1 /*
2  * Back-end of the driver for virtual network devices. This portion of the
3  * driver exports a 'unified' network-device interface that can be accessed
4  * by any operating system that implements a compatible front end. A
5  * reference front-end implementation can be found in:
6  *  drivers/net/xen-netfront.c
7  *
8  * Copyright (c) 2002-2005, K A Fraser
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License version 2
12  * as published by the Free Software Foundation; or, when distributed
13  * separately from the Linux kernel or incorporated into other
14  * software packages, subject to the following license:
15  *
16  * Permission is hereby granted, free of charge, to any person obtaining a copy
17  * of this source file (the "Software"), to deal in the Software without
18  * restriction, including without limitation the rights to use, copy, modify,
19  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
20  * and to permit persons to whom the Software is furnished to do so, subject to
21  * the following conditions:
22  *
23  * The above copyright notice and this permission notice shall be included in
24  * all copies or substantial portions of the Software.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
27  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
28  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
29  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
30  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
31  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32  * IN THE SOFTWARE.
33  */
34 
35 #include "common.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/if_vlan.h>
39 #include <linux/udp.h>
40 #include <linux/highmem.h>
41 
42 #include <net/tcp.h>
43 
44 #include <xen/xen.h>
45 #include <xen/events.h>
46 #include <xen/interface/memory.h>
47 #include <xen/page.h>
48 
49 #include <asm/xen/hypercall.h>
50 
51 /* Provide an option to disable split event channels at load time as
52  * event channels are limited resource. Split event channels are
53  * enabled by default.
54  */
55 bool separate_tx_rx_irq = true;
56 module_param(separate_tx_rx_irq, bool, 0644);
57 
58 /* The time that packets can stay on the guest Rx internal queue
59  * before they are dropped.
60  */
61 unsigned int rx_drain_timeout_msecs = 10000;
62 module_param(rx_drain_timeout_msecs, uint, 0444);
63 
64 /* The length of time before the frontend is considered unresponsive
65  * because it isn't providing Rx slots.
66  */
67 unsigned int rx_stall_timeout_msecs = 60000;
68 module_param(rx_stall_timeout_msecs, uint, 0444);
69 
70 unsigned int xenvif_max_queues;
71 module_param_named(max_queues, xenvif_max_queues, uint, 0644);
72 MODULE_PARM_DESC(max_queues,
73 		 "Maximum number of queues per virtual interface");
74 
75 /*
76  * This is the maximum slots a skb can have. If a guest sends a skb
77  * which exceeds this limit it is considered malicious.
78  */
79 #define FATAL_SKB_SLOTS_DEFAULT 20
80 static unsigned int fatal_skb_slots = FATAL_SKB_SLOTS_DEFAULT;
81 module_param(fatal_skb_slots, uint, 0444);
82 
83 /* The amount to copy out of the first guest Tx slot into the skb's
84  * linear area.  If the first slot has more data, it will be mapped
85  * and put into the first frag.
86  *
87  * This is sized to avoid pulling headers from the frags for most
88  * TCP/IP packets.
89  */
90 #define XEN_NETBACK_TX_COPY_LEN 128
91 
92 
93 static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx,
94 			       u8 status);
95 
96 static void make_tx_response(struct xenvif_queue *queue,
97 			     struct xen_netif_tx_request *txp,
98 			     s8       st);
99 static void push_tx_responses(struct xenvif_queue *queue);
100 
101 static inline int tx_work_todo(struct xenvif_queue *queue);
102 
103 static struct xen_netif_rx_response *make_rx_response(struct xenvif_queue *queue,
104 					     u16      id,
105 					     s8       st,
106 					     u16      offset,
107 					     u16      size,
108 					     u16      flags);
109 
110 static inline unsigned long idx_to_pfn(struct xenvif_queue *queue,
111 				       u16 idx)
112 {
113 	return page_to_pfn(queue->mmap_pages[idx]);
114 }
115 
116 static inline unsigned long idx_to_kaddr(struct xenvif_queue *queue,
117 					 u16 idx)
118 {
119 	return (unsigned long)pfn_to_kaddr(idx_to_pfn(queue, idx));
120 }
121 
122 #define callback_param(vif, pending_idx) \
123 	(vif->pending_tx_info[pending_idx].callback_struct)
124 
125 /* Find the containing VIF's structure from a pointer in pending_tx_info array
126  */
127 static inline struct xenvif_queue *ubuf_to_queue(const struct ubuf_info *ubuf)
128 {
129 	u16 pending_idx = ubuf->desc;
130 	struct pending_tx_info *temp =
131 		container_of(ubuf, struct pending_tx_info, callback_struct);
132 	return container_of(temp - pending_idx,
133 			    struct xenvif_queue,
134 			    pending_tx_info[0]);
135 }
136 
137 static u16 frag_get_pending_idx(skb_frag_t *frag)
138 {
139 	return (u16)frag->page_offset;
140 }
141 
142 static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx)
143 {
144 	frag->page_offset = pending_idx;
145 }
146 
147 static inline pending_ring_idx_t pending_index(unsigned i)
148 {
149 	return i & (MAX_PENDING_REQS-1);
150 }
151 
152 bool xenvif_rx_ring_slots_available(struct xenvif_queue *queue, int needed)
153 {
154 	RING_IDX prod, cons;
155 
156 	do {
157 		prod = queue->rx.sring->req_prod;
158 		cons = queue->rx.req_cons;
159 
160 		if (prod - cons >= needed)
161 			return true;
162 
163 		queue->rx.sring->req_event = prod + 1;
164 
165 		/* Make sure event is visible before we check prod
166 		 * again.
167 		 */
168 		mb();
169 	} while (queue->rx.sring->req_prod != prod);
170 
171 	return false;
172 }
173 
174 void xenvif_rx_queue_tail(struct xenvif_queue *queue, struct sk_buff *skb)
175 {
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(&queue->rx_queue.lock, flags);
179 
180 	__skb_queue_tail(&queue->rx_queue, skb);
181 
182 	queue->rx_queue_len += skb->len;
183 	if (queue->rx_queue_len > queue->rx_queue_max)
184 		netif_tx_stop_queue(netdev_get_tx_queue(queue->vif->dev, queue->id));
185 
186 	spin_unlock_irqrestore(&queue->rx_queue.lock, flags);
187 }
188 
189 static struct sk_buff *xenvif_rx_dequeue(struct xenvif_queue *queue)
190 {
191 	struct sk_buff *skb;
192 
193 	spin_lock_irq(&queue->rx_queue.lock);
194 
195 	skb = __skb_dequeue(&queue->rx_queue);
196 	if (skb)
197 		queue->rx_queue_len -= skb->len;
198 
199 	spin_unlock_irq(&queue->rx_queue.lock);
200 
201 	return skb;
202 }
203 
204 static void xenvif_rx_queue_maybe_wake(struct xenvif_queue *queue)
205 {
206 	spin_lock_irq(&queue->rx_queue.lock);
207 
208 	if (queue->rx_queue_len < queue->rx_queue_max)
209 		netif_tx_wake_queue(netdev_get_tx_queue(queue->vif->dev, queue->id));
210 
211 	spin_unlock_irq(&queue->rx_queue.lock);
212 }
213 
214 
215 static void xenvif_rx_queue_purge(struct xenvif_queue *queue)
216 {
217 	struct sk_buff *skb;
218 	while ((skb = xenvif_rx_dequeue(queue)) != NULL)
219 		kfree_skb(skb);
220 }
221 
222 static void xenvif_rx_queue_drop_expired(struct xenvif_queue *queue)
223 {
224 	struct sk_buff *skb;
225 
226 	for(;;) {
227 		skb = skb_peek(&queue->rx_queue);
228 		if (!skb)
229 			break;
230 		if (time_before(jiffies, XENVIF_RX_CB(skb)->expires))
231 			break;
232 		xenvif_rx_dequeue(queue);
233 		kfree_skb(skb);
234 	}
235 }
236 
237 struct netrx_pending_operations {
238 	unsigned copy_prod, copy_cons;
239 	unsigned meta_prod, meta_cons;
240 	struct gnttab_copy *copy;
241 	struct xenvif_rx_meta *meta;
242 	int copy_off;
243 	grant_ref_t copy_gref;
244 };
245 
246 static struct xenvif_rx_meta *get_next_rx_buffer(struct xenvif_queue *queue,
247 						 struct netrx_pending_operations *npo)
248 {
249 	struct xenvif_rx_meta *meta;
250 	struct xen_netif_rx_request *req;
251 
252 	req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
253 
254 	meta = npo->meta + npo->meta_prod++;
255 	meta->gso_type = XEN_NETIF_GSO_TYPE_NONE;
256 	meta->gso_size = 0;
257 	meta->size = 0;
258 	meta->id = req->id;
259 
260 	npo->copy_off = 0;
261 	npo->copy_gref = req->gref;
262 
263 	return meta;
264 }
265 
266 /*
267  * Set up the grant operations for this fragment. If it's a flipping
268  * interface, we also set up the unmap request from here.
