1 /* 2 * Virtual network driver for conversing with remote driver backends. 3 * 4 * Copyright (c) 2002-2005, K A Fraser 5 * Copyright (c) 2005, XenSource Ltd 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License version 2 9 * as published by the Free Software Foundation; or, when distributed 10 * separately from the Linux kernel or incorporated into other 11 * software packages, subject to the following license: 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining a copy 14 * of this source file (the "Software"), to deal in the Software without 15 * restriction, including without limitation the rights to use, copy, modify, 16 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 17 * and to permit persons to whom the Software is furnished to do so, subject to 18 * the following conditions: 19 * 20 * The above copyright notice and this permission notice shall be included in 21 * all copies or substantial portions of the Software. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 28 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 29 * IN THE SOFTWARE. 30 */ 31 32 #include <linux/module.h> 33 #include <linux/kernel.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mm.h> 43 #include <net/ip.h> 44 45 #include <xen/xenbus.h> 46 #include <xen/events.h> 47 #include <xen/page.h> 48 #include <xen/grant_table.h> 49 50 #include <xen/interface/io/netif.h> 51 #include <xen/interface/memory.h> 52 #include <xen/interface/grant_table.h> 53 54 static struct ethtool_ops xennet_ethtool_ops; 55 56 struct netfront_cb { 57 struct page *page; 58 unsigned offset; 59 }; 60 61 #define NETFRONT_SKB_CB(skb) ((struct netfront_cb *)((skb)->cb)) 62 63 #define RX_COPY_THRESHOLD 256 64 65 #define GRANT_INVALID_REF 0 66 67 #define NET_TX_RING_SIZE __RING_SIZE((struct xen_netif_tx_sring *)0, PAGE_SIZE) 68 #define NET_RX_RING_SIZE __RING_SIZE((struct xen_netif_rx_sring *)0, PAGE_SIZE) 69 #define TX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256) 70 71 struct netfront_info { 72 struct list_head list; 73 struct net_device *netdev; 74 75 struct napi_struct napi; 76 77 unsigned int evtchn; 78 struct xenbus_device *xbdev; 79 80 spinlock_t tx_lock; 81 struct xen_netif_tx_front_ring tx; 82 int tx_ring_ref; 83 84 /* 85 * {tx,rx}_skbs store outstanding skbuffs. Free tx_skb entries 86 * are linked from tx_skb_freelist through skb_entry.link. 87 * 88 * NB. Freelist index entries are always going to be less than 89 * PAGE_OFFSET, whereas pointers to skbs will always be equal or 90 * greater than PAGE_OFFSET: we use this property to distinguish 91 * them. 92 */ 93 union skb_entry { 94 struct sk_buff *skb; 95 unsigned long link; 96 } tx_skbs[NET_TX_RING_SIZE]; 97 grant_ref_t gref_tx_head; 98 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE]; 99 unsigned tx_skb_freelist; 100 101 spinlock_t rx_lock ____cacheline_aligned_in_smp; 102 struct xen_netif_rx_front_ring rx; 103 int rx_ring_ref; 104 105 /* Receive-ring batched refills. */ 106 #define RX_MIN_TARGET 8 107 #define RX_DFL_MIN_TARGET 64 108 #define RX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256) 109 unsigned rx_min_target, rx_max_target, rx_target; 110 struct sk_buff_head rx_batch; 111 112 struct timer_list rx_refill_timer; 113 114 struct sk_buff *rx_skbs[NET_RX_RING_SIZE]; 115 grant_ref_t gref_rx_head; 116 grant_ref_t grant_rx_ref[NET_RX_RING_SIZE]; 117 118 unsigned long rx_pfn_array[NET_RX_RING_SIZE]; 119 struct multicall_entry rx_mcl[NET_RX_RING_SIZE+1]; 120 struct mmu_update rx_mmu[NET_RX_RING_SIZE]; 121 }; 122 123 struct netfront_rx_info { 124 struct xen_netif_rx_response rx; 125 struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 126 }; 127 128 static void skb_entry_set_link(union skb_entry *list, unsigned short id) 129 { 130 list->link = id; 131 } 132 133 static int skb_entry_is_link(const union skb_entry *list) 134 { 135 BUILD_BUG_ON(sizeof(list->skb) != sizeof(list->link)); 136 return ((unsigned long)list->skb < PAGE_OFFSET); 137 } 138 139 /* 140 * Access macros for acquiring freeing slots in tx_skbs[]. 141 */ 142 143 static void add_id_to_freelist(unsigned *head, union skb_entry *list, 144 unsigned short id) 145 { 146 skb_entry_set_link(&list[id], *head); 147 *head = id; 148 } 149 150 static unsigned short get_id_from_freelist(unsigned *head, 151 union skb_entry *list) 152 { 153 unsigned int id = *head; 154 *head = list[id].link; 155 return id; 156 } 157 158 static int xennet_rxidx(RING_IDX idx) 159 { 160 return idx & (NET_RX_RING_SIZE - 1); 161 } 162 163 static struct sk_buff *xennet_get_rx_skb(struct netfront_info *np, 164 RING_IDX ri) 165 { 166 int i = xennet_rxidx(ri); 167 struct sk_buff *skb = np->rx_skbs[i]; 168 np->rx_skbs[i] = NULL; 169 return skb; 170 } 171 172 static grant_ref_t xennet_get_rx_ref(struct netfront_info *np, 173 RING_IDX ri) 174 { 175 int i = xennet_rxidx(ri); 176 grant_ref_t ref = np->grant_rx_ref[i]; 177 np->grant_rx_ref[i] = GRANT_INVALID_REF; 178 return ref; 179 } 180 181 #ifdef CONFIG_SYSFS 182 static int xennet_sysfs_addif(struct net_device *netdev); 183 static void xennet_sysfs_delif(struct net_device *netdev); 184 #else /* !CONFIG_SYSFS */ 185 #define xennet_sysfs_addif(dev) (0) 186 #define xennet_sysfs_delif(dev) do { } while (0) 187 #endif 188 189 static int xennet_can_sg(struct net_device *dev) 190 { 191 return dev->features & NETIF_F_SG; 192 } 193 194 195 static void rx_refill_timeout(unsigned long data) 196 { 197 struct net_device *dev = (struct net_device *)data; 198 struct netfront_info *np = netdev_priv(dev); 199 netif_rx_schedule(dev, &np->napi); 200 } 201 202 static int netfront_tx_slot_available(struct netfront_info *np) 203 { 204 return ((np->tx.req_prod_pvt - np->tx.rsp_cons) < 205 (TX_MAX_TARGET - MAX_SKB_FRAGS - 2)); 206 } 207 208 static void xennet_maybe_wake_tx(struct net_device *dev) 209 { 210 struct netfront_info *np = netdev_priv(dev); 211 212 if (unlikely(netif_queue_stopped(dev)) && 213 netfront_tx_slot_available(np) && 214 likely(netif_running(dev))) 215 netif_wake_queue(dev); 216 } 217 218 static void xennet_alloc_rx_buffers(struct net_device *dev) 219 { 220 unsigned short id; 221 struct netfront_info *np = netdev_priv(dev); 222 struct sk_buff *skb; 223 struct page *page; 224 int i, batch_target, notify; 225 RING_IDX req_prod = np->rx.req_prod_pvt; 226 grant_ref_t ref; 227 unsigned long pfn; 228 void *vaddr; 229 struct xen_netif_rx_request *req; 230 231 if (unlikely(!netif_carrier_ok(dev))) 232 return; 233 234 /* 235 * Allocate skbuffs greedily, even though we batch updates to the 236 * receive ring. This creates a less bursty demand on the memory 237 * allocator, so should reduce the chance of failed allocation requests 238 * both for ourself and for other kernel subsystems. 