1 /*
2  * Back-end of the driver for virtual network devices. This portion of the
3  * driver exports a 'unified' network-device interface that can be accessed
4  * by any operating system that implements a compatible front end. A
5  * reference front-end implementation can be found in:
6  *  drivers/net/xen-netfront.c
7  *
8  * Copyright (c) 2002-2005, K A Fraser
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License version 2
12  * as published by the Free Software Foundation; or, when distributed
13  * separately from the Linux kernel or incorporated into other
14  * software packages, subject to the following license:
15  *
16  * Permission is hereby granted, free of charge, to any person obtaining a copy
17  * of this source file (the "Software"), to deal in the Software without
18  * restriction, including without limitation the rights to use, copy, modify,
19  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
20  * and to permit persons to whom the Software is furnished to do so, subject to
21  * the following conditions:
22  *
23  * The above copyright notice and this permission notice shall be included in
24  * all copies or substantial portions of the Software.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
27  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
28  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
29  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
30  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
31  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32  * IN THE SOFTWARE.
33  */
34 
35 #include "common.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/if_vlan.h>
39 #include <linux/udp.h>
40 
41 #include <net/tcp.h>
42 
43 #include <xen/xen.h>
44 #include <xen/events.h>
45 #include <xen/interface/memory.h>
46 
47 #include <asm/xen/hypercall.h>
48 #include <asm/xen/page.h>
49 
50 /*
51  * This is the maximum slots a skb can have. If a guest sends a skb
52  * which exceeds this limit it is considered malicious.
53  */
54 #define FATAL_SKB_SLOTS_DEFAULT 20
55 static unsigned int fatal_skb_slots = FATAL_SKB_SLOTS_DEFAULT;
56 module_param(fatal_skb_slots, uint, 0444);
57 
58 /*
59  * To avoid confusion, we define XEN_NETBK_LEGACY_SLOTS_MAX indicating
60  * the maximum slots a valid packet can use. Now this value is defined
61  * to be XEN_NETIF_NR_SLOTS_MIN, which is supposed to be supported by
62  * all backend.
63  */
64 #define XEN_NETBK_LEGACY_SLOTS_MAX XEN_NETIF_NR_SLOTS_MIN
65 
66 typedef unsigned int pending_ring_idx_t;
67 #define INVALID_PENDING_RING_IDX (~0U)
68 
69 struct pending_tx_info {
70 	struct xen_netif_tx_request req; /* coalesced tx request */
71 	struct xenvif *vif;
72 	pending_ring_idx_t head; /* head != INVALID_PENDING_RING_IDX
73 				  * if it is head of one or more tx
74 				  * reqs
75 				  */
76 };
77 
78 struct netbk_rx_meta {
79 	int id;
80 	int size;
81 	int gso_size;
82 };
83 
84 #define MAX_PENDING_REQS 256
85 
86 /* Discriminate from any valid pending_idx value. */
87 #define INVALID_PENDING_IDX 0xFFFF
88 
89 #define MAX_BUFFER_OFFSET PAGE_SIZE
90 
91 /* extra field used in struct page */
92 union page_ext {
93 	struct {
94 #if BITS_PER_LONG < 64
95 #define IDX_WIDTH   8
96 #define GROUP_WIDTH (BITS_PER_LONG - IDX_WIDTH)
97 		unsigned int group:GROUP_WIDTH;
98 		unsigned int idx:IDX_WIDTH;
99 #else
100 		unsigned int group, idx;
101 #endif
102 	} e;
103 	void *mapping;
104 };
105 
106 struct xen_netbk {
107 	wait_queue_head_t wq;
108 	struct task_struct *task;
109 
110 	struct sk_buff_head rx_queue;
111 	struct sk_buff_head tx_queue;
112 
113 	struct timer_list net_timer;
114 
115 	struct page *mmap_pages[MAX_PENDING_REQS];
116 
117 	pending_ring_idx_t pending_prod;
118 	pending_ring_idx_t pending_cons;
119 	struct list_head net_schedule_list;
120 
121 	/* Protect the net_schedule_list in netif. */
122 	spinlock_t net_schedule_list_lock;
123 
124 	atomic_t netfront_count;
125 
126 	struct pending_tx_info pending_tx_info[MAX_PENDING_REQS];
127 	/* Coalescing tx requests before copying makes number of grant
128 	 * copy ops greater or equal to number of slots required. In
129 	 * worst case a tx request consumes 2 gnttab_copy.
130 	 */
131 	struct gnttab_copy tx_copy_ops[2*MAX_PENDING_REQS];
132 
133 	u16 pending_ring[MAX_PENDING_REQS];
134 
135 	/*
136 	 * Given MAX_BUFFER_OFFSET of 4096 the worst case is that each
137 	 * head/fragment page uses 2 copy operations because it
138 	 * straddles two buffers in the frontend.