269  */
270 static void xenvif_gop_frag_copy(struct xenvif_queue *queue, struct sk_buff *skb,
271 				 struct netrx_pending_operations *npo,
272 				 struct page *page, unsigned long size,
273 				 unsigned long offset, int *head)
274 {
275 	struct gnttab_copy *copy_gop;
276 	struct xenvif_rx_meta *meta;
277 	unsigned long bytes;
278 	int gso_type = XEN_NETIF_GSO_TYPE_NONE;
279 
280 	/* Data must not cross a page boundary. */
281 	BUG_ON(size + offset > PAGE_SIZE<<compound_order(page));
282 
283 	meta = npo->meta + npo->meta_prod - 1;
284 
285 	/* Skip unused frames from start of page */
286 	page += offset >> PAGE_SHIFT;
287 	offset &= ~PAGE_MASK;
288 
289 	while (size > 0) {
290 		struct xen_page_foreign *foreign;
291 
292 		BUG_ON(offset >= PAGE_SIZE);
293 		BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET);
294 
295 		if (npo->copy_off == MAX_BUFFER_OFFSET)
296 			meta = get_next_rx_buffer(queue, npo);
297 
298 		bytes = PAGE_SIZE - offset;
299 		if (bytes > size)
300 			bytes = size;
301 
302 		if (npo->copy_off + bytes > MAX_BUFFER_OFFSET)
303 			bytes = MAX_BUFFER_OFFSET - npo->copy_off;
304 
305 		copy_gop = npo->copy + npo->copy_prod++;
306 		copy_gop->flags = GNTCOPY_dest_gref;
307 		copy_gop->len = bytes;
308 
309 		foreign = xen_page_foreign(page);
310 		if (foreign) {
311 			copy_gop->source.domid = foreign->domid;
312 			copy_gop->source.u.ref = foreign->gref;
313 			copy_gop->flags |= GNTCOPY_source_gref;
314 		} else {
315 			copy_gop->source.domid = DOMID_SELF;
316 			copy_gop->source.u.gmfn =
317 				virt_to_mfn(page_address(page));
318 		}
319 		copy_gop->source.offset = offset;
320 
321 		copy_gop->dest.domid = queue->vif->domid;
322 		copy_gop->dest.offset = npo->copy_off;
323 		copy_gop->dest.u.ref = npo->copy_gref;
324 
325 		npo->copy_off += bytes;
326 		meta->size += bytes;
327 
328 		offset += bytes;
329 		size -= bytes;
330 
331 		/* Next frame */
332 		if (offset == PAGE_SIZE && size) {
333 			BUG_ON(!PageCompound(page));
334 			page++;
335 			offset = 0;
336 		}
337 
338 		/* Leave a gap for the GSO descriptor. */
339 		if (skb_is_gso(skb)) {
340 			if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
341 				gso_type = XEN_NETIF_GSO_TYPE_TCPV4;
342 			else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
343 				gso_type = XEN_NETIF_GSO_TYPE_TCPV6;
344 		}
345 
346 		if (*head && ((1 << gso_type) & queue->vif->gso_mask))
347 			queue->rx.req_cons++;
348 
349 		*head = 0; /* There must be something in this buffer now. */
350 
351 	}
352 }
353 
354 /*
355  * Prepare an SKB to be transmitted to the frontend.
356  *
357  * This function is responsible for allocating grant operations, meta
358  * structures, etc.
359  *
360  * It returns the number of meta structures consumed. The number of
361  * ring slots used is always equal to the number of meta slots used
362  * plus the number of GSO descriptors used. Currently, we use either
363  * zero GSO descriptors (for non-GSO packets) or one descriptor (for
364  * frontend-side LRO).
365  */
366 static int xenvif_gop_skb(struct sk_buff *skb,
367 			  struct netrx_pending_operations *npo,
368 			  struct xenvif_queue *queue)
369 {
370 	struct xenvif *vif = netdev_priv(skb->dev);
371 	int nr_frags = skb_shinfo(skb)->nr_frags;
372 	int i;
373 	struct xen_netif_rx_request *req;
374 	struct xenvif_rx_meta *meta;
375 	unsigned char *data;
376 	int head = 1;
377 	int old_meta_prod;
378 	int gso_type;
379 
380 	old_meta_prod = npo->meta_prod;
381 
382 	gso_type = XEN_NETIF_GSO_TYPE_NONE;
383 	if (skb_is_gso(skb)) {
384 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
385 			gso_type = XEN_NETIF_GSO_TYPE_TCPV4;
386 		else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
387 			gso_type = XEN_NETIF_GSO_TYPE_TCPV6;
388 	}
389 
390 	/* Set up a GSO prefix descriptor, if necessary */
391 	if ((1 << gso_type) & vif->gso_prefix_mask) {
392 		req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
393 		meta = npo->meta + npo->meta_prod++;
394 		meta->gso_type = gso_type;
395 		meta->gso_size = skb_shinfo(skb)->gso_size;
396 		meta->size = 0;
397 		meta->id = req->id;
398 	}
399 
400 	req = RING_GET_REQUEST(&queue->rx, queue->rx.req_cons++);
401 	meta = npo->meta + npo->meta_prod++;
402 
403 	if ((1 << gso_type) & vif->gso_mask) {
404 		meta->gso_type = gso_type;
405 		meta->gso_size = skb_shinfo(skb)->gso_size;
406 	} else {
407 		meta->gso_type = XEN_NETIF_GSO_TYPE_NONE;
408 		meta->gso_size = 0;
409 	}
410 
411 	meta->size = 0;
412 	meta->id = req->id;
413 	npo->copy_off = 0;
414 	npo->copy_gref = req->gref;
415 
416 	data = skb->data;
417 	while (data < skb_tail_pointer(skb)) {
418 		unsigned int offset = offset_in_page(data);
419 		unsigned int len = PAGE_SIZE - offset;
420 
421 		if (data + len > skb_tail_pointer(skb))
422 			len = skb_tail_pointer(skb) - data;
423 
424 		xenvif_gop_frag_copy(queue, skb, npo,
425 				     virt_to_page(data), len, offset, &head);
426 		data += len;
427 	}
428 
429 	for (i = 0; i < nr_frags; i++) {
430 		xenvif_gop_frag_copy(queue, skb, npo,
431 				     skb_frag_page(&skb_shinfo(skb)->frags[i]),
432 				     skb_frag_size(&skb_shinfo(skb)->frags[i]),
433 				     skb_shinfo(skb)->frags[i].page_offset,
434 				     &head);
435 	}
436 
437 	return npo->meta_prod - old_meta_prod;
438 }
439 
440 /*
441  * This is a twin to xenvif_gop_skb.  Assume that xenvif_gop_skb was
442  * used to set up the operations on the top of
443  * netrx_pending_operations, which have since been done.  Check that
444  * they didn't give any errors and advance over them.
445  */
446 static int xenvif_check_gop(struct xenvif *vif, int nr_meta_slots,
447 			    struct netrx_pending_operations *npo)
448 {
449 	struct gnttab_copy     *copy_op;
450 	int status = XEN_NETIF_RSP_OKAY;
451 	int i;
452 
453 	for (i = 0; i < nr_meta_slots; i++) {
454 		copy_op = npo->copy + npo->copy_cons++;
455 		if (copy_op->status != GNTST_okay) {
456 			netdev_dbg(vif->dev,
457 				   "Bad status %d from copy to DOM%d.\n",
458 				   copy_op->status, vif->domid);
459 			status = XEN_NETIF_RSP_ERROR;
460 		}
461 	}
462 
463 	return status;
464 }
465 
466 static void xenvif_add_frag_responses(struct xenvif_queue *queue, int status,
467 				      struct xenvif_rx_meta *meta,
468 				      int nr_meta_slots)
469 {
470 	int i;
471 	unsigned long offset;
472 
473 	/* No fragments used */
474 	if (nr_meta_slots <= 1)
475 		return;
476 
477 	nr_meta_slots--;
478 
479 	for (i = 0; i < nr_meta_slots; i++) {
480 		int flags;
481 		if (i == nr_meta_slots - 1)
482 			flags = 0;
483 		else
484 			flags = XEN_NETRXF_more_data;
485 
486 		offset = 0;
487 		make_rx_response(queue, meta[i].id, status, offset,
488 				 meta[i].size, flags);
489 	}
490 }
491 
492 void xenvif_kick_thread(struct xenvif_queue *queue)
493 {
494 	wake_up(&queue->wq);
495 }
496 
497 static void xenvif_rx_action(struct xenvif_queue *queue)
498 {
499 	s8 status;
500 	u16 flags;
501 	struct xen_netif_rx_response *resp;
502 	struct sk_buff_head rxq;
503 	struct sk_buff *skb;
504 	LIST_HEAD(notify);
505 	int ret;
506 	unsigned long offset;
507 	bool need_to_notify = false;
508 
509 	struct netrx_pending_operations npo = {
510 		.copy  = queue->grant_copy_op,
511 		.meta  = queue->meta,
512 	};
513 
514 	skb_queue_head_init(&rxq);
515 
516 	while (xenvif_rx_ring_slots_available(queue, XEN_NETBK_RX_SLOTS_MAX)
517 	       && (skb = xenvif_rx_dequeue(queue)) != NULL) {
518 		queue->last_rx_time = jiffies;
519 
520 		XENVIF_RX_CB(skb)->meta_slots_used = xenvif_gop_skb(skb, &npo, queue);
521 
522 		__skb_queue_tail(&rxq, skb);
523 	}
524 
525 	BUG_ON(npo.meta_prod > ARRAY_SIZE(queue->meta));
526 
527 	if (!npo.copy_prod)
528 		goto done;
529 
530 	BUG_ON(npo.copy_prod > MAX_GRANT_COPY_OPS);
531 	gnttab_batch_copy(queue->grant_copy_op, npo.copy_prod);
532 
533 	while ((skb = __skb_dequeue(&rxq)) != NULL) {
534 
535 		if ((1 << queue->meta[npo.meta_cons].gso_type) &
536 		    queue->vif->gso_prefix_mask) {
537 			resp = RING_GET_RESPONSE(&queue->rx,
538 						 queue->rx.rsp_prod_pvt++);
539 
540 			resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data;
541 
542 			resp->offset = queue->meta[npo.meta_cons].gso_size;
543 			resp->id = queue->meta[npo.meta_cons].id;
544 			resp->status = XENVIF_RX_CB(skb)->meta_slots_used;
545 
546 			npo.meta_cons++;
547 			XENVIF_RX_CB(skb)->meta_slots_used--;
548 		}
549 
550 
551 		queue->stats.tx_bytes += skb->len;
552 		queue->stats.tx_packets++;
553 
554 		status = xenvif_check_gop(queue->vif,
555 					  XENVIF_RX_CB(skb)->meta_slots_used,
556 					  &npo);
557 
558 		if (XENVIF_RX_CB(skb)->meta_slots_used == 1)
559 			flags = 0;
560 		else
561 			flags = XEN_NETRXF_more_data;
562 
563 		if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */
564 			flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated;
565 		else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
566 			/* remote but checksummed. */
567 			flags |= XEN_NETRXF_data_validated;
568 
569 		offset = 0;
570 		resp = make_rx_response(queue, queue->meta[npo.meta_cons].id,
571 					status, offset,
572 					queue->meta[npo.meta_cons].size,
573 					flags);
574 
575 		if ((1 << queue->meta[npo.meta_cons].gso_type) &
576 		    queue->vif->gso_mask) {
577 			struct xen_netif_extra_info *gso =
578 				(struct xen_netif_extra_info *)
579 				RING_GET_RESPONSE(&queue->rx,
580 						  queue->rx.rsp_prod_pvt++);
581 
582 			resp->flags |= XEN_NETRXF_extra_info;
583 
584 			gso->u.gso.type = queue->meta[npo.meta_cons].gso_type;
585 			gso->u.gso.size = queue->meta[npo.meta_cons].gso_size;
586 			gso->u.gso.pad = 0;
587 			gso->u.gso.features = 0;
588 
589 			gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
590 			gso->flags = 0;
591 		}
592 
593 		xenvif_add_frag_responses(queue, status,
594 					  queue->meta + npo.meta_cons + 1,
595 					  XENVIF_RX_CB(skb)->meta_slots_used);
596 
597 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&queue->rx, ret);
598 
599 		need_to_notify |= !!ret;
600 
601 		npo.meta_cons += XENVIF_RX_CB(skb)->meta_slots_used;
602 		dev_kfree_skb(skb);
603 	}
604 
605 done:
606 	if (need_to_notify)
607 		notify_remote_via_irq(queue->rx_irq);
608 }
609 
610 void xenvif_napi_schedule_or_enable_events(struct xenvif_queue *queue)
611 {
612 	int more_to_do;
613 
614 	RING_FINAL_CHECK_FOR_REQUESTS(&queue->tx, more_to_do);
615 
616 	if (more_to_do)
617 		napi_schedule(&queue->napi);
618 }
619 
620 static void tx_add_credit(struct xenvif_queue *queue)
621 {
622 	unsigned long max_burst, max_credit;
623 
624 	/*
625 	 * Allow a burst big enough to transmit a jumbo packet of up to 128kB.
