xref: /openbmc/linux/drivers/nfc/st21nfca/i2c.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * I2C Link Layer for ST21NFCA HCI based Driver
4  * Copyright (C) 2014  STMicroelectronics SAS. All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/crc-ccitt.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_gpio.h>
15 #include <linux/acpi.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/nfc.h>
19 #include <linux/firmware.h>
20 
21 #include <asm/unaligned.h>
22 
23 #include <net/nfc/hci.h>
24 #include <net/nfc/llc.h>
25 #include <net/nfc/nfc.h>
26 
27 #include "st21nfca.h"
28 
29 /*
30  * Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF.
31  * Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism
32  * called byte stuffing has been introduced.
33  *
34  * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
35  * - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
36  * - xor byte with ST21NFCA_BYTE_STUFFING_MASK
37  */
38 #define ST21NFCA_SOF_EOF		0x7e
39 #define ST21NFCA_BYTE_STUFFING_MASK	0x20
40 #define ST21NFCA_ESCAPE_BYTE_STUFFING	0x7d
41 
42 /* SOF + 00 */
43 #define ST21NFCA_FRAME_HEADROOM			2
44 
45 /* 2 bytes crc + EOF */
46 #define ST21NFCA_FRAME_TAILROOM 3
47 #define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \
48 				buf[1] == 0)
49 
50 #define ST21NFCA_HCI_DRIVER_NAME "st21nfca_hci"
51 #define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c"
52 
53 struct st21nfca_i2c_phy {
54 	struct i2c_client *i2c_dev;
55 	struct nfc_hci_dev *hdev;
56 
57 	struct gpio_desc *gpiod_ena;
58 	struct st21nfca_se_status se_status;
59 
60 	struct sk_buff *pending_skb;
61 	int current_read_len;
62 	/*
63 	 * crc might have fail because i2c macro
64 	 * is disable due to other interface activity
65 	 */
66 	int crc_trials;
67 
68 	int powered;
69 	int run_mode;
70 
71 	/*
72 	 * < 0 if hardware error occured (e.g. i2c err)
73 	 * and prevents normal operation.
74 	 */
75 	int hard_fault;
76 	struct mutex phy_lock;
77 };
78 
79 static u8 len_seq[] = { 16, 24, 12, 29 };
80 static u16 wait_tab[] = { 2, 3, 5, 15, 20, 40};
81 
82 #define I2C_DUMP_SKB(info, skb)					\
83 do {								\
84 	pr_debug("%s:\n", info);				\
85 	print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET,	\
86 		       16, 1, (skb)->data, (skb)->len, 0);	\
87 } while (0)
88 
89 /*
90  * In order to get the CLF in a known state we generate an internal reboot
91  * using a proprietary command.
92  * Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF
93  * fill buffer.
94  */
95 static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy)
96 {
97 	u16 wait_reboot[] = { 50, 300, 1000 };
98 	char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E };
99 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE];
100 	int i, r = -1;
101 
102 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
103 		r = i2c_master_send(phy->i2c_dev, reboot_cmd,
104 				    sizeof(reboot_cmd));
105 		if (r < 0)
106 			msleep(wait_reboot[i]);
107 	}
108 	if (r < 0)
109 		return r;
110 
111 	/* CLF is spending about 20ms to do an internal reboot */
112 	msleep(20);
113 	r = -1;
114 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
115 		r = i2c_master_recv(phy->i2c_dev, tmp,
116 				    ST21NFCA_HCI_LLC_MAX_SIZE);
117 		if (r < 0)
118 			msleep(wait_reboot[i]);
119 	}
120 	if (r < 0)
121 		return r;
122 
123 	for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE &&
124 		tmp[i] == ST21NFCA_SOF_EOF; i++)
125 		;
126 
127 	if (r != ST21NFCA_HCI_LLC_MAX_SIZE)
128 		return -ENODEV;
129 
130 	usleep_range(1000, 1500);
131 	return 0;
132 }
133 
134 static int st21nfca_hci_i2c_enable(void *phy_id)
135 {
136 	struct st21nfca_i2c_phy *phy = phy_id;
137 
138 	gpiod_set_value(phy->gpiod_ena, 1);
139 	phy->powered = 1;
140 	phy->run_mode = ST21NFCA_HCI_MODE;