139 	 */
140 	struct gnttab_copy grant_copy_op[2*XEN_NETIF_RX_RING_SIZE];
141 	struct netbk_rx_meta meta[2*XEN_NETIF_RX_RING_SIZE];
142 };
143 
144 static struct xen_netbk *xen_netbk;
145 static int xen_netbk_group_nr;
146 
147 /*
148  * If head != INVALID_PENDING_RING_IDX, it means this tx request is head of
149  * one or more merged tx requests, otherwise it is the continuation of
150  * previous tx request.
151  */
152 static inline int pending_tx_is_head(struct xen_netbk *netbk, RING_IDX idx)
153 {
154 	return netbk->pending_tx_info[idx].head != INVALID_PENDING_RING_IDX;
155 }
156 
157 void xen_netbk_add_xenvif(struct xenvif *vif)
158 {
159 	int i;
160 	int min_netfront_count;
161 	int min_group = 0;
162 	struct xen_netbk *netbk;
163 
164 	min_netfront_count = atomic_read(&xen_netbk[0].netfront_count);
165 	for (i = 0; i < xen_netbk_group_nr; i++) {
166 		int netfront_count = atomic_read(&xen_netbk[i].netfront_count);
167 		if (netfront_count < min_netfront_count) {
168 			min_group = i;
169 			min_netfront_count = netfront_count;
170 		}
171 	}
172 
173 	netbk = &xen_netbk[min_group];
174 
175 	vif->netbk = netbk;
176 	atomic_inc(&netbk->netfront_count);
177 }
178 
179 void xen_netbk_remove_xenvif(struct xenvif *vif)
180 {
181 	struct xen_netbk *netbk = vif->netbk;
182 	vif->netbk = NULL;
183 	atomic_dec(&netbk->netfront_count);
184 }
185 
186 static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx,
187 				  u8 status);
188 static void make_tx_response(struct xenvif *vif,
189 			     struct xen_netif_tx_request *txp,
190 			     s8       st);
191 static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif,
192 					     u16      id,
193 					     s8       st,
194 					     u16      offset,
195 					     u16      size,
196 					     u16      flags);
197 
198 static inline unsigned long idx_to_pfn(struct xen_netbk *netbk,
199 				       u16 idx)
200 {
201 	return page_to_pfn(netbk->mmap_pages[idx]);
202 }
203 
204 static inline unsigned long idx_to_kaddr(struct xen_netbk *netbk,
205 					 u16 idx)
206 {
207 	return (unsigned long)pfn_to_kaddr(idx_to_pfn(netbk, idx));
208 }
209 
210 /* extra field used in struct page */
211 static inline void set_page_ext(struct page *pg, struct xen_netbk *netbk,
212 				unsigned int idx)
213 {
214 	unsigned int group = netbk - xen_netbk;
215 	union page_ext ext = { .e = { .group = group + 1, .idx = idx } };
216 
217 	BUILD_BUG_ON(sizeof(ext) > sizeof(ext.mapping));
218 	pg->mapping = ext.mapping;
219 }
220 
221 static int get_page_ext(struct page *pg,
222 			unsigned int *pgroup, unsigned int *pidx)
223 {
224 	union page_ext ext = { .mapping = pg->mapping };
225 	struct xen_netbk *netbk;
226 	unsigned int group, idx;
227 
228 	group = ext.e.group - 1;
229 
230 	if (group < 0 || group >= xen_netbk_group_nr)
231 		return 0;
232 
233 	netbk = &xen_netbk[group];
234 
235 	idx = ext.e.idx;
236 
237 	if ((idx < 0) || (idx >= MAX_PENDING_REQS))
238 		return 0;
239 
240 	if (netbk->mmap_pages[idx] != pg)
241 		return 0;
242 
243 	*pgroup = group;
244 	*pidx = idx;
245 
246 	return 1;
247 }
248 
249 /*
250  * This is the amount of packet we copy rather than map, so that the
251  * guest can't fiddle with the contents of the headers while we do
252  * packet processing on them (netfilter, routing, etc).