239 */ 240 batch_target = np->rx_target - (req_prod - np->rx.rsp_cons); 241 for (i = skb_queue_len(&np->rx_batch); i < batch_target; i++) { 242 skb = __netdev_alloc_skb(dev, RX_COPY_THRESHOLD, 243 GFP_ATOMIC | __GFP_NOWARN); 244 if (unlikely(!skb)) 245 goto no_skb; 246 247 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); 248 if (!page) { 249 kfree_skb(skb); 250 no_skb: 251 /* Any skbuffs queued for refill? Force them out. */ 252 if (i != 0) 253 goto refill; 254 /* Could not allocate any skbuffs. Try again later. */ 255 mod_timer(&np->rx_refill_timer, 256 jiffies + (HZ/10)); 257 break; 258 } 259 260 skb_shinfo(skb)->frags[0].page = page; 261 skb_shinfo(skb)->nr_frags = 1; 262 __skb_queue_tail(&np->rx_batch, skb); 263 } 264 265 /* Is the batch large enough to be worthwhile? */ 266 if (i < (np->rx_target/2)) { 267 if (req_prod > np->rx.sring->req_prod) 268 goto push; 269 return; 270 } 271 272 /* Adjust our fill target if we risked running out of buffers. */ 273 if (((req_prod - np->rx.sring->rsp_prod) < (np->rx_target / 4)) && 274 ((np->rx_target *= 2) > np->rx_max_target)) 275 np->rx_target = np->rx_max_target; 276 277 refill: 278 for (i = 0; ; i++) { 279 skb = __skb_dequeue(&np->rx_batch); 280 if (skb == NULL) 281 break; 282 283 skb->dev = dev; 284 285 id = xennet_rxidx(req_prod + i); 286 287 BUG_ON(np->rx_skbs[id]); 288 np->rx_skbs[id] = skb; 289 290 ref = gnttab_claim_grant_reference(&np->gref_rx_head); 291 BUG_ON((signed short)ref < 0); 292 np->grant_rx_ref[id] = ref; 293 294 pfn = page_to_pfn(skb_shinfo(skb)->frags[0].page); 295 vaddr = page_address(skb_shinfo(skb)->frags[0].page); 296 297 req = RING_GET_REQUEST(&np->rx, req_prod + i); 298 gnttab_grant_foreign_access_ref(ref, 299 np->xbdev->otherend_id, 300 pfn_to_mfn(pfn), 301 0); 302 303 req->id = id; 304 req->gref = ref; 305 } 306 307 wmb(); /* barrier so backend seens requests */ 308 309 /* Above is a suitable barrier to ensure backend will see requests. */ 310 np->rx.req_prod_pvt = req_prod + i; 311 push: 312 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->rx, notify); 313 if (notify) 314 notify_remote_via_irq(np->netdev->irq); 315 } 316 317 static int xennet_open(struct net_device *dev) 318 { 319 struct netfront_info *np = netdev_priv(dev); 320 321 napi_enable(&np->napi); 322 323 spin_lock_bh(&np->rx_lock); 324 if (netif_carrier_ok(dev)) { 325 xennet_alloc_rx_buffers(dev); 326 np->rx.sring->rsp_event = np->rx.rsp_cons + 1; 327 if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx)) 328 netif_rx_schedule(dev, &np->napi); 329 } 330 spin_unlock_bh(&np->rx_lock); 331 332 netif_start_queue(dev); 333 334 return 0; 335 } 336 337 static void xennet_tx_buf_gc(struct net_device *dev) 338 { 339 RING_IDX cons, prod; 340 unsigned short id; 341 struct netfront_info *np = netdev_priv(dev); 342 struct sk_buff *skb; 343 344 BUG_ON(!netif_carrier_ok(dev)); 345 346 do { 347 prod = np->tx.sring->rsp_prod; 348 rmb(); /* Ensure we see responses up to 'rp'. */ 349 350 for (cons = np->tx.rsp_cons; cons != prod; cons++) { 351 struct xen_netif_tx_response *txrsp; 352 353 txrsp = RING_GET_RESPONSE(&np->tx, cons); 354 if (txrsp->status == NETIF_RSP_NULL) 355 continue; 356 357 id = txrsp->id; 358 skb = np->tx_skbs[id].skb; 359 if (unlikely(gnttab_query_foreign_access( 360 np->grant_tx_ref[id]) != 0)) { 361 printk(KERN_ALERT "xennet_tx_buf_gc: warning " 362 "-- grant still in use by backend " 363 "domain.\n"); 364 BUG(); 365 } 366 gnttab_end_foreign_access_ref( 367 np->grant_tx_ref[id], GNTMAP_readonly); 368 gnttab_release_grant_reference( 369 &np->gref_tx_head, np->grant_tx_ref[id]); 370 np->grant_tx_ref[id] = GRANT_INVALID_REF; 371 add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, id); 372 dev_kfree_skb_irq(skb); 373 } 374 375 np->tx.rsp_cons = prod; 376 377 /* 378 * Set a new event, then check for race with update of tx_cons. 379 * Note that it is essential to schedule a callback, no matter 380 * how few buffers are pending. Even if there is space in the 381 * transmit ring, higher layers may be blocked because too much 382 * data is outstanding: in such cases notification from Xen is 383 * likely to be the only kick that we'll get. 384 */ 385 np->tx.sring->rsp_event = 386 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 387 mb(); /* update shared area */ 388 } while ((cons == prod) && (prod != np->tx.sring->rsp_prod)); 389 390 xennet_maybe_wake_tx(dev); 391 } 392 393 static void xennet_make_frags(struct sk_buff *skb, struct net_device *dev, 394 struct xen_netif_tx_request *tx) 395 { 396 struct netfront_info *np = netdev_priv(dev); 397 char *data = skb->data; 398 unsigned long mfn; 399 RING_IDX prod = np->tx.req_prod_pvt; 400 int frags = skb_shinfo(skb)->nr_frags; 401 unsigned int offset = offset_in_page(data); 402 unsigned int len = skb_headlen(skb); 403 unsigned int id; 404 grant_ref_t ref; 405 int i; 406 407 /* While the header overlaps a page boundary (including being 408 larger than a page), split it it into page-sized chunks. */ 409 while (len > PAGE_SIZE - offset) { 410 tx->size = PAGE_SIZE - offset; 411 tx->flags |= NETTXF_more_data; 412 len -= tx->size; 413 data += tx->size; 414 offset = 0; 415 416 id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs); 417 np->tx_skbs[id].skb = skb_get(skb); 418 tx = RING_GET_REQUEST(&np->tx, prod++); 419 tx->id = id; 420 ref = gnttab_claim_grant_reference(&np->gref_tx_head); 421 BUG_ON((signed short)ref < 0); 422 423 mfn = virt_to_mfn(data); 424 gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id, 425 mfn, GNTMAP_readonly); 426 427 tx->gref = np->grant_tx_ref[id] = ref; 428 tx->offset = offset; 429 tx->size = len; 430 tx->flags = 0; 431 } 432 433 /* Grant backend access to each skb fragment page. */ 434 for (i = 0; i < frags; i++) { 435 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 436 437 