xref: /openbmc/linux/drivers/ntb/ntb_transport.c (revision 09b06c25)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static bool use_msi;
97 #ifdef CONFIG_NTB_MSI
98 module_param(use_msi, bool, 0644);
99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100 #endif
101 
102 static struct dentry *nt_debugfs_dir;
103 
104 /* Only two-ports NTB devices are supported */
105 #define PIDX		NTB_DEF_PEER_IDX
106 
107 struct ntb_queue_entry {
108 	/* ntb_queue list reference */
109 	struct list_head entry;
110 	/* pointers to data to be transferred */
111 	void *cb_data;
112 	void *buf;
113 	unsigned int len;
114 	unsigned int flags;
115 	int retries;
116 	int errors;
117 	unsigned int tx_index;
118 	unsigned int rx_index;
119 
120 	struct ntb_transport_qp *qp;
121 	union {
122 		struct ntb_payload_header __iomem *tx_hdr;
123 		struct ntb_payload_header *rx_hdr;
124 	};
125 };
126 
127 struct ntb_rx_info {
128 	unsigned int entry;
129 };
130 
131 struct ntb_transport_qp {
132 	struct ntb_transport_ctx *transport;
133 	struct ntb_dev *ndev;
134 	void *cb_data;
135 	struct dma_chan *tx_dma_chan;
136 	struct dma_chan *rx_dma_chan;
137 
138 	bool client_ready;
139 	bool link_is_up;
140 	bool active;
141 
142 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
143 	u64 qp_bit;
144 
145 	struct ntb_rx_info __iomem *rx_info;
146 	struct ntb_rx_info *remote_rx_info;
147 
148 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 			   void *data, int len);
150 	struct list_head tx_free_q;
151 	spinlock_t ntb_tx_free_q_lock;
152 	void __iomem *tx_mw;
153 	phys_addr_t tx_mw_phys;
154 	size_t tx_mw_size;
155 	dma_addr_t tx_mw_dma_addr;
156 	unsigned int tx_index;
157 	unsigned int tx_max_entry;
158 	unsigned int tx_max_frame;
159 
160 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 			   void *data, int len);
162 	struct list_head rx_post_q;
163 	struct list_head rx_pend_q;
164 	struct list_head rx_free_q;
165 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 	spinlock_t ntb_rx_q_lock;
167 	void *rx_buff;
168 	unsigned int rx_index;
169 	unsigned int rx_max_entry;
170 	unsigned int rx_max_frame;
171 	unsigned int rx_alloc_entry;
172 	dma_cookie_t last_cookie;
173 	struct tasklet_struct rxc_db_work;
174 
175 	void (*event_handler)(void *data, int status);
176 	struct delayed_work link_work;
177 	struct work_struct link_cleanup;
178 
179 	struct dentry *debugfs_dir;
180 	struct dentry *debugfs_stats;
181 
182 	/* Stats */
183 	u64 rx_bytes;
184 	u64 rx_pkts;
185 	u64 rx_ring_empty;
186 	u64 rx_err_no_buf;
187 	u64 rx_err_oflow;
188 	u64 rx_err_ver;
189 	u64 rx_memcpy;
190 	u64 rx_async;
191 	u64 tx_bytes;
192 	u64 tx_pkts;
193 	u64 tx_ring_full;
194 	u64 tx_err_no_buf;
195 	u64 tx_memcpy;
196 	u64 tx_async;
197 
198 	bool use_msi;
199 	int msi_irq;
200 	struct ntb_msi_desc msi_desc;
201 	struct ntb_msi_desc peer_msi_desc;
202 };
203 
204 struct ntb_transport_mw {
205 	phys_addr_t phys_addr;
206 	resource_size_t phys_size;
207 	void __iomem *vbase;
208 	size_t xlat_size;
209 	size_t buff_size;
210 	size_t alloc_size;
211 	void *alloc_addr;
212 	void *virt_addr;
213 	dma_addr_t dma_addr;
214 };
215 
216 struct ntb_transport_client_dev {
217 	struct list_head entry;
218 	struct ntb_transport_ctx *nt;
219 	struct device dev;
220 };
221 
222 struct ntb_transport_ctx {
223 	struct list_head entry;
224 	struct list_head client_devs;
225 
226 	struct ntb_dev *ndev;
227 
228 	struct ntb_transport_mw *mw_vec;
229 	struct ntb_transport_qp *qp_vec;
230 	unsigned int mw_count;
231 	unsigned int qp_count;
232 	u64 qp_bitmap;
233 	u64 qp_bitmap_free;
234 
235 	bool use_msi;
236 	unsigned int msi_spad_offset;
237 	u64 msi_db_mask;
238 
239 	bool link_is_up;
240 	struct delayed_work link_work;
241 	struct work_struct link_cleanup;
242 
243 	struct dentry *debugfs_node_dir;
244 };
245 
246 enum {
247 	DESC_DONE_FLAG = BIT(0),
248 	LINK_DOWN_FLAG = BIT(1),
249 };
250 
251 struct ntb_payload_header {
252 	unsigned int ver;
253 	unsigned int len;
254 	unsigned int flags;
255 };
256 
257 enum {
258 	VERSION = 0,
259 	QP_LINKS,
260 	NUM_QPS,
261 	NUM_MWS,
262 	MW0_SZ_HIGH,
263 	MW0_SZ_LOW,
264 };
265 
266 #define dev_client_dev(__dev) \
267 	container_of((__dev), struct ntb_transport_client_dev, dev)
268 
269 #define drv_client(__drv) \
270 	container_of((__drv), struct ntb_transport_client, driver)
271 
272 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
273 #define NTB_QP_DEF_NUM_ENTRIES	100
274 #define NTB_LINK_DOWN_TIMEOUT	10
275 
276 static void ntb_transport_rxc_db(unsigned long data);
277 static const struct ntb_ctx_ops ntb_transport_ops;
278 static struct ntb_client ntb_transport_client;
279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 			       struct ntb_queue_entry *entry);
281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284 
285 
286 static int ntb_transport_bus_match(struct device *dev,
287 				   struct device_driver *drv)
288 {
289 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290 }
291 
292 static int ntb_transport_bus_probe(struct device *dev)
293 {
294 	const struct ntb_transport_client *client;
295 	int rc;
296 
297 	get_device(dev);
298 
299 	client = drv_client(dev->driver);
300 	rc = client->probe(dev);
301 	if (rc)
302 		put_device(dev);
303 
304 	return rc;
305 }
306 
307 static void ntb_transport_bus_remove(struct device *dev)
308 {
309 	const struct ntb_transport_client *client;
310 
311 	client = drv_client(dev->driver);
312 	client->remove(dev);
313 
314 	put_device(dev);
315 }
316 
317 static struct bus_type ntb_transport_bus = {
318 	.name = "ntb_transport",
319 	.match = ntb_transport_bus_match,
320 	.probe = ntb_transport_bus_probe,
321 	.remove = ntb_transport_bus_remove,
322 };
323 
324 static LIST_HEAD(ntb_transport_list);
325 
326 static int ntb_bus_init(struct ntb_transport_ctx *nt)
327 {
328 	list_add_tail(&nt->entry, &ntb_transport_list);
329 	return 0;
330 }
331 
332 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333 {
334 	struct ntb_transport_client_dev *client_dev, *cd;
335 
336 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338 			dev_name(&client_dev->dev));
339 		list_del(&client_dev->entry);
340 		device_unregister(&client_dev->dev);
341 	}
342 
343 	list_del(&nt->entry);
344 }
345 
346 static void ntb_transport_client_release(struct device *dev)
347 {
348 	struct ntb_transport_client_dev *client_dev;
349 
350 	client_dev = dev_client_dev(dev);
351 	kfree(client_dev);
352 }
353 
354 /**
355  * ntb_transport_unregister_client_dev - Unregister NTB client device
356  * @device_name: Name of NTB client device
357  *
358  * Unregister an NTB client device with the NTB transport layer
359  */
360 void ntb_transport_unregister_client_dev(char *device_name)
361 {
362 	struct ntb_transport_client_dev *client, *cd;
363 	struct ntb_transport_ctx *nt;
364 
365 	list_for_each_entry(nt, &ntb_transport_list, entry)
366 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367 			if (!strncmp(dev_name(&client->dev), device_name,
368 				     strlen(device_name))) {
369 				list_del(&client->entry);
370 				device_unregister(&client->dev);
371 			}
372 }
373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374 
375 /**
376  * ntb_transport_register_client_dev - Register NTB client device
377  * @device_name: Name of NTB client device
378  *
379  * Register an NTB client device with the NTB transport layer
380  */
381 int ntb_transport_register_client_dev(char *device_name)
382 {
383 	struct ntb_transport_client_dev *client_dev;
384 	struct ntb_transport_ctx *nt;
385 	int node;
386 	int rc, i = 0;
387 
388 	if (list_empty(&ntb_transport_list))
389 		return -ENODEV;
390 
391 	list_for_each_entry(nt, &ntb_transport_list, entry) {
392 		struct device *dev;
393 
394 		node = dev_to_node(&nt->ndev->dev);
395 
396 		client_dev = kzalloc_node(sizeof(*client_dev),
397 					  GFP_KERNEL, node);
398 		if (!client_dev) {
399 			rc = -ENOMEM;
400 			goto err;
401 		}
402 
403 		dev = &client_dev->dev;
404 
405 		/* setup and register client devices */
406 		dev_set_name(dev, "%s%d", device_name, i);
407 		dev->bus = &ntb_transport_bus;
408 		dev->release = ntb_transport_client_release;
409 		dev->parent = &nt->ndev->dev;
410 
411 		rc = device_register(dev);
412 		if (rc) {
413 			put_device(dev);
414 			goto err;
415 		}
416 
417 		list_add_tail(&client_dev->entry, &nt->client_devs);
418 		i++;
419 	}
420 
421 	return 0;
422 
423 err:
424 	ntb_transport_unregister_client_dev(device_name);
425 
426 	return rc;
427 }
428 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429 
430 /**
431  * ntb_transport_register_client - Register NTB client driver
432  * @drv: NTB client driver to be registered
433  *
434  * Register an NTB client driver with the NTB transport layer
435  *
436  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437  */
438 int ntb_transport_register_client(struct ntb_transport_client *drv)
439 {
440 	drv->driver.bus = &ntb_transport_bus;
441 
442 	if (list_empty(&ntb_transport_list))
443 		return -ENODEV;
444 
445 	return driver_register(&drv->driver);
446 }
447 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448 
449 /**
450  * ntb_transport_unregister_client - Unregister NTB client driver
451  * @drv: NTB client driver to be unregistered
452  *
453  * Unregister an NTB client driver with the NTB transport layer
454  *
455  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456  */
457 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458 {
459 	driver_unregister(&drv->driver);
460 }
461 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462 
463 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464 			    loff_t *offp)
465 {
466 	struct ntb_transport_qp *qp;
467 	char *buf;
468 	ssize_t ret, out_offset, out_count;
469 
470 	qp = filp->private_data;
471 
472 	if (!qp || !qp->link_is_up)
473 		return 0;
474 
475 	out_count = 1000;
476 
477 	buf = kmalloc(out_count, GFP_KERNEL);