253  */
254 #define PKT_PROT_LEN    (ETH_HLEN + \
255 			 VLAN_HLEN + \
256 			 sizeof(struct iphdr) + MAX_IPOPTLEN + \
257 			 sizeof(struct tcphdr) + MAX_TCP_OPTION_SPACE)
258 
259 static u16 frag_get_pending_idx(skb_frag_t *frag)
260 {
261 	return (u16)frag->page_offset;
262 }
263 
264 static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx)
265 {
266 	frag->page_offset = pending_idx;
267 }
268 
269 static inline pending_ring_idx_t pending_index(unsigned i)
270 {
271 	return i & (MAX_PENDING_REQS-1);
272 }
273 
274 static inline pending_ring_idx_t nr_pending_reqs(struct xen_netbk *netbk)
275 {
276 	return MAX_PENDING_REQS -
277 		netbk->pending_prod + netbk->pending_cons;
278 }
279 
280 static void xen_netbk_kick_thread(struct xen_netbk *netbk)
281 {
282 	wake_up(&netbk->wq);
283 }
284 
285 static int max_required_rx_slots(struct xenvif *vif)
286 {
287 	int max = DIV_ROUND_UP(vif->dev->mtu, PAGE_SIZE);
288 
289 	/* XXX FIXME: RX path dependent on MAX_SKB_FRAGS */
290 	if (vif->can_sg || vif->gso || vif->gso_prefix)
291 		max += MAX_SKB_FRAGS + 1; /* extra_info + frags */
292 
293 	return max;
294 }
295 
296 int xen_netbk_rx_ring_full(struct xenvif *vif)
297 {
298 	RING_IDX peek   = vif->rx_req_cons_peek;
299 	RING_IDX needed = max_required_rx_slots(vif);
300 
301 	return ((vif->rx.sring->req_prod - peek) < needed) ||
302 	       ((vif->rx.rsp_prod_pvt + XEN_NETIF_RX_RING_SIZE - peek) < needed);
303 }
304 
305 int xen_netbk_must_stop_queue(struct xenvif *vif)
306 {
307 	if (!xen_netbk_rx_ring_full(vif))
308 		return 0;
309 
310 	vif->rx.sring->req_event = vif->rx_req_cons_peek +
311 		max_required_rx_slots(vif);
312 	mb(); /* request notification /then/ check the queue */
313 
314 	return xen_netbk_rx_ring_full(vif);
315 }
316 
317 /*
318  * Returns true if we should start a new receive buffer instead of
319  * adding 'size' bytes to a buffer which currently contains 'offset'
320  * bytes.
321  */
322 static bool start_new_rx_buffer(int offset, unsigned long size, int head)
323 {
324 	/* simple case: we have completely filled the current buffer. */
325 	if (offset == MAX_BUFFER_OFFSET)
326 		return true;
327 
328 	/*
329 	 * complex case: start a fresh buffer if the current frag
330 	 * would overflow the current buffer but only if:
331 	 *     (i)   this frag would fit completely in the next buffer
332 	 * and (ii)  there is already some data in the current buffer
333 	 * and (iii) this is not the head buffer.
334 	 *
335 	 * Where:
336 	 * - (i) stops us splitting a frag into two copies
337 	 *   unless the frag is too large for a single buffer.
338 	 * - (ii) stops us from leaving a buffer pointlessly empty.
339 	 * - (iii) stops us leaving the first buffer
340 	 *   empty. Strictly speaking this is already covered
341 	 *   by (ii) but is explicitly checked because
342 	 *   netfront relies on the first buffer being
343 	 *   non-empty and can crash otherwise.
344 	 *
345 	 * This means we will effectively linearise small
346 	 * frags but do not needlessly split large buffers
347 	 * into multiple copies tend to give large frags their
348 	 * own buffers as before.
349 	 */
350 	if ((offset + size > MAX_BUFFER_OFFSET) &&
351 	    (size <= MAX_BUFFER_OFFSET) && offset && !head)
352 		return true;
353 
354 	return false;
355 }
356 
357 /*
358  * Figure out how many ring slots we're going to need to send @skb to
359  * the guest. This function is essentially a dry run of
360  * netbk_gop_frag_copy.
361  */
362 unsigned int xen_netbk_count_skb_slots(struct xenvif *vif, struct sk_buff *skb)
363 {
364 	unsigned int count;
365 	int i, copy_off;
366 
367 	count = DIV_ROUND_UP(skb_headlen(skb), PAGE_SIZE);
368 
369 	copy_off = skb_headlen(skb) % PAGE_SIZE;
370 
371 	if (skb_shinfo(skb)->gso_size)
372 		count++;
373 
374 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
375 		unsigned long size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
376 		unsigned long offset = skb_shinfo(skb)->frags[i].page_offset;
377 		unsigned long bytes;
378 
379 		offset &= ~PAGE_MASK;
380 
381 		while (size > 0) {
382 			BUG_ON(offset >= PAGE_SIZE);
383 			BUG_ON(copy_off > MAX_BUFFER_OFFSET);
384 
385 			bytes = PAGE_SIZE - offset;
386 
387 			if (bytes > size)
388 				bytes = size;
389 
390 			if (start_new_rx_buffer(copy_off, bytes, 0)) {
391 				count++;
392 				copy_off = 0;
393 			}
394 
395 			if (copy_off + bytes > MAX_BUFFER_OFFSET)
396 				bytes = MAX_BUFFER_OFFSET - copy_off;
397 
398 			copy_off += bytes;
399 
400 			offset += bytes;
401 			size -= bytes;
402 
403 			if (offset == PAGE_SIZE)
404 				offset = 0;
405 		}
406 	}
407 	return count;
408 }
409 
410 struct netrx_pending_operations {
411 	unsigned copy_prod, copy_cons;
412 	unsigned meta_prod, meta_cons;
413 	struct gnttab_copy *copy;
414 	struct netbk_rx_meta *meta;
415 	int copy_off;
416 	grant_ref_t copy_gref;
417 };
418 
419 static struct netbk_rx_meta *get_next_rx_buffer(struct xenvif *vif,
420 						struct netrx_pending_operations *npo)
421 {
422 	struct netbk_rx_meta *meta;
423 	struct xen_netif_rx_request *req;
424 
425 	req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
426 
427 	meta = npo->meta + npo->meta_prod++;
428 	meta->gso_size = 0;
429 	meta->size = 0;
430 	meta->id = req->id;
431 
432 	npo->copy_off = 0;
433 	npo->copy_gref = req->gref;
434 
435 	return meta;
436 }
437 
438 /*
439  * Set up the grant operations for this fragment. If it's a flipping
440  * interface, we also set up the unmap request from here.
