister NTB client driver
412  * @drv: NTB client driver to be unregistered
413  *
414  * Unregister an NTB client driver with the NTB transport layer
415  *
416  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
417  */
418 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
419 {
420 	driver_unregister(&drv->driver);
421 }
422 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
423 
424 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
425 			    loff_t *offp)
426 {
427 	struct ntb_transport_qp *qp;
428 	char *buf;
429 	ssize_t ret, out_offset, out_count;
430 
431 	out_count = 1000;
432 
433 	buf = kmalloc(out_count, GFP_KERNEL);
434 	if (!buf)
435 		return -ENOMEM;
436 
437 	qp = filp->private_data;
438 	out_offset = 0;
439 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
440 			       "NTB QP stats\n");
441 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
442 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
443 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
444 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
445 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
446 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
447 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
448 			       "rx_async - \t%llu\n", qp->rx_async);
449 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
450 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
451 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
452 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
453 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
454 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
455 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
456 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
457 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
458 			       "rx_buff - \t%p\n", qp->rx_buff);
459 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
460 			       "rx_index - \t%u\n", qp->rx_index);
461 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
462 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
463 
464 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
466 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
468 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
470 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 			       "tx_async - \t%llu\n", qp->tx_async);
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
474 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
476 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 			       "tx_mw - \t%p\n", qp->tx_mw);
478 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 			       "tx_index - \t%u\n", qp->tx_index);
480 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
482 
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "\nQP Link %s\n",
485 			       qp->link_is_up ? "Up" : "Down");
486 	if (out_offset > out_count)
487 		out_offset = out_count;
488 
489 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
490 	kfree(buf);
491 	return ret;
492 }
493 
494 static const struct file_operations ntb_qp_debugfs_stats = {
495 	.owner = THIS_MODULE,
496 	.open = simple_open,
497 	.read = debugfs_read,
498 };
499 
500 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
501 			 struct list_head *list)
502 {
503 	unsigned long flags;
504 
505 	spin_lock_irqsave(lock, flags);
506 	list_add_tail(entry, list);
507 	spin_unlock_irqrestore(lock, flags);
508 }
509 
510 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
511 					   struct list_head *list)
512 {
513 	struct ntb_queue_entry *entry;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(lock, flags);
517 	if (list_empty(list)) {
518 		entry = NULL;
519 		goto out;
520 	}
521 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
522 	list_del(&entry->entry);
523 out:
524 	spin_unlock_irqrestore(lock, flags);
525 
526 	return entry;
527 }
528 
529 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
530 				     unsigned int qp_num)
531 {
532 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
533 	struct ntb_transport_mw *mw;
534 	unsigned int rx_size, num_qps_mw;
535 	unsigned int mw_num, mw_count, qp_count;
536 	unsigned int i;
537 
538 	mw_count = nt->mw_count;
539 	qp_count = nt->qp_count;
540 
541 	mw_num = QP_TO_MW(nt, qp_num);
542 	mw = &nt->mw_vec[mw_num];
543 
544 	if (!mw->virt_addr)
545 		return -ENOMEM;
546 
547 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
548 		num_qps_mw = qp_count / mw_count + 1;
549 	else
550 		num_qps_mw = qp_count / mw_count;
551 
552 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
553 	qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
554 	rx_size -= sizeof(struct ntb_rx_info);
555 
556 	qp->remote_rx_info = qp->rx_buff + rx_size;
557 
558 	/* Due to housekeeping, there must be atleast 2 buffs */
559 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
560 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
561 	qp->rx_index = 0;
562 
563 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
564 
565 	/* setup the hdr offsets with 0's */
566 	for (i = 0; i < qp->rx_max_entry; i++) {
567 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
568 				sizeof(struct ntb_payload_header));
569 		memset(offset, 0, sizeof(struct ntb_payload_header));
570 	}
571 
572 	qp->rx_pkts = 0;
573 	qp->tx_pkts = 0;
574 	qp->tx_index = 0;
575 
576 	return 0;
577 }
578 
579 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
580 {
581 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
582 	struct pci_dev *pdev = nt->ndev->pdev;
583 
584 	if (!mw->virt_addr)
585 		return;
586 
587 	ntb_mw_clear_trans(nt->ndev, num_mw);
588 	dma_free_coherent(&pdev->dev, mw->buff_size,
589 			  mw->virt_addr, mw->dma_addr);
590 	mw->xlat_size = 0;
591 	mw->buff_size = 0;
592 	mw->virt_addr = NULL;
593 }
594 
595 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
596 		      unsigned int size)
597 {
598 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
599 	struct pci_dev *pdev = nt->ndev->pdev;
600 	unsigned int xlat_size, buff_size;
601 	int rc;
602 
603 	xlat_size = round_up(size, mw->xlat_align_size);
604 	buff_size = round_up(size, mw->xlat_align);
605 
606 	/* No need to re-setup */
607 	if (mw->xlat_size == xlat_size)
608 		return 0;
609 
610 	if (mw->buff_size)
611 		ntb_free_mw(nt, num_mw);
612 
613 	/* Alloc memory for receiving data.  Must be aligned */
614 	mw->xlat_size = xlat_size;
615 	mw->buff_size = buff_size;
616 
617 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
618 					   &mw->dma_addr, GFP_KERNEL);
619 	if (!mw->virt_addr) {
620 		mw->xlat_size = 0;
621 		mw->buff_size = 0;
622 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %d\n",
623 			buff_size);
624 		return -ENOMEM;
625 	}
626 
627 	/*
628 	 * we must ensure that the memory address allocated is BAR size
629 	 * aligned in order for the XLAT register to take the value. This
630 	 * is a requirement of the hardware. It is recommended to setup CMA
631 	 * for BAR sizes equal or greater than 4MB.