626 	 * Otherwise the interface can seize up due to insufficient credit.
627 	 */
628 	max_burst = RING_GET_REQUEST(&queue->tx, queue->tx.req_cons)->size;
629 	max_burst = min(max_burst, 131072UL);
630 	max_burst = max(max_burst, queue->credit_bytes);
631 
632 	/* Take care that adding a new chunk of credit doesn't wrap to zero. */
633 	max_credit = queue->remaining_credit + queue->credit_bytes;
634 	if (max_credit < queue->remaining_credit)
635 		max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */
636 
637 	queue->remaining_credit = min(max_credit, max_burst);
638 }
639 
640 void xenvif_tx_credit_callback(unsigned long data)
641 {
642 	struct xenvif_queue *queue = (struct xenvif_queue *)data;
643 	tx_add_credit(queue);
644 	xenvif_napi_schedule_or_enable_events(queue);
645 }
646 
647 static void xenvif_tx_err(struct xenvif_queue *queue,
648 			  struct xen_netif_tx_request *txp, RING_IDX end)
649 {
650 	RING_IDX cons = queue->tx.req_cons;
651 	unsigned long flags;
652 
653 	do {
654 		spin_lock_irqsave(&queue->response_lock, flags);
655 		make_tx_response(queue, txp, XEN_NETIF_RSP_ERROR);
656 		push_tx_responses(queue);
657 		spin_unlock_irqrestore(&queue->response_lock, flags);
658 		if (cons == end)
659 			break;
660 		txp = RING_GET_REQUEST(&queue->tx, cons++);
661 	} while (1);
662 	queue->tx.req_cons = cons;
663 }
664 
665 static void xenvif_fatal_tx_err(struct xenvif *vif)
666 {
667 	netdev_err(vif->dev, "fatal error; disabling device\n");
668 	vif->disabled = true;
669 	/* Disable the vif from queue 0's kthread */
670 	if (vif->queues)
671 		xenvif_kick_thread(&vif->queues[0]);
672 }
673 
674 static int xenvif_count_requests(struct xenvif_queue *queue,
675 				 struct xen_netif_tx_request *first,
676 				 struct xen_netif_tx_request *txp,
677 				 int work_to_do)
678 {
679 	RING_IDX cons = queue->tx.req_cons;
680 	int slots = 0;
681 	int drop_err = 0;
682 	int more_data;
683 
684 	if (!(first->flags & XEN_NETTXF_more_data))
685 		return 0;
686 
687 	do {
688 		struct xen_netif_tx_request dropped_tx = { 0 };
689 
690 		if (slots >= work_to_do) {
691 			netdev_err(queue->vif->dev,
692 				   "Asked for %d slots but exceeds this limit\n",
693 				   work_to_do);
694 			xenvif_fatal_tx_err(queue->vif);
695 			return -ENODATA;
696 		}
697 
698 		/* This guest is really using too many slots and
699 		 * considered malicious.
700 		 */
701 		if (unlikely(slots >= fatal_skb_slots)) {
702 			netdev_err(queue->vif->dev,
703 				   "Malicious frontend using %d slots, threshold %u\n",
704 				   slots, fatal_skb_slots);
705 			xenvif_fatal_tx_err(queue->vif);
706 			return -E2BIG;
707 		}
708 
709 		/* Xen network protocol had implicit dependency on
710 		 * MAX_SKB_FRAGS. XEN_NETBK_LEGACY_SLOTS_MAX is set to
711 		 * the historical MAX_SKB_FRAGS value 18 to honor the
712 		 * same behavior as before. Any packet using more than
713 		 * 18 slots but less than fatal_skb_slots slots is
714 		 * dropped
715 		 */
716 		if (!drop_err && slots >= XEN_NETBK_LEGACY_SLOTS_MAX) {
717 			if (net_ratelimit())
718 				netdev_dbg(queue->vif->dev,
719 					   "Too many slots (%d) exceeding limit (%d), dropping packet\n",
720 					   slots, XEN_NETBK_LEGACY_SLOTS_MAX);
721 			drop_err = -E2BIG;
722 		}
723 
724 		if (drop_err)
725 			txp = &dropped_tx;
726 
727 		memcpy(txp, RING_GET_REQUEST(&queue->tx, cons + slots),
728 		       sizeof(*txp));
729 
730 		/* If the guest submitted a frame >= 64 KiB then
731 		 * first->size overflowed and following slots will
732 		 * appear to be larger than the frame.
733 		 *
734 		 * This cannot be fatal error as there are buggy
735 		 * frontends that do this.
736 		 *
737 		 * Consume all slots and drop the packet.
738 		 */
739 		if (!drop_err && txp->size > first->size) {
740 			if (net_ratelimit())
741 				netdev_dbg(queue->vif->dev,
742 					   "Invalid tx request, slot size %u > remaining size %u\n",
743 					   txp->size, first->size);
744 			drop_err = -EIO;
745 		}
746 
747 		first->size -= txp->size;
748 		slots++;
749 
750 		if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) {
751 			netdev_err(queue->vif->dev, "Cross page boundary, txp->offset: %u, size: %u\n",
752 				 txp->offset, txp->size);
753 			xenvif_fatal_tx_err(queue->vif);
754 			return -EINVAL;
755 		}
756 
757 		more_data = txp->flags & XEN_NETTXF_more_data;
758 
759 		if (!drop_err)
760 			txp++;
761 
762 	} while (more_data);
763 
764 	if (drop_err) {
765 		xenvif_tx_err(queue, first, cons + slots);
766 		return drop_err;
767 	}
768 
769 	return slots;
770 }
771 
772 
773 struct xenvif_tx_cb {
774 	u16 pending_idx;
775 };
776 
777 #define XENVIF_TX_CB(skb) ((struct xenvif_tx_cb *)(skb)->cb)
778 
779 static inline void xenvif_tx_create_map_op(struct xenvif_queue *queue,
780 					  u16 pending_idx,
781 					  struct xen_netif_tx_request *txp,
782 					  struct gnttab_map_grant_ref *mop)
783 {
784 	queue->pages_to_map[mop-queue->tx_map_ops] = queue->mmap_pages[pending_idx];
785 	gnttab_set_map_op(mop, idx_to_kaddr(queue, pending_idx),
786 			  GNTMAP_host_map | GNTMAP_readonly,
787 			  txp->gref, queue->vif->domid);
788 
789 	memcpy(&queue->pending_tx_info[pending_idx].req, txp,
790 	       sizeof(*txp));
791 }
792 
793 static inline struct sk_buff *xenvif_alloc_skb(unsigned int size)
794 {
795 	struct sk_buff *skb =
796 		alloc_skb(size + NET_SKB_PAD + NET_IP_ALIGN,
797 			  GFP_ATOMIC | __GFP_NOWARN);
798 	if (unlikely(skb == NULL))
799 		return NULL;
800 
801 	/* Packets passed to netif_rx() must have some headroom. */
802 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
803 
804 	/* Initialize it here to avoid later surprises */
805 	skb_shinfo(skb)->destructor_arg = NULL;
806 
807 	return skb;
808 }
809 
810 static struct gnttab_map_grant_ref *xenvif_get_requests(struct xenvif_queue *queue,
811 							struct sk_buff *skb,
812 							struct xen_netif_tx_request *txp,
813 							struct gnttab_map_grant_ref *gop,
814 							unsigned int frag_overflow,
815 							struct sk_buff *nskb)
816 {
817 	struct skb_shared_info *shinfo = skb_shinfo(skb);
818 	skb_frag_t *frags = shinfo->frags;
819 	u16 pending_idx = XENVIF_TX_CB(skb)->pending_idx;
820 	int start;
821 	pending_ring_idx_t index;
822 	unsigned int nr_slots;
823 
824 	nr_slots = shinfo->nr_frags;
825 
826 	/* Skip first skb fragment if it is on same page as header fragment. */
827 	start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
828 
829 	for (shinfo->nr_frags = start; shinfo->nr_frags < nr_slots;
830 	     shinfo->nr_frags++, txp++, gop++) {
831 		index = pending_index(queue->pending_cons++);
832 		pending_idx = queue->pending_ring[index];
833 		xenvif_tx_create_map_op(queue, pending_idx, txp, gop);
834 		frag_set_pending_idx(&frags[shinfo->nr_frags], pending_idx);
835 	}
836 
837 	if (frag_overflow) {
838 
839 		shinfo = skb_shinfo(nskb);
840 		frags = shinfo->frags;
841 
842 		for (shinfo->nr_frags = 0; shinfo->nr_frags < frag_overflow;
843 		     shinfo->nr_frags++, txp++, gop++) {
844 			index = pending_index(queue->pending_cons++);
845 			pending_idx = queue->pending_ring[index];
846 			xenvif_tx_create_map_op(queue, pending_idx, txp, gop);
847 			frag_set_pending_idx(&frags[shinfo->nr_frags],
848 					     pending_idx);
849 		}
850 
851 		skb_shinfo(skb)->frag_list = nskb;
852 	}
853 
854 	return gop;
855 }
856 
857 static inline void xenvif_grant_handle_set(struct xenvif_queue *queue,
858 					   u16 pending_idx,
859 					   grant_handle_t handle)
860 {
861 	if (unlikely(queue->grant_tx_handle[pending_idx] !=
862 		     NETBACK_INVALID_HANDLE)) {
863 		netdev_err(queue->vif->dev,
864 			   "Trying to overwrite active handle! pending_idx: 0x%x\n",
865 			   pending_idx);
866 		BUG();
867 	}
868 	queue->grant_tx_handle[pending_idx] = handle;
869 }
870 
871 static inline void xenvif_grant_handle_reset(struct xenvif_queue *queue,
872 					     u16 pending_idx)
873 {
874 	if (unlikely(queue->grant_tx_handle[pending_idx] ==
875 		     NETBACK_INVALID_HANDLE)) {