478 	if (!buf)
479 		return -ENOMEM;
480 
481 	out_offset = 0;
482 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
483 			       "\nNTB QP stats:\n\n");
484 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
486 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
488 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 			       "rx_async - \t%llu\n", qp->rx_async);
492 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 			       "rx_buff - \t0x%p\n", qp->rx_buff);
502 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 			       "rx_index - \t%u\n", qp->rx_index);
504 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
506 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508 
509 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
510 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
511 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
513 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 			       "tx_async - \t%llu\n", qp->tx_async);
517 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 			       "tx_mw - \t0x%p\n", qp->tx_mw);
523 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 			       "tx_index (H) - \t%u\n", qp->tx_index);
525 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 			       "RRI (T) - \t%u\n",
527 			       qp->remote_rx_info->entry);
528 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
529 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
530 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531 			       "free tx - \t%u\n",
532 			       ntb_transport_tx_free_entry(qp));
533 
534 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535 			       "\n");
536 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 			       "Using TX DMA - \t%s\n",
538 			       qp->tx_dma_chan ? "Yes" : "No");
539 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
540 			       "Using RX DMA - \t%s\n",
541 			       qp->rx_dma_chan ? "Yes" : "No");
542 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543 			       "QP Link - \t%s\n",
544 			       qp->link_is_up ? "Up" : "Down");
545 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546 			       "\n");
547 
548 	if (out_offset > out_count)
549 		out_offset = out_count;
550 
551 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
552 	kfree(buf);
553 	return ret;
554 }
555 
556 static const struct file_operations ntb_qp_debugfs_stats = {
557 	.owner = THIS_MODULE,
558 	.open = simple_open,
559 	.read = debugfs_read,
560 };
561 
562 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563 			 struct list_head *list)
564 {
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(lock, flags);
568 	list_add_tail(entry, list);
569 	spin_unlock_irqrestore(lock, flags);
570 }
571 
572 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573 					   struct list_head *list)
574 {
575 	struct ntb_queue_entry *entry;
576 	unsigned long flags;
577 
578 	spin_lock_irqsave(lock, flags);
579 	if (list_empty(list)) {
580 		entry = NULL;
581 		goto out;
582 	}
583 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
584 	list_del(&entry->entry);
585 
586 out:
587 	spin_unlock_irqrestore(lock, flags);
588 
589 	return entry;
590 }
591 
592 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593 					   struct list_head *list,
594 					   struct list_head *to_list)
595 {
596 	struct ntb_queue_entry *entry;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(lock, flags);
600 
601 	if (list_empty(list)) {
602 		entry = NULL;
603 	} else {
604 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
605 		list_move_tail(&entry->entry, to_list);
606 	}
607 
608 	spin_unlock_irqrestore(lock, flags);
609 
610 	return entry;
611 }
612 
613 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614 				     unsigned int qp_num)
615 {
616 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617 	struct ntb_transport_mw *mw;
618 	struct ntb_dev *ndev = nt->ndev;
619 	struct ntb_queue_entry *entry;
620 	unsigned int rx_size, num_qps_mw;
621 	unsigned int mw_num, mw_count, qp_count;
622 	unsigned int i;
623 	int node;
624 
625 	mw_count = nt->mw_count;
626 	qp_count = nt->qp_count;
627 
628 	mw_num = QP_TO_MW(nt, qp_num);
629 	mw = &nt->mw_vec[mw_num];
630 
631 	if (!mw->virt_addr)
632 		return -ENOMEM;
633 
634 	if (mw_num < qp_count % mw_count)
635 		num_qps_mw = qp_count / mw_count + 1;
636 	else
637 		num_qps_mw = qp_count / mw_count;
638 
639 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641 	rx_size -= sizeof(struct ntb_rx_info);
642 
643 	qp->remote_rx_info = qp->rx_buff + rx_size;
644 
645 	/* Due to housekeeping, there must be atleast 2 buffs */
646 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
648 	qp->rx_index = 0;
649 
650 	/*
651 	 * Checking to see if we have more entries than the default.
652 	 * We should add additional entries if that is the case so we
653 	 * can be in sync with the transport frames.
654 	 */
655 	node = dev_to_node(&ndev->dev);
656 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
658 		if (!entry)
659 			return -ENOMEM;
660 
661 		entry->qp = qp;
662 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
663 			     &qp->rx_free_q);
664 		qp->rx_alloc_entry++;
665 	}
666 
667 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668 
669 	/* setup the hdr offsets with 0's */
670 	for (i = 0; i < qp->rx_max_entry; i++) {
671 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672 				sizeof(struct ntb_payload_header));
673 		memset(offset, 0, sizeof(struct ntb_payload_header));
674 	}
675 
676 	qp->rx_pkts = 0;
677 	qp->tx_pkts = 0;
678 	qp->tx_index = 0;
679 
680 	return 0;
681 }
682 
683 static irqreturn_t ntb_transport_isr(int irq, void *dev)
684 {
685 	struct ntb_transport_qp *qp = dev;
686 
687 	tasklet_schedule(&qp->rxc_db_work);
688 
689 	return IRQ_HANDLED;
690 }
691 
692 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693 					    unsigned int qp_num)
694 {
695 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696 	int spad = qp_num * 2 + nt->msi_spad_offset;
697 
698 	if (!nt->use_msi)
699 		return;
700 
701 	if (spad >= ntb_spad_count(nt->ndev))
702 		return;
703 
704 	qp->peer_msi_desc.addr_offset =
705 		ntb_peer_spad_read(qp->ndev, PIDX, spad);
706 	qp->peer_msi_desc.data =
707 		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
708 
709 	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710 		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711 
712 	if (qp->peer_msi_desc.addr_offset) {
713 		qp->use_msi = true;
714 		dev_info(&qp->ndev->pdev->dev,
715 			 "Using MSI interrupts for QP%d\n", qp_num);
716 	}
717 }
718 
719 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720 				       unsigned int qp_num)
721 {
722 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723 	int spad = qp_num * 2 + nt->msi_spad_offset;
724 	int rc;
725 
726 	if (!nt->use_msi)
727 		return;
728 
729 	if (spad >= ntb_spad_count(nt->ndev)) {
730 		dev_warn_once(&qp->ndev->pdev->dev,
731 			      "Not enough SPADS to use MSI interrupts\n");
732 		return;
733 	}
734 
735 	ntb_spad_write(qp->ndev, spad, 0);
736 	ntb_spad_write(qp->ndev, spad + 1, 0);
737 
738 	if (!qp->msi_irq) {
739 		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
740 						   KBUILD_MODNAME, qp,
741 						   &qp->msi_desc);
742 		if (qp->msi_irq < 0) {
743 			dev_warn(&qp->ndev->pdev->dev,
744 				 "Unable to allocate MSI interrupt for qp%d\n",
745 				 qp_num);
746 			return;
747 		}
748 	}
749 
750 	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
751 	if (rc)
752 		goto err_free_interrupt;
753 
754 	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
755 	if (rc)
756 		goto err_free_interrupt;
757 
758 	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759 		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760 		qp->msi_desc.data);
761 
762 	return;
763 
764 err_free_interrupt:
765 	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
766 }
767 
768 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769 {
770 	int i;
771 
772 	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773 
774 	for (i = 0; i < nt->qp_count; i++)
775 		ntb_transport_setup_qp_peer_msi(nt, i);
776 }
777 
778 static void ntb_transport_msi_desc_changed(void *data)
779 {
780 	struct ntb_transport_ctx *nt = data;
781 	int i;
782 
783 	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784 
785 	for (i = 0; i < nt->qp_count; i++)
786 		ntb_transport_setup_qp_msi(nt, i);
787 
788 	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
789 }
790 
791 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792 {
793 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794 	struct pci_dev *pdev = nt->ndev->pdev;
795 
796 	if (!mw->virt_addr)
797 		return;
798 
799 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
800 	dma_free_coherent(&pdev->dev, mw->alloc_size,
801 			  mw->alloc_addr, mw->dma_addr);
802 	mw->xlat_size = 0;
803 	mw->buff_size = 0;
804 	mw->alloc_size = 0;
805 	mw->alloc_addr = NULL;
806 	mw->virt_addr = NULL;
807 }
808 
809 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810 			       struct device *ntb_dev, size_t align)
811 {
812 	dma_addr_t dma_addr;
813 	void *alloc_addr, *virt_addr;
814 	int rc;
815 
816 	/*
817 	 * The buffer here is allocated against the NTB device. The reason to
818 	 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer
819 	 * backing the NTB BAR for the remote host to write to. During receive
820 	 * processing, the data is being copied out of the receive buffer to
821 	 * the kernel skbuff. When a DMA device is being used, dma_map_page()
822 	 * is called on the kvaddr of the receive buffer (from dma_alloc_*())
823 	 * and remapped against the DMA device. It appears to be a double
824 	 * DMA mapping of buffers, but first is mapped to the NTB device and
825 	 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary
826 	 * in order for the later dma_map_page() to not fail.