632 	 */
633 	if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
634 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
635 			&mw->dma_addr);
636 		ntb_free_mw(nt, num_mw);
637 		return -ENOMEM;
638 	}
639 
640 	/* Notify HW the memory location of the receive buffer */
641 	rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
642 	if (rc) {
643 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
644 		ntb_free_mw(nt, num_mw);
645 		return -EIO;
646 	}
647 
648 	return 0;
649 }
650 
651 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
652 {
653 	qp->link_is_up = false;
654 
655 	qp->tx_index = 0;
656 	qp->rx_index = 0;
657 	qp->rx_bytes = 0;
658 	qp->rx_pkts = 0;
659 	qp->rx_ring_empty = 0;
660 	qp->rx_err_no_buf = 0;
661 	qp->rx_err_oflow = 0;
662 	qp->rx_err_ver = 0;
663 	qp->rx_memcpy = 0;
664 	qp->rx_async = 0;
665 	qp->tx_bytes = 0;
666 	qp->tx_pkts = 0;
667 	qp->tx_ring_full = 0;
668 	qp->tx_err_no_buf = 0;
669 	qp->tx_memcpy = 0;
670 	qp->tx_async = 0;
671 }
672 
673 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
674 {
675 	struct ntb_transport_ctx *nt = qp->transport;
676 	struct pci_dev *pdev = nt->ndev->pdev;
677 
678 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
679 
680 	cancel_delayed_work_sync(&qp->link_work);
681 	ntb_qp_link_down_reset(qp);
682 
683 	if (qp->event_handler)
684 		qp->event_handler(qp->cb_data, qp->link_is_up);
685 }
686 
687 static void ntb_qp_link_cleanup_work(struct work_struct *work)
688 {
689 	struct ntb_transport_qp *qp = container_of(work,
690 						   struct ntb_transport_qp,
691 						   link_cleanup);
692 	struct ntb_transport_ctx *nt = qp->transport;
693 
694 	ntb_qp_link_cleanup(qp);
695 
696 	if (nt->link_is_up)
697 		schedule_delayed_work(&qp->link_work,
698 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
699 }
700 
701 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
702 {
703 	schedule_work(&qp->link_cleanup);
704 }
705 
706 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
707 {
708 	struct ntb_transport_qp *qp;
709 	u64 qp_bitmap_alloc;
710 	int i;
711 
712 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
713 
714 	/* Pass along the info to any clients */
715 	for (i = 0; i < nt->qp_count; i++)
716 		if (qp_bitmap_alloc & BIT_ULL(i)) {
717 			qp = &nt->qp_vec[i];
718 			ntb_qp_link_cleanup(qp);
719 			cancel_work_sync(&qp->link_cleanup);
720 			cancel_delayed_work_sync(&qp->link_work);
721 		}
722 
723 	if (!nt->link_is_up)
724 		cancel_delayed_work_sync(&nt->link_work);
725 
726 	/* The scratchpad registers keep the values if the remote side
727 	 * goes down, blast them now to give them a sane value the next
728 	 * time they are accessed
729 	 */
730 	for (i = 0; i < MAX_SPAD; i++)
731 		ntb_spad_write(nt->ndev, i, 0);
732 }
733 
734 static void ntb_transport_link_cleanup_work(struct work_struct *work)
735 {
736 	struct ntb_transport_ctx *nt =
737 		container_of(work, struct ntb_transport_ctx, link_cleanup);
738 
739 	ntb_transport_link_cleanup(nt);
740 }
741 
742 static void ntb_transport_event_callback(void *data)
743 {
744 	struct ntb_transport_ctx *nt = data;
745 
746 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
747 		schedule_delayed_work(&nt->link_work, 0);
748 	else
749 		schedule_work(&nt->link_cleanup);
750 }
751 
752 static void ntb_transport_link_work(struct work_struct *work)
753 {
754 	struct ntb_transport_ctx *nt =
755 		container_of(work, struct ntb_transport_ctx, link_work.work);
756 	struct ntb_dev *ndev = nt->ndev;
757 	struct pci_dev *pdev = ndev->pdev;
758 	resource_size_t size;
759 	u32 val;
760 	int rc, i, spad;
761 
762 	/* send the local info, in the opposite order of the way we read it */
763 	for (i = 0; i < nt->mw_count; i++) {
764 		size = nt->mw_vec[i].phys_size;
765 
766 		if (max_mw_size && size > max_mw_size)
767 			size = max_mw_size;
768 
769 		spad = MW0_SZ_HIGH + (i * 2);
770 		ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
771 
772 		spad = MW0_SZ_LOW + (i * 2);
773 		ntb_peer_spad_write(ndev, spad, (u32)size);
774 	}
775 
776 	ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
777 
778 	ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
779 
780 	ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
781 
782 	/* Query the remote side for its info */
783 	val = ntb_spad_read(ndev, VERSION);
784 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
785 	if (val != NTB_TRANSPORT_VERSION)
786 		goto out;
787 
788 	val = ntb_spad_read(ndev, NUM_QPS);
789 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
790 	if (val != nt->qp_count)
791 		goto out;
792 
793 	val = ntb_spad_read(ndev, NUM_MWS);
794 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
795 	if (val != nt->mw_count)
796 		goto out;
797 
798 	for (i = 0; i < nt->mw_count; i++) {
799 		u64 val64;
800 
801 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
802 		val64 = (u64)val << 32;
803 
804 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
805 		val64 |= val;
806 
807 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
808 
809 		rc = ntb_set_mw(nt, i, val64);
810 		if (rc)
811 			goto out1;
812 	}
813 
814 	nt->link_is_up = true;
815 
816 	for (i = 0; i < nt->qp_count; i++) {
817 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