tx->flags |= NETTXF_more_data; 438 439 id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs); 440 np->tx_skbs[id].skb = skb_get(skb); 441 tx = RING_GET_REQUEST(&np->tx, prod++); 442 tx->id = id; 443 ref = gnttab_claim_grant_reference(&np->gref_tx_head); 444 BUG_ON((signed short)ref < 0); 445 446 mfn = pfn_to_mfn(page_to_pfn(frag->page)); 447 gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id, 448 mfn, GNTMAP_readonly); 449 450 tx->gref = np->grant_tx_ref[id] = ref; 451 tx->offset = frag->page_offset; 452 tx->size = frag->size; 453 tx->flags = 0; 454 } 455 456 np->tx.req_prod_pvt = prod; 457 } 458 459 static int xennet_start_xmit(struct sk_buff *skb, struct net_device *dev) 460 { 461 unsigned short id; 462 struct netfront_info *np = netdev_priv(dev); 463 struct xen_netif_tx_request *tx; 464 struct xen_netif_extra_info *extra; 465 char *data = skb->data; 466 RING_IDX i; 467 grant_ref_t ref; 468 unsigned long mfn; 469 int notify; 470 int frags = skb_shinfo(skb)->nr_frags; 471 unsigned int offset = offset_in_page(data); 472 unsigned int len = skb_headlen(skb); 473 474 frags += (offset + len + PAGE_SIZE - 1) / PAGE_SIZE; 475 if (unlikely(frags > MAX_SKB_FRAGS + 1)) { 476 printk(KERN_ALERT "xennet: skb rides the rocket: %d frags\n", 477 frags); 478 dump_stack(); 479 goto drop; 480 } 481 482 spin_lock_irq(&np->tx_lock); 483 484 if (unlikely(!netif_carrier_ok(dev) || 485 (frags > 1 && !xennet_can_sg(dev)) || 486 netif_needs_gso(dev, skb))) { 487 spin_unlock_irq(&np->tx_lock); 488 goto drop; 489 } 490 491 i = np->tx.req_prod_pvt; 492 493 id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs); 494 np->tx_skbs[id].skb = skb; 495 496 tx = RING_GET_REQUEST(&np->tx, i); 497 498 tx->id = id; 499 ref = gnttab_claim_grant_reference(&np->gref_tx_head); 500 BUG_ON((signed short)ref < 0); 501 mfn = virt_to_mfn(data); 502 gnttab_grant_foreign_access_ref( 503 ref, np->xbdev->otherend_id, mfn, GNTMAP_readonly); 504 tx->gref = np->grant_tx_ref[id] = ref; 505 tx->offset = offset; 506 tx->size = len; 507 extra = NULL; 508 509 tx->flags = 0; 510 if (skb->ip_summed == CHECKSUM_PARTIAL) 511 /* local packet? */ 512 tx->flags |= NETTXF_csum_blank | NETTXF_data_validated; 513 else if (skb->ip_summed == CHECKSUM_UNNECESSARY) 514 /* remote but checksummed. */ 515 tx->flags |= NETTXF_data_validated; 516 517 if (skb_shinfo(skb)->gso_size) { 518 struct xen_netif_extra_info *gso; 519 520 gso = (struct xen_netif_extra_info *) 521 RING_GET_REQUEST(&np->tx, ++i); 522 523 if (extra) 524 extra->flags |= XEN_NETIF_EXTRA_FLAG_MORE; 525 else 526 tx->flags |= NETTXF_extra_info; 527 528 gso->u.gso.size = skb_shinfo(skb)->gso_size; 529 gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 530 gso->u.gso.pad = 0; 531 gso->u.gso.features = 0; 532 533 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 534 gso->flags = 0; 535 extra = gso; 536 } 537 538 np->tx.req_prod_pvt = i + 1; 539 540 xennet_make_frags(skb, dev, tx); 541 tx->size = skb->len; 542 543 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->tx, notify); 544 if (notify) 545 notify_remote_via_irq(np->netdev->irq); 546 547 dev->stats.tx_bytes += skb->len; 548 dev->stats.tx_packets++; 549 550 /* Note: It is not safe to access skb after xennet_tx_buf_gc()! */ 551 xennet_tx_buf_gc(dev); 552 553 if (!netfront_tx_slot_available(np)) 554 netif_stop_queue(dev); 555 556 spin_unlock_irq(&np->tx_lock); 557 558 return 0; 559 560 drop: 561 dev->stats.tx_dropped++; 562 dev_kfree_skb(skb); 563 return 0; 564 } 565 566 static int xennet_close(struct net_device *dev) 567 { 568 struct netfront_info *np = netdev_priv(dev); 569 netif_stop_queue(np->netdev); 570 napi_disable(&np->napi); 571 return 0; 572 } 573 574 static void xennet_move_rx_slot(struct netfront_info *np, struct sk_buff *skb, 575 grant_ref_t ref) 576 { 577 int new = xennet_rxidx(np->rx.req_prod_pvt); 578 579 BUG_ON(np->rx_skbs[new]); 580 np->rx_skbs[new] = skb; 581 np->grant_rx_ref[new] = ref; 582 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 583 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 584 np->rx.req_prod_pvt++; 585 } 586 587 static int xennet_get_extras(struct netfront_info *np, 588 struct xen_netif_extra_info *extras, 589 RING_IDX rp) 590 591 { 592 struct xen_netif_extra_info *extra; 593 struct device *dev = &np->netdev->dev; 594 RING_IDX cons = np->rx.rsp_cons; 595 int err = 0; 596 597 do { 598 struct sk_buff *skb; 599 grant_ref_t ref; 600 601 if (unlikely(cons + 1 == rp)) { 602 if (net_ratelimit()) 603 dev_warn(dev, "Missing extra info\n"); 604 err = -EBADR; 605 break; 606 } 607 608 extra = (struct xen_netif_extra_info *) 609 RING_GET_RESPONSE(&np->rx, ++cons); 610 611 if (unlikely(!extra->type || 612 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 613 if (net_ratelimit()) 614 dev_warn(dev, "Invalid extra type: %d\n", 615 extra->type); 616 err = -EINVAL; 617 } else { 618 memcpy(&extras[extra->type - 1], extra, 619 sizeof(*extra)); 620 } 621 622 skb = xennet_get_rx_skb(np, cons); 623 ref = xennet_get_rx_ref(np, cons); 624 xennet_move_rx_slot(np, skb, ref); 625 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 626 627 np->rx.rsp_cons = cons; 628 return err; 629 } 630 631 static int xennet_get_responses(struct netfront_info *np, 632 struct netfront_rx_info *rinfo, RING_IDX rp, 633 struct sk_buff_head *list) 634 { 635 struct xen_netif_rx_response *rx = &rinfo->rx; 636 struct xen_netif_extra_info *extras = rinfo->extras; 637 struct device *dev = &np->netdev->dev; 638 RING_IDX cons = np->rx.rsp_cons; 639 struct sk_buff *skb = xennet_get_rx_skb(np, cons); 640 grant_ref_t ref = xennet_get_rx_ref(np, cons); 641 int max = MAX_SKB_FRAGS + (rx->status <= RX_COPY_THRESHOLD); 642 int frags = 1; 643 int err = 0; 644 unsigned long ret; 645 646 if (rx->flags & NETRXF_extra_info) { 647 err = xennet_get_extras(np, extras, rp); 648 cons = np->rx.rsp_cons; 649 } 650 651 for (;;) { 652 if (unlikely(rx->status < 0 || 653 rx->offset + rx->status > PAGE_SIZE)) { 654 if (net_ratelimit()) 655 dev_warn(dev, "rx->offset: %x, size: %u\n", 656 rx->offset, rx->status); 657 xennet_move_rx_slot(np, skb, ref); 658 err = -EINVAL; 659 goto next; 660 } 661 662 /* 663 * This definitely indicates a bug, either in this driver or in 664 * the backend driver. In future this should flag the bad 665 * situation to the system controller to reboot the backed. 