827 	 */
828 	alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size,
829 				     &dma_addr, GFP_KERNEL,
830 				     DMA_ATTR_FORCE_CONTIGUOUS);
831 	if (!alloc_addr) {
832 		dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n",
833 			mw->alloc_size);
834 		return -ENOMEM;
835 	}
836 	virt_addr = alloc_addr;
837 
838 	/*
839 	 * we must ensure that the memory address allocated is BAR size
840 	 * aligned in order for the XLAT register to take the value. This
841 	 * is a requirement of the hardware. It is recommended to setup CMA
842 	 * for BAR sizes equal or greater than 4MB.
843 	 */
844 	if (!IS_ALIGNED(dma_addr, align)) {
845 		if (mw->alloc_size > mw->buff_size) {
846 			virt_addr = PTR_ALIGN(alloc_addr, align);
847 			dma_addr = ALIGN(dma_addr, align);
848 		} else {
849 			rc = -ENOMEM;
850 			goto err;
851 		}
852 	}
853 
854 	mw->alloc_addr = alloc_addr;
855 	mw->virt_addr = virt_addr;
856 	mw->dma_addr = dma_addr;
857 
858 	return 0;
859 
860 err:
861 	dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr);
862 
863 	return rc;
864 }
865 
866 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
867 		      resource_size_t size)
868 {
869 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
870 	struct pci_dev *pdev = nt->ndev->pdev;
871 	size_t xlat_size, buff_size;
872 	resource_size_t xlat_align;
873 	resource_size_t xlat_align_size;
874 	int rc;
875 
876 	if (!size)
877 		return -EINVAL;
878 
879 	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
880 			      &xlat_align_size, NULL);
881 	if (rc)
882 		return rc;
883 
884 	xlat_size = round_up(size, xlat_align_size);
885 	buff_size = round_up(size, xlat_align);
886 
887 	/* No need to re-setup */
888 	if (mw->xlat_size == xlat_size)
889 		return 0;
890 
891 	if (mw->buff_size)
892 		ntb_free_mw(nt, num_mw);
893 
894 	/* Alloc memory for receiving data.  Must be aligned */
895 	mw->xlat_size = xlat_size;
896 	mw->buff_size = buff_size;
897 	mw->alloc_size = buff_size;
898 
899 	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
900 	if (rc) {
901 		mw->alloc_size *= 2;
902 		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
903 		if (rc) {
904 			dev_err(&pdev->dev,
905 				"Unable to alloc aligned MW buff\n");
906 			mw->xlat_size = 0;
907 			mw->buff_size = 0;
908 			mw->alloc_size = 0;
909 			return rc;
910 		}
911 	}
912 
913 	/* Notify HW the memory location of the receive buffer */
914 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
915 			      mw->xlat_size);
916 	if (rc) {
917 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
918 		ntb_free_mw(nt, num_mw);
919 		return -EIO;
920 	}
921 
922 	return 0;
923 }
924 
925 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
926 {
927 	qp->link_is_up = false;
928 	qp->active = false;
929 
930 	qp->tx_index = 0;
931 	qp->rx_index = 0;
932 	qp->rx_bytes = 0;
933 	qp->rx_pkts = 0;
934 	qp->rx_ring_empty = 0;
935 	qp->rx_err_no_buf = 0;
936 	qp->rx_err_oflow = 0;
937 	qp->rx_err_ver = 0;
938 	qp->rx_memcpy = 0;
939 	qp->rx_async = 0;
940 	qp->tx_bytes = 0;
941 	qp->tx_pkts = 0;
942 	qp->tx_ring_full = 0;
943 	qp->tx_err_no_buf = 0;
944 	qp->tx_memcpy = 0;
945 	qp->tx_async = 0;
946 }
947 
948 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
949 {
950 	ntb_qp_link_context_reset(qp);
951 	if (qp->remote_rx_info)
952 		qp->remote_rx_info->entry = qp->rx_max_entry - 1;
953 }
954 
955 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
956 {
957 	struct ntb_transport_ctx *nt = qp->transport;
958 	struct pci_dev *pdev = nt->ndev->pdev;
959 
960 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
961 
962 	cancel_delayed_work_sync(&qp->link_work);
963 	ntb_qp_link_down_reset(qp);
964 
965 	if (qp->event_handler)
966 		qp->event_handler(qp->cb_data, qp->link_is_up);
967 }
968 
969 static void ntb_qp_link_cleanup_work(struct work_struct *work)
970 {
971 	struct ntb_transport_qp *qp = container_of(work,
972 						   struct ntb_transport_qp,
973 						   link_cleanup);
974 	struct ntb_transport_ctx *nt = qp->transport;
975 
976 	ntb_qp_link_cleanup(qp);
977 
978 	if (nt->link_is_up)
979 		schedule_delayed_work(&qp->link_work,
980 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
981 }
982 
983 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
984 {
985 	schedule_work(&qp->link_cleanup);
986 }
987 
988 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
989 {
990 	struct ntb_transport_qp *qp;
991 	u64 qp_bitmap_alloc;
992 	unsigned int i, count;
993 
994 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
995 
996 	/* Pass along the info to any clients */
997 	for (i = 0; i < nt->qp_count; i++)
998 		if (qp_bitmap_alloc & BIT_ULL(i)) {
999 			qp = &nt->qp_vec[i];
1000 			ntb_qp_link_cleanup(qp);
1001 			cancel_work_sync(&qp->link_cleanup);
1002 			cancel_delayed_work_sync(&qp->link_work);
1003 		}
1004 
1005 	if (!nt->link_is_up)
1006 		cancel_delayed_work_sync(&nt->link_work);
1007 
1008 	for (i = 0; i < nt->mw_count; i++)
1009 		ntb_free_mw(nt, i);
1010 
1011 	/* The scratchpad registers keep the values if the remote side
1012 	 * goes down, blast them now to give them a sane value the next
1013 	 * time they are accessed
1014 	 */
1015 	count = ntb_spad_count(nt->ndev);
1016 	for (i = 0; i < count; i++)
1017 		ntb_spad_write(nt->ndev, i, 0);
1018 }
1019 
1020 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1021 {
1022 	struct ntb_transport_ctx *nt =
1023 		container_of(work, struct ntb_transport_ctx, link_cleanup);
1024 
1025 	ntb_transport_link_cleanup(nt);
1026 }
1027 
1028 static void ntb_transport_event_callback(void *data)
1029 {
1030 	struct ntb_transport_ctx *nt = data;
1031 
1032 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1033 		schedule_delayed_work(&nt->link_work, 0);
1034 	else
1035 		schedule_work(&nt->link_cleanup);
1036 }
1037 
1038 static void ntb_transport_link_work(struct work_struct *work)
1039 {
1040 	struct ntb_transport_ctx *nt =
1041 		container_of(work, struct ntb_transport_ctx, link_work.work);
1042 	struct ntb_dev *ndev = nt->ndev;
1043 	struct pci_dev *pdev = ndev->pdev;
1044 	resource_size_t size;
1045 	u32 val;
1046 	int rc = 0, i, spad;
1047 
1048 	/* send the local info, in the opposite order of the way we read it */
1049 
1050 	if (nt->use_msi) {
1051 		rc = ntb_msi_setup_mws(ndev);
1052 		if (rc) {
1053 			dev_warn(&pdev->dev,
1054 				 "Failed to register MSI memory window: %d\n",
1055 				 rc);
1056 			nt->use_msi = false;
1057 		}
1058 	}
1059 
1060 	for (i = 0; i < nt->qp_count; i++)
1061 		ntb_transport_setup_qp_msi(nt, i);
1062 
1063 	for (i = 0; i < nt->mw_count; i++) {
1064 		size = nt->mw_vec[i].phys_size;
1065 
1066 		if (max_mw_size && size > max_mw_size)
1067 			size = max_mw_size;
1068 