818 
819 		ntb_transport_setup_qp_mw(nt, i);
820 
821 		if (qp->client_ready)
822 			schedule_delayed_work(&qp->link_work, 0);
823 	}
824 
825 	return;
826 
827 out1:
828 	for (i = 0; i < nt->mw_count; i++)
829 		ntb_free_mw(nt, i);
830 out:
831 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
832 		schedule_delayed_work(&nt->link_work,
833 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
834 }
835 
836 static void ntb_qp_link_work(struct work_struct *work)
837 {
838 	struct ntb_transport_qp *qp = container_of(work,
839 						   struct ntb_transport_qp,
840 						   link_work.work);
841 	struct pci_dev *pdev = qp->ndev->pdev;
842 	struct ntb_transport_ctx *nt = qp->transport;
843 	int val;
844 
845 	WARN_ON(!nt->link_is_up);
846 
847 	val = ntb_spad_read(nt->ndev, QP_LINKS);
848 
849 	ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
850 
851 	/* query remote spad for qp ready bits */
852 	ntb_peer_spad_read(nt->ndev, QP_LINKS);
853 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
854 
855 	/* See if the remote side is up */
856 	if (val & BIT(qp->qp_num)) {
857 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
858 		qp->link_is_up = true;
859 
860 		if (qp->event_handler)
861 			qp->event_handler(qp->cb_data, qp->link_is_up);
862 	} else if (nt->link_is_up)
863 		schedule_delayed_work(&qp->link_work,
864 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
865 }
866 
867 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
868 				    unsigned int qp_num)
869 {
870 	struct ntb_transport_qp *qp;
871 	struct ntb_transport_mw *mw;
872 	phys_addr_t mw_base;
873 	resource_size_t mw_size;
874 	unsigned int num_qps_mw, tx_size;
875 	unsigned int mw_num, mw_count, qp_count;
876 	u64 qp_offset;
877 
878 	mw_count = nt->mw_count;
879 	qp_count = nt->qp_count;
880 
881 	mw_num = QP_TO_MW(nt, qp_num);
882 	mw = &nt->mw_vec[mw_num];
883 
884 	qp = &nt->qp_vec[qp_num];
885 	qp->qp_num = qp_num;
886 	qp->transport = nt;
887 	qp->ndev = nt->ndev;
888 	qp->client_ready = false;
889 	qp->event_handler = NULL;
890 	ntb_qp_link_down_reset(qp);
891 
892 	if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
893 		num_qps_mw = qp_count / mw_count + 1;
894 	else
895 		num_qps_mw = qp_count / mw_count;
896 
897 	mw_base = nt->mw_vec[mw_num].phys_addr;
898 	mw_size = nt->mw_vec[mw_num].phys_size;
899 
900 	tx_size = (unsigned int)mw_size / num_qps_mw;
901 	qp_offset = tx_size * qp_num / mw_count;
902 
903 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
904 	if (!qp->tx_mw)
905 		return -EINVAL;
906 
907 	qp->tx_mw_phys = mw_base + qp_offset;
908 	if (!qp->tx_mw_phys)
909 		return -EINVAL;
910 
911 	tx_size -= sizeof(struct ntb_rx_info);
912 	qp->rx_info = qp->tx_mw + tx_size;
913 
914 	/* Due to housekeeping, there must be atleast 2 buffs */
915 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
916 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
917 
918 	if (nt_debugfs_dir) {
919 		char debugfs_name[4];
920 
921 		snprintf(debugfs_name, 4, "qp%d", qp_num);
922 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
923 						     nt_debugfs_dir);
924 
925 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
926 							qp->debugfs_dir, qp,
927 							&ntb_qp_debugfs_stats);
928 	} else {
929 		qp->debugfs_dir = NULL;
930 		qp->debugfs_stats = NULL;
931 	}
932 
933 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
934 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
935 
936 	spin_lock_init(&qp->ntb_rx_pend_q_lock);
937 	spin_lock_init(&qp->ntb_rx_free_q_lock);
938 	spin_lock_init(&qp->ntb_tx_free_q_lock);
939 
940 	INIT_LIST_HEAD(&qp->rx_pend_q);
941 	INIT_LIST_HEAD(&qp->rx_free_q);
942 	INIT_LIST_HEAD(&qp->tx_free_q);
943 
944 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
945 		     (unsigned long)qp);
946 
947 	return 0;
948 }
949 
950 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
951 {
952 	struct ntb_transport_ctx *nt;
953 	struct ntb_transport_mw *mw;
954 	unsigned int mw_count, qp_count;
955 	u64 qp_bitmap;
956 	int rc, i;
957 
958 	if (ntb_db_is_unsafe(ndev))
959 		dev_dbg(&ndev->dev,
960 			"doorbell is unsafe, proceed anyway...\n");
961 	if (ntb_spad_is_unsafe(ndev))
962 		dev_dbg(&ndev->dev,
963 			"scratchpad is unsafe, proceed anyway...\n");
964 
965 	nt = kzalloc(sizeof(*nt), GFP_KERNEL);
966 	if (!nt)
967 		return -ENOMEM;
968 
969 	nt->ndev = ndev;
970 
971 	mw_count = ntb_mw_count(ndev);
972 
973 	nt->mw_count = mw_count;
974 
975 	nt->mw_vec = kcalloc(mw_count, sizeof(*nt->mw_vec), GFP_KERNEL);
976 	if (!nt->mw_vec) {
977 		rc = -ENOMEM;
978 		goto err;
979 	}
980 
981 	for (i = 0; i < mw_count; i++) {
982 		mw = &nt->mw_vec[i];
983 
984 		rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
985 				      &mw->xlat_align, &mw->xlat_align_size);
986 		if (rc)
987 			goto err1;
988 
989 		mw->vbase = ioremap(mw->phys_addr, mw->phys_size);
990 		if (!mw->vbase) {
991 			rc = -ENOMEM;
992 			goto err1;
993 		}
994 
995 		mw->buff_size = 0;
996 		mw->xlat_size = 0;
997 		mw->virt_addr = NULL;
998 		mw->dma_addr = 0;
999 	}
1000 
1001 	qp_bitmap = ntb_db_valid_mask(ndev);
1002 
1003 	qp_count = ilog2(qp_bitmap);
1004 	if (max_num_clients && max_num_clients < qp_count)