141 
142 	usleep_range(10000, 15000);
143 
144 	return 0;
145 }
146 
147 static void st21nfca_hci_i2c_disable(void *phy_id)
148 {
149 	struct st21nfca_i2c_phy *phy = phy_id;
150 
151 	gpiod_set_value(phy->gpiod_ena, 0);
152 
153 	phy->powered = 0;
154 }
155 
156 static void st21nfca_hci_add_len_crc(struct sk_buff *skb)
157 {
158 	u16 crc;
159 	u8 tmp;
160 
161 	*(u8 *)skb_push(skb, 1) = 0;
162 
163 	crc = crc_ccitt(0xffff, skb->data, skb->len);
164 	crc = ~crc;
165 
166 	tmp = crc & 0x00ff;
167 	skb_put_u8(skb, tmp);
168 
169 	tmp = (crc >> 8) & 0x00ff;
170 	skb_put_u8(skb, tmp);
171 }
172 
173 static void st21nfca_hci_remove_len_crc(struct sk_buff *skb)
174 {
175 	skb_pull(skb, ST21NFCA_FRAME_HEADROOM);
176 	skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM);
177 }
178 
179 /*
180  * Writing a frame must not return the number of written bytes.
181  * It must return either zero for success, or <0 for error.
182  * In addition, it must not alter the skb
183  */
184 static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb)
185 {
186 	int r = -1, i, j;
187 	struct st21nfca_i2c_phy *phy = phy_id;
188 	struct i2c_client *client = phy->i2c_dev;
189 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2];
190 
191 	I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb);
192 
193 	if (phy->hard_fault != 0)
194 		return phy->hard_fault;
195 
196 	/*
197 	 * Compute CRC before byte stuffing computation on frame
198 	 * Note st21nfca_hci_add_len_crc is doing a byte stuffing
199 	 * on its own value
200 	 */
201 	st21nfca_hci_add_len_crc(skb);
202 
203 	/* add ST21NFCA_SOF_EOF on tail */
204 	skb_put_u8(skb, ST21NFCA_SOF_EOF);
205 	/* add ST21NFCA_SOF_EOF on head */
206 	*(u8 *)skb_push(skb, 1) = ST21NFCA_SOF_EOF;
207 
208 	/*
209 	 * Compute byte stuffing
210 	 * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
211 	 * insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
212 	 * xor byte with ST21NFCA_BYTE_STUFFING_MASK
213 	 */
214 	tmp[0] = skb->data[0];
215 	for (i = 1, j = 1; i < skb->len - 1; i++, j++) {
216 		if (skb->data[i] == ST21NFCA_SOF_EOF
217 		    || skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) {
218 			tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING;
219 			j++;
220 			tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK;
221 		} else {
222 			tmp[j] = skb->data[i];
223 		}
224 	}
225 	tmp[j] = skb->data[i];
226 	j++;
227 
228 	/*
229 	 * Manage sleep mode
230 	 * Try 3 times to send data with delay between each
231 	 */
232 	mutex_lock(&phy->phy_lock);
233 	for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) {
234 		r = i2c_master_send(client, tmp, j);
235 		if (r < 0)
236 			msleep(wait_tab[i]);
237 	}
238 	mutex_unlock(&phy->phy_lock);
239 
240 	if (r >= 0) {
241 		if (r != j)
242 			r = -EREMOTEIO;
243 		else
244 			r = 0;
245 	}
246 
247 	st21nfca_hci_remove_len_crc(skb);
248 
249 	return r;
250 }
251 
252 static int get_frame_size(u8 *buf, int buflen)
253 {
254 	int len = 0;
255 
256 	if (buf[len + 1] == ST21NFCA_SOF_EOF)
257 		return 0;
258 
259 	for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++)
260 		;
261 
262 	return len;
263 }
264 
265 static int check_crc(u8 *buf, int buflen)
266 {
267 	u16 crc;
268 
269 	crc = crc_ccitt(0xffff, buf, buflen - 2);
270 	crc = ~crc;
271 
272 	if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) {
273 		pr_err(ST21NFCA_HCI_DRIVER_NAME
274 		       ": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1],
275 		       buf[buflen - 2]);
276 
277 		pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
278 		print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE,
279 			       16, 2, buf, buflen, false);
280 		return -EPERM;
281 	}
282 	return 0;
283 }
284 
285 /*
286  * Prepare received data for upper layer.