1069 		spad = MW0_SZ_HIGH + (i * 2);
1070 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1071 
1072 		spad = MW0_SZ_LOW + (i * 2);
1073 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1074 	}
1075 
1076 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1077 
1078 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1079 
1080 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1081 
1082 	/* Query the remote side for its info */
1083 	val = ntb_spad_read(ndev, VERSION);
1084 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1085 	if (val != NTB_TRANSPORT_VERSION)
1086 		goto out;
1087 
1088 	val = ntb_spad_read(ndev, NUM_QPS);
1089 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1090 	if (val != nt->qp_count)
1091 		goto out;
1092 
1093 	val = ntb_spad_read(ndev, NUM_MWS);
1094 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1095 	if (val != nt->mw_count)
1096 		goto out;
1097 
1098 	for (i = 0; i < nt->mw_count; i++) {
1099 		u64 val64;
1100 
1101 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1102 		val64 = (u64)val << 32;
1103 
1104 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1105 		val64 |= val;
1106 
1107 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1108 
1109 		rc = ntb_set_mw(nt, i, val64);
1110 		if (rc)
1111 			goto out1;
1112 	}
1113 
1114 	nt->link_is_up = true;
1115 
1116 	for (i = 0; i < nt->qp_count; i++) {
1117 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1118 
1119 		ntb_transport_setup_qp_mw(nt, i);
1120 		ntb_transport_setup_qp_peer_msi(nt, i);
1121 
1122 		if (qp->client_ready)
1123 			schedule_delayed_work(&qp->link_work, 0);
1124 	}
1125 
1126 	return;
1127 
1128 out1:
1129 	for (i = 0; i < nt->mw_count; i++)
1130 		ntb_free_mw(nt, i);
1131 
1132 	/* if there's an actual failure, we should just bail */
1133 	if (rc < 0)
1134 		return;
1135 
1136 out:
1137 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1138 		schedule_delayed_work(&nt->link_work,
1139 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1140 }
1141 
1142 static void ntb_qp_link_work(struct work_struct *work)
1143 {
1144 	struct ntb_transport_qp *qp = container_of(work,
1145 						   struct ntb_transport_qp,
1146 						   link_work.work);
1147 	struct pci_dev *pdev = qp->ndev->pdev;
1148 	struct ntb_transport_ctx *nt = qp->transport;
1149 	int val;
1150 
1151 	WARN_ON(!nt->link_is_up);
1152 
1153 	val = ntb_spad_read(nt->ndev, QP_LINKS);
1154 
1155 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1156 
1157 	/* query remote spad for qp ready bits */
1158 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1159 
1160 	/* See if the remote side is up */
1161 	if (val & BIT(qp->qp_num)) {
1162 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1163 		qp->link_is_up = true;
1164 		qp->active = true;
1165 
1166 		if (qp->event_handler)
1167 			qp->event_handler(qp->cb_data, qp->link_is_up);
1168 
1169 		if (qp->active)
1170 			tasklet_schedule(&qp->rxc_db_work);
1171 	} else if (nt->link_is_up)
1172 		schedule_delayed_work(&qp->link_work,
1173 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1174 }
1175 
1176 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1177 				    unsigned int qp_num)
1178 {
1179 	struct ntb_transport_qp *qp;
1180 	phys_addr_t mw_base;
1181 	resource_size_t mw_size;
1182 	unsigned int num_qps_mw, tx_size;
1183 	unsigned int mw_num, mw_count, qp_count;
1184 	u64 qp_offset;
1185 
1186 	mw_count = nt->mw_count;
1187 	qp_count = nt->qp_count;
1188 
1189 	mw_num = QP_TO_MW(nt, qp_num);
1190 
1191 	qp = &nt->qp_vec[qp_num];
1192 	qp->qp_num = qp_num;
1193 	qp->transport = nt;
1194 	qp->ndev = nt->ndev;
1195 	qp->client_ready = false;
1196 	qp->event_handler = NULL;
1197 	ntb_qp_link_context_reset(qp);
1198 
1199 	if (mw_num < qp_count % mw_count)
1200 		num_qps_mw = qp_count / mw_count + 1;
1201 	else
1202 		num_qps_mw = qp_count / mw_count;
1203 
1204 	mw_base = nt->mw_vec[mw_num].phys_addr;
1205 	mw_size = nt->mw_vec[mw_num].phys_size;
1206 
1207 	if (max_mw_size && mw_size > max_mw_size)
1208 		mw_size = max_mw_size;
1209 
1210 	tx_size = (unsigned int)mw_size / num_qps_mw;
1211 	qp_offset = tx_size * (qp_num / mw_count);
1212 
1213 	qp->tx_mw_size = tx_size;
1214 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1215 	if (!qp->tx_mw)
1216 		return -EINVAL;
1217 
1218 	qp->tx_mw_phys = mw_base + qp_offset;
1219 	if (!qp->tx_mw_phys)
1220 		return -EINVAL;
1221 
1222 	tx_size -= sizeof(struct ntb_rx_info);
1223 	qp->rx_info = qp->tx_mw + tx_size;
1224 
1225 	/* Due to housekeeping, there must be atleast 2 buffs */
1226 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1227 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1228 
1229 	if (nt->debugfs_node_dir) {
1230 		char debugfs_name[4];
1231 
1232 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1233 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1234 						     nt->debugfs_node_dir);
1235 
1236 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1237 							qp->debugfs_dir, qp,
1238 							&ntb_qp_debugfs_stats);
1239 	} else {
1240 		qp->debugfs_dir = NULL;
1241 		qp->debugfs_stats = NULL;
1242 	}
1243 
1244 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1245 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1246 
1247 	spin_lock_init(&qp->ntb_rx_q_lock);
1248 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1249 
1250 	INIT_LIST_HEAD(&qp->rx_post_q);
1251 	INIT_LIST_HEAD(&qp->rx_pend_q);
1252 	INIT_LIST_HEAD(&qp->rx_free_q);
1253 	INIT_LIST_HEAD(&qp->tx_free_q);
1254 
1255 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1256 		     (unsigned long)qp);
1257 
1258 	return 0;
1259 }
1260 
1261 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1262 {
1263 	struct ntb_transport_ctx *nt;
1264 	struct ntb_transport_mw *mw;
1265 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1266 	u64 qp_bitmap;
1267 	int node;
1268 	int rc, i;
1269 
1270 	mw_count = ntb_peer_mw_count(ndev);
1271 
1272 	if (!ndev->ops->mw_set_trans) {
1273 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1274 		return -EINVAL;
1275 	}
1276 
1277 	if (ntb_db_is_unsafe(ndev))
1278 		dev_dbg(&ndev->dev,
1279 			"doorbell is unsafe, proceed anyway...\n");
1280 	if (ntb_spad_is_unsafe(ndev))
1281 		dev_dbg(&ndev->dev,
1282 			"scratchpad is unsafe, proceed anyway...\n");
1283 
1284 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1285 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1286 
1287 	node = dev_to_node(&ndev->dev);
1288 
1289 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1290 	if (!nt)
1291 		return -ENOMEM;
1292 
1293 	nt->ndev = ndev;
1294 
1295 	/*
1296 	 * If we are using MSI, and have at least one extra memory window,
1297 	 * we will reserve the last MW for the MSI window.