1005 		qp_count = max_num_clients;
1006 	else if (mw_count < qp_count)
1007 		qp_count = mw_count;
1008 
1009 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1010 
1011 	nt->qp_count = qp_count;
1012 	nt->qp_bitmap = qp_bitmap;
1013 	nt->qp_bitmap_free = qp_bitmap;
1014 
1015 	nt->qp_vec = kcalloc(qp_count, sizeof(*nt->qp_vec), GFP_KERNEL);
1016 	if (!nt->qp_vec) {
1017 		rc = -ENOMEM;
1018 		goto err2;
1019 	}
1020 
1021 	for (i = 0; i < qp_count; i++) {
1022 		rc = ntb_transport_init_queue(nt, i);
1023 		if (rc)
1024 			goto err3;
1025 	}
1026 
1027 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1028 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1029 
1030 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1031 	if (rc)
1032 		goto err3;
1033 
1034 	INIT_LIST_HEAD(&nt->client_devs);
1035 	rc = ntb_bus_init(nt);
1036 	if (rc)
1037 		goto err4;
1038 
1039 	nt->link_is_up = false;
1040 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1041 	ntb_link_event(ndev);
1042 
1043 	return 0;
1044 
1045 err4:
1046 	ntb_clear_ctx(ndev);
1047 err3:
1048 	kfree(nt->qp_vec);
1049 err2:
1050 	kfree(nt->mw_vec);
1051 err1:
1052 	while (i--) {
1053 		mw = &nt->mw_vec[i];
1054 		iounmap(mw->vbase);
1055 	}
1056 err:
1057 	kfree(nt);
1058 	return rc;
1059 }
1060 
1061 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1062 {
1063 	struct ntb_transport_ctx *nt = ndev->ctx;
1064 	struct ntb_transport_qp *qp;
1065 	u64 qp_bitmap_alloc;
1066 	int i;
1067 
1068 	ntb_transport_link_cleanup(nt);
1069 	cancel_work_sync(&nt->link_cleanup);
1070 	cancel_delayed_work_sync(&nt->link_work);
1071 
1072 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1073 
1074 	/* verify that all the qp's are freed */
1075 	for (i = 0; i < nt->qp_count; i++) {
1076 		qp = &nt->qp_vec[i];
1077 		if (qp_bitmap_alloc & BIT_ULL(i))
1078 			ntb_transport_free_queue(qp);
1079 		debugfs_remove_recursive(qp->debugfs_dir);
1080 	}
1081 
1082 	ntb_link_disable(ndev);
1083 	ntb_clear_ctx(ndev);
1084 
1085 	ntb_bus_remove(nt);
1086 
1087 	for (i = nt->mw_count; i--; ) {
1088 		ntb_free_mw(nt, i);
1089 		iounmap(nt->mw_vec[i].vbase);
1090 	}
1091 
1092 	kfree(nt->qp_vec);
1093 	kfree(nt->mw_vec);
1094 	kfree(nt);
1095 }
1096 
1097 static void ntb_rx_copy_callback(void *data)
1098 {
1099 	struct ntb_queue_entry *entry = data;
1100 	struct ntb_transport_qp *qp = entry->qp;
1101 	void *cb_data = entry->cb_data;
1102 	unsigned int len = entry->len;
1103 	struct ntb_payload_header *hdr = entry->rx_hdr;
1104 
1105 	hdr->flags = 0;
1106 
1107 	iowrite32(entry->index, &qp->rx_info->entry);
1108 
1109 	ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1110 
1111 	if (qp->rx_handler && qp->client_ready)
1112 		qp->rx_handler(qp, qp->cb_data, cb_data, len);
1113 }
1114 
1115 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1116 {
1117 	void *buf = entry->buf;
1118 	size_t len = entry->len;
1119 
1120 	memcpy(buf, offset, len);
1121 
1122 	/* Ensure that the data is fully copied out before clearing the flag */
1123 	wmb();
1124 
1125 	ntb_rx_copy_callback(entry);
1126 }
1127 
1128 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset,
1129 			 size_t len)
1130 {
1131 	struct dma_async_tx_descriptor *txd;
1132 	struct ntb_transport_qp *qp = entry->qp;
1133 	struct dma_chan *chan = qp->dma_chan;
1134 	struct dma_device *device;
1135 	size_t pay_off, buff_off;
1136 	struct dmaengine_unmap_data *unmap;
1137 	dma_cookie_t cookie;
1138 	void *buf = entry->buf;
1139 
1140 	entry->len = len;
1141 
1142 	if (!chan)
1143 		goto err;
1144 
1145 	if (len < copy_bytes)
1146 		goto err_wait;
1147 
1148 	device = chan->device;
1149 	pay_off = (size_t)offset & ~PAGE_MASK;
1150 	buff_off = (size_t)buf & ~PAGE_MASK;
1151 
1152 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1153 		goto err_wait;
1154 
1155 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1156 	if (!unmap)
1157 		goto err_wait;
1158 
1159 	unmap->len = len;
1160 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1161 				      pay_off, len, DMA_TO_DEVICE);
1162 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1163 		goto err_get_unmap;
1164 
1165 	unmap->to_cnt = 1;
1166 
1167 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1168 				      buff_off, len, DMA_FROM_DEVICE);
1169 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1170 		goto err_get_unmap;
1171 
1172 	unmap->from_cnt = 1;
1173 
1174 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1175 					     unmap->addr[0], len,
1176 					     DMA_PREP_INTERRUPT);
1177 	if (!txd)
1178 		goto err_get_unmap;
1179 
1180 	txd->callback = ntb_rx_copy_callback;
1181 	txd->callback_param = entry;
1182 	dma_set_unmap(txd, unmap);
1183 
1184 	cookie = dmaengine_submit(txd);
1185 	if (dma_submit_error(cookie))
1186 		goto err_set_unmap;
1187 
1188 	dmaengine_unmap_put(unmap);
1189 
1190 	qp->last_cookie = cookie;
1191 
1192 	qp->rx_async++;
1193 
1194 	return;
1195 
1196 err_set_unmap:
1197 	dmaengine_unmap_put(unmap);
1198 err_get_unmap:
1199 	dmaengine_unmap_put(unmap);
1200 err_wait:
1201 	/* If the callbacks come out of order, the writing of the index to the
1202 	 * last completed will be out of order.  This may result in the
1203 	 * receive stalling forever.