441  */
442 static void netbk_gop_frag_copy(struct xenvif *vif, struct sk_buff *skb,
443 				struct netrx_pending_operations *npo,
444 				struct page *page, unsigned long size,
445 				unsigned long offset, int *head)
446 {
447 	struct gnttab_copy *copy_gop;
448 	struct netbk_rx_meta *meta;
449 	/*
450 	 * These variables are used iff get_page_ext returns true,
451 	 * in which case they are guaranteed to be initialized.
452 	 */
453 	unsigned int uninitialized_var(group), uninitialized_var(idx);
454 	int foreign = get_page_ext(page, &group, &idx);
455 	unsigned long bytes;
456 
457 	/* Data must not cross a page boundary. */
458 	BUG_ON(size + offset > PAGE_SIZE<<compound_order(page));
459 
460 	meta = npo->meta + npo->meta_prod - 1;
461 
462 	/* Skip unused frames from start of page */
463 	page += offset >> PAGE_SHIFT;
464 	offset &= ~PAGE_MASK;
465 
466 	while (size > 0) {
467 		BUG_ON(offset >= PAGE_SIZE);
468 		BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET);
469 
470 		bytes = PAGE_SIZE - offset;
471 
472 		if (bytes > size)
473 			bytes = size;
474 
475 		if (start_new_rx_buffer(npo->copy_off, bytes, *head)) {
476 			/*
477 			 * Netfront requires there to be some data in the head
478 			 * buffer.
479 			 */
480 			BUG_ON(*head);
481 
482 			meta = get_next_rx_buffer(vif, npo);
483 		}
484 
485 		if (npo->copy_off + bytes > MAX_BUFFER_OFFSET)
486 			bytes = MAX_BUFFER_OFFSET - npo->copy_off;
487 
488 		copy_gop = npo->copy + npo->copy_prod++;
489 		copy_gop->flags = GNTCOPY_dest_gref;
490 		if (foreign) {
491 			struct xen_netbk *netbk = &xen_netbk[group];
492 			struct pending_tx_info *src_pend;
493 
494 			src_pend = &netbk->pending_tx_info[idx];
495 
496 			copy_gop->source.domid = src_pend->vif->domid;
497 			copy_gop->source.u.ref = src_pend->req.gref;
498 			copy_gop->flags |= GNTCOPY_source_gref;
499 		} else {
500 			void *vaddr = page_address(page);
501 			copy_gop->source.domid = DOMID_SELF;
502 			copy_gop->source.u.gmfn = virt_to_mfn(vaddr);
503 		}
504 		copy_gop->source.offset = offset;
505 		copy_gop->dest.domid = vif->domid;
506 
507 		copy_gop->dest.offset = npo->copy_off;
508 		copy_gop->dest.u.ref = npo->copy_gref;
509 		copy_gop->len = bytes;
510 
511 		npo->copy_off += bytes;
512 		meta->size += bytes;
513 
514 		offset += bytes;
515 		size -= bytes;
516 
517 		/* Next frame */
518 		if (offset == PAGE_SIZE && size) {
519 			BUG_ON(!PageCompound(page));
520 			page++;
521 			offset = 0;
522 		}
523 
524 		/* Leave a gap for the GSO descriptor. */
525 		if (*head && skb_shinfo(skb)->gso_size && !vif->gso_prefix)
526 			vif->rx.req_cons++;
527 
528 		*head = 0; /* There must be something in this buffer now. */
529 
530 	}
531 }
532 
533 /*
534  * Prepare an SKB to be transmitted to the frontend.
535  *
536  * This function is responsible for allocating grant operations, meta
537  * structures, etc.
538  *
539  * It returns the number of meta structures consumed. The number of
540  * ring slots used is always equal to the number of meta slots used
541  * plus the number of GSO descriptors used. Currently, we use either
542  * zero GSO descriptors (for non-GSO packets) or one descriptor (for
543  * frontend-side LRO).