287  * Received data include byte stuffing, crc and sof/eof
288  * which is not usable by hci part.
289  * returns:
290  * frame size without sof/eof, header and byte stuffing
291  * -EBADMSG : frame was incorrect and discarded
292  */
293 static int st21nfca_hci_i2c_repack(struct sk_buff *skb)
294 {
295 	int i, j, r, size;
296 
297 	if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0))
298 		return -EBADMSG;
299 
300 	size = get_frame_size(skb->data, skb->len);
301 	if (size > 0) {
302 		skb_trim(skb, size);
303 		/* remove ST21NFCA byte stuffing for upper layer */
304 		for (i = 1, j = 0; i < skb->len; i++) {
305 			if (skb->data[i + j] ==
306 					(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) {
307 				skb->data[i] = skb->data[i + j + 1]
308 						| ST21NFCA_BYTE_STUFFING_MASK;
309 				i++;
310 				j++;
311 			}
312 			skb->data[i] = skb->data[i + j];
313 		}
314 		/* remove byte stuffing useless byte */
315 		skb_trim(skb, i - j);
316 		/* remove ST21NFCA_SOF_EOF from head */
317 		skb_pull(skb, 1);
318 
319 		r = check_crc(skb->data, skb->len);
320 		if (r != 0) {
321 			i = 0;
322 			return -EBADMSG;
323 		}
324 
325 		/* remove headbyte */
326 		skb_pull(skb, 1);
327 		/* remove crc. Byte Stuffing is already removed here */
328 		skb_trim(skb, skb->len - 2);
329 		return skb->len;
330 	}
331 	return 0;
332 }
333 
334 /*
335  * Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees
336  * that i2c bus will be flushed and that next read will start on a new frame.
337  * returned skb contains only LLC header and payload.
338  * returns:
339  * frame size : if received frame is complete (find ST21NFCA_SOF_EOF at
340  * end of read)
341  * -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF
342  * at end of read)
343  * -EREMOTEIO : i2c read error (fatal)
344  * -EBADMSG : frame was incorrect and discarded
345  * (value returned from st21nfca_hci_i2c_repack)
346  * -EIO : if no ST21NFCA_SOF_EOF is found after reaching
347  * the read length end sequence
348  */
349 static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy,
350 				 struct sk_buff *skb)
351 {
352 	int r, i;
353 	u8 len;
354 	u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD];
355 	struct i2c_client *client = phy->i2c_dev;
356 
357 	if (phy->current_read_len < ARRAY_SIZE(len_seq)) {
358 		len = len_seq[phy->current_read_len];
359 
360 		/*
361 		 * Add retry mecanism
362 		 * Operation on I2C interface may fail in case of operation on
363 		 * RF or SWP interface
364 		 */
365 		r = 0;
366 		mutex_lock(&phy->phy_lock);
367 		for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) {
368 			r = i2c_master_recv(client, buf, len);
369 			if (r < 0)
370 				msleep(wait_tab[i]);
371 		}
372 		mutex_unlock(&phy->phy_lock);
373 
374 		if (r != len) {
375 			phy->current_read_len = 0;
376 			return -EREMOTEIO;
377 		}
378 
379 		/*
380 		 * The first read sequence does not start with SOF.
381 		 * Data is corrupeted so we drop it.
382 		 */
383 		if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) {
384 			skb_trim(skb, 0);
385 			phy->current_read_len = 0;
386 			return -EIO;
387 		} else if (phy->current_read_len && IS_START_OF_FRAME(buf)) {
388 			/*
389 			 * Previous frame transmission was interrupted and
390 			 * the frame got repeated.
391 			 * Received frame start with ST21NFCA_SOF_EOF + 00.