1298 	 */
1299 	if (use_msi && mw_count > 1) {
1300 		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1301 		if (!rc) {
1302 			mw_count -= 1;
1303 			nt->use_msi = true;
1304 		}
1305 	}
1306 
1307 	spad_count = ntb_spad_count(ndev);
1308 
1309 	/* Limit the MW's based on the availability of scratchpads */
1310 
1311 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1312 		nt->mw_count = 0;
1313 		rc = -EINVAL;
1314 		goto err;
1315 	}
1316 
1317 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1318 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1319 
1320 	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1321 
1322 	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1323 				  GFP_KERNEL, node);
1324 	if (!nt->mw_vec) {
1325 		rc = -ENOMEM;
1326 		goto err;
1327 	}
1328 
1329 	for (i = 0; i < mw_count; i++) {
1330 		mw = &nt->mw_vec[i];
1331 
1332 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1333 					  &mw->phys_size);
1334 		if (rc)
1335 			goto err1;
1336 
1337 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1338 		if (!mw->vbase) {
1339 			rc = -ENOMEM;
1340 			goto err1;
1341 		}
1342 
1343 		mw->buff_size = 0;
1344 		mw->xlat_size = 0;
1345 		mw->virt_addr = NULL;
1346 		mw->dma_addr = 0;
1347 	}
1348 
1349 	qp_bitmap = ntb_db_valid_mask(ndev);
1350 
1351 	qp_count = ilog2(qp_bitmap);
1352 	if (nt->use_msi) {
1353 		qp_count -= 1;
1354 		nt->msi_db_mask = 1 << qp_count;
1355 		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1356 	}
1357 
1358 	if (max_num_clients && max_num_clients < qp_count)
1359 		qp_count = max_num_clients;
1360 	else if (nt->mw_count < qp_count)
1361 		qp_count = nt->mw_count;
1362 
1363 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1364 
1365 	nt->qp_count = qp_count;
1366 	nt->qp_bitmap = qp_bitmap;
1367 	nt->qp_bitmap_free = qp_bitmap;
1368 
1369 	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1370 				  GFP_KERNEL, node);
1371 	if (!nt->qp_vec) {
1372 		rc = -ENOMEM;
1373 		goto err1;
1374 	}
1375 
1376 	if (nt_debugfs_dir) {
1377 		nt->debugfs_node_dir =
1378 			debugfs_create_dir(pci_name(ndev->pdev),
1379 					   nt_debugfs_dir);
1380 	}
1381 
1382 	for (i = 0; i < qp_count; i++) {
1383 		rc = ntb_transport_init_queue(nt, i);
1384 		if (rc)
1385 			goto err2;
1386 	}
1387 
1388 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1389 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1390 
1391 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1392 	if (rc)
1393 		goto err2;
1394 
1395 	INIT_LIST_HEAD(&nt->client_devs);
1396 	rc = ntb_bus_init(nt);
1397 	if (rc)
1398 		goto err3;
1399 
1400 	nt->link_is_up = false;
1401 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1402 	ntb_link_event(ndev);
1403 
1404 	return 0;
1405 
1406 err3:
1407 	ntb_clear_ctx(ndev);
1408 err2:
1409 	kfree(nt->qp_vec);
1410 err1:
1411 	while (i--) {
1412 		mw = &nt->mw_vec[i];
1413 		iounmap(mw->vbase);
1414 	}
1415 	kfree(nt->mw_vec);
1416 err:
1417 	kfree(nt);
1418 	return rc;
1419 }
1420 
1421 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1422 {
1423 	struct ntb_transport_ctx *nt = ndev->ctx;
1424 	struct ntb_transport_qp *qp;
1425 	u64 qp_bitmap_alloc;
1426 	int i;
1427 
1428 	ntb_transport_link_cleanup(nt);
1429 	cancel_work_sync(&nt->link_cleanup);
1430 	cancel_delayed_work_sync(&nt->link_work);
1431 
1432 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1433 
1434 	/* verify that all the qp's are freed */
1435 	for (i = 0; i < nt->qp_count; i++) {
1436 		qp = &nt->qp_vec[i];
1437 		if (qp_bitmap_alloc & BIT_ULL(i))
1438 			ntb_transport_free_queue(qp);
1439 		debugfs_remove_recursive(qp->debugfs_dir);
1440 	}
1441 
1442 	ntb_link_disable(ndev);
1443 	ntb_clear_ctx(ndev);
1444 
1445 	ntb_bus_remove(nt);
1446 
1447 	for (i = nt->mw_count; i--; ) {
1448 		ntb_free_mw(nt, i);
1449 		iounmap(nt->mw_vec[i].vbase);
1450 	}
1451 
1452 	kfree(nt->qp_vec);
1453 	kfree(nt->mw_vec);
1454 	kfree(nt);
1455 }
1456 
1457 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1458 {
1459 	struct ntb_queue_entry *entry;
1460 	void *cb_data;
1461 	unsigned int len;
1462 	unsigned long irqflags;
1463 
1464 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1465 
1466 	while (!list_empty(&qp->rx_post_q)) {
1467 		entry = list_first_entry(&qp->rx_post_q,
1468 					 struct ntb_queue_entry, entry);
1469 		if (!(entry->flags & DESC_DONE_FLAG))
1470 			break;
1471 
1472 		entry->rx_hdr->flags = 0;
1473 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1474 
1475 		cb_data = entry->cb_data;
1476 		len = entry->len;
1477 
1478 		list_move_tail(&entry->entry, &qp->rx_free_q);
1479 
1480 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1481 
1482 		if (qp->rx_handler && qp->client_ready)
1483 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1484 
1485 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1486 	}
1487 
1488 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1489 }
1490 
1491 static void ntb_rx_copy_callback(void *data,
1492 				 const struct dmaengine_result *res)
1493 {
1494 	struct ntb_queue_entry *entry = data;
1495 
1496 	/* we need to check DMA results if we are using DMA */
1497 	if (res) {
1498 		enum dmaengine_tx_result dma_err = res->result;
1499 
1500 		switch (dma_err) {
1501 		case DMA_TRANS_READ_FAILED:
1502 		case DMA_TRANS_WRITE_FAILED:
1503 			entry->errors++;
1504 			fallthrough;
1505 		case DMA_TRANS_ABORTED:
1506 		{
1507 			struct ntb_transport_qp *qp = entry->qp;
1508 			void *offset = qp->rx_buff + qp->rx_max_frame *
1509 					qp->rx_index;
1510 
1511 			ntb_memcpy_rx(entry, offset);
1512 			qp->rx_memcpy++;
1513 			return;
1514 		}
1515 
1516 		case DMA_TRANS_NOERROR:
1517 		default:
1518 			break;
1519 		}
1520 	}
1521 
1522 	entry->flags |= DESC_DONE_FLAG;
1523 
1524 	ntb_complete_rxc(entry->qp);
1525 }
1526 
1527 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1528 {
1529 	void *buf = entry->buf;
1530 	size_t len = entry->len;
1531 
1532 	memcpy(buf, offset, len);
1533 
1534 	/* Ensure that the data is fully copied out before clearing the flag */
1535 	wmb();
1536 
1537 	ntb_rx_copy_callback(entry, NULL);
1538 }
1539 
1540 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1541 {
1542 	struct dma_async_tx_descriptor *txd;
1543 	struct ntb_transport_qp *qp = entry->qp;
1544 	struct dma_chan *chan = qp->rx_dma_chan;
1545 	struct dma_device *device;
1546 	size_t pay_off, buff_off, len;
1547 	struct dmaengine_unmap_data *unmap;
1548 	dma_cookie_t cookie;
1549 	void *buf = entry->buf;
1550 
1551 	len = entry->len;
1552 	device = chan->device;
1553 	pay_off = (size_t)offset & ~PAGE_MASK;
1554 	buff_off = (size_t)buf & ~PAGE_MASK;
1555 
1556 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1557 		goto err;
1558 
1559 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1560 	if (!unmap)
1561 		goto err;
1562 
1563 	unmap->len = len;
1564 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1565 				      pay_off, len, DMA_TO_DEVICE);
1566 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1567 		goto err_get_unmap;
1568 
1569 	unmap->to_cnt = 1;
1570 
1571 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1572 				      buff_off, len, DMA_FROM_DEVICE);
1573 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1574 		goto err_get_unmap;
1575 
1576 	unmap->from_cnt = 1;
1577 
1578 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1579 					     unmap->addr[0], len,
1580 					     DMA_PREP_INTERRUPT);
1581 	if (!txd)
1582 		goto err_get_unmap;
1583 
1584 	txd->callback_result = ntb_rx_copy_callback;
1585 	txd->callback_param = entry;
1586 	dma_set_unmap(txd, unmap);
1587 
1588 	cookie = dmaengine_submit(txd);
1589 	if (dma_submit_error(cookie))
1590 		goto err_set_unmap;
1591 
1592 	dmaengine_unmap_put(unmap);
1593 
1594 	qp->last_cookie = cookie;
1595 
1596 	qp->rx_async++;
1597 
1598 	return 0;
1599 
1600 err_set_unmap:
1601 	dmaengine_unmap_put(unmap);
1602 err_get_unmap:
1603 	dmaengine_unmap_put(unmap);
1604 err:
1605 	return -ENXIO;
1606 }
1607 
1608 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1609 {
1610 	struct ntb_transport_qp *qp = entry->qp;
1611 	struct dma_chan *chan = qp->rx_dma_chan;
1612 	int res;
1613 
1614 	if (!chan)
1615 		goto err;
1616 
1617 	if (entry->len < copy_bytes)
1618 		goto err;
1619 
1620 	res = ntb_async_rx_submit(entry, offset);
1621 	if (res < 0)
1622 		goto err;
1623 
1624 	if (!entry->retries)
1625 		qp->rx_async++;
1626 
1627 	return;
1628 
1629 err:
1630 	ntb_memcpy_rx(entry, offset);
1631 	qp->rx_memcpy++;
1632 }
1633 
1634 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1635 {
1636 	struct ntb_payload_header *hdr;
1637 	struct ntb_queue_entry *entry;
1638 	void *offset;
1639 
1640 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1641 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1642 
1643 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1644 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1645 
1646 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1647 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1648 		qp->rx_ring_empty++;
1649 		return -EAGAIN;
1650 	}
1651 
1652 	if (hdr->flags & LINK_DOWN_FLAG) {
1653 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1654 		ntb_qp_link_down(qp);
1655 		hdr->flags = 0;
1656 		return -EAGAIN;
1657 	}
1658 
1659 	if (hdr->ver != (u32)qp->rx_pkts) {