876 		netdev_err(queue->vif->dev,
877 			   "Trying to unmap invalid handle! pending_idx: 0x%x\n",
878 			   pending_idx);
879 		BUG();
880 	}
881 	queue->grant_tx_handle[pending_idx] = NETBACK_INVALID_HANDLE;
882 }
883 
884 static int xenvif_tx_check_gop(struct xenvif_queue *queue,
885 			       struct sk_buff *skb,
886 			       struct gnttab_map_grant_ref **gopp_map,
887 			       struct gnttab_copy **gopp_copy)
888 {
889 	struct gnttab_map_grant_ref *gop_map = *gopp_map;
890 	u16 pending_idx = XENVIF_TX_CB(skb)->pending_idx;
891 	/* This always points to the shinfo of the skb being checked, which
892 	 * could be either the first or the one on the frag_list
893 	 */
894 	struct skb_shared_info *shinfo = skb_shinfo(skb);
895 	/* If this is non-NULL, we are currently checking the frag_list skb, and
896 	 * this points to the shinfo of the first one
897 	 */
898 	struct skb_shared_info *first_shinfo = NULL;
899 	int nr_frags = shinfo->nr_frags;
900 	const bool sharedslot = nr_frags &&
901 				frag_get_pending_idx(&shinfo->frags[0]) == pending_idx;
902 	int i, err;
903 
904 	/* Check status of header. */
905 	err = (*gopp_copy)->status;
906 	if (unlikely(err)) {
907 		if (net_ratelimit())
908 			netdev_dbg(queue->vif->dev,
909 				   "Grant copy of header failed! status: %d pending_idx: %u ref: %u\n",
910 				   (*gopp_copy)->status,
911 				   pending_idx,
912 				   (*gopp_copy)->source.u.ref);
913 		/* The first frag might still have this slot mapped */
914 		if (!sharedslot)
915 			xenvif_idx_release(queue, pending_idx,
916 					   XEN_NETIF_RSP_ERROR);
917 	}
918 	(*gopp_copy)++;
919 
920 check_frags:
921 	for (i = 0; i < nr_frags; i++, gop_map++) {
922 		int j, newerr;
923 
924 		pending_idx = frag_get_pending_idx(&shinfo->frags[i]);
925 
926 		/* Check error status: if okay then remember grant handle. */
927 		newerr = gop_map->status;
928 
929 		if (likely(!newerr)) {
930 			xenvif_grant_handle_set(queue,
931 						pending_idx,
932 						gop_map->handle);
933 			/* Had a previous error? Invalidate this fragment. */
934 			if (unlikely(err)) {
935 				xenvif_idx_unmap(queue, pending_idx);
936 				/* If the mapping of the first frag was OK, but
937 				 * the header's copy failed, and they are
938 				 * sharing a slot, send an error
939 				 */
940 				if (i == 0 && sharedslot)
941 					xenvif_idx_release(queue, pending_idx,
942 							   XEN_NETIF_RSP_ERROR);
943 				else
944 					xenvif_idx_release(queue, pending_idx,
945 							   XEN_NETIF_RSP_OKAY);
946 			}
947 			continue;
948 		}
949 
950 		/* Error on this fragment: respond to client with an error. */
951 		if (net_ratelimit())
952 			netdev_dbg(queue->vif->dev,
953 				   "Grant map of %d. frag failed! status: %d pending_idx: %u ref: %u\n",
954 				   i,
955 				   gop_map->status,
956 				   pending_idx,
957 				   gop_map->ref);
958 
959 		xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_ERROR);
960 
961 		/* Not the first error? Preceding frags already invalidated. */
962 		if (err)
963 			continue;
964 
965 		/* First error: if the header haven't shared a slot with the
966 		 * first frag, release it as well.
967 		 */
968 		if (!sharedslot)
969 			xenvif_idx_release(queue,
970 					   XENVIF_TX_CB(skb)->pending_idx,
971 					   XEN_NETIF_RSP_OKAY);
972 
973 		/* Invalidate preceding fragments of this skb. */
974 		for (j = 0; j < i; j++) {
975 			pending_idx = frag_get_pending_idx(&shinfo->frags[j]);
976 			xenvif_idx_unmap(queue, pending_idx);
977 			xenvif_idx_release(queue, pending_idx,
978 					   XEN_NETIF_RSP_OKAY);
979 		}
980 
981 		/* And if we found the error while checking the frag_list, unmap
982 		 * the first skb's frags
983 		 */
984 		if (first_shinfo) {
985 			for (j = 0; j < first_shinfo->nr_frags; j++) {
986 				pending_idx = frag_get_pending_idx(&first_shinfo->frags[j]);
987 				xenvif_idx_unmap(queue, pending_idx);
988 				xenvif_idx_release(queue, pending_idx,
989 						   XEN_NETIF_RSP_OKAY);
990 			}
991 		}
992 
993 		/* Remember the error: invalidate all subsequent fragments. */
994 		err = newerr;
995 	}
996 
997 	if (skb_has_frag_list(skb) && !first_shinfo) {
998 		first_shinfo = skb_shinfo(skb);
999 		shinfo = skb_shinfo(skb_shinfo(skb)->frag_list);
1000 		nr_frags = shinfo->nr_frags;
1001 
1002 		goto check_frags;
1003 	}
1004 
1005 	*gopp_map = gop_map;
1006 	return err;
1007 }
1008 
1009 static void xenvif_fill_frags(struct xenvif_queue *queue, struct sk_buff *skb)
1010 {
1011 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1012 	int nr_frags = shinfo->nr_frags;
1013 	int i;
1014 	u16 prev_pending_idx = INVALID_PENDING_IDX;
1015 
1016 	for (i = 0; i < nr_frags; i++) {
1017 		skb_frag_t *frag = shinfo->frags + i;
1018 		struct xen_netif_tx_request *txp;
1019 		struct page *page;
1020 		u16 pending_idx;
1021 
1022 		pending_idx = frag_get_pending_idx(frag);
1023 
1024 		/* If this is not the first frag, chain it to the previous*/
1025 		if (prev_pending_idx == INVALID_PENDING_IDX)
1026 			skb_shinfo(skb)->destructor_arg =
1027 				&callback_param(queue, pending_idx);
1028 		else
1029 			callback_param(queue, prev_pending_idx).ctx =
1030 				&callback_param(queue, pending_idx);
1031 
1032 		callback_param(queue, pending_idx).ctx = NULL;
1033 		prev_pending_idx = pending_idx;
1034 
1035 		txp = &queue->pending_tx_info[pending_idx].req;
1036 		page = virt_to_page(idx_to_kaddr(queue, pending_idx));
1037 		__skb_fill_page_desc(skb, i, page, txp->offset, txp->size);
1038 		skb->len += txp->size;
1039 		skb->data_len += txp->size;
1040 		skb->truesize += txp->size;
1041 
1042 		/* Take an extra reference to offset network stack's put_page */
1043 		get_page(queue->mmap_pages[pending_idx]);
1044 	}
1045 }
1046 
1047 static int xenvif_get_extras(struct xenvif_queue *queue,
1048 				struct xen_netif_extra_info *extras,
1049 				int work_to_do)
1050 {
1051 	struct xen_netif_extra_info extra;
1052 	RING_IDX cons = queue->tx.req_cons;
1053 
1054 	do {
1055 		if (unlikely(work_to_do-- <= 0)) {
1056 			netdev_err(queue->vif->dev, "Missing extra info\n");
1057 			xenvif_fatal_tx_err(queue->vif);
1058 			return -EBADR;
1059 		}
1060 
1061 		memcpy(&extra, RING_GET_REQUEST(&queue->tx, cons),
1062 		       sizeof(extra));
1063 		if (unlikely(!extra.type ||
1064 			     extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1065 			queue->tx.req_cons = ++cons;
1066 			netdev_err(queue->vif->dev,
1067 				   "Invalid extra type: %d\n", extra.type);
1068 			xenvif_fatal_tx_err(queue->vif);
1069 			return -EINVAL;
1070 		}
1071 
1072 		memcpy(&extras[extra.type - 1], &extra, sizeof(extra));
1073 		queue->tx.req_cons = ++cons;
1074 	} while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE);
1075 
1076 	return work_to_do;
1077 }
1078 
1079 static int xenvif_set_skb_gso(struct xenvif *vif,
1080 			      struct sk_buff *skb,
1081 			      struct xen_netif_extra_info *gso)
1082 {
1083 	if (!gso->u.gso.size) {
1084 		netdev_err(vif->dev, "GSO size must not be zero.\n");
1085 		xenvif_fatal_tx_err(vif);
1086 		return -EINVAL;
1087 	}
1088 
1089 	switch (gso->u.gso.type) {
1090 	case XEN_NETIF_GSO_TYPE_TCPV4:
1091 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1092 		break;
1093 	case XEN_NETIF_GSO_TYPE_TCPV6:
1094 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1095 		break;
1096 	default:
1097 		netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type);
1098 		xenvif_fatal_tx_err(vif);
1099 		return -EINVAL;
1100 	}
1101 
1102 	skb_shinfo(skb)->gso_size = gso->u.gso.size;
1103 	/* gso_segs will be calculated later */
1104 
1105 	return 0;
1106 }
1107 
1108 static int checksum_setup(struct xenvif_queue *queue, struct sk_buff *skb)
1109 {
1110 	bool recalculate_partial_csum = false;
1111 
1112 	/* A GSO SKB must be CHECKSUM_PARTIAL. However some buggy
1113 	 * peers can fail to set NETRXF_csum_blank when sending a GSO
1114 	 * frame. In this case force the SKB to CHECKSUM_PARTIAL and
1115 	 * recalculate the partial checksum.