544  */
545 static int netbk_gop_skb(struct sk_buff *skb,
546 			 struct netrx_pending_operations *npo)
547 {
548 	struct xenvif *vif = netdev_priv(skb->dev);
549 	int nr_frags = skb_shinfo(skb)->nr_frags;
550 	int i;
551 	struct xen_netif_rx_request *req;
552 	struct netbk_rx_meta *meta;
553 	unsigned char *data;
554 	int head = 1;
555 	int old_meta_prod;
556 
557 	old_meta_prod = npo->meta_prod;
558 
559 	/* Set up a GSO prefix descriptor, if necessary */
560 	if (skb_shinfo(skb)->gso_size && vif->gso_prefix) {
561 		req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
562 		meta = npo->meta + npo->meta_prod++;
563 		meta->gso_size = skb_shinfo(skb)->gso_size;
564 		meta->size = 0;
565 		meta->id = req->id;
566 	}
567 
568 	req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++);
569 	meta = npo->meta + npo->meta_prod++;
570 
571 	if (!vif->gso_prefix)
572 		meta->gso_size = skb_shinfo(skb)->gso_size;
573 	else
574 		meta->gso_size = 0;
575 
576 	meta->size = 0;
577 	meta->id = req->id;
578 	npo->copy_off = 0;
579 	npo->copy_gref = req->gref;
580 
581 	data = skb->data;
582 	while (data < skb_tail_pointer(skb)) {
583 		unsigned int offset = offset_in_page(data);
584 		unsigned int len = PAGE_SIZE - offset;
585 
586 		if (data + len > skb_tail_pointer(skb))
587 			len = skb_tail_pointer(skb) - data;
588 
589 		netbk_gop_frag_copy(vif, skb, npo,
590 				    virt_to_page(data), len, offset, &head);
591 		data += len;
592 	}
593 
594 	for (i = 0; i < nr_frags; i++) {
595 		netbk_gop_frag_copy(vif, skb, npo,
596 				    skb_frag_page(&skb_shinfo(skb)->frags[i]),
597 				    skb_frag_size(&skb_shinfo(skb)->frags[i]),
598 				    skb_shinfo(skb)->frags[i].page_offset,
599 				    &head);
600 	}
601 
602 	return npo->meta_prod - old_meta_prod;
603 }
604 
605 /*
606  * This is a twin to netbk_gop_skb.  Assume that netbk_gop_skb was
607  * used to set up the operations on the top of
608  * netrx_pending_operations, which have since been done.  Check that
609  * they didn't give any errors and advance over them.
610  */
611 static int netbk_check_gop(struct xenvif *vif, int nr_meta_slots,
612 			   struct netrx_pending_operations *npo)
613 {
614 	struct gnttab_copy     *copy_op;
615 	int status = XEN_NETIF_RSP_OKAY;
616 	int i;
617 
618 	for (i = 0; i < nr_meta_slots; i++) {
619 		copy_op = npo->copy + npo->copy_cons++;
620 		if (copy_op->status != GNTST_okay) {
621 			netdev_dbg(vif->dev,
622 				   "Bad status %d from copy to DOM%d.\n",
623 				   copy_op->status, vif->domid);
624 			status = XEN_NETIF_RSP_ERROR;
625 		}
626 	}
627 
628 	return status;
629 }
630 
631 static void netbk_add_frag_responses(struct xenvif *vif, int status,
632 				     struct netbk_rx_meta *meta,
633 				     int nr_meta_slots)
634 {
635 	int i;
636 	unsigned long offset;
637 
638 	/* No fragments used */
639 	if (nr_meta_slots <= 1)
640 		return;
641 
642 	nr_meta_slots--;
643 
644 	for (i = 0; i < nr_meta_slots; i++) {
645 		int flags;
646 		if (i == nr_meta_slots - 1)
647 			flags = 0;
648 		else
649 			flags = XEN_NETRXF_more_data;
650 
651 		offset = 0;
652 		make_rx_response(vif, meta[i].id, status, offset,
653 				 meta[i].size, flags);
654 	}
655 }
656 
657 struct skb_cb_overlay {
658 	int meta_slots_used;
659 };
660 
661 static void xen_netbk_rx_action(struct xen_netbk *netbk)
662 {
663 	struct xenvif *vif = NULL, *tmp;
664 	s8 status;
665 	u16 flags;
666 	struct xen_netif_rx_response *resp;
667 	struct sk_buff_head rxq;
668 	struct sk_buff *skb;
669 	LIST_HEAD(notify);
670 	int ret;
671 	int nr_frags;
672 	int count;
673 	unsigned long offset;
674 	struct skb_cb_overlay *sco;
675 
676 	struct netrx_pending_operations npo = {
677 		.copy  = netbk->grant_copy_op,
678 		.meta  = netbk->meta,
679 	};
680 
681 	skb_queue_head_init(&rxq);
682 
683 	count = 0;
684 
685 	while ((skb = skb_dequeue(&netbk->rx_queue)) != NULL) {
686 		vif = netdev_priv(skb->dev);
687 		nr_frags = skb_shinfo(skb)->nr_frags;
688 
689 		sco = (struct skb_cb_overlay *)skb->cb;