666 */ 667 if (ref == GRANT_INVALID_REF) { 668 if (net_ratelimit()) 669 dev_warn(dev, "Bad rx response id %d.\n", 670 rx->id); 671 err = -EINVAL; 672 goto next; 673 } 674 675 ret = gnttab_end_foreign_access_ref(ref, 0); 676 BUG_ON(!ret); 677 678 gnttab_release_grant_reference(&np->gref_rx_head, ref); 679 680 __skb_queue_tail(list, skb); 681 682 next: 683 if (!(rx->flags & NETRXF_more_data)) 684 break; 685 686 if (cons + frags == rp) { 687 if (net_ratelimit()) 688 dev_warn(dev, "Need more frags\n"); 689 err = -ENOENT; 690 break; 691 } 692 693 rx = RING_GET_RESPONSE(&np->rx, cons + frags); 694 skb = xennet_get_rx_skb(np, cons + frags); 695 ref = xennet_get_rx_ref(np, cons + frags); 696 frags++; 697 } 698 699 if (unlikely(frags > max)) { 700 if (net_ratelimit()) 701 dev_warn(dev, "Too many frags\n"); 702 err = -E2BIG; 703 } 704 705 if (unlikely(err)) 706 np->rx.rsp_cons = cons + frags; 707 708 return err; 709 } 710 711 static int xennet_set_skb_gso(struct sk_buff *skb, 712 struct xen_netif_extra_info *gso) 713 { 714 if (!gso->u.gso.size) { 715 if (net_ratelimit()) 716 printk(KERN_WARNING "GSO size must not be zero.\n"); 717 return -EINVAL; 718 } 719 720 /* Currently only TCPv4 S.O. is supported. */ 721 if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) { 722 if (net_ratelimit()) 723 printk(KERN_WARNING "Bad GSO type %d.\n", gso->u.gso.type); 724 return -EINVAL; 725 } 726 727 skb_shinfo(skb)->gso_size = gso->u.gso.size; 728 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 729 730 /* Header must be checked, and gso_segs computed. */ 731 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 732 skb_shinfo(skb)->gso_segs = 0; 733 734 return 0; 735 } 736 737 static RING_IDX xennet_fill_frags(struct netfront_info *np, 738 struct sk_buff *skb, 739 struct sk_buff_head *list) 740 { 741 struct skb_shared_info *shinfo = skb_shinfo(skb); 742 int nr_frags = shinfo->nr_frags; 743 RING_IDX cons = np->rx.rsp_cons; 744 skb_frag_t *frag = shinfo->frags + nr_frags; 745 struct sk_buff *nskb; 746 747 while ((nskb = __skb_dequeue(list))) { 748 struct xen_netif_rx_response *rx = 749 RING_GET_RESPONSE(&np->rx, ++cons); 750 751 frag->page = skb_shinfo(nskb)->frags[0].page; 752 frag->page_offset = rx->offset; 753 frag->size = rx->status; 754 755 skb->data_len += rx->status; 756 757 skb_shinfo(nskb)->nr_frags = 0; 758 kfree_skb(nskb); 759 760 frag++; 761 nr_frags++; 762 } 763 764 shinfo->nr_frags = nr_frags; 765 return cons; 766 } 767 768 static int skb_checksum_setup(struct sk_buff *skb) 769 { 770 struct iphdr *iph; 771 unsigned char *th; 772 int err = -EPROTO; 773 774 if (skb->protocol != htons(ETH_P_IP)) 775 goto out; 776 777 iph = (void *)skb->data; 778 th = skb->data + 4 * iph->ihl; 779 if (th >= skb_tail_pointer(skb)) 780 goto out; 781 782 skb->csum_start = th - skb->head; 783 switch (iph->protocol) { 784 case IPPROTO_TCP: 785 skb->csum_offset = offsetof(struct tcphdr, check); 786 break; 787 case IPPROTO_UDP: 788 skb->csum_offset = offsetof(struct udphdr, check); 789 break; 790 default: 791 if (net_ratelimit()) 792 printk(KERN_ERR "Attempting to checksum a non-" 793 "TCP/UDP packet, dropping a protocol" 794 " %d packet", iph->protocol); 795 goto out; 796 } 797 798 if ((th + skb->csum_offset + 2) > skb_tail_pointer(skb)) 799 goto out; 800 801 err = 0; 802 803 out: 804 return err; 805 } 806 807 static int handle_incoming_queue(struct net_device *dev, 808 struct sk_buff_head *rxq) 809 { 810 int packets_dropped = 0; 811 struct sk_buff *skb; 812 813 while ((skb = __skb_dequeue(rxq)) != NULL) { 814 struct page *page = NETFRONT_SKB_CB(skb)->page; 815 void *vaddr = page_address(page); 816 unsigned offset = NETFRONT_SKB_CB(skb)->offset; 817 818 memcpy(skb->data, vaddr + offset, 819 skb_headlen(skb)); 820 821 if (page != skb_shinfo(skb)->frags[0].page) 822 __free_page(page); 823 824 /* Ethernet work: Delayed to here as it peeks the header. */ 825 skb->protocol = eth_type_trans(skb, dev); 826 827 if (skb->ip_summed == CHECKSUM_PARTIAL) { 828 if (skb_checksum_setup(skb)) { 829 kfree_skb(skb); 830 packets_dropped++; 831 dev->stats.rx_errors++; 832 continue; 833 } 834 } 835 836 dev->stats.rx_packets++; 837 dev->stats.rx_bytes += skb->len; 838 839 /* Pass it up. */ 840 netif_receive_skb(skb); 841 dev->last_rx = jiffies; 842 } 843 844 return packets_dropped; 845 } 846 847 static int xennet_poll(struct napi_struct *napi, int budget) 848 { 849 struct netfront_info *np = container_of(napi, struct netfront_info, napi); 850 struct net_device *dev = np->netdev; 851 struct sk_buff *skb; 852 struct netfront_rx_info rinfo; 853 struct xen_netif_rx_response *rx = &rinfo.rx; 854 struct xen_netif_extra_info *extras = rinfo.extras; 855 RING_IDX i, rp; 856 int work_done; 857 struct sk_buff_head rxq; 858 struct sk_buff_head errq; 859 struct sk_buff_head tmpq; 860 unsigned long flags; 861 unsigned int len; 862 int err; 863 864 spin_lock(&np->rx_lock); 865 866 skb_queue_head_init(&rxq); 867 skb_queue_head_init(&errq); 868 skb_queue_head_init(&tmpq); 869 870 rp = np->rx.sring->rsp_prod; 871 rmb(); /* Ensure we see queued responses up to 'rp'. */ 872 873 i = np->rx.rsp_cons; 874 work_done = 0; 875 while ((i != rp) && (work_done < budget)) { 876 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 877 memset(extras, 0, sizeof(rinfo.extras)); 878 879 err = xennet_get_responses(np, &rinfo, rp, &tmpq); 880 881 if (unlikely(err)) { 882 err: 883 while ((skb = __skb_dequeue(&tmpq))) 884 __skb_queue_tail(&errq, skb); 885 dev->stats.rx_errors++; 886 i = np->rx.rsp_cons; 887 continue; 888 } 889 890 skb = __skb_dequeue(&tmpq); 891 892 if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) { 893 struct xen_netif_extra_info *gso; 894 gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1]; 895 896 if (unlikely(xennet_set_skb_gso(skb, gso))) { 897 __skb_queue_head(&tmpq, skb); 898 np->rx.rsp_cons += skb_queue_len(&tmpq); 899 goto err; 900 } 901 } 902 903 NETFRONT_SKB_CB(skb)->page = skb_shinfo(skb)->frags[0].page; 904 NETFRONT_SKB_CB(skb)->offset = rx->offset; 905 906 len = rx->status; 907 if (len > RX_COPY_THRESHOLD) 908 len = RX_COPY_THRESHOLD; 909 skb_put(skb, len); 910 911 if (rx->status > len) { 912 skb_shinfo(skb)->frags[0].page_offset = 913 rx->offset + len; 914 skb_shinfo(skb)->frags[0].size = rx->status - len; 915 skb->data_len = rx->status - len; 916 } else { 917 skb_shinfo(skb)->frags[0].page = NULL; 918 skb_shinfo(skb)->nr_frags = 0; 919 } 920 921 i = xennet_fill_frags(np, skb, &tmpq); 922 923 /* 924 * Truesize approximates the size of true data plus 925 * any supervisor overheads. Adding hypervisor 926 * overheads has been shown to significantly reduce 927 * achievable bandwidth with the default receive 928 * buffer size. It is therefore not wise to account 929 * for it here. 930 * 931 * After alloc_skb(RX_COPY_THRESHOLD), truesize is set 932 * to RX_COPY_THRESHOLD + the supervisor 933 * overheads. Here, we add the size of the data pulled 934 * in xennet_fill_frags(). 