1116 	 */
1117 	if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) {
1118 		queue->stats.rx_gso_checksum_fixup++;
1119 		skb->ip_summed = CHECKSUM_PARTIAL;
1120 		recalculate_partial_csum = true;
1121 	}
1122 
1123 	/* A non-CHECKSUM_PARTIAL SKB does not require setup. */
1124 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1125 		return 0;
1126 
1127 	return skb_checksum_setup(skb, recalculate_partial_csum);
1128 }
1129 
1130 static bool tx_credit_exceeded(struct xenvif_queue *queue, unsigned size)
1131 {
1132 	u64 now = get_jiffies_64();
1133 	u64 next_credit = queue->credit_window_start +
1134 		msecs_to_jiffies(queue->credit_usec / 1000);
1135 
1136 	/* Timer could already be pending in rare cases. */
1137 	if (timer_pending(&queue->credit_timeout))
1138 		return true;
1139 
1140 	/* Passed the point where we can replenish credit? */
1141 	if (time_after_eq64(now, next_credit)) {
1142 		queue->credit_window_start = now;
1143 		tx_add_credit(queue);
1144 	}
1145 
1146 	/* Still too big to send right now? Set a callback. */
1147 	if (size > queue->remaining_credit) {
1148 		queue->credit_timeout.data     =
1149 			(unsigned long)queue;
1150 		mod_timer(&queue->credit_timeout,
1151 			  next_credit);
1152 		queue->credit_window_start = next_credit;
1153 
1154 		return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /* No locking is required in xenvif_mcast_add/del() as they are
1161  * only ever invoked from NAPI poll. An RCU list is used because
1162  * xenvif_mcast_match() is called asynchronously, during start_xmit.
1163  */
1164 
1165 static int xenvif_mcast_add(struct xenvif *vif, const u8 *addr)
1166 {
1167 	struct xenvif_mcast_addr *mcast;
1168 
1169 	if (vif->fe_mcast_count == XEN_NETBK_MCAST_MAX) {
1170 		if (net_ratelimit())
1171 			netdev_err(vif->dev,
1172 				   "Too many multicast addresses\n");
1173 		return -ENOSPC;
1174 	}
1175 
1176 	mcast = kzalloc(sizeof(*mcast), GFP_ATOMIC);
1177 	if (!mcast)
1178 		return -ENOMEM;
1179 
1180 	ether_addr_copy(mcast->addr, addr);
1181 	list_add_tail_rcu(&mcast->entry, &vif->fe_mcast_addr);
1182 	vif->fe_mcast_count++;
1183 
1184 	return 0;
1185 }
1186 
1187 static void xenvif_mcast_del(struct xenvif *vif, const u8 *addr)
1188 {
1189 	struct xenvif_mcast_addr *mcast;
1190 
1191 	list_for_each_entry_rcu(mcast, &vif->fe_mcast_addr, entry) {
1192 		if (ether_addr_equal(addr, mcast->addr)) {
1193 			--vif->fe_mcast_count;
1194 			list_del_rcu(&mcast->entry);
1195 			kfree_rcu(mcast, rcu);
1196 			break;
1197 		}
1198 	}
1199 }
1200 
1201 bool xenvif_mcast_match(struct xenvif *vif, const u8 *addr)
1202 {
1203 	struct xenvif_mcast_addr *mcast;
1204 
1205 	rcu_read_lock();
1206 	list_for_each_entry_rcu(mcast, &vif->fe_mcast_addr, entry) {
1207 		if (ether_addr_equal(addr, mcast->addr)) {
1208 			rcu_read_unlock();
1209 			return true;
1210 		}
1211 	}
1212 	rcu_read_unlock();
1213 
1214 	return false;
1215 }
1216 
1217 void xenvif_mcast_addr_list_free(struct xenvif *vif)
1218 {
1219 	/* No need for locking or RCU here. NAPI poll and TX queue
1220 	 * are stopped.
1221 	 */
1222 	while (!list_empty(&vif->fe_mcast_addr)) {
1223 		struct xenvif_mcast_addr *mcast;
1224 
1225 		mcast = list_first_entry(&vif->fe_mcast_addr,
1226 					 struct xenvif_mcast_addr,
1227 					 entry);
1228 		--vif->fe_mcast_count;
1229 		list_del(&mcast->entry);
1230 		kfree(mcast);
1231 	}
1232 }
1233 
1234 static void xenvif_tx_build_gops(struct xenvif_queue *queue,
1235 				     int budget,
1236 				     unsigned *copy_ops,
1237 				     unsigned *map_ops)
1238 {
1239 	struct gnttab_map_grant_ref *gop = queue->tx_map_ops;
1240 	struct sk_buff *skb, *nskb;
1241 	int ret;
1242 	unsigned int frag_overflow;
1243 
1244 	while (skb_queue_len(&queue->tx_queue) < budget) {
1245 		struct xen_netif_tx_request txreq;
1246 		struct xen_netif_tx_request txfrags[XEN_NETBK_LEGACY_SLOTS_MAX];
1247 		struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1];
1248 		u16 pending_idx;
1249 		RING_IDX idx;
1250 		int work_to_do;
1251 		unsigned int data_len;
1252 		pending_ring_idx_t index;
1253 
1254 		if (queue->tx.sring->req_prod - queue->tx.req_cons >
1255 		    XEN_NETIF_TX_RING_SIZE) {
1256 			netdev_err(queue->vif->dev,
1257 				   "Impossible number of requests. "
1258 				   "req_prod %d, req_cons %d, size %ld\n",
1259 				   queue->tx.sring->req_prod, queue->tx.req_cons,
1260 				   XEN_NETIF_TX_RING_SIZE);
1261 			xenvif_fatal_tx_err(queue->vif);
1262 			break;
1263 		}
1264 
1265 		work_to_do = RING_HAS_UNCONSUMED_REQUESTS(&queue->tx);
1266 		if (!work_to_do)
1267 			break;
1268 
1269 		idx = queue->tx.req_cons;
1270 		rmb(); /* Ensure that we see the request before we copy it. */
1271 		memcpy(&txreq, RING_GET_REQUEST(&queue->tx, idx), sizeof(txreq));
1272 
1273 		/* Credit-based scheduling. */
1274 		if (txreq.size > queue->remaining_credit &&
1275 		    tx_credit_exceeded(queue, txreq.size))
1276 			break;
1277 
1278 		queue->remaining_credit -= txreq.size;
1279 
1280 		work_to_do--;
1281 		queue->tx.req_cons = ++idx;
1282 
1283 		memset(extras, 0, sizeof(extras));
1284 		if (txreq.flags & XEN_NETTXF_extra_info) {
1285 			work_to_do = xenvif_get_extras(queue, extras,
1286 						       work_to_do);
1287 			idx = queue->tx.req_cons;
1288 			if (unlikely(work_to_do < 0))
1289 				break;
1290 		}
1291 
1292 		if (extras[XEN_NETIF_EXTRA_TYPE_MCAST_ADD - 1].type) {
1293 			struct xen_netif_extra_info *extra;
1294 
1295 			extra = &extras[XEN_NETIF_EXTRA_TYPE_MCAST_ADD - 1];
1296 			ret = xenvif_mcast_add(queue->vif, extra->u.mcast.addr);
1297 
1298 			make_tx_response(queue, &txreq,
1299 					 (ret == 0) ?
1300 					 XEN_NETIF_RSP_OKAY :
1301 					 XEN_NETIF_RSP_ERROR);
1302 			push_tx_responses(queue);
1303 			continue;
1304 		}
1305 
1306 		if (extras[XEN_NETIF_EXTRA_TYPE_MCAST_DEL - 1].type) {
1307 			struct xen_netif_extra_info *extra;
1308 
1309 			extra = &extras[XEN_NETIF_EXTRA_TYPE_MCAST_DEL - 1];
1310 			xenvif_mcast_del(queue->vif, extra->u.mcast.addr);
1311 
1312 			make_tx_response(queue, &txreq, XEN_NETIF_RSP_OKAY);
1313 			push_tx_responses(queue);
1314 			continue;
1315 		}
1316 
1317 		ret = xenvif_count_requests(queue, &txreq, txfrags, work_to_do);
1318 		if (unlikely(ret < 0))
1319 			break;
1320 
1321 		idx += ret;
1322 
1323 		if (unlikely(txreq.size < ETH_HLEN)) {
1324 			netdev_dbg(queue->vif->dev,
1325 				   "Bad packet size: %d\n", txreq.size);
1326 			xenvif_tx_err(queue, &txreq, idx);
1327 			break;
1328 		}
1329 
1330 		/* No crossing a page as the payload mustn't fragment. */
1331 		if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) {
1332 			netdev_err(queue->vif->dev,
1333 				   "txreq.offset: %u, size: %u, end: %lu\n",
1334 				   txreq.offset, txreq.size,
1335 				   (unsigned long)(txreq.offset&~PAGE_MASK) + txreq.size);
1336 			xenvif_fatal_tx_err(queue->vif);
1337 			break;
1338 		}
1339 
1340 		index = pending_index(queue->pending_cons);
1341 		pending_idx = queue->pending_ring[index];
1342 
1343 		data_len = (txreq.size > XEN_NETBACK_TX_COPY_LEN &&
1344 			    ret < XEN_NETBK_LEGACY_SLOTS_MAX) ?
1345 			XEN_NETBACK_TX_COPY_LEN : txreq.size;
1346 
1347 		skb = xenvif_alloc_skb(data_len);
1348 		if (unlikely(skb == NULL)) {
1349 			netdev_dbg(queue->vif->dev,
1350 				   "Can't allocate a skb in start_xmit.\n");
1351 			xenvif_tx_err(queue, &txreq, idx);
1352 			break;
1353 		}
1354 
1355 		skb_shinfo(skb)->nr_frags = ret;
1356 		if (data_len < txreq.size)
1357 			skb_shinfo(skb)->nr_frags++;
1358 		/* At this point shinfo->nr_frags is in fact the number of
1359 		 * slots, which can be as large as XEN_NETBK_LEGACY_SLOTS_MAX.