1660 		dev_dbg(&qp->ndev->pdev->dev,
1661 			"version mismatch, expected %llu - got %u\n",
1662 			qp->rx_pkts, hdr->ver);
1663 		qp->rx_err_ver++;
1664 		return -EIO;
1665 	}
1666 
1667 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1668 	if (!entry) {
1669 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1670 		qp->rx_err_no_buf++;
1671 		return -EAGAIN;
1672 	}
1673 
1674 	entry->rx_hdr = hdr;
1675 	entry->rx_index = qp->rx_index;
1676 
1677 	if (hdr->len > entry->len) {
1678 		dev_dbg(&qp->ndev->pdev->dev,
1679 			"receive buffer overflow! Wanted %d got %d\n",
1680 			hdr->len, entry->len);
1681 		qp->rx_err_oflow++;
1682 
1683 		entry->len = -EIO;
1684 		entry->flags |= DESC_DONE_FLAG;
1685 
1686 		ntb_complete_rxc(qp);
1687 	} else {
1688 		dev_dbg(&qp->ndev->pdev->dev,
1689 			"RX OK index %u ver %u size %d into buf size %d\n",
1690 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1691 
1692 		qp->rx_bytes += hdr->len;
1693 		qp->rx_pkts++;
1694 
1695 		entry->len = hdr->len;
1696 
1697 		ntb_async_rx(entry, offset);
1698 	}
1699 
1700 	qp->rx_index++;
1701 	qp->rx_index %= qp->rx_max_entry;
1702 
1703 	return 0;
1704 }
1705 
1706 static void ntb_transport_rxc_db(unsigned long data)
1707 {
1708 	struct ntb_transport_qp *qp = (void *)data;
1709 	int rc, i;
1710 
1711 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1712 		__func__, qp->qp_num);
1713 
1714 	/* Limit the number of packets processed in a single interrupt to
1715 	 * provide fairness to others
1716 	 */
1717 	for (i = 0; i < qp->rx_max_entry; i++) {
1718 		rc = ntb_process_rxc(qp);
1719 		if (rc)
1720 			break;
1721 	}
1722 
1723 	if (i && qp->rx_dma_chan)
1724 		dma_async_issue_pending(qp->rx_dma_chan);
1725 
1726 	if (i == qp->rx_max_entry) {
1727 		/* there is more work to do */
1728 		if (qp->active)
1729 			tasklet_schedule(&qp->rxc_db_work);
1730 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1731 		/* the doorbell bit is set: clear it */
1732 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1733 		/* ntb_db_read ensures ntb_db_clear write is committed */
1734 		ntb_db_read(qp->ndev);
1735 
1736 		/* an interrupt may have arrived between finishing
1737 		 * ntb_process_rxc and clearing the doorbell bit:
1738 		 * there might be some more work to do.
1739 		 */
1740 		if (qp->active)
1741 			tasklet_schedule(&qp->rxc_db_work);
1742 	}
1743 }
1744 
1745 static void ntb_tx_copy_callback(void *data,
1746 				 const struct dmaengine_result *res)
1747 {
1748 	struct ntb_queue_entry *entry = data;
1749 	struct ntb_transport_qp *qp = entry->qp;
1750 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1751 
1752 	/* we need to check DMA results if we are using DMA */
1753 	if (res) {
1754 		enum dmaengine_tx_result dma_err = res->result;
1755 
1756 		switch (dma_err) {
1757 		case DMA_TRANS_READ_FAILED:
1758 		case DMA_TRANS_WRITE_FAILED:
1759 			entry->errors++;
1760 			fallthrough;
1761 		case DMA_TRANS_ABORTED:
1762 		{
1763 			void __iomem *offset =
1764 				qp->tx_mw + qp->tx_max_frame *
1765 				entry->tx_index;
1766 
1767 			/* resubmit via CPU */
1768 			ntb_memcpy_tx(entry, offset);
1769 			qp->tx_memcpy++;
1770 			return;
1771 		}
1772 
1773 		case DMA_TRANS_NOERROR:
1774 		default:
1775 			break;
1776 		}
1777 	}
1778 
1779 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1780 
1781 	if (qp->use_msi)
1782 		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1783 	else
1784 		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1785 
1786 	/* The entry length can only be zero if the packet is intended to be a
1787 	 * "link down" or similar.  Since no payload is being sent in these
1788 	 * cases, there is nothing to add to the completion queue.
1789 	 */
1790 	if (entry->len > 0) {
1791 		qp->tx_bytes += entry->len;
1792 
1793 		if (qp->tx_handler)
1794 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1795 				       entry->len);
1796 	}
1797 
1798 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1799 }
1800 
1801 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1802 {
1803 #ifdef ARCH_HAS_NOCACHE_UACCESS
1804 	/*
1805 	 * Using non-temporal mov to improve performance on non-cached
1806 	 * writes, even though we aren't actually copying from user space.
1807 	 */
1808 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1809 #else
1810 	memcpy_toio(offset, entry->buf, entry->len);
1811 #endif
1812 
1813 	/* Ensure that the data is fully copied out before setting the flags */
1814 	wmb();
1815 
1816 	ntb_tx_copy_callback(entry, NULL);
1817 }
1818 
1819 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1820 			       struct ntb_queue_entry *entry)
1821 {
1822 	struct dma_async_tx_descriptor *txd;
1823 	struct dma_chan *chan = qp->tx_dma_chan;
1824 	struct dma_device *device;
1825 	size_t len = entry->len;
1826 	void *buf = entry->buf;
1827 	size_t dest_off, buff_off;
1828 	struct dmaengine_unmap_data *unmap;
1829 	dma_addr_t dest;
1830 	dma_cookie_t cookie;
1831 
1832 	device = chan->device;
1833 	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1834 	buff_off = (size_t)buf & ~PAGE_MASK;
1835 	dest_off = (size_t)dest & ~PAGE_MASK;
1836 
1837 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1838 		goto err;
1839 
1840 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1841 	if (!unmap)
1842 		goto err;
1843 
1844 	unmap->len = len;
1845 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1846 				      buff_off, len, DMA_TO_DEVICE);
1847 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1848 		goto err_get_unmap;
1849 
1850 	unmap->to_cnt = 1;
1851 
1852 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1853 					     DMA_PREP_INTERRUPT);
1854 	if (!txd)
1855 		goto err_get_unmap;
1856 
1857 	txd->callback_result = ntb_tx_copy_callback;
1858 	txd->callback_param = entry;
1859 	dma_set_unmap(txd, unmap);
1860 
1861 	cookie = dmaengine_submit(txd);
1862 	if (dma_submit_error(cookie))
1863 		goto err_set_unmap;
1864 
1865 	dmaengine_unmap_put(unmap);
1866 
1867 	dma_async_issue_pending(chan);
1868 
1869 	return 0;
1870 err_set_unmap:
1871 	dmaengine_unmap_put(unmap);
1872 err_get_unmap:
1873 	dmaengine_unmap_put(unmap);
1874 err:
1875 	return -ENXIO;
1876 }
1877 
1878 static void ntb_async_tx(struct ntb_transport_qp *qp,
1879 			 struct ntb_queue_entry *entry)
1880 {
1881 	struct ntb_payload_header __iomem *hdr;
1882 	struct dma_chan *chan = qp->tx_dma_chan;
1883 	void __iomem *offset;
1884 	int res;
1885 
1886 	entry->tx_index = qp->tx_index;
1887 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1888 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1889 	entry->tx_hdr = hdr;
1890 
1891 	iowrite32(entry->len, &hdr->len);
1892 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1893 
1894 	if (!chan)
1895 		goto err;
1896 
1897 	if (entry->len < copy_bytes)
1898 		goto err;
1899 
1900 	res = ntb_async_tx_submit(qp, entry);
1901 	if (res < 0)
1902 		goto err;
1903 
1904 	if (!entry->retries)
1905 		qp->tx_async++;
1906 
1907 	return;
1908 
1909 err:
1910 	ntb_memcpy_tx(entry, offset);
1911 	qp->tx_memcpy++;
1912 }
1913 
1914 static int ntb_process_tx(struct ntb_transport_qp *qp,
1915 			  struct ntb_queue_entry *entry)
1916 {
1917 	if (!ntb_transport_tx_free_entry(qp)) {
1918 		qp->tx_ring_full++;
1919 		return -EAGAIN;
1920 	}
1921 
1922 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1923 		if (qp->tx_handler)
1924 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1925 
1926 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1927 			     &qp->tx_free_q);
1928 		return 0;
1929 	}
1930 
1931 	ntb_async_tx(qp, entry);
1932 
1933 	qp->tx_index++;
1934 	qp->tx_index %= qp->tx_max_entry;
1935 
1936 	qp->tx_pkts++;
1937 
1938 	return 0;
1939 }
1940 
1941 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1942 {
1943 	struct pci_dev *pdev = qp->ndev->pdev;
1944 	struct ntb_queue_entry *entry;
1945 	int i, rc;
1946 
1947 	if (!qp->link_is_up)
1948 		return;
1949 
1950 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1951 
1952 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1953 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1954 		if (entry)
1955 			break;
1956 		msleep(100);
1957 	}
1958 
1959 	if (!entry)
1960 		return;
1961 
1962 	entry->cb_data = NULL;
1963 	entry->buf = NULL;
1964 	entry->len = 0;
1965 	entry->flags = LINK_DOWN_FLAG;
1966 
1967 	rc = ntb_process_tx(qp, entry);
1968 	if (rc)
1969 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1970 			qp->qp_num);
1971 
1972 	ntb_qp_link_down_reset(qp);
1973 }
1974 
1975 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1976 {
1977 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1978 }
1979 
1980 /**
1981  * ntb_transport_create_queue - Create a new NTB transport layer queue
1982  * @rx_handler: receive callback function
1983  * @tx_handler: transmit callback function
1984  * @event_handler: event callback function
1985  *
1986  * Create a new NTB transport layer queue and provide the queue with a callback
1987  * routine for both transmit and receive.  The receive callback routine will be
1988  * used to pass up data when the transport has received it on the queue.   The
1989  * transmit callback routine will be called when the transport has completed the
1990  * transmission of the data on the queue and the data is ready to be freed.