1204 	 */
1205 	dma_sync_wait(chan, qp->last_cookie);
1206 err:
1207 	ntb_memcpy_rx(entry, offset);
1208 	qp->rx_memcpy++;
1209 }
1210 
1211 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1212 {
1213 	struct ntb_payload_header *hdr;
1214 	struct ntb_queue_entry *entry;
1215 	void *offset;
1216 	int rc;
1217 
1218 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1219 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1220 
1221 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1222 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1223 
1224 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1225 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1226 		qp->rx_ring_empty++;
1227 		return -EAGAIN;
1228 	}
1229 
1230 	if (hdr->flags & LINK_DOWN_FLAG) {
1231 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1232 		ntb_qp_link_down(qp);
1233 		hdr->flags = 0;
1234 		return -EAGAIN;
1235 	}
1236 
1237 	if (hdr->ver != (u32)qp->rx_pkts) {
1238 		dev_dbg(&qp->ndev->pdev->dev,
1239 			"version mismatch, expected %llu - got %u\n",
1240 			qp->rx_pkts, hdr->ver);
1241 		qp->rx_err_ver++;
1242 		return -EIO;
1243 	}
1244 
1245 	entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1246 	if (!entry) {
1247 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1248 		qp->rx_err_no_buf++;
1249 
1250 		rc = -ENOMEM;
1251 		goto err;
1252 	}
1253 
1254 	if (hdr->len > entry->len) {
1255 		dev_dbg(&qp->ndev->pdev->dev,
1256 			"receive buffer overflow! Wanted %d got %d\n",
1257 			hdr->len, entry->len);
1258 		qp->rx_err_oflow++;
1259 
1260 		rc = -EIO;
1261 		goto err;
1262 	}
1263 
1264 	dev_dbg(&qp->ndev->pdev->dev,
1265 		"RX OK index %u ver %u size %d into buf size %d\n",
1266 		qp->rx_index, hdr->ver, hdr->len, entry->len);
1267 
1268 	qp->rx_bytes += hdr->len;
1269 	qp->rx_pkts++;
1270 
1271 	entry->index = qp->rx_index;
1272 	entry->rx_hdr = hdr;
1273 
1274 	ntb_async_rx(entry, offset, hdr->len);
1275 
1276 	qp->rx_index++;
1277 	qp->rx_index %= qp->rx_max_entry;
1278 
1279 	return 0;
1280 
1281 err:
1282 	/* FIXME: if this syncrhonous update of the rx_index gets ahead of
1283 	 * asyncrhonous ntb_rx_copy_callback of previous entry, there are three
1284 	 * scenarios:
1285 	 *
1286 	 * 1) The peer might miss this update, but observe the update
1287 	 * from the memcpy completion callback.  In this case, the buffer will
1288 	 * not be freed on the peer to be reused for a different packet.  The
1289 	 * successful rx of a later packet would clear the condition, but the
1290 	 * condition could persist if several rx fail in a row.
1291 	 *
1292 	 * 2) The peer may observe this update before the asyncrhonous copy of
1293 	 * prior packets is completed.  The peer may overwrite the buffers of
1294 	 * the prior packets before they are copied.
1295 	 *
1296 	 * 3) Both: the peer may observe the update, and then observe the index
1297 	 * decrement by the asynchronous completion callback.  Who knows what
1298 	 * badness that will cause.
1299 	 */
1300 	hdr->flags = 0;
1301 	iowrite32(qp->rx_index, &qp->rx_info->entry);
1302 
1303 	return rc;
1304 }
1305 
1306 static void ntb_transport_rxc_db(unsigned long data)
1307 {
1308 	struct ntb_transport_qp *qp = (void *)data;
1309 	int rc, i;
1310 
1311 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1312 		__func__, qp->qp_num);
1313 
1314 	/* Limit the number of packets processed in a single interrupt to
1315 	 * provide fairness to others
1316 	 */
1317 	for (i = 0; i < qp->rx_max_entry; i++) {
1318 		rc = ntb_process_rxc(qp);
1319 		if (rc)
1320 			break;
1321 	}
1322 
1323 	if (qp->dma_chan)
1324 		dma_async_issue_pending(qp->dma_chan);
1325 
1326 	if (i == qp->rx_max_entry) {
1327 		/* there is more work to do */
1328 		tasklet_schedule(&qp->rxc_db_work);
1329 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1330 		/* the doorbell bit is set: clear it */
1331 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1332 		/* ntb_db_read ensures ntb_db_clear write is committed */
1333 		ntb_db_read(qp->ndev);
1334 
1335 		/* an interrupt may have arrived between finishing
1336 		 * ntb_process_rxc and clearing the doorbell bit:
1337 		 * there might be some more work to do.
1338 		 */
1339 		tasklet_schedule(&qp->rxc_db_work);
1340 	}
1341 }
1342 
1343 static void ntb_tx_copy_callback(void *data)
1344 {
1345 	struct ntb_queue_entry *entry = data;
1346 	struct ntb_transport_qp *qp = entry->qp;
1347 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1348 
1349 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1350 
1351 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1352 
1353 	/* The entry length can only be zero if the packet is intended to be a
1354 	 * "link down" or similar.  Since no payload is being sent in these
1355 	 * cases, there is nothing to add to the completion queue.