690 		sco->meta_slots_used = netbk_gop_skb(skb, &npo);
691 
692 		count += nr_frags + 1;
693 
694 		__skb_queue_tail(&rxq, skb);
695 
696 		/* Filled the batch queue? */
697 		/* XXX FIXME: RX path dependent on MAX_SKB_FRAGS */
698 		if (count + MAX_SKB_FRAGS >= XEN_NETIF_RX_RING_SIZE)
699 			break;
700 	}
701 
702 	BUG_ON(npo.meta_prod > ARRAY_SIZE(netbk->meta));
703 
704 	if (!npo.copy_prod)
705 		return;
706 
707 	BUG_ON(npo.copy_prod > ARRAY_SIZE(netbk->grant_copy_op));
708 	gnttab_batch_copy(netbk->grant_copy_op, npo.copy_prod);
709 
710 	while ((skb = __skb_dequeue(&rxq)) != NULL) {
711 		sco = (struct skb_cb_overlay *)skb->cb;
712 
713 		vif = netdev_priv(skb->dev);
714 
715 		if (netbk->meta[npo.meta_cons].gso_size && vif->gso_prefix) {
716 			resp = RING_GET_RESPONSE(&vif->rx,
717 						vif->rx.rsp_prod_pvt++);
718 
719 			resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data;
720 
721 			resp->offset = netbk->meta[npo.meta_cons].gso_size;
722 			resp->id = netbk->meta[npo.meta_cons].id;
723 			resp->status = sco->meta_slots_used;
724 
725 			npo.meta_cons++;
726 			sco->meta_slots_used--;
727 		}
728 
729 
730 		vif->dev->stats.tx_bytes += skb->len;
731 		vif->dev->stats.tx_packets++;
732 
733 		status = netbk_check_gop(vif, sco->meta_slots_used, &npo);
734 
735 		if (sco->meta_slots_used == 1)
736 			flags = 0;
737 		else
738 			flags = XEN_NETRXF_more_data;
739 
740 		if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */
741 			flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated;
742 		else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
743 			/* remote but checksummed. */
744 			flags |= XEN_NETRXF_data_validated;
745 
746 		offset = 0;
747 		resp = make_rx_response(vif, netbk->meta[npo.meta_cons].id,
748 					status, offset,
749 					netbk->meta[npo.meta_cons].size,
750 					flags);
751 
752 		if (netbk->meta[npo.meta_cons].gso_size && !vif->gso_prefix) {
753 			struct xen_netif_extra_info *gso =
754 				(struct xen_netif_extra_info *)
755 				RING_GET_RESPONSE(&vif->rx,
756 						  vif->rx.rsp_prod_pvt++);
757 
758 			resp->flags |= XEN_NETRXF_extra_info;
759 
760 			gso->u.gso.size = netbk->meta[npo.meta_cons].gso_size;
761 			gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
762 			gso->u.gso.pad = 0;
763 			gso->u.gso.features = 0;
764 
765 			gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
766 			gso->flags = 0;
767 		}
768 
769 		netbk_add_frag_responses(vif, status,
770 					 netbk->meta + npo.meta_cons + 1,
771 					 sco->meta_slots_used);
772 
773 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->rx, ret);
774 
775 		xenvif_notify_tx_completion(vif);
776 
777 		if (ret && list_empty(&vif->notify_list))
778 			list_add_tail(&vif->notify_list, &notify);
779 		else
780 			xenvif_put(vif);
781 		npo.meta_cons += sco->meta_slots_used;
782 		dev_kfree_skb(skb);
783 	}
784 
785 	list_for_each_entry_safe(vif, tmp, &notify, notify_list) {
786 		notify_remote_via_irq(vif->irq);
787 		list_del_init(&vif->notify_list);
788 		xenvif_put(vif);
789 	}
790 
791 	/* More work to do? */
792 	if (!skb_queue_empty(&netbk->rx_queue) &&
793 			!timer_pending(&netbk->net_timer))
794 		xen_netbk_kick_thread(netbk);
795 }
796 
797 void xen_netbk_queue_tx_skb(struct xenvif *vif, struct sk_buff *skb)
798 {
799 	struct xen_netbk *netbk = vif->netbk;
800 
801 	skb_queue_tail(&netbk->rx_queue, skb);
802 
803 	xen_netbk_kick_thread(netbk);
804 }
805 
806 static void xen_netbk_alarm(unsigned long data)
807 {
808 	struct xen_netbk *netbk = (struct xen_netbk *)data;
809 	xen_netbk_kick_thread(netbk);
810 }
811 
812 static int __on_net_schedule_list(struct xenvif *vif)
813 {
814 	return !list_empty(&vif->schedule_list);
815 }
816 
817 /* Must be called with net_schedule_list_lock held */
818 static void remove_from_net_schedule_list(struct xenvif *vif)
819 {
820 	if (likely(__on_net_schedule_list(vif))) {
821 		list_del_init(&vif->schedule_list);
822 		xenvif_put(vif);
823 	}
824 }
825 