1991  *
1992  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1993  */
1994 struct ntb_transport_qp *
1995 ntb_transport_create_queue(void *data, struct device *client_dev,
1996 			   const struct ntb_queue_handlers *handlers)
1997 {
1998 	struct ntb_dev *ndev;
1999 	struct pci_dev *pdev;
2000 	struct ntb_transport_ctx *nt;
2001 	struct ntb_queue_entry *entry;
2002 	struct ntb_transport_qp *qp;
2003 	u64 qp_bit;
2004 	unsigned int free_queue;
2005 	dma_cap_mask_t dma_mask;
2006 	int node;
2007 	int i;
2008 
2009 	ndev = dev_ntb(client_dev->parent);
2010 	pdev = ndev->pdev;
2011 	nt = ndev->ctx;
2012 
2013 	node = dev_to_node(&ndev->dev);
2014 
2015 	free_queue = ffs(nt->qp_bitmap_free);
2016 	if (!free_queue)
2017 		goto err;
2018 
2019 	/* decrement free_queue to make it zero based */
2020 	free_queue--;
2021 
2022 	qp = &nt->qp_vec[free_queue];
2023 	qp_bit = BIT_ULL(qp->qp_num);
2024 
2025 	nt->qp_bitmap_free &= ~qp_bit;
2026 
2027 	qp->cb_data = data;
2028 	qp->rx_handler = handlers->rx_handler;
2029 	qp->tx_handler = handlers->tx_handler;
2030 	qp->event_handler = handlers->event_handler;
2031 
2032 	dma_cap_zero(dma_mask);
2033 	dma_cap_set(DMA_MEMCPY, dma_mask);
2034 
2035 	if (use_dma) {
2036 		qp->tx_dma_chan =
2037 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2038 					    (void *)(unsigned long)node);
2039 		if (!qp->tx_dma_chan)
2040 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2041 
2042 		qp->rx_dma_chan =
2043 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2044 					    (void *)(unsigned long)node);
2045 		if (!qp->rx_dma_chan)
2046 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2047 	} else {
2048 		qp->tx_dma_chan = NULL;
2049 		qp->rx_dma_chan = NULL;
2050 	}
2051 
2052 	qp->tx_mw_dma_addr = 0;
2053 	if (qp->tx_dma_chan) {
2054 		qp->tx_mw_dma_addr =
2055 			dma_map_resource(qp->tx_dma_chan->device->dev,
2056 					 qp->tx_mw_phys, qp->tx_mw_size,
2057 					 DMA_FROM_DEVICE, 0);
2058 		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2059 				      qp->tx_mw_dma_addr)) {
2060 			qp->tx_mw_dma_addr = 0;
2061 			goto err1;
2062 		}
2063 	}
2064 
2065 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2066 		qp->tx_dma_chan ? "DMA" : "CPU");
2067 
2068 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2069 		qp->rx_dma_chan ? "DMA" : "CPU");
2070 
2071 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2072 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2073 		if (!entry)
2074 			goto err1;
2075 
2076 		entry->qp = qp;
2077 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2078 			     &qp->rx_free_q);
2079 	}
2080 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2081 
2082 	for (i = 0; i < qp->tx_max_entry; i++) {
2083 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2084 		if (!entry)
2085 			goto err2;
2086 
2087 		entry->qp = qp;
2088 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2089 			     &qp->tx_free_q);
2090 	}
2091 
2092 	ntb_db_clear(qp->ndev, qp_bit);
2093 	ntb_db_clear_mask(qp->ndev, qp_bit);
2094 
2095 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2096 
2097 	return qp;
2098 
2099 err2:
2100 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2101 		kfree(entry);
2102 err1:
2103 	qp->rx_alloc_entry = 0;
2104 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2105 		kfree(entry);
2106 	if (qp->tx_mw_dma_addr)
2107 		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2108 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2109 				   DMA_FROM_DEVICE, 0);
2110 	if (qp->tx_dma_chan)
2111 		dma_release_channel(qp->tx_dma_chan);
2112 	if (qp->rx_dma_chan)
2113 		dma_release_channel(qp->rx_dma_chan);
2114 	nt->qp_bitmap_free |= qp_bit;
2115 err:
2116 	return NULL;
2117 }
2118 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2119 
2120 /**
2121  * ntb_transport_free_queue - Frees NTB transport queue
2122  * @qp: NTB queue to be freed
2123  *
2124  * Frees NTB transport queue
2125  */
2126 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2127 {
2128 	struct pci_dev *pdev;
2129 	struct ntb_queue_entry *entry;
2130 	u64 qp_bit;
2131 
2132 	if (!qp)
2133 		return;
2134 
2135 	pdev = qp->ndev->pdev;
2136 
2137 	qp->active = false;
2138 
2139 	if (qp->tx_dma_chan) {
2140 		struct dma_chan *chan = qp->tx_dma_chan;
2141 		/* Putting the dma_chan to NULL will force any new traffic to be
2142 		 * processed by the CPU instead of the DAM engine
2143 		 */
2144 		qp->tx_dma_chan = NULL;
2145 
2146 		/* Try to be nice and wait for any queued DMA engine
2147 		 * transactions to process before smashing it with a rock
2148 		 */
2149 		dma_sync_wait(chan, qp->last_cookie);
2150 		dmaengine_terminate_all(chan);
2151 
2152 		dma_unmap_resource(chan->device->dev,
2153 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2154 				   DMA_FROM_DEVICE, 0);
2155 
2156 		dma_release_channel(chan);
2157 	}
2158 
2159 	if (qp->rx_dma_chan) {
2160 		struct dma_chan *chan = qp->rx_dma_chan;
2161 		/* Putting the dma_chan to NULL will force any new traffic to be
2162 		 * processed by the CPU instead of the DAM engine
2163 		 */
2164 		qp->rx_dma_chan = NULL;
2165 
2166 		/* Try to be nice and wait for any queued DMA engine
2167 		 * transactions to process before smashing it with a rock
2168 		 */
2169 		dma_sync_wait(chan, qp->last_cookie);
2170 		dmaengine_terminate_all(chan);
2171 		dma_release_channel(chan);
2172 	}
2173 
2174 	qp_bit = BIT_ULL(qp->qp_num);
2175 
2176 	ntb_db_set_mask(qp->ndev, qp_bit);
2177 	tasklet_kill(&qp->rxc_db_work);
2178 
2179 	cancel_delayed_work_sync(&qp->link_work);
2180 
2181 	qp->cb_data = NULL;
2182 	qp->rx_handler = NULL;
2183 	qp->tx_handler = NULL;
2184 	qp->event_handler = NULL;
2185 
2186 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2187 		kfree(entry);
2188 
2189 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2190 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2191 		kfree(entry);
2192 	}
2193 
2194 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2195 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2196 		kfree(entry);
2197 	}
2198 
2199 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2200 		kfree(entry);
2201 
2202 	qp->transport->qp_bitmap_free |= qp_bit;
2203 
2204 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2205 }
2206 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2207 
2208 /**
2209  * ntb_transport_rx_remove - Dequeues enqueued rx packet
2210  * @qp: NTB queue to be freed
2211  * @len: pointer to variable to write enqueued buffers length
2212  *
2213  * Dequeues unused buffers from receive queue.  Should only be used during
2214  * shutdown of qp.