935 * 936 * We also adjust for any unused space in the main 937 * data area by subtracting (RX_COPY_THRESHOLD - 938 * len). This is especially important with drivers 939 * which split incoming packets into header and data, 940 * using only 66 bytes of the main data area (see the 941 * e1000 driver for example.) On such systems, 942 * without this last adjustement, our achievable 943 * receive throughout using the standard receive 944 * buffer size was cut by 25%(!!!). 945 */ 946 skb->truesize += skb->data_len - (RX_COPY_THRESHOLD - len); 947 skb->len += skb->data_len; 948 949 if (rx->flags & NETRXF_csum_blank) 950 skb->ip_summed = CHECKSUM_PARTIAL; 951 else if (rx->flags & NETRXF_data_validated) 952 skb->ip_summed = CHECKSUM_UNNECESSARY; 953 954 __skb_queue_tail(&rxq, skb); 955 956 np->rx.rsp_cons = ++i; 957 work_done++; 958 } 959 960 __skb_queue_purge(&errq); 961 962 work_done -= handle_incoming_queue(dev, &rxq); 963 964 /* If we get a callback with very few responses, reduce fill target. */ 965 /* NB. Note exponential increase, linear decrease. */ 966 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 967 ((3*np->rx_target) / 4)) && 968 (--np->rx_target < np->rx_min_target)) 969 np->rx_target = np->rx_min_target; 970 971 xennet_alloc_rx_buffers(dev); 972 973 if (work_done < budget) { 974 int more_to_do = 0; 975 976 local_irq_save(flags); 977 978 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, more_to_do); 979 if (!more_to_do) 980 __netif_rx_complete(dev, napi); 981 982 local_irq_restore(flags); 983 } 984 985 spin_unlock(&np->rx_lock); 986 987 return work_done; 988 } 989 990 static int xennet_change_mtu(struct net_device *dev, int mtu) 991 { 992 int max = xennet_can_sg(dev) ? 65535 - ETH_HLEN : ETH_DATA_LEN; 993 994 if (mtu > max) 995 return -EINVAL; 996 dev->mtu = mtu; 997 return 0; 998 } 999 1000 static void xennet_release_tx_bufs(struct netfront_info *np) 1001 { 1002 struct sk_buff *skb; 1003 int i; 1004 1005 for (i = 0; i < NET_TX_RING_SIZE; i++) { 1006 /* Skip over entries which are actually freelist references */ 1007 if (skb_entry_is_link(&np->tx_skbs[i])) 1008 continue; 1009 1010 skb = np->tx_skbs[i].skb; 1011 gnttab_end_foreign_access_ref(np->grant_tx_ref[i], 1012 GNTMAP_readonly); 1013 gnttab_release_grant_reference(&np->gref_tx_head, 1014 np->grant_tx_ref[i]); 1015 np->grant_tx_ref[i] = GRANT_INVALID_REF; 1016 add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, i); 1017 dev_kfree_skb_irq(skb); 1018 } 1019 } 1020 1021 static void xennet_release_rx_bufs(struct netfront_info *np) 1022 { 1023 struct mmu_update *mmu = np->rx_mmu; 1024 struct multicall_entry *mcl = np->rx_mcl; 1025 struct sk_buff_head free_list; 1026 struct sk_buff *skb; 1027 unsigned long mfn; 1028 int xfer = 0, noxfer = 0, unused = 0; 1029 int id, ref; 1030 1031 dev_warn(&np->netdev->dev, "%s: fix me for copying receiver.\n", 1032 __func__); 1033 return; 1034 1035 skb_queue_head_init(&free_list); 1036 1037 spin_lock_bh(&np->rx_lock); 1038 1039 for (id = 0; id < NET_RX_RING_SIZE; id++) { 1040 ref = np->grant_rx_ref[id]; 1041 if (ref == GRANT_INVALID_REF) { 1042 unused++; 1043 continue; 1044 } 1045 1046 skb = np->rx_skbs[id]; 1047 mfn = gnttab_end_foreign_transfer_ref(ref); 1048 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1049 np->grant_rx_ref[id] = GRANT_INVALID_REF; 1050 1051 if (0 == mfn) { 1052 skb_shinfo(skb)->nr_frags = 0; 1053 dev_kfree_skb(skb); 1054 noxfer++; 1055 continue; 1056 } 1057 1058 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1059 /* Remap the page. */ 1060 struct page *page = skb_shinfo(skb)->frags[0].page; 1061 unsigned long pfn = page_to_pfn(page); 1062 void *vaddr = page_address(page); 1063 1064 MULTI_update_va_mapping(mcl, (unsigned long)vaddr, 1065 mfn_pte(mfn, PAGE_KERNEL), 1066 0); 1067 mcl++; 1068 mmu->ptr = ((u64)mfn << PAGE_SHIFT) 1069 | MMU_MACHPHYS_UPDATE; 1070 mmu->val = pfn; 1071 mmu++; 1072 1073 set_phys_to_machine(pfn, mfn); 1074 } 1075 __skb_queue_tail(&free_list, skb); 1076 xfer++; 1077 } 1078 1079 dev_info(&np->netdev->dev, "%s: %d xfer, %d noxfer, %d unused\n", 1080 __func__, xfer, noxfer, unused); 1081 1082 if (xfer) { 1083 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1084 /* Do all the remapping work and M2P updates. */ 1085 MULTI_mmu_update(mcl, np->rx_mmu, mmu - np->rx_mmu, 1086 NULL, DOMID_SELF); 1087 mcl++; 1088 HYPERVISOR_multicall(np->rx_mcl, mcl - np->rx_mcl); 1089 } 1090 } 1091 1092 __skb_queue_purge(&free_list); 1093 1094 spin_unlock_bh(&np->rx_lock); 1095 } 1096 1097 static void xennet_uninit(struct net_device *dev) 1098 { 1099 struct netfront_info *np = netdev_priv(dev); 1100 xennet_release_tx_bufs(np); 1101 xennet_release_rx_bufs(np); 1102 gnttab_free_grant_references(np->gref_tx_head); 1103 gnttab_free_grant_references(np->gref_rx_head); 1104 } 1105 1106 static struct net_device * __devinit xennet_create_dev(struct xenbus_device *dev) 1107 { 1108 int i, err; 1109 struct net_device *netdev; 1110 struct netfront_info *np; 1111 1112 netdev = alloc_etherdev(sizeof(struct netfront_info)); 1113 if (!netdev) { 1114 printk(KERN_WARNING "%s> alloc_etherdev failed.