1360 		 */
1361 		frag_overflow = 0;
1362 		nskb = NULL;
1363 		if (skb_shinfo(skb)->nr_frags > MAX_SKB_FRAGS) {
1364 			frag_overflow = skb_shinfo(skb)->nr_frags - MAX_SKB_FRAGS;
1365 			BUG_ON(frag_overflow > MAX_SKB_FRAGS);
1366 			skb_shinfo(skb)->nr_frags = MAX_SKB_FRAGS;
1367 			nskb = xenvif_alloc_skb(0);
1368 			if (unlikely(nskb == NULL)) {
1369 				kfree_skb(skb);
1370 				xenvif_tx_err(queue, &txreq, idx);
1371 				if (net_ratelimit())
1372 					netdev_err(queue->vif->dev,
1373 						   "Can't allocate the frag_list skb.\n");
1374 				break;
1375 			}
1376 		}
1377 
1378 		if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
1379 			struct xen_netif_extra_info *gso;
1380 			gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
1381 
1382 			if (xenvif_set_skb_gso(queue->vif, skb, gso)) {
1383 				/* Failure in xenvif_set_skb_gso is fatal. */
1384 				kfree_skb(skb);
1385 				kfree_skb(nskb);
1386 				break;
1387 			}
1388 		}
1389 
1390 		XENVIF_TX_CB(skb)->pending_idx = pending_idx;
1391 
1392 		__skb_put(skb, data_len);
1393 		queue->tx_copy_ops[*copy_ops].source.u.ref = txreq.gref;
1394 		queue->tx_copy_ops[*copy_ops].source.domid = queue->vif->domid;
1395 		queue->tx_copy_ops[*copy_ops].source.offset = txreq.offset;
1396 
1397 		queue->tx_copy_ops[*copy_ops].dest.u.gmfn =
1398 			virt_to_mfn(skb->data);
1399 		queue->tx_copy_ops[*copy_ops].dest.domid = DOMID_SELF;
1400 		queue->tx_copy_ops[*copy_ops].dest.offset =
1401 			offset_in_page(skb->data);
1402 
1403 		queue->tx_copy_ops[*copy_ops].len = data_len;
1404 		queue->tx_copy_ops[*copy_ops].flags = GNTCOPY_source_gref;
1405 
1406 		(*copy_ops)++;
1407 
1408 		if (data_len < txreq.size) {
1409 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1410 					     pending_idx);
1411 			xenvif_tx_create_map_op(queue, pending_idx, &txreq, gop);
1412 			gop++;
1413 		} else {
1414 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1415 					     INVALID_PENDING_IDX);
1416 			memcpy(&queue->pending_tx_info[pending_idx].req, &txreq,
1417 			       sizeof(txreq));
1418 		}
1419 
1420 		queue->pending_cons++;
1421 
1422 		gop = xenvif_get_requests(queue, skb, txfrags, gop,
1423 				          frag_overflow, nskb);
1424 
1425 		__skb_queue_tail(&queue->tx_queue, skb);
1426 
1427 		queue->tx.req_cons = idx;
1428 
1429 		if (((gop-queue->tx_map_ops) >= ARRAY_SIZE(queue->tx_map_ops)) ||
1430 		    (*copy_ops >= ARRAY_SIZE(queue->tx_copy_ops)))
1431 			break;
1432 	}
1433 
1434 	(*map_ops) = gop - queue->tx_map_ops;
1435 	return;
1436 }
1437 
1438 /* Consolidate skb with a frag_list into a brand new one with local pages on
1439  * frags. Returns 0 or -ENOMEM if can't allocate new pages.
1440  */
1441 static int xenvif_handle_frag_list(struct xenvif_queue *queue, struct sk_buff *skb)
1442 {
1443 	unsigned int offset = skb_headlen(skb);
1444 	skb_frag_t frags[MAX_SKB_FRAGS];
1445 	int i, f;
1446 	struct ubuf_info *uarg;
1447 	struct sk_buff *nskb = skb_shinfo(skb)->frag_list;
1448 
1449 	queue->stats.tx_zerocopy_sent += 2;
1450 	queue->stats.tx_frag_overflow++;
1451 
1452 	xenvif_fill_frags(queue, nskb);
1453 	/* Subtract frags size, we will correct it later */
1454 	skb->truesize -= skb->data_len;
1455 	skb->len += nskb->len;
1456 	skb->data_len += nskb->len;
1457 
1458 	/* create a brand new frags array and coalesce there */
1459 	for (i = 0; offset < skb->len; i++) {
1460 		struct page *page;
1461 		unsigned int len;
1462 
1463 		BUG_ON(i >= MAX_SKB_FRAGS);
1464 		page = alloc_page(GFP_ATOMIC);
1465 		if (!page) {
1466 			int j;
1467 			skb->truesize += skb->data_len;
1468 			for (j = 0; j < i; j++)
1469 				put_page(frags[j].page.p);
1470 			return -ENOMEM;
1471 		}
1472 
1473 		if (offset + PAGE_SIZE < skb->len)
1474 			len = PAGE_SIZE;
1475 		else
1476 			len = skb->len - offset;
1477 		if (skb_copy_bits(skb, offset, page_address(page), len))
1478 			BUG();
1479 
1480 		offset += len;
1481 		frags[i].page.p = page;
1482 		frags[i].page_offset = 0;
1483 		skb_frag_size_set(&frags[i], len);
1484 	}
1485 
1486 	/* Copied all the bits from the frag list -- free it. */
1487 	skb_frag_list_init(skb);
1488 	xenvif_skb_zerocopy_prepare(queue, nskb);
1489 	kfree_skb(nskb);
1490 
1491 	/* Release all the original (foreign) frags. */
1492 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1493 		skb_frag_unref(skb, f);
1494 	uarg = skb_shinfo(skb)->destructor_arg;
1495 	/* increase inflight counter to offset decrement in callback */
1496 	atomic_inc(&queue->inflight_packets);
1497 	uarg->callback(uarg, true);
1498 	skb_shinfo(skb)->destructor_arg = NULL;
1499 
1500 	/* Fill the skb with the new (local) frags. */
1501 	memcpy(skb_shinfo(skb)->frags, frags, i * sizeof(skb_frag_t));
1502 	skb_shinfo(skb)->nr_frags = i;
1503 	skb->truesize += i * PAGE_SIZE;
1504 
1505 	return 0;
1506 }
1507 
1508 static int xenvif_tx_submit(struct xenvif_queue *queue)
1509 {
1510 	struct gnttab_map_grant_ref *gop_map = queue->tx_map_ops;
1511 	struct gnttab_copy *gop_copy = queue->tx_copy_ops;
1512 	struct sk_buff *skb;
1513 	int work_done = 0;
1514 
1515 	while ((skb = __skb_dequeue(&queue->tx_queue)) != NULL) {
1516 		struct xen_netif_tx_request *txp;
1517 		u16 pending_idx;
1518 		unsigned data_len;
1519 
1520 		pending_idx = XENVIF_TX_CB(skb)->pending_idx;
1521 		txp = &queue->pending_tx_info[pending_idx].req;
1522 
1523 		/* Check the remap error code. */
1524 		if (unlikely(xenvif_tx_check_gop(queue, skb, &gop_map, &gop_copy))) {
1525 			/* If there was an error, xenvif_tx_check_gop is
1526 			 * expected to release all the frags which were mapped,
1527 			 * so kfree_skb shouldn't do it again
1528 			 */
1529 			skb_shinfo(skb)->nr_frags = 0;
1530 			if (skb_has_frag_list(skb)) {
1531 				struct sk_buff *nskb =
1532 						skb_shinfo(skb)->frag_list;
1533 				skb_shinfo(nskb)->nr_frags = 0;
1534 			}
1535 			kfree_skb(skb);
1536 			continue;
1537 		}
1538 
1539 		data_len = skb->len;
1540 		callback_param(queue, pending_idx).ctx = NULL;
1541 		if (data_len < txp->size) {
1542 			/* Append the packet payload as a fragment. */
1543 			txp->offset += data_len;
1544 			txp->size -= data_len;
1545 		} else {
1546 			/* Schedule a response immediately. */
1547 			xenvif_idx_release(queue, pending_idx,
1548 					   XEN_NETIF_RSP_OKAY);
1549 		}
1550 
1551 		if (txp->flags & XEN_NETTXF_csum_blank)
1552 			skb->ip_summed = CHECKSUM_PARTIAL;
1553 		else if (txp->flags & XEN_NETTXF_data_validated)
1554 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1555 
1556 		xenvif_fill_frags(queue, skb);
1557 
1558 		if (unlikely(skb_has_frag_list(skb))) {
1559 			if (xenvif_handle_frag_list(queue, skb)) {
1560 				if (net_ratelimit())
1561 					netdev_err(queue->vif->dev,
1562 						   "Not enough memory to consolidate frag_list!\n");
1563 				xenvif_skb_zerocopy_prepare(queue, skb);
1564 				kfree_skb(skb);
1565 				continue;
1566 			}
1567 		}
1568 
1569 		skb->dev      = queue->vif->dev;
1570 		skb->protocol = eth_type_trans(skb, skb->dev);
1571 		skb_reset_network_header(skb);
1572 
1573 		if (checksum_setup(queue, skb)) {
1574 			netdev_dbg(queue->vif->dev,
1575 				   "Can't setup checksum in net_tx_action\n");
1576 			/* We have to set this flag to trigger the callback */
1577 			if (skb_shinfo(skb)->destructor_arg)
1578 				xenvif_skb_zerocopy_prepare(queue, skb);
1579 			kfree_skb(skb);
1580 			continue;
1581 		}
1582 
1583 		skb_probe_transport_header(skb, 0);
1584 
1585 		/* If the packet is GSO then we will have just set up the
1586 		 * transport header offset in checksum_setup so it's now
1587 		 * straightforward to calculate gso_segs.
1588 		 */
1589 		if (skb_is_gso(skb)) {
1590 			int mss = skb_shinfo(skb)->gso_size;
1591 			int hdrlen = skb_transport_header(skb) -
1592 				skb_mac_header(skb) +
1593 				tcp_hdrlen(skb);
1594 
1595 			skb_shinfo(skb)->gso_segs =
1596 				DIV_ROUND_UP(skb->len - hdrlen, mss);
1597 		}
1598 
1599 		queue->stats.rx_bytes += skb->len;
1600 		queue->stats.rx_packets++;
1601 
1602 		work_done++;
1603 
1604 		/* Set this flag right before netif_receive_skb, otherwise
1605 		 * someone might think this packet already left netback, and
1606 		 * do a skb_copy_ubufs while we are still in control of the
1607 		 * skb. E.g. the __pskb_pull_tail earlier can do such thing.