1356 	 */
1357 	if (entry->len > 0) {
1358 		qp->tx_bytes += entry->len;
1359 
1360 		if (qp->tx_handler)
1361 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1362 				       entry->len);
1363 	}
1364 
1365 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1366 }
1367 
1368 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1369 {
1370 	memcpy_toio(offset, entry->buf, entry->len);
1371 
1372 	/* Ensure that the data is fully copied out before setting the flags */
1373 	wmb();
1374 
1375 	ntb_tx_copy_callback(entry);
1376 }
1377 
1378 static void ntb_async_tx(struct ntb_transport_qp *qp,
1379 			 struct ntb_queue_entry *entry)
1380 {
1381 	struct ntb_payload_header __iomem *hdr;
1382 	struct dma_async_tx_descriptor *txd;
1383 	struct dma_chan *chan = qp->dma_chan;
1384 	struct dma_device *device;
1385 	size_t dest_off, buff_off;
1386 	struct dmaengine_unmap_data *unmap;
1387 	dma_addr_t dest;
1388 	dma_cookie_t cookie;
1389 	void __iomem *offset;
1390 	size_t len = entry->len;
1391 	void *buf = entry->buf;
1392 
1393 	offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1394 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1395 	entry->tx_hdr = hdr;
1396 
1397 	iowrite32(entry->len, &hdr->len);
1398 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1399 
1400 	if (!chan)
1401 		goto err;
1402 
1403 	if (len < copy_bytes)
1404 		goto err;
1405 
1406 	device = chan->device;
1407 	dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1408 	buff_off = (size_t)buf & ~PAGE_MASK;
1409 	dest_off = (size_t)dest & ~PAGE_MASK;
1410 
1411 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1412 		goto err;
1413 
1414 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1415 	if (!unmap)
1416 		goto err;
1417 
1418 	unmap->len = len;
1419 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1420 				      buff_off, len, DMA_TO_DEVICE);
1421 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1422 		goto err_get_unmap;
1423 
1424 	unmap->to_cnt = 1;
1425 
1426 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1427 					     DMA_PREP_INTERRUPT);
1428 	if (!txd)
1429 		goto err_get_unmap;
1430 
1431 	txd->callback = ntb_tx_copy_callback;
1432 	txd->callback_param = entry;
1433 	dma_set_unmap(txd, unmap);
1434 
1435 	cookie = dmaengine_submit(txd);
1436 	if (dma_submit_error(cookie))
1437 		goto err_set_unmap;
1438 
1439 	dmaengine_unmap_put(unmap);
1440 
1441 	dma_async_issue_pending(chan);
1442 	qp->tx_async++;
1443 
1444 	return;
1445 err_set_unmap:
1446 	dmaengine_unmap_put(unmap);
1447 err_get_unmap:
1448 	dmaengine_unmap_put(unmap);
1449 err:
1450 	ntb_memcpy_tx(entry, offset);
1451 	qp->tx_memcpy++;
1452 }
1453 
1454 static int ntb_process_tx(struct ntb_transport_qp *qp,
1455 			  struct ntb_queue_entry *entry)
1456 {
1457 	if (qp->tx_index == qp->remote_rx_info->entry) {
1458 		qp->tx_ring_full++;
1459 		return -EAGAIN;
1460 	}
1461 
1462 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1463 		if (qp->tx_handler)
1464 			qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1465 
1466 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1467 			     &qp->tx_free_q);
1468 		return 0;
1469 	}
1470 
1471 	ntb_async_tx(qp, entry);
1472 
1473 	qp->tx_index++;
1474 	qp->tx_index %= qp->tx_max_entry;
1475 
1476 	qp->tx_pkts++;
1477 
1478 	return 0;
1479 }
1480 
1481 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1482 {
1483 	struct pci_dev *pdev = qp->ndev->pdev;
1484 	struct ntb_queue_entry *entry;
1485 	int i, rc;
1486 
1487 	if (!qp->link_is_up)
1488 		return;
1489 
1490 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1491 
1492 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1493 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1494 		if (entry)
1495 			break;
1496 		msleep(100);
1497 	}
1498 
1499 	if (!entry)
1500 		return;
1501 
1502 	entry->cb_data = NULL;
1503 	entry->buf = NULL;
1504 	entry->len = 0;
1505 	entry->flags = LINK_DOWN_FLAG;
1506 
1507 	rc = ntb_process_tx(qp, entry);
1508 	if (rc)
1509 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1510 			qp->qp_num);
1511 
1512 	ntb_qp_link_down_reset(qp);
1513 }
1514 
1515 /**
1516  * ntb_transport_create_queue - Create a new NTB transport layer queue
1517  * @rx_handler: receive callback function
1518  * @tx_handler: transmit callback function
1519  * @event_handler: event callback function
1520  *
1521  * Create a new NTB transport layer queue and provide the queue with a callback
1522  * routine for both transmit and receive.  The receive callback routine will be
1523  * used to pass up data when the transport has received it on the queue.   The
1524  * transmit callback routine will be called when the transport has completed the
1525  * transmission of the data on the queue and the data is ready to be freed.