\n", 1115 __func__); 1116 return ERR_PTR(-ENOMEM); 1117 } 1118 1119 np = netdev_priv(netdev); 1120 np->xbdev = dev; 1121 1122 spin_lock_init(&np->tx_lock); 1123 spin_lock_init(&np->rx_lock); 1124 1125 skb_queue_head_init(&np->rx_batch); 1126 np->rx_target = RX_DFL_MIN_TARGET; 1127 np->rx_min_target = RX_DFL_MIN_TARGET; 1128 np->rx_max_target = RX_MAX_TARGET; 1129 1130 init_timer(&np->rx_refill_timer); 1131 np->rx_refill_timer.data = (unsigned long)netdev; 1132 np->rx_refill_timer.function = rx_refill_timeout; 1133 1134 /* Initialise tx_skbs as a free chain containing every entry. */ 1135 np->tx_skb_freelist = 0; 1136 for (i = 0; i < NET_TX_RING_SIZE; i++) { 1137 skb_entry_set_link(&np->tx_skbs[i], i+1); 1138 np->grant_tx_ref[i] = GRANT_INVALID_REF; 1139 } 1140 1141 /* Clear out rx_skbs */ 1142 for (i = 0; i < NET_RX_RING_SIZE; i++) { 1143 np->rx_skbs[i] = NULL; 1144 np->grant_rx_ref[i] = GRANT_INVALID_REF; 1145 } 1146 1147 /* A grant for every tx ring slot */ 1148 if (gnttab_alloc_grant_references(TX_MAX_TARGET, 1149 &np->gref_tx_head) < 0) { 1150 printk(KERN_ALERT "#### netfront can't alloc tx grant refs\n"); 1151 err = -ENOMEM; 1152 goto exit; 1153 } 1154 /* A grant for every rx ring slot */ 1155 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 1156 &np->gref_rx_head) < 0) { 1157 printk(KERN_ALERT "#### netfront can't alloc rx grant refs\n"); 1158 err = -ENOMEM; 1159 goto exit_free_tx; 1160 } 1161 1162 netdev->open = xennet_open; 1163 netdev->hard_start_xmit = xennet_start_xmit; 1164 netdev->stop = xennet_close; 1165 netif_napi_add(netdev, &np->napi, xennet_poll, 64); 1166 netdev->uninit = xennet_uninit; 1167 netdev->change_mtu = xennet_change_mtu; 1168 netdev->features = NETIF_F_IP_CSUM; 1169 1170 SET_ETHTOOL_OPS(netdev, &xennet_ethtool_ops); 1171 SET_NETDEV_DEV(netdev, &dev->dev); 1172 1173 np->netdev = netdev; 1174 1175 netif_carrier_off(netdev); 1176 1177 return netdev; 1178 1179 exit_free_tx: 1180 gnttab_free_grant_references(np->gref_tx_head); 1181 exit: 1182 free_netdev(netdev); 1183 return ERR_PTR(err); 1184 } 1185 1186 /** 1187 * Entry point to this code when a new device is created. Allocate the basic 1188 * structures and the ring buffers for communication with the backend, and 1189 * inform the backend of the appropriate details for those. 1190 */ 1191 static int __devinit netfront_probe(struct xenbus_device *dev, 1192 const struct xenbus_device_id *id) 1193 { 1194 int err; 1195 struct net_device *netdev; 1196 struct netfront_info *info; 1197 1198 netdev = xennet_create_dev(dev); 1199 if (IS_ERR(netdev)) { 1200 err = PTR_ERR(netdev); 1201 xenbus_dev_fatal(dev, err, "creating netdev"); 1202 return err; 1203 } 1204 1205 info = netdev_priv(netdev); 1206 dev->dev.driver_data = info; 1207 1208 err = register_netdev(info->netdev); 1209 if (err) { 1210 printk(KERN_WARNING "%s: register_netdev err=%d\n", 1211 __func__, err); 1212 goto fail; 1213 } 1214 1215 err = xennet_sysfs_addif(info->netdev); 1216 if (err) { 1217 unregister_netdev(info->netdev); 1218 printk(KERN_WARNING "%s: add sysfs failed err=%d\n", 1219 __func__, err); 1220 goto fail; 1221 } 1222 1223 return 0; 1224 1225 fail: 1226 free_netdev(netdev); 1227 dev->dev.driver_data = NULL; 1228 return err; 1229 } 1230 1231 static void xennet_end_access(int ref, void *page) 1232 { 1233 /* This frees the page as a side-effect */ 1234 if (ref != GRANT_INVALID_REF) 1235 gnttab_end_foreign_access(ref, 0, (unsigned long)page); 1236 } 1237 1238 static void xennet_disconnect_backend(struct netfront_info *info) 1239 { 1240 /* Stop old i/f to prevent errors whilst we rebuild the state. */ 1241 spin_lock_bh(&info->rx_lock); 1242 spin_lock_irq(&info->tx_lock); 1243 netif_carrier_off(info->netdev); 1244 spin_unlock_irq(&info->tx_lock); 1245 spin_unlock_bh(&info->rx_lock); 1246 1247 if (info->netdev->irq) 1248 unbind_from_irqhandler(info->netdev->irq, info->netdev); 1249 info->evtchn = info->netdev->irq = 0; 1250 1251 /* End access and free the pages */ 1252 xennet_end_access(info->tx_ring_ref, info->tx.sring); 1253 xennet_end_access(info->rx_ring_ref, info->rx.sring); 1254 1255 info->tx_ring_ref = GRANT_INVALID_REF; 1256 info->rx_ring_ref = GRANT_INVALID_REF; 1257 info->tx.sring = NULL; 1258 info->rx.sring = NULL; 1259 } 1260 1261 /** 1262 * We are reconnecting to the backend, due to a suspend/resume, or a backend 1263 * driver restart. We tear down our netif structure and recreate it, but 1264 * leave the device-layer structures intact so that this is transparent to the 1265 * rest of the kernel. 1266 */ 1267 static int netfront_resume(struct xenbus_device *dev) 1268 { 1269 struct netfront_info *info = dev->dev.driver_data; 1270 1271 dev_dbg(&dev->dev, "%s\n", dev->nodename); 1272 1273 xennet_disconnect_backend(info); 1274 return 0; 1275 } 1276 1277 static int xen_net_read_mac(struct xenbus_device *dev, u8 mac[]) 1278 { 1279 char *s, *e, *macstr; 1280 int i; 1281 1282 macstr = s = xenbus_read(XBT_NIL, dev->nodename, "mac", NULL); 1283 if (IS_ERR(macstr)) 1284 return PTR_ERR(macstr); 1285 1286 for (i = 0; i < ETH_ALEN; i++) { 1287 mac[i] = simple_strtoul(s, &e, 16); 1288 if ((s == e) || (*e != ((i == ETH_ALEN-1) ? '\0' : ':'))) { 1289 kfree(macstr); 1290 return -ENOENT; 1291 } 1292 s = e+1; 1293 } 1294 1295 kfree(macstr); 1296 return 0; 1297 } 1298 1299 static irqreturn_t xennet_interrupt(int irq, void *dev_id) 1300 { 1301 struct net_device *dev = dev_id; 1302 struct netfront_info *np = netdev_priv(dev); 1303 unsigned long flags; 1304 1305 spin_lock_irqsave(&np->tx_lock, flags); 1306 1307 if (likely(netif_carrier_ok(dev))) { 1308 xennet_tx_buf_gc(dev); 1309 /* Under tx_lock: protects access to rx shared-ring indexes. */ 1310 if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx)) 1311 netif_rx_schedule(dev, &np->napi); 1312 } 1313 1314 spin_unlock_irqrestore(&np->tx_lock, flags); 1315 1316 return IRQ_HANDLED; 1317 } 1318 1319 static int setup_netfront(struct xenbus_device *dev, struct netfront_info *info) 1320 { 1321 struct xen_netif_tx_sring *txs; 1322 struct xen_netif_rx_sring *rxs; 1323 int err; 1324 struct net_device *netdev = info->netdev; 1325 1326 info->tx_ring_ref = GRANT_INVALID_REF; 1327 info->rx_ring_ref = GRANT_INVALID_REF; 1328 info->rx.sring = NULL; 1329 info->tx.sring = NULL; 1330 netdev->irq = 0; 1331 1332 err = xen_net_read_mac(dev, netdev->dev_addr); 1333 if (err) { 1334 xenbus_dev_fatal(dev, err, "parsing %s/mac", dev->nodename); 1335 goto fail; 1336 } 1337 1338 txs = (struct xen_netif_tx_sring *)get_zeroed_page(GFP_NOIO | __GFP_HIGH); 1339 if (!txs) { 1340 err = -ENOMEM; 1341 xenbus_dev_fatal(dev, err, "allocating tx ring page"); 1342 goto fail; 1343 } 1344 SHARED_RING_INIT(txs); 1345 