826 static struct xenvif *poll_net_schedule_list(struct xen_netbk *netbk)
827 {
828 	struct xenvif *vif = NULL;
829 
830 	spin_lock_irq(&netbk->net_schedule_list_lock);
831 	if (list_empty(&netbk->net_schedule_list))
832 		goto out;
833 
834 	vif = list_first_entry(&netbk->net_schedule_list,
835 			       struct xenvif, schedule_list);
836 	if (!vif)
837 		goto out;
838 
839 	xenvif_get(vif);
840 
841 	remove_from_net_schedule_list(vif);
842 out:
843 	spin_unlock_irq(&netbk->net_schedule_list_lock);
844 	return vif;
845 }
846 
847 void xen_netbk_schedule_xenvif(struct xenvif *vif)
848 {
849 	unsigned long flags;
850 	struct xen_netbk *netbk = vif->netbk;
851 
852 	if (__on_net_schedule_list(vif))
853 		goto kick;
854 
855 	spin_lock_irqsave(&netbk->net_schedule_list_lock, flags);
856 	if (!__on_net_schedule_list(vif) &&
857 	    likely(xenvif_schedulable(vif))) {
858 		list_add_tail(&vif->schedule_list, &netbk->net_schedule_list);
859 		xenvif_get(vif);
860 	}
861 	spin_unlock_irqrestore(&netbk->net_schedule_list_lock, flags);
862 
863 kick:
864 	smp_mb();
865 	if ((nr_pending_reqs(netbk) < (MAX_PENDING_REQS/2)) &&
866 	    !list_empty(&netbk->net_schedule_list))
867 		xen_netbk_kick_thread(netbk);
868 }
869 
870 void xen_netbk_deschedule_xenvif(struct xenvif *vif)
871 {
872 	struct xen_netbk *netbk = vif->netbk;
873 	spin_lock_irq(&netbk->net_schedule_list_lock);
874 	remove_from_net_schedule_list(vif);
875 	spin_unlock_irq(&netbk->net_schedule_list_lock);
876 }
877 
878 void xen_netbk_check_rx_xenvif(struct xenvif *vif)
879 {
880 	int more_to_do;
881 
882 	RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, more_to_do);
883 
884 	if (more_to_do)
885 		xen_netbk_schedule_xenvif(vif);
886 }
887 
888 static void tx_add_credit(struct xenvif *vif)
889 {
890 	unsigned long max_burst, max_credit;
891 
892 	/*
893 	 * Allow a burst big enough to transmit a jumbo packet of up to 128kB.
894 	 * Otherwise the interface can seize up due to insufficient credit.
895 	 */
896 	max_burst = RING_GET_REQUEST(&vif->tx, vif->tx.req_cons)->size;
897 	max_burst = min(max_burst, 131072UL);
898 	max_burst = max(max_burst, vif->credit_bytes);
899 
900 	/* Take care that adding a new chunk of credit doesn't wrap to zero. */
901 	max_credit = vif->remaining_credit + vif->credit_bytes;
902 	if (max_credit < vif->remaining_credit)
903 		max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */
904 
905 	vif->remaining_credit = min(max_credit, max_burst);
906 }
907 
908 static void tx_credit_callback(unsigned long data)
909 {
910 	struct xenvif *vif = (struct xenvif *)data;
911 	tx_add_credit(vif);
912 	xen_netbk_check_rx_xenvif(vif);
913 }
914 
915 static void netbk_tx_err(struct xenvif *vif,
916 			 struct xen_netif_tx_request *txp, RING_IDX end)
917 {
918 	RING_IDX cons = vif->tx.req_cons;
919 
920 	do {
921 		make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR);
922 		if (cons == end)
923 			break;
924 		txp = RING_GET_REQUEST(&vif->tx, cons++);
925 	} while (1);
926 	vif->tx.req_cons = cons;
927 	xen_netbk_check_rx_xenvif(vif);
928 	xenvif_put(vif);
929 }
930 
931 static void netbk_fatal_tx_err(struct xenvif *vif)
932 {
933 	netdev_err(vif->dev, "fatal error; disabling device\n");
934 	xenvif_carrier_off(vif);
935 	xenvif_put(vif);
936 }
937 
938 static int netbk_count_requests(struct xenvif *vif,
939 				struct xen_netif_tx_request *first,
940 				struct xen_netif_tx_request *txp,
941 				int work_to_do)
942 {
943 	RING_IDX cons = vif->tx.req_cons;
944 	int slots = 0;
945 	int drop_err = 0;
946 	int more_data;
947 
948 	if (!(first->flags & XEN_NETTXF_more_data))
949 		return 0;
950 
951 	do {
952 		struct xen_netif_tx_request dropped_tx = { 0 };
953 
954 		if (slots >= work_to_do) {
955 			netdev_err(vif->dev,
956 				   "Asked for %d slots but exceeds this limit\n",
957 				   work_to_do);
958 			netbk_fatal_tx_err(vif);
959 			return -ENODATA;
960 		}
961 
962 		/* This guest is really using too many slots and
963 		 * considered malicious.