1526  *
1527  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1528  */
1529 struct ntb_transport_qp *
1530 ntb_transport_create_queue(void *data, struct device *client_dev,
1531 			   const struct ntb_queue_handlers *handlers)
1532 {
1533 	struct ntb_dev *ndev;
1534 	struct pci_dev *pdev;
1535 	struct ntb_transport_ctx *nt;
1536 	struct ntb_queue_entry *entry;
1537 	struct ntb_transport_qp *qp;
1538 	u64 qp_bit;
1539 	unsigned int free_queue;
1540 	int i;
1541 
1542 	ndev = dev_ntb(client_dev->parent);
1543 	pdev = ndev->pdev;
1544 	nt = ndev->ctx;
1545 
1546 	free_queue = ffs(nt->qp_bitmap);
1547 	if (!free_queue)
1548 		goto err;
1549 
1550 	/* decrement free_queue to make it zero based */
1551 	free_queue--;
1552 
1553 	qp = &nt->qp_vec[free_queue];
1554 	qp_bit = BIT_ULL(qp->qp_num);
1555 
1556 	nt->qp_bitmap_free &= ~qp_bit;
1557 
1558 	qp->cb_data = data;
1559 	qp->rx_handler = handlers->rx_handler;
1560 	qp->tx_handler = handlers->tx_handler;
1561 	qp->event_handler = handlers->event_handler;
1562 
1563 	dmaengine_get();
1564 	qp->dma_chan = dma_find_channel(DMA_MEMCPY);
1565 	if (!qp->dma_chan) {
1566 		dmaengine_put();
1567 		dev_info(&pdev->dev, "Unable to allocate DMA channel, using CPU instead\n");
1568 	}
1569 
1570 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1571 		entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1572 		if (!entry)
1573 			goto err1;
1574 
1575 		entry->qp = qp;
1576 		ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry,
1577 			     &qp->rx_free_q);
1578 	}
1579 
1580 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1581 		entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1582 		if (!entry)
1583 			goto err2;
1584 
1585 		entry->qp = qp;
1586 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1587 			     &qp->tx_free_q);
1588 	}
1589 
1590 	ntb_db_clear(qp->ndev, qp_bit);
1591 	ntb_db_clear_mask(qp->ndev, qp_bit);
1592 
1593 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1594 
1595 	return qp;
1596 
1597 err2:
1598 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1599 		kfree(entry);
1600 err1:
1601 	while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1602 		kfree(entry);
1603 	if (qp->dma_chan)
1604 		dmaengine_put();
1605 	nt->qp_bitmap_free |= qp_bit;
1606 err:
1607 	return NULL;
1608 }
1609 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1610 
1611 /**
1612  * ntb_transport_free_queue - Frees NTB transport queue
1613  * @qp: NTB queue to be freed
1614  *
1615  * Frees NTB transport queue
1616  */
1617 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1618 {
1619 	struct ntb_transport_ctx *nt = qp->transport;
1620 	struct pci_dev *pdev;
1621 	struct ntb_queue_entry *entry;
1622 	u64 qp_bit;
1623 
1624 	if (!qp)
1625 		return;
1626 
1627 	pdev = qp->ndev->pdev;
1628 
1629 	if (qp->dma_chan) {
1630 		struct dma_chan *chan = qp->dma_chan;
1631 		/* Putting the dma_chan to NULL will force any new traffic to be
1632 		 * processed by the CPU instead of the DAM engine
1633 		 */
1634 		qp->dma_chan = NULL;
1635 
1636 		/* Try to be nice and wait for any queued DMA engine
1637 		 * transactions to process before smashing it with a rock
1638 		 */
1639 		dma_sync_wait(chan, qp->last_cookie);
1640 		dmaengine_terminate_all(chan);
1641 		dmaengine_put();
1642 	}
1643 
1644 	qp_bit = BIT_ULL(qp->qp_num);
1645 
1646 	ntb_db_set_mask(qp->ndev, qp_bit);
1647 	tasklet_disable(&qp->rxc_db_work);
1648 
1649 	cancel_delayed_work_sync(&qp->link_work);
1650 
1651 	qp->cb_data = NULL;
1652 	qp->rx_handler = NULL;
1653 	qp->tx_handler = NULL;
1654 	qp->event_handler = NULL;
1655 
1656 	while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1657 		kfree(entry);
1658 
1659 	while ((entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q))) {
1660 		dev_warn(&pdev->dev, "Freeing item from a non-empty queue\n");
1661 		kfree(entry);
1662 	}
1663 
1664 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1665 		kfree(entry);
1666 
1667 	nt->qp_bitmap_free |= qp_bit;
1668 
1669 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1670 }
1671 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1672 
1673 /**
1674  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1675  * @qp: NTB queue to be freed
1676  * @len: pointer to variable to write enqueued buffers length
1677  *
1678  * Dequeues unused buffers from receive queue.  Should only be used during
1679  * shutdown of qp.
1680  *
1681  * RETURNS: NULL error value on error, or void* for success.
1682  */
1683 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1684 {
1685 	struct ntb_queue_entry *entry;
1686 	void *buf;
1687 
1688 	if (!qp || qp->client_ready)
1689 		return NULL;
1690 
1691 	entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1692 	if (!entry)
1693 		return NULL;
1694 
1695 	buf = entry->cb_data;
1696 	*len = entry->len;
1697 
1698 	ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1699 
1700 	return buf;
1701 }
1702 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1703 
1704 /**
1705  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1706  * @qp: NTB transport layer queue the entry is to be enqueued on
1707  * @cb: per buffer pointer for callback function to use
1708  * @data: pointer to data buffer that incoming packets will be copied into
1709  * @len: length of the data buffer
1710  *
1711  * Enqueue a new receive buffer onto the transport queue into which a NTB
1712  * payload can be received into.
1713  *
1714  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1715  */
1716 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1717 			     unsigned int len)
1718 {
1719 	struct ntb_queue_entry *entry;
1720 
1721 	if (!qp)
1722 		return -EINVAL;
1723 
1724 	entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q);
1725 	if (!entry)
1726 		return -ENOMEM;
1727 
1728 	entry->cb_data = cb;
1729 	entry->buf = data;
1730 	entry->len = len;
1731 
1732 	ntb_list_add(&qp->ntb_rx_pend_q_lock, &entry->entry, &qp->rx_pend_q);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1737 
1738 /**
1739  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1740  * @qp: NTB transport layer queue the entry is to be enqueued on
1741  * @cb: per buffer pointer for callback function to use
1742  * @data: pointer to data buffer that will be sent
1743  * @len: length of the data buffer
1744  *
1745  * Enqueue a new transmit buffer onto the transport queue from which a NTB
1746  * payload will be transmitted.  This assumes that a lock is being held to
1747  * serialize access to the qp.