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 1346 1347 err = xenbus_grant_ring(dev, virt_to_mfn(txs)); 1348 if (err < 0) { 1349 free_page((unsigned long)txs); 1350 goto fail; 1351 } 1352 1353 info->tx_ring_ref = err; 1354 rxs = (struct xen_netif_rx_sring *)get_zeroed_page(GFP_NOIO | __GFP_HIGH); 1355 if (!rxs) { 1356 err = -ENOMEM; 1357 xenbus_dev_fatal(dev, err, "allocating rx ring page"); 1358 goto fail; 1359 } 1360 SHARED_RING_INIT(rxs); 1361 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 1362 1363 err = xenbus_grant_ring(dev, virt_to_mfn(rxs)); 1364 if (err < 0) { 1365 free_page((unsigned long)rxs); 1366 goto fail; 1367 } 1368 info->rx_ring_ref = err; 1369 1370 err = xenbus_alloc_evtchn(dev, &info->evtchn); 1371 if (err) 1372 goto fail; 1373 1374 err = bind_evtchn_to_irqhandler(info->evtchn, xennet_interrupt, 1375 IRQF_SAMPLE_RANDOM, netdev->name, 1376 netdev); 1377 if (err < 0) 1378 goto fail; 1379 netdev->irq = err; 1380 return 0; 1381 1382 fail: 1383 return err; 1384 } 1385 1386 /* Common code used when first setting up, and when resuming. */ 1387 static int talk_to_backend(struct xenbus_device *dev, 1388 struct netfront_info *info) 1389 { 1390 const char *message; 1391 struct xenbus_transaction xbt; 1392 int err; 1393 1394 /* Create shared ring, alloc event channel. */ 1395 err = setup_netfront(dev, info); 1396 if (err) 1397 goto out; 1398 1399 again: 1400 err = xenbus_transaction_start(&xbt); 1401 if (err) { 1402 xenbus_dev_fatal(dev, err, "starting transaction"); 1403 goto destroy_ring; 1404 } 1405 1406 err = xenbus_printf(xbt, dev->nodename, "tx-ring-ref", "%u", 1407 info->tx_ring_ref); 1408 if (err) { 1409 message = "writing tx ring-ref"; 1410 goto abort_transaction; 1411 } 1412 err = xenbus_printf(xbt, dev->nodename, "rx-ring-ref", "%u", 1413 info->rx_ring_ref); 1414 if (err) { 1415 message = "writing rx ring-ref"; 1416 goto abort_transaction; 1417 } 1418 err = xenbus_printf(xbt, dev->nodename, 1419 "event-channel", "%u", info->evtchn); 1420 if (err) { 1421 message = "writing event-channel"; 1422 goto abort_transaction; 1423 } 1424 1425 err = xenbus_printf(xbt, dev->nodename, "request-rx-copy", "%u", 1426 1); 1427 if (err) { 1428 message = "writing request-rx-copy"; 1429 goto abort_transaction; 1430 } 1431 1432 err = xenbus_printf(xbt, dev->nodename, "feature-rx-notify", "%d", 1); 1433 if (err) { 1434 message = "writing feature-rx-notify"; 1435 goto abort_transaction; 1436 } 1437 1438 err = xenbus_printf(xbt, dev->nodename, "feature-sg", "%d", 1); 1439 if (err) { 1440 message = "writing feature-sg"; 1441 goto abort_transaction; 1442 } 1443 1444 err = xenbus_printf(xbt, dev->nodename, "feature-gso-tcpv4", "%d", 1); 1445 if (err) { 1446 message = "writing feature-gso-tcpv4"; 1447 goto abort_transaction; 1448 } 1449 1450 err = xenbus_transaction_end(xbt, 0); 1451 if (err) { 1452 if (err == -EAGAIN) 1453 goto again; 1454 xenbus_dev_fatal(dev, err, "completing transaction"); 1455 goto destroy_ring; 1456 } 1457 1458 return 0; 1459 1460 abort_transaction: 1461 xenbus_transaction_end(xbt, 1); 1462 xenbus_dev_fatal(dev, err, "%s", message); 1463 destroy_ring: 1464 xennet_disconnect_backend(info); 1465 out: 1466 return err; 1467 } 1468 1469 static int xennet_set_sg(struct net_device *dev, u32 data) 1470 { 1471 if (data) { 1472 struct netfront_info *np = netdev_priv(dev); 1473 int val; 1474 1475 if (xenbus_scanf(XBT_NIL, np->xbdev->otherend, "feature-sg", 1476 "%d", &val) < 0) 1477 val = 0; 1478 if (!val) 1479 return -ENOSYS; 1480 } else if (dev->mtu > ETH_DATA_LEN) 1481 dev->mtu = ETH_DATA_LEN; 1482 1483 return ethtool_op_set_sg(dev, data); 1484 } 1485 1486 static int xennet_set_tso(struct net_device *dev, u32 data) 1487 { 1488 if (data) { 1489 struct netfront_info *np = netdev_priv(dev); 1490 int val; 1491 1492 if (xenbus_scanf(XBT_NIL, np->xbdev->otherend, 1493 "feature-gso-tcpv4", "%d", &val) < 0) 1494 val = 0; 1495 if (!val) 1496 return -ENOSYS; 1497 } 1498 1499 return ethtool_op_set_tso(dev, data); 1500 } 1501 1502 static void xennet_set_features(struct net_device *dev) 1503 { 1504 /* Turn off all GSO bits except ROBUST. */ 1505 dev->features &= (1 << NETIF_F_GSO_SHIFT) - 1; 1506 dev->features |= NETIF_F_GSO_ROBUST; 1507 xennet_set_sg(dev, 0); 1508 1509 /* We need checksum offload to enable scatter/gather and TSO. */ 1510 if (!(dev->features & NETIF_F_IP_CSUM)) 1511 return; 1512 1513 if (!xennet_set_sg(dev, 1)) 1514 xennet_set_tso(dev, 1); 1515 } 1516 1517 static int xennet_connect(struct net_device *dev) 1518 { 1519 struct netfront_info *np = netdev_priv(dev); 1520 int i, requeue_idx, err; 1521 struct sk_buff *skb; 1522 grant_ref_t ref; 1523 struct xen_netif_rx_request *req; 1524 unsigned int feature_rx_copy; 1525 1526 err = xenbus_scanf(XBT_NIL, np->xbdev->otherend, 1527 "feature-rx-copy", "%u", &feature_rx_copy); 1528 if (err != 1) 1529 feature_rx_copy = 0; 1530 1531 if (!feature_rx_copy) { 1532 dev_info(&dev->dev, 1533 "backend does not support copying receive path\n"); 1534 return -ENODEV; 1535 } 1536 1537 err = talk_to_backend(np->xbdev, np); 1538 if (err) 1539 return err; 1540 1541 xennet_set_features(dev); 1542 1543 spin_lock_bh(&np->rx_lock); 1544 spin_lock_irq(&np->tx_lock); 1545 1546 /* Step 1: Discard all pending TX packet fragments. */ 1547 xennet_release_tx_bufs(np); 1548 1549 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1550 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1551 if (!np->rx_skbs[i]) 1552 continue; 1553 1554 skb = np->rx_skbs[requeue_idx] = xennet_get_rx_skb(np, i); 1555 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1556 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1557 1558 gnttab_grant_foreign_access_ref( 1559 ref, np->xbdev->otherend_id, 1560 pfn_to_mfn(page_to_pfn(skb_shinfo(skb)-> 1561 frags->page)), 1562 0); 1563 req->gref = ref; 1564 req->id = requeue_idx; 1565 1566 requeue_idx++; 1567 } 1568 1569 np->rx.req_prod_pvt = requeue_idx; 1570 1571 /* 1572 * Step 3: All public and private state should now be sane. Get 1573 * ready to start sending and receiving packets and give the driver 1574 * domain a kick because we've probably just requeued some 1575 * packets. 