392 			 */
393 			skb_trim(skb, 0);
394 			phy->current_read_len = 0;
395 		}
396 
397 		skb_put_data(skb, buf, len);
398 
399 		if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) {
400 			phy->current_read_len = 0;
401 			return st21nfca_hci_i2c_repack(skb);
402 		}
403 		phy->current_read_len++;
404 		return -EAGAIN;
405 	}
406 	return -EIO;
407 }
408 
409 /*
410  * Reads an shdlc frame from the chip. This is not as straightforward as it
411  * seems. The frame format is data-crc, and corruption can occur anywhere
412  * while transiting on i2c bus, such that we could read an invalid data.
413  * The tricky case is when we read a corrupted data or crc. We must detect
414  * this here in order to determine that data can be transmitted to the hci
415  * core. This is the reason why we check the crc here.
416  * The CLF will repeat a frame until we send a RR on that frame.
417  *
418  * On ST21NFCA, IRQ goes in idle when read starts. As no size information are
419  * available in the incoming data, other IRQ might come. Every IRQ will trigger
420  * a read sequence with different length and will fill the current frame.
421  * The reception is complete once we reach a ST21NFCA_SOF_EOF.
422  */
423 static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id)
424 {
425 	struct st21nfca_i2c_phy *phy = phy_id;
426 	struct i2c_client *client;
427 
428 	int r;
429 
430 	if (!phy || irq != phy->i2c_dev->irq) {
431 		WARN_ON_ONCE(1);
432 		return IRQ_NONE;
433 	}
434 
435 	client = phy->i2c_dev;
436 	dev_dbg(&client->dev, "IRQ\n");
437 
438 	if (phy->hard_fault != 0)
439 		return IRQ_HANDLED;
440 
441 	r = st21nfca_hci_i2c_read(phy, phy->pending_skb);
442 	if (r == -EREMOTEIO) {
443 		phy->hard_fault = r;
444 
445 		nfc_hci_recv_frame(phy->hdev, NULL);
446 
447 		return IRQ_HANDLED;
448 	} else if (r == -EAGAIN || r == -EIO) {
449 		return IRQ_HANDLED;
450 	} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) {
451 		/*
452 		 * With ST21NFCA, only one interface (I2C, RF or SWP)
453 		 * may be active at a time.
454 		 * Having incorrect crc is usually due to i2c macrocell
455 		 * deactivation in the middle of a transmission.
456 		 * It may generate corrupted data on i2c.
457 		 * We give sometime to get i2c back.
458 		 * The complete frame will be repeated.
459 		 */
460 		msleep(wait_tab[phy->crc_trials]);
461 		phy->crc_trials++;
462 		phy->current_read_len = 0;
463 		kfree_skb(phy->pending_skb);
464 	} else if (r > 0) {
465 		/*
466 		 * We succeeded to read data from the CLF and
467 		 * data is valid.
468 		 * Reset counter.
469 		 */
470 		nfc_hci_recv_frame(phy->hdev, phy->pending_skb);
471 		phy->crc_trials = 0;
472 	} else {
473 		kfree_skb(phy->pending_skb);
474 	}
475 
476 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
477 	if (phy->pending_skb == NULL) {
478 		phy->hard_fault = -ENOMEM;
479 		nfc_hci_recv_frame(phy->hdev, NULL);
480 	}
481 
482 	return IRQ_HANDLED;
483 }
484 
485 static struct nfc_phy_ops i2c_phy_ops = {
486 	.write = st21nfca_hci_i2c_write,
487 	.enable = st21nfca_hci_i2c_enable,
488 	.disable = st21nfca_hci_i2c_disable,
489 };
490 
491 static const struct acpi_gpio_params enable_gpios = { 1, 0, false };
492 
493 static const struct acpi_gpio_mapping acpi_st21nfca_gpios[] = {
494 	{ "enable-gpios", &enable_gpios, 1 },
495 	{},
496 };
497 
498 static int st21nfca_hci_i2c_probe(struct i2c_client *client,
499 				  const struct i2c_device_id *id)