1608 		 */
1609 		if (skb_shinfo(skb)->destructor_arg) {
1610 			xenvif_skb_zerocopy_prepare(queue, skb);
1611 			queue->stats.tx_zerocopy_sent++;
1612 		}
1613 
1614 		netif_receive_skb(skb);
1615 	}
1616 
1617 	return work_done;
1618 }
1619 
1620 void xenvif_zerocopy_callback(struct ubuf_info *ubuf, bool zerocopy_success)
1621 {
1622 	unsigned long flags;
1623 	pending_ring_idx_t index;
1624 	struct xenvif_queue *queue = ubuf_to_queue(ubuf);
1625 
1626 	/* This is the only place where we grab this lock, to protect callbacks
1627 	 * from each other.
1628 	 */
1629 	spin_lock_irqsave(&queue->callback_lock, flags);
1630 	do {
1631 		u16 pending_idx = ubuf->desc;
1632 		ubuf = (struct ubuf_info *) ubuf->ctx;
1633 		BUG_ON(queue->dealloc_prod - queue->dealloc_cons >=
1634 			MAX_PENDING_REQS);
1635 		index = pending_index(queue->dealloc_prod);
1636 		queue->dealloc_ring[index] = pending_idx;
1637 		/* Sync with xenvif_tx_dealloc_action:
1638 		 * insert idx then incr producer.
1639 		 */
1640 		smp_wmb();
1641 		queue->dealloc_prod++;
1642 	} while (ubuf);
1643 	spin_unlock_irqrestore(&queue->callback_lock, flags);
1644 
1645 	if (likely(zerocopy_success))
1646 		queue->stats.tx_zerocopy_success++;
1647 	else
1648 		queue->stats.tx_zerocopy_fail++;
1649 	xenvif_skb_zerocopy_complete(queue);
1650 }
1651 
1652 static inline void xenvif_tx_dealloc_action(struct xenvif_queue *queue)
1653 {
1654 	struct gnttab_unmap_grant_ref *gop;
1655 	pending_ring_idx_t dc, dp;
1656 	u16 pending_idx, pending_idx_release[MAX_PENDING_REQS];
1657 	unsigned int i = 0;
1658 
1659 	dc = queue->dealloc_cons;
1660 	gop = queue->tx_unmap_ops;
1661 
1662 	/* Free up any grants we have finished using */
1663 	do {
1664 		dp = queue->dealloc_prod;
1665 
1666 		/* Ensure we see all indices enqueued by all
1667 		 * xenvif_zerocopy_callback().
1668 		 */
1669 		smp_rmb();
1670 
1671 		while (dc != dp) {
1672 			BUG_ON(gop - queue->tx_unmap_ops >= MAX_PENDING_REQS);
1673 			pending_idx =
1674 				queue->dealloc_ring[pending_index(dc++)];
1675 
1676 			pending_idx_release[gop - queue->tx_unmap_ops] =
1677 				pending_idx;
1678 			queue->pages_to_unmap[gop - queue->tx_unmap_ops] =
1679 				queue->mmap_pages[pending_idx];
1680 			gnttab_set_unmap_op(gop,
1681 					    idx_to_kaddr(queue, pending_idx),
1682 					    GNTMAP_host_map,
1683 					    queue->grant_tx_handle[pending_idx]);
1684 			xenvif_grant_handle_reset(queue, pending_idx);
1685 			++gop;
1686 		}
1687 
1688 	} while (dp != queue->dealloc_prod);
1689 
1690 	queue->dealloc_cons = dc;
1691 
1692 	if (gop - queue->tx_unmap_ops > 0) {
1693 		int ret;
1694 		ret = gnttab_unmap_refs(queue->tx_unmap_ops,
1695 					NULL,
1696 					queue->pages_to_unmap,
1697 					gop - queue->tx_unmap_ops);
1698 		if (ret) {
1699 			netdev_err(queue->vif->dev, "Unmap fail: nr_ops %tu ret %d\n",
1700 				   gop - queue->tx_unmap_ops, ret);
1701 			for (i = 0; i < gop - queue->tx_unmap_ops; ++i) {
1702 				if (gop[i].status != GNTST_okay)
1703 					netdev_err(queue->vif->dev,
1704 						   " host_addr: 0x%llx handle: 0x%x status: %d\n",
1705 						   gop[i].host_addr,
1706 						   gop[i].handle,
1707 						   gop[i].status);
1708 			}
1709 			BUG();
1710 		}
1711 	}
1712 
1713 	for (i = 0; i < gop - queue->tx_unmap_ops; ++i)
1714 		xenvif_idx_release(queue, pending_idx_release[i],
1715 				   XEN_NETIF_RSP_OKAY);
1716 }
1717 
1718 
1719 /* Called after netfront has transmitted */
1720 int xenvif_tx_action(struct xenvif_queue *queue, int budget)
1721 {
1722 	unsigned nr_mops, nr_cops = 0;
1723 	int work_done, ret;
1724 
1725 	if (unlikely(!tx_work_todo(queue)))
1726 		return 0;
1727 
1728 	xenvif_tx_build_gops(queue, budget, &nr_cops, &nr_mops);
1729 
1730 	if (nr_cops == 0)
1731 		return 0;
1732 
1733 	gnttab_batch_copy(queue->tx_copy_ops, nr_cops);
1734 	if (nr_mops != 0) {
1735 		ret = gnttab_map_refs(queue->tx_map_ops,
1736 				      NULL,
1737 				      queue->pages_to_map,
1738 				      nr_mops);
1739 		BUG_ON(ret);
1740 	}
1741 
1742 	work_done = xenvif_tx_submit(queue);
1743 
1744 	return work_done;
1745 }
1746 
1747 static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx,
1748 			       u8 status)
1749 {
1750 	struct pending_tx_info *pending_tx_info;
1751 	pending_ring_idx_t index;
1752 	unsigned long flags;
1753 
1754 	pending_tx_info = &queue->pending_tx_info[pending_idx];
1755 
1756 	spin_lock_irqsave(&queue->response_lock, flags);
1757 
1758 	make_tx_response(queue, &pending_tx_info->req, status);
1759 
1760 	/* Release the pending index before pusing the Tx response so
1761 	 * its available before a new Tx request is pushed by the
1762 	 * frontend.
1763 	 */
1764 	index = pending_index(queue->pending_prod++);
1765 	queue->pending_ring[index] = pending_idx;
1766 
1767 	push_tx_responses(queue);
1768 
1769 	spin_unlock_irqrestore(&queue->response_lock, flags);
1770 }
1771 
1772 
1773 static void make_tx_response(struct xenvif_queue *queue,
1774 			     struct xen_netif_tx_request *txp,
1775 			     s8       st)
1776 {
1777 	RING_IDX i = queue->tx.rsp_prod_pvt;
1778 	struct xen_netif_tx_response *resp;
1779 
1780 	resp = RING_GET_RESPONSE(&queue->tx, i);
1781 	resp->id     = txp->id;
1782 	resp->status = st;
1783 
1784 	if (txp->flags & XEN_NETTXF_extra_info)
1785 		RING_GET_RESPONSE(&queue->tx, ++i)->status = XEN_NETIF_RSP_NULL;
1786 
1787 	queue->tx.rsp_prod_pvt = ++i;
1788 }
1789 
1790 static void push_tx_responses(struct xenvif_queue *queue)
1791 {
1792 	int notify;
1793 
1794 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&queue->tx, notify);
1795 	if (notify)
1796 		notify_remote_via_irq(queue->tx_irq);
1797 }
1798 
1799 static struct xen_netif_rx_response *make_rx_response(struct xenvif_queue *queue,
1800 					     u16      id,
1801 					     s8       st,
1802 					     u16      offset,
1803 					     u16      size,
1804 					     u16      flags)
1805 {
1806 	RING_IDX i = queue->rx.rsp_prod_pvt;
1807 	struct xen_netif_rx_response *resp;
1808 
1809 	resp = RING_GET_RESPONSE(&queue->rx, i);
1810 	resp->offset     = offset;
1811 	resp->flags      = flags;
1812 	resp->id         = id;
1813 	resp->status     = (s16)size;
1814 	if (st < 0)
1815 		resp->status = (s16)st;
1816 
1817 	queue->rx.rsp_prod_pvt = ++i;
1818 
1819 	return resp;
1820 }
1821 
1822 void xenvif_idx_unmap(struct xenvif_queue *queue, u16 pending_idx)
1823 {
1824 	int ret;
1825 	struct gnttab_unmap_grant_ref tx_unmap_op;
1826 
1827 	gnttab_set_unmap_op(&tx_unmap_op,
1828 			    idx_to_kaddr(queue, pending_idx),
1829 			    GNTMAP_host_map,
1830 			    queue->grant_tx_handle[pending_idx]);
1831 	xenvif_grant_handle_reset(queue, pending_idx);
1832 
1833 	ret = gnttab_unmap_refs(&tx_unmap_op, NULL,
1834 				&queue->mmap_pages[pending_idx], 1);
1835 	if (ret) {
1836 		netdev_err(queue->vif->dev,
1837 			   "Unmap fail: ret: %d pending_idx: %d host_addr: %llx handle: 0x%x status: %d\n",
1838 			   ret,
1839 			   pending_idx,
1840 			   tx_unmap_op.host_addr,
1841 			   tx_unmap_op.handle,
1842 			   tx_unmap_op.status);
1843 		BUG();
1844 	}
1845 }
1846 
1847 static inline int tx_work_todo(struct xenvif_queue *queue)
1848 {
1849 	if (likely(RING_HAS_UNCONSUMED_REQUESTS(&queue->tx)))
1850 		return 1;
1851 
1852 	return 0;
1853 }
1854 
1855 static inline bool tx_dealloc_work_todo(struct xenvif_queue *queue)
1856 {
1857 	return queue->dealloc_cons != queue->dealloc_prod;
1858 }
1859 
1860 void xenvif_unmap_frontend_rings(struct xenvif_queue *queue)
1861 {
1862 	if (queue->tx.sring)
1863 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif),
1864 					queue->tx.sring);
1865 	if (queue->rx.sring)
1866 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif),
1867 					queue->rx.sring);
1868 }
1869 
1870 int xenvif_map_frontend_rings(struct xenvif_queue *queue,
1871 			      grant_ref_t tx_ring_ref,
1872 			      grant_ref_t rx_ring_ref)