1576 */ 1577 netif_carrier_on(np->netdev); 1578 notify_remote_via_irq(np->netdev->irq); 1579 xennet_tx_buf_gc(dev); 1580 xennet_alloc_rx_buffers(dev); 1581 1582 spin_unlock_irq(&np->tx_lock); 1583 spin_unlock_bh(&np->rx_lock); 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * Callback received when the backend's state changes. 1590 */ 1591 static void backend_changed(struct xenbus_device *dev, 1592 enum xenbus_state backend_state) 1593 { 1594 struct netfront_info *np = dev->dev.driver_data; 1595 struct net_device *netdev = np->netdev; 1596 1597 dev_dbg(&dev->dev, "%s\n", xenbus_strstate(backend_state)); 1598 1599 switch (backend_state) { 1600 case XenbusStateInitialising: 1601 case XenbusStateInitialised: 1602 case XenbusStateConnected: 1603 case XenbusStateUnknown: 1604 case XenbusStateClosed: 1605 break; 1606 1607 case XenbusStateInitWait: 1608 if (dev->state != XenbusStateInitialising) 1609 break; 1610 if (xennet_connect(netdev) != 0) 1611 break; 1612 xenbus_switch_state(dev, XenbusStateConnected); 1613 break; 1614 1615 case XenbusStateClosing: 1616 xenbus_frontend_closed(dev); 1617 break; 1618 } 1619 } 1620 1621 static struct ethtool_ops xennet_ethtool_ops = 1622 { 1623 .set_tx_csum = ethtool_op_set_tx_csum, 1624 .set_sg = xennet_set_sg, 1625 .set_tso = xennet_set_tso, 1626 .get_link = ethtool_op_get_link, 1627 }; 1628 1629 #ifdef CONFIG_SYSFS 1630 static ssize_t show_rxbuf_min(struct device *dev, 1631 struct device_attribute *attr, char *buf) 1632 { 1633 struct net_device *netdev = to_net_dev(dev); 1634 struct netfront_info *info = netdev_priv(netdev); 1635 1636 return sprintf(buf, "%u\n", info->rx_min_target); 1637 } 1638 1639 static ssize_t store_rxbuf_min(struct device *dev, 1640 struct device_attribute *attr, 1641 const char *buf, size_t len) 1642 { 1643 struct net_device *netdev = to_net_dev(dev); 1644 struct netfront_info *np = netdev_priv(netdev); 1645 char *endp; 1646 unsigned long target; 1647 1648 if (!capable(CAP_NET_ADMIN)) 1649 return -EPERM; 1650 1651 target = simple_strtoul(buf, &endp, 0); 1652 if (endp == buf) 1653 return -EBADMSG; 1654 1655 if (target < RX_MIN_TARGET) 1656 target = RX_MIN_TARGET; 1657 if (target > RX_MAX_TARGET) 1658 target = RX_MAX_TARGET; 1659 1660 spin_lock_bh(&np->rx_lock); 1661 if (target > np->rx_max_target) 1662 np->rx_max_target = target; 1663 np->rx_min_target = target; 1664 if (target > np->rx_target) 1665 np->rx_target = target; 1666 1667 xennet_alloc_rx_buffers(netdev); 1668 1669 spin_unlock_bh(&np->rx_lock); 1670 return len; 1671 } 1672 1673 static ssize_t show_rxbuf_max(struct device *dev, 1674 struct device_attribute *attr, char *buf) 1675 { 1676 struct net_device *netdev = to_net_dev(dev); 1677 struct netfront_info *info = netdev_priv(netdev); 1678 1679 return sprintf(buf, "%u\n", info->rx_max_target); 1680 } 1681 1682 static ssize_t store_rxbuf_max(struct device *dev, 1683 struct device_attribute *attr, 1684 const char *buf, size_t len) 1685 { 1686 struct net_device *netdev = to_net_dev(dev); 1687 struct netfront_info *np = netdev_priv(netdev); 1688 char *endp; 1689 unsigned long target; 1690 1691 if (!capable(CAP_NET_ADMIN)) 1692 return -EPERM; 1693 1694 target = simple_strtoul(buf, &endp, 0); 1695 if (endp == buf) 1696 return -EBADMSG; 1697 1698 if (target < RX_MIN_TARGET) 1699 target = RX_MIN_TARGET; 1700 if (target > RX_MAX_TARGET) 1701 target = RX_MAX_TARGET; 1702 1703 spin_lock_bh(&np->rx_lock); 1704 if (target < np->rx_min_target) 1705 np->rx_min_target = target; 1706 np->rx_max_target = target; 1707 if (target < np->rx_target) 1708 np->rx_target = target; 1709 1710 xennet_alloc_rx_buffers(netdev); 1711 1712 spin_unlock_bh(&np->rx_lock); 1713 return len; 1714 } 1715 1716 static ssize_t show_rxbuf_cur(struct device *dev, 1717 struct device_attribute *attr, char *buf) 1718 { 1719 struct net_device *netdev = to_net_dev(dev); 1720 struct netfront_info *info = netdev_priv(netdev); 1721 1722 return sprintf(buf, "%u\n", info->rx_target); 1723 } 1724 1725 static struct device_attribute xennet_attrs[] = { 1726 __ATTR(rxbuf_min, S_IRUGO|S_IWUSR, show_rxbuf_min, store_rxbuf_min), 1727 __ATTR(rxbuf_max, S_IRUGO|S_IWUSR, show_rxbuf_max, store_rxbuf_max), 1728 __ATTR(rxbuf_cur, S_IRUGO, show_rxbuf_cur, NULL), 1729 }; 1730 1731 static int xennet_sysfs_addif(struct net_device *netdev) 1732 { 1733 int i; 1734 int err; 1735 1736 for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++) { 1737 err = device_create_file(&netdev->dev, 1738 &xennet_attrs[i]); 1739 if (err) 1740 goto fail; 1741 } 1742 return 0; 1743 1744 fail: 1745 while (--i >= 0) 1746 device_remove_file(&netdev->dev, &xennet_attrs[i]); 1747 return err; 1748 } 1749 1750 static void xennet_sysfs_delif(struct net_device *netdev) 1751 { 1752 int i; 1753 1754 for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++) 1755 device_remove_file(&netdev->dev, &xennet_attrs[i]); 1756 } 1757 1758 #endif /* CONFIG_SYSFS */ 1759 1760 static struct xenbus_device_id netfront_ids[] = { 1761 { "vif" }, 1762 { "" } 1763 }; 1764 1765 1766 static int __devexit xennet_remove(struct xenbus_device *dev) 1767 { 1768 struct netfront_info *info = dev->dev.driver_data; 1769 1770 dev_dbg(&dev->dev, "%s\n", dev->nodename); 1771 1772 unregister_netdev(info->netdev); 1773 1774 xennet_disconnect_backend(info); 1775 1776 del_timer_sync(&info->rx_refill_timer); 1777 1778 xennet_sysfs_delif(info->netdev); 1779 1780 free_netdev(info->netdev); 1781 1782 return 0; 1783 } 1784 1785 static struct xenbus_driver netfront = { 1786 .name = "vif", 1787 .owner = THIS_MODULE, 1788 .ids = netfront_ids, 1789 .probe = netfront_probe, 1790 .remove = __devexit_p(xennet_remove), 1791 .resume = netfront_resume, 1792 .otherend_changed = backend_changed, 1793 }; 1794 1795 static int __init netif_init(void) 1796 { 1797 if (!is_running_on_xen()) 1798 return -ENODEV; 1799 1800 if (is_initial_xendomain()) 1801 return 0; 1802 1803 printk(KERN_INFO "Initialising Xen virtual ethernet driver.\n"); 1804 1805 return xenbus_register_frontend(&netfront); 1806 } 1807 module_init(netif_init); 1808 1809 1810 static void __exit netif_exit(void) 1811 { 1812 if (is_initial_xendomain()) 1813 return; 1814 1815 xenbus_unregister_driver(&netfront); 1816 } 1817 module_exit(netif_exit); 1818 1819 MODULE_DESCRIPTION("Xen virtual network device frontend"); 1820 MODULE_LICENSE("GPL"); 1821 MODULE_ALIAS("xen:vif"); 1822 MODULE_ALIAS("xennet"); 1823