2215  *
2216  * RETURNS: NULL error value on error, or void* for success.
2217  */
2218 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2219 {
2220 	struct ntb_queue_entry *entry;
2221 	void *buf;
2222 
2223 	if (!qp || qp->client_ready)
2224 		return NULL;
2225 
2226 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2227 	if (!entry)
2228 		return NULL;
2229 
2230 	buf = entry->cb_data;
2231 	*len = entry->len;
2232 
2233 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2234 
2235 	return buf;
2236 }
2237 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2238 
2239 /**
2240  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2241  * @qp: NTB transport layer queue the entry is to be enqueued on
2242  * @cb: per buffer pointer for callback function to use
2243  * @data: pointer to data buffer that incoming packets will be copied into
2244  * @len: length of the data buffer
2245  *
2246  * Enqueue a new receive buffer onto the transport queue into which a NTB
2247  * payload can be received into.
2248  *
2249  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2250  */
2251 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2252 			     unsigned int len)
2253 {
2254 	struct ntb_queue_entry *entry;
2255 
2256 	if (!qp)
2257 		return -EINVAL;
2258 
2259 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2260 	if (!entry)
2261 		return -ENOMEM;
2262 
2263 	entry->cb_data = cb;
2264 	entry->buf = data;
2265 	entry->len = len;
2266 	entry->flags = 0;
2267 	entry->retries = 0;
2268 	entry->errors = 0;
2269 	entry->rx_index = 0;
2270 
2271 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2272 
2273 	if (qp->active)
2274 		tasklet_schedule(&qp->rxc_db_work);
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2279 
2280 /**
2281  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2282  * @qp: NTB transport layer queue the entry is to be enqueued on
2283  * @cb: per buffer pointer for callback function to use
2284  * @data: pointer to data buffer that will be sent
2285  * @len: length of the data buffer
2286  *
2287  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2288  * payload will be transmitted.  This assumes that a lock is being held to
2289  * serialize access to the qp.
2290  *
2291  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2292  */
2293 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2294 			     unsigned int len)
2295 {
2296 	struct ntb_queue_entry *entry;
2297 	int rc;
2298 
2299 	if (!qp || !len)
2300 		return -EINVAL;
2301 
2302 	/* If the qp link is down already, just ignore. */
2303 	if (!qp->link_is_up)
2304 		return 0;
2305 
2306 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2307 	if (!entry) {
2308 		qp->tx_err_no_buf++;
2309 		return -EBUSY;
2310 	}
2311 
2312 	entry->cb_data = cb;
2313 	entry->buf = data;
2314 	entry->len = len;
2315 	entry->flags = 0;
2316 	entry->errors = 0;
2317 	entry->retries = 0;
2318 	entry->tx_index = 0;
2319 
2320 	rc = ntb_process_tx(qp, entry);
2321 	if (rc)
2322 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2323 			     &qp->tx_free_q);
2324 
2325 	return rc;
2326 }
2327 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2328 
2329 /**
2330  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2331  * @qp: NTB transport layer queue to be enabled
2332  *
2333  * Notify NTB transport layer of client readiness to use queue
2334  */
2335 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2336 {
2337 	if (!qp)
2338 		return;
2339 
2340 	qp->client_ready = true;
2341 
2342 	if (qp->transport->link_is_up)
2343 		schedule_delayed_work(&qp->link_work, 0);
2344 }
2345 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2346 
2347 /**
2348  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2349  * @qp: NTB transport layer queue to be disabled
2350  *
2351  * Notify NTB transport layer of client's desire to no longer receive data on
2352  * transport queue specified.  It is the client's responsibility to ensure all
2353  * entries on queue are purged or otherwise handled appropriately.
2354  */
2355 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2356 {
2357 	int val;
2358 
2359 	if (!qp)
2360 		return;
2361 
2362 	qp->client_ready = false;
2363 
2364 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2365 
2366 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2367 
2368 	if (qp->link_is_up)
2369 		ntb_send_link_down(qp);
2370 	else
2371 		cancel_delayed_work_sync(&qp->link_work);
2372 }
2373 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2374 
2375 /**
2376  * ntb_transport_link_query - Query transport link state
2377  * @qp: NTB transport layer queue to be queried
2378  *
2379  * Query connectivity to the remote system of the NTB transport queue
2380  *
2381  * RETURNS: true for link up or false for link down
2382  */
2383 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2384 {
2385 	if (!qp)
2386 		return false;
2387 
2388 	return qp->link_is_up;
2389 }
2390 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2391 
2392 /**
2393  * ntb_transport_qp_num - Query the qp number
2394  * @qp: NTB transport layer queue to be queried
2395  *
2396  * Query qp number of the NTB transport queue
2397  *
2398  * RETURNS: a zero based number specifying the qp number
2399  */
2400 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2401 {
2402 	if (!qp)
2403 		return 0;
2404 
2405 	return qp->qp_num;
2406 }
2407 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2408 
2409 /**
2410  * ntb_transport_max_size - Query the max payload size of a qp
2411  * @qp: NTB transport layer queue to be queried
2412  *
2413  * Query the maximum payload size permissible on the given qp
2414  *
2415  * RETURNS: the max payload size of a qp
2416  */
2417 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2418 {
2419 	unsigned int max_size;
2420 	unsigned int copy_align;
2421 	struct dma_chan *rx_chan, *tx_chan;
2422 
2423 	if (!qp)
2424 		return 0;
2425 
2426 	rx_chan = qp->rx_dma_chan;
2427 	tx_chan = qp->tx_dma_chan;
2428 
2429 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2430 			 tx_chan ? tx_chan->device->copy_align : 0);
2431 
2432 	/* If DMA engine usage is possible, try to find the max size for that */
2433 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2434 	max_size = round_down(max_size, 1 << copy_align);
2435 
2436 	return max_size;
2437 }
2438 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2439 
2440 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2441 {
2442 	unsigned int head = qp->tx_index;
2443 	unsigned int tail = qp->remote_rx_info->entry;
2444 
2445 	return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2446 }
2447 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2448 
2449 static void ntb_transport_doorbell_callback(void *data, int vector)
2450 {
2451 	struct ntb_transport_ctx *nt = data;
2452 	struct ntb_transport_qp *qp;
2453 	u64 db_bits;
2454 	unsigned int qp_num;
2455 
2456 	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2457 		ntb_transport_msi_peer_desc_changed(nt);
2458 		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2459 	}
2460 
2461 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2462 		   ntb_db_vector_mask(nt->ndev, vector));
2463 
2464 	while (db_bits) {
2465 		qp_num = __ffs(db_bits);
2466 		qp = &nt->qp_vec[qp_num];
2467 
2468 		if (qp->active)
2469 			tasklet_schedule(&qp->rxc_db_work);
2470 
2471 		db_bits &= ~BIT_ULL(qp_num);
2472 	}
2473 }
2474 
2475 static const struct ntb_ctx_ops ntb_transport_ops = {
2476 	.link_event = ntb_transport_event_callback,
2477 	.db_event = ntb_transport_doorbell_callback,
2478 };
2479 
2480 static struct ntb_client ntb_transport_client = {
2481 	.ops = {
2482 		.probe = ntb_transport_probe,
2483 		.remove = ntb_transport_free,
2484 	},
2485 };
2486 
2487 static int __init ntb_transport_init(void)
2488 {
2489 	int rc;
2490 
2491 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2492 
2493 	if (debugfs_initialized())
2494 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2495 
2496 	rc = bus_register(&ntb_transport_bus);
2497 	if (rc)
2498 		goto err_bus;
2499 
2500 	rc = ntb_register_client(&ntb_transport_client);
2501 	if (rc)
2502 		goto err_client;
2503 
2504 	return 0;
2505 
2506 err_client:
2507 	bus_unregister(&ntb_transport_bus);
2508 err_bus:
2509 	debugfs_remove_recursive(nt_debugfs_dir);
2510 	return rc;
2511 }
2512 module_init(ntb_transport_init);
2513 
2514 static void __exit ntb_transport_exit(void)
2515 {
2516 	ntb_unregister_client(&ntb_transport_client);
2517 	bus_unregister(&ntb_transport_bus);
2518 	debugfs_remove_recursive(nt_debugfs_dir);
2519 }
2520 module_exit(ntb_transport_exit);
2521