1873 {
1874 	void *addr;
1875 	struct xen_netif_tx_sring *txs;
1876 	struct xen_netif_rx_sring *rxs;
1877 
1878 	int err = -ENOMEM;
1879 
1880 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif),
1881 				     &tx_ring_ref, 1, &addr);
1882 	if (err)
1883 		goto err;
1884 
1885 	txs = (struct xen_netif_tx_sring *)addr;
1886 	BACK_RING_INIT(&queue->tx, txs, PAGE_SIZE);
1887 
1888 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif),
1889 				     &rx_ring_ref, 1, &addr);
1890 	if (err)
1891 		goto err;
1892 
1893 	rxs = (struct xen_netif_rx_sring *)addr;
1894 	BACK_RING_INIT(&queue->rx, rxs, PAGE_SIZE);
1895 
1896 	return 0;
1897 
1898 err:
1899 	xenvif_unmap_frontend_rings(queue);
1900 	return err;
1901 }
1902 
1903 static void xenvif_queue_carrier_off(struct xenvif_queue *queue)
1904 {
1905 	struct xenvif *vif = queue->vif;
1906 
1907 	queue->stalled = true;
1908 
1909 	/* At least one queue has stalled? Disable the carrier. */
1910 	spin_lock(&vif->lock);
1911 	if (vif->stalled_queues++ == 0) {
1912 		netdev_info(vif->dev, "Guest Rx stalled");
1913 		netif_carrier_off(vif->dev);
1914 	}
1915 	spin_unlock(&vif->lock);
1916 }
1917 
1918 static void xenvif_queue_carrier_on(struct xenvif_queue *queue)
1919 {
1920 	struct xenvif *vif = queue->vif;
1921 
1922 	queue->last_rx_time = jiffies; /* Reset Rx stall detection. */
1923 	queue->stalled = false;
1924 
1925 	/* All queues are ready? Enable the carrier. */
1926 	spin_lock(&vif->lock);
1927 	if (--vif->stalled_queues == 0) {
1928 		netdev_info(vif->dev, "Guest Rx ready");
1929 		netif_carrier_on(vif->dev);
1930 	}
1931 	spin_unlock(&vif->lock);
1932 }
1933 
1934 static bool xenvif_rx_queue_stalled(struct xenvif_queue *queue)
1935 {
1936 	RING_IDX prod, cons;
1937 
1938 	prod = queue->rx.sring->req_prod;
1939 	cons = queue->rx.req_cons;
1940 
1941 	return !queue->stalled
1942 		&& prod - cons < XEN_NETBK_RX_SLOTS_MAX
1943 		&& time_after(jiffies,
1944 			      queue->last_rx_time + queue->vif->stall_timeout);
1945 }
1946 
1947 static bool xenvif_rx_queue_ready(struct xenvif_queue *queue)
1948 {
1949 	RING_IDX prod, cons;
1950 
1951 	prod = queue->rx.sring->req_prod;
1952 	cons = queue->rx.req_cons;
1953 
1954 	return queue->stalled
1955 		&& prod - cons >= XEN_NETBK_RX_SLOTS_MAX;
1956 }
1957 
1958 static bool xenvif_have_rx_work(struct xenvif_queue *queue)
1959 {
1960 	return (!skb_queue_empty(&queue->rx_queue)
1961 		&& xenvif_rx_ring_slots_available(queue, XEN_NETBK_RX_SLOTS_MAX))
1962 		|| (queue->vif->stall_timeout &&
1963 		    (xenvif_rx_queue_stalled(queue)
1964 		     || xenvif_rx_queue_ready(queue)))
1965 		|| kthread_should_stop()
1966 		|| queue->vif->disabled;
1967 }
1968 
1969 static long xenvif_rx_queue_timeout(struct xenvif_queue *queue)
1970 {
1971 	struct sk_buff *skb;
1972 	long timeout;
1973 
1974 	skb = skb_peek(&queue->rx_queue);
1975 	if (!skb)
1976 		return MAX_SCHEDULE_TIMEOUT;
1977 
1978 	timeout = XENVIF_RX_CB(skb)->expires - jiffies;
1979 	return timeout < 0 ? 0 : timeout;
1980 }
1981 
1982 /* Wait until the guest Rx thread has work.
1983  *
1984  * The timeout needs to be adjusted based on the current head of the
1985  * queue (and not just the head at the beginning).  In particular, if
1986  * the queue is initially empty an infinite timeout is used and this
1987  * needs to be reduced when a skb is queued.
1988  *
1989  * This cannot be done with wait_event_timeout() because it only
1990  * calculates the timeout once.
1991  */
1992 static void xenvif_wait_for_rx_work(struct xenvif_queue *queue)
1993 {
1994 	DEFINE_WAIT(wait);
1995 
1996 	if (xenvif_have_rx_work(queue))
1997 		return;
1998 
1999 	for (;;) {
2000 		long ret;
2001 
2002 		prepare_to_wait(&queue->wq, &wait, TASK_INTERRUPTIBLE);
2003 		if (xenvif_have_rx_work(queue))
2004 			break;
2005 		ret = schedule_timeout(xenvif_rx_queue_timeout(queue));
2006 		if (!ret)
2007 			break;
2008 	}
2009 	finish_wait(&queue->wq, &wait);
2010 }
2011 
2012 int xenvif_kthread_guest_rx(void *data)
2013 {
2014 	struct xenvif_queue *queue = data;
2015 	struct xenvif *vif = queue->vif;
2016 
2017 	if (!vif->stall_timeout)
2018 		xenvif_queue_carrier_on(queue);
2019 
2020 	for (;;) {
2021 		xenvif_wait_for_rx_work(queue);
2022 
2023 		if (kthread_should_stop())
2024 			break;
2025 
2026 		/* This frontend is found to be rogue, disable it in
2027 		 * kthread context. Currently this is only set when
2028 		 * netback finds out frontend sends malformed packet,
2029 		 * but we cannot disable the interface in softirq
2030 		 * context so we defer it here, if this thread is
2031 		 * associated with queue 0.
2032 		 */
2033 		if (unlikely(vif->disabled && queue->id == 0)) {
2034 			xenvif_carrier_off(vif);
2035 			break;
2036 		}
2037 
2038 		if (!skb_queue_empty(&queue->rx_queue))
2039 			xenvif_rx_action(queue);
2040 
2041 		/* If the guest hasn't provided any Rx slots for a
2042 		 * while it's probably not responsive, drop the
2043 		 * carrier so packets are dropped earlier.
2044 		 */
2045 		if (vif->stall_timeout) {
2046 			if (xenvif_rx_queue_stalled(queue))
2047 				xenvif_queue_carrier_off(queue);
2048 			else if (xenvif_rx_queue_ready(queue))
2049 				xenvif_queue_carrier_on(queue);
2050 		}
2051 
2052 		/* Queued packets may have foreign pages from other
2053 		 * domains.  These cannot be queued indefinitely as
2054 		 * this would starve guests of grant refs and transmit
2055 		 * slots.
2056 		 */
2057 		xenvif_rx_queue_drop_expired(queue);
2058 
2059 		xenvif_rx_queue_maybe_wake(queue);
2060 
2061 		cond_resched();
2062 	}
2063 
2064 	/* Bin any remaining skbs */
2065 	xenvif_rx_queue_purge(queue);
2066 
2067 	return 0;
2068 }
2069 
2070 static bool xenvif_dealloc_kthread_should_stop(struct xenvif_queue *queue)
2071 {
2072 	/* Dealloc thread must remain running until all inflight
2073 	 * packets complete.
2074 	 */
2075 	return kthread_should_stop() &&
2076 		!atomic_read(&queue->inflight_packets);
2077 }
2078 
2079 int xenvif_dealloc_kthread(void *data)
2080 {
2081 	struct xenvif_queue *queue = data;
2082 
2083 	for (;;) {
2084 		wait_event_interruptible(queue->dealloc_wq,
2085 					 tx_dealloc_work_todo(queue) ||
2086 					 xenvif_dealloc_kthread_should_stop(queue));
2087 		if (xenvif_dealloc_kthread_should_stop(queue))
2088 			break;
2089 
2090 		xenvif_tx_dealloc_action(queue);
2091 		cond_resched();
2092 	}
2093 
2094 	/* Unmap anything remaining*/
2095 	if (tx_dealloc_work_todo(queue))
2096 		xenvif_tx_dealloc_action(queue);
2097 
2098 	return 0;
2099 }
2100 
2101 static int __init netback_init(void)
2102 {
2103 	int rc = 0;
2104 
2105 	if (!xen_domain())
2106 		return -ENODEV;
2107 
2108 	/* Allow as many queues as there are CPUs, by default */
2109 	xenvif_max_queues = num_online_cpus();
2110 
2111 	if (fatal_skb_slots < XEN_NETBK_LEGACY_SLOTS_MAX) {
2112 		pr_info("fatal_skb_slots too small (%d), bump it to XEN_NETBK_LEGACY_SLOTS_MAX (%d)\n",
2113 			fatal_skb_slots, XEN_NETBK_LEGACY_SLOTS_MAX);
2114 		fatal_skb_slots = XEN_NETBK_LEGACY_SLOTS_MAX;
2115 	}
2116 
2117 	rc = xenvif_xenbus_init();
2118 	if (rc)
2119 		goto failed_init;
2120 
2121 #ifdef CONFIG_DEBUG_FS
2122 	xen_netback_dbg_root = debugfs_create_dir("xen-netback", NULL);
2123 	if (IS_ERR_OR_NULL(xen_netback_dbg_root))
2124 		pr_warn("Init of debugfs returned %ld!\n",
2125 			PTR_ERR(xen_netback_dbg_root));
2126 #endif /* CONFIG_DEBUG_FS */
2127 
2128 	return 0;
2129 
2130 failed_init:
2131 	return rc;
2132 }
2133 
2134 module_init(netback_init);
2135 
2136 static void __exit netback_fini(void)
2137 {
2138 #ifdef CONFIG_DEBUG_FS
2139 	if (!IS_ERR_OR_NULL(xen_netback_dbg_root))
2140 		debugfs_remove_recursive(xen_netback_dbg_root);
2141 #endif /* CONFIG_DEBUG_FS */
2142 	xenvif_xenbus_fini();
2143 }
2144 module_exit(netback_fini);
2145 
2146 MODULE_LICENSE("Dual BSD/GPL");
2147 MODULE_ALIAS("xen-backend:vif");
2148