1748  *
1749  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1750  */
1751 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1752 			     unsigned int len)
1753 {
1754 	struct ntb_queue_entry *entry;
1755 	int rc;
1756 
1757 	if (!qp || !qp->link_is_up || !len)
1758 		return -EINVAL;
1759 
1760 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1761 	if (!entry) {
1762 		qp->tx_err_no_buf++;
1763 		return -ENOMEM;
1764 	}
1765 
1766 	entry->cb_data = cb;
1767 	entry->buf = data;
1768 	entry->len = len;
1769 	entry->flags = 0;
1770 
1771 	rc = ntb_process_tx(qp, entry);
1772 	if (rc)
1773 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1774 			     &qp->tx_free_q);
1775 
1776 	return rc;
1777 }
1778 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1779 
1780 /**
1781  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1782  * @qp: NTB transport layer queue to be enabled
1783  *
1784  * Notify NTB transport layer of client readiness to use queue
1785  */
1786 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1787 {
1788 	if (!qp)
1789 		return;
1790 
1791 	qp->client_ready = true;
1792 
1793 	if (qp->transport->link_is_up)
1794 		schedule_delayed_work(&qp->link_work, 0);
1795 }
1796 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1797 
1798 /**
1799  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1800  * @qp: NTB transport layer queue to be disabled
1801  *
1802  * Notify NTB transport layer of client's desire to no longer receive data on
1803  * transport queue specified.  It is the client's responsibility to ensure all
1804  * entries on queue are purged or otherwise handled appropriately.
1805  */
1806 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1807 {
1808 	struct pci_dev *pdev;
1809 	int val;
1810 
1811 	if (!qp)
1812 		return;
1813 
1814 	pdev = qp->ndev->pdev;
1815 	qp->client_ready = false;
1816 
1817 	val = ntb_spad_read(qp->ndev, QP_LINKS);
1818 
1819 	ntb_peer_spad_write(qp->ndev, QP_LINKS,
1820 			    val & ~BIT(qp->qp_num));
1821 
1822 	if (qp->link_is_up)
1823 		ntb_send_link_down(qp);
1824 	else
1825 		cancel_delayed_work_sync(&qp->link_work);
1826 }
1827 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1828 
1829 /**
1830  * ntb_transport_link_query - Query transport link state
1831  * @qp: NTB transport layer queue to be queried
1832  *
1833  * Query connectivity to the remote system of the NTB transport queue
1834  *
1835  * RETURNS: true for link up or false for link down
1836  */
1837 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1838 {
1839 	if (!qp)
1840 		return false;
1841 
1842 	return qp->link_is_up;
1843 }
1844 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1845 
1846 /**
1847  * ntb_transport_qp_num - Query the qp number
1848  * @qp: NTB transport layer queue to be queried
1849  *
1850  * Query qp number of the NTB transport queue
1851  *
1852  * RETURNS: a zero based number specifying the qp number
1853  */
1854 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1855 {
1856 	if (!qp)
1857 		return 0;
1858 
1859 	return qp->qp_num;
1860 }
1861 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1862 
1863 /**
1864  * ntb_transport_max_size - Query the max payload size of a qp
1865  * @qp: NTB transport layer queue to be queried
1866  *
1867  * Query the maximum payload size permissible on the given qp
1868  *
1869  * RETURNS: the max payload size of a qp
1870  */
1871 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1872 {
1873 	unsigned int max;
1874 
1875 	if (!qp)
1876 		return 0;
1877 
1878 	if (!qp->dma_chan)
1879 		return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1880 
1881 	/* If DMA engine usage is possible, try to find the max size for that */
1882 	max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1883 	max -= max % (1 << qp->dma_chan->device->copy_align);
1884 
1885 	return max;
1886 }
1887 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1888 
1889 static void ntb_transport_doorbell_callback(void *data, int vector)
1890 {
1891 	struct ntb_transport_ctx *nt = data;
1892 	struct ntb_transport_qp *qp;
1893 	u64 db_bits;
1894 	unsigned int qp_num;
1895 
1896 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1897 		   ntb_db_vector_mask(nt->ndev, vector));
1898 
1899 	while (db_bits) {
1900 		qp_num = __ffs(db_bits);
1901 		qp = &nt->qp_vec[qp_num];
1902 
1903 		tasklet_schedule(&qp->rxc_db_work);
1904 
1905 		db_bits &= ~BIT_ULL(qp_num);
1906 	}
1907 }
1908 
1909 static const struct ntb_ctx_ops ntb_transport_ops = {
1910 	.link_event = ntb_transport_event_callback,
1911 	.db_event = ntb_transport_doorbell_callback,
1912 };
1913 
1914 static struct ntb_client ntb_transport_client = {
1915 	.ops = {
1916 		.probe = ntb_transport_probe,
1917 		.remove = ntb_transport_free,
1918 	},
1919 };
1920 
1921 static int __init ntb_transport_init(void)
1922 {
1923 	int rc;
1924 
1925 	if (debugfs_initialized())
1926 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1927 
1928 	rc = bus_register(&ntb_transport_bus);
1929 	if (rc)
1930 		goto err_bus;
1931 
1932 	rc = ntb_register_client(&ntb_transport_client);
1933 	if (rc)
1934 		goto err_client;
1935 
1936 	return 0;
1937 
1938 err_client:
1939 	bus_unregister(&ntb_transport_bus);
1940 err_bus:
1941 	debugfs_remove_recursive(nt_debugfs_dir);
1942 	return rc;
1943 }
1944 module_init(ntb_transport_init);
1945 
1946 static void __exit ntb_transport_exit(void)
1947 {
1948 	debugfs_remove_recursive(nt_debugfs_dir);
1949 
1950 	ntb_unregister_client(&ntb_transport_client);
1951 	bus_unregister(&ntb_transport_bus);
1952 }
1953 module_exit(ntb_transport_exit);
1954