500 {
501 	struct device *dev = &client->dev;
502 	struct st21nfca_i2c_phy *phy;
503 	int r;
504 
505 	dev_dbg(&client->dev, "%s\n", __func__);
506 	dev_dbg(&client->dev, "IRQ: %d\n", client->irq);
507 
508 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
509 		nfc_err(&client->dev, "Need I2C_FUNC_I2C\n");
510 		return -ENODEV;
511 	}
512 
513 	phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy),
514 			   GFP_KERNEL);
515 	if (!phy)
516 		return -ENOMEM;
517 
518 	phy->i2c_dev = client;
519 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
520 	if (phy->pending_skb == NULL)
521 		return -ENOMEM;
522 
523 	phy->current_read_len = 0;
524 	phy->crc_trials = 0;
525 	mutex_init(&phy->phy_lock);
526 	i2c_set_clientdata(client, phy);
527 
528 	r = devm_acpi_dev_add_driver_gpios(dev, acpi_st21nfca_gpios);
529 	if (r)
530 		dev_dbg(dev, "Unable to add GPIO mapping table\n");
531 
532 	/* Get EN GPIO from resource provider */
533 	phy->gpiod_ena = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
534 	if (IS_ERR(phy->gpiod_ena)) {
535 		nfc_err(dev, "Unable to get ENABLE GPIO\n");
536 		return PTR_ERR(phy->gpiod_ena);
537 	}
538 
539 	phy->se_status.is_ese_present =
540 			device_property_read_bool(&client->dev, "ese-present");
541 	phy->se_status.is_uicc_present =
542 			device_property_read_bool(&client->dev, "uicc-present");
543 
544 	r = st21nfca_hci_platform_init(phy);
545 	if (r < 0) {
546 		nfc_err(&client->dev, "Unable to reboot st21nfca\n");
547 		return r;
548 	}
549 
550 	r = devm_request_threaded_irq(&client->dev, client->irq, NULL,
551 				st21nfca_hci_irq_thread_fn,
552 				IRQF_ONESHOT,
553 				ST21NFCA_HCI_DRIVER_NAME, phy);
554 	if (r < 0) {
555 		nfc_err(&client->dev, "Unable to register IRQ handler\n");
556 		return r;
557 	}
558 
559 	return st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
560 					ST21NFCA_FRAME_HEADROOM,
561 					ST21NFCA_FRAME_TAILROOM,
562 					ST21NFCA_HCI_LLC_MAX_PAYLOAD,
563 					&phy->hdev,
564 					&phy->se_status);
565 }
566 
567 static int st21nfca_hci_i2c_remove(struct i2c_client *client)
568 {
569 	struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
570 
571 	dev_dbg(&client->dev, "%s\n", __func__);
572 
573 	st21nfca_hci_remove(phy->hdev);
574 
575 	if (phy->powered)
576 		st21nfca_hci_i2c_disable(phy);
577 
578 	return 0;
579 }
580 
581 static const struct i2c_device_id st21nfca_hci_i2c_id_table[] = {
582 	{ST21NFCA_HCI_DRIVER_NAME, 0},
583 	{}
584 };
585 MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table);
586 
587 static const struct acpi_device_id st21nfca_hci_i2c_acpi_match[] = {
588 	{"SMO2100", 0},
589 	{}
590 };
591 MODULE_DEVICE_TABLE(acpi, st21nfca_hci_i2c_acpi_match);
592 
593 static const struct of_device_id of_st21nfca_i2c_match[] = {
594 	{ .compatible = "st,st21nfca-i2c", },
595 	{ .compatible = "st,st21nfca_i2c", },
596 	{}
597 };
598 MODULE_DEVICE_TABLE(of, of_st21nfca_i2c_match);
599 
600 static struct i2c_driver st21nfca_hci_i2c_driver = {
601 	.driver = {
602 		.name = ST21NFCA_HCI_I2C_DRIVER_NAME,
603 		.of_match_table = of_match_ptr(of_st21nfca_i2c_match),
604 		.acpi_match_table = ACPI_PTR(st21nfca_hci_i2c_acpi_match),
605 	},
606 	.probe = st21nfca_hci_i2c_probe,
607 	.id_table = st21nfca_hci_i2c_id_table,
608 	.remove = st21nfca_hci_i2c_remove,
609 };
610 module_i2c_driver(st21nfca_hci_i2c_driver);
611 
612 MODULE_LICENSE("GPL");
613 MODULE_DESCRIPTION(DRIVER_DESC);
614