964 		 */
965 		if (unlikely(slots >= fatal_skb_slots)) {
966 			netdev_err(vif->dev,
967 				   "Malicious frontend using %d slots, threshold %u\n",
968 				   slots, fatal_skb_slots);
969 			netbk_fatal_tx_err(vif);
970 			return -E2BIG;
971 		}
972 
973 		/* Xen network protocol had implicit dependency on
974 		 * MAX_SKB_FRAGS. XEN_NETBK_LEGACY_SLOTS_MAX is set to
975 		 * the historical MAX_SKB_FRAGS value 18 to honor the
976 		 * same behavior as before. Any packet using more than
977 		 * 18 slots but less than fatal_skb_slots slots is
978 		 * dropped
979 		 */
980 		if (!drop_err && slots >= XEN_NETBK_LEGACY_SLOTS_MAX) {
981 			if (net_ratelimit())
982 				netdev_dbg(vif->dev,
983 					   "Too many slots (%d) exceeding limit (%d), dropping packet\n",
984 					   slots, XEN_NETBK_LEGACY_SLOTS_MAX);
985 			drop_err = -E2BIG;
986 		}
987 
988 		if (drop_err)
989 			txp = &dropped_tx;
990 
991 		memcpy(txp, RING_GET_REQUEST(&vif->tx, cons + slots),
992 		       sizeof(*txp));
993 
994 		/* If the guest submitted a frame >= 64 KiB then
995 		 * first->size overflowed and following slots will
996 		 * appear to be larger than the frame.
997 		 *
998 		 * This cannot be fatal error as there are buggy
999 		 * frontends that do this.
1000 		 *
1001 		 * Consume all slots and drop the packet.
1002 		 */
1003 		if (!drop_err && txp->size > first->size) {
1004 			if (net_ratelimit())
1005 				netdev_dbg(vif->dev,
1006 					   "Invalid tx request, slot size %u > remaining size %u\n",
1007 					   txp->size, first->size);
1008 			drop_err = -EIO;
1009 		}
1010 
1011 		first->size -= txp->size;
1012 		slots++;
1013 
1014 		if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) {
1015 			netdev_err(vif->dev, "Cross page boundary, txp->offset: %x, size: %u\n",
1016 				 txp->offset, txp->size);
1017 			netbk_fatal_tx_err(vif);
1018 			return -EINVAL;
1019 		}
1020 
1021 		more_data = txp->flags & XEN_NETTXF_more_data;
1022 
1023 		if (!drop_err)
1024 			txp++;
1025 
1026 	} while (more_data);
1027 
1028 	if (drop_err) {
1029 		netbk_tx_err(vif, first, cons + slots);
1030 		return drop_err;
1031 	}
1032 
1033 	return slots;
1034 }
1035 
1036 static struct page *xen_netbk_alloc_page(struct xen_netbk *netbk,
1037 					 u16 pending_idx)
1038 {
1039 	struct page *page;
1040 	page = alloc_page(GFP_KERNEL|__GFP_COLD);
1041 	if (!page)
1042 		return NULL;
1043 	set_page_ext(page, netbk, pending_idx);
1044 	netbk->mmap_pages[pending_idx] = page;
1045 	return page;
1046 }
1047 
1048 static struct gnttab_copy *xen_netbk_get_requests(struct xen_netbk *netbk,
1049 						  struct xenvif *vif,
1050 						  struct sk_buff *skb,
1051 						  struct xen_netif_tx_request *txp,
1052 						  struct gnttab_copy *gop)
1053 {
1054 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1055 	skb_frag_t *frags = shinfo->frags;
1056 	u16 pending_idx = *((u16 *)skb->data);
1057 	u16 head_idx = 0;
1058 	int slot, start;
1059 	struct page *page;
1060 	pending_ring_idx_t index, start_idx = 0;
1061 	uint16_t dst_offset;
1062 	unsigned int nr_slots;
1063 	struct pending_tx_info *first = NULL;
1064 
1065 	/* At this point shinfo->nr_frags is in fact the number of
1066 	 * slots, which can be as large as XEN_NETBK_LEGACY_SLOTS_MAX.
1067 	 */
1068 	nr_slots = shinfo->nr_frags;
1069 
1070 	/* Skip first skb fragment if it is on same page as header fragment. */
1071 	start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
1072 
1073 	/* Coalesce tx requests, at this point the packet passed in
1074 	 * should be <= 64K. Any packets larger than 64K have been
1075 	 * handled in netbk_count_requests().
1076 	 */
1077 	for (shinfo->nr_frags = slot = start; slot < nr_slots;
1078 	     shinfo->nr_frags++) {
1079 		struct pending_tx_info *pending_tx_info =
1080 			netbk->pending_tx_info;
1081 
1082 		page = alloc_page(GFP_KERNEL|__GFP_COLD);
1083 		if (!page)
1084 			goto err;
1085 
1086 		dst_offset = 0;
1087 		first = NULL;
1088 		while (dst_offset < PAGE_SIZE && slot < nr_slots) {
1089 			gop->flags = GNTCOPY_source_gref;
1090 
1091 			gop->source.u.ref = txp->gref;
1092 			gop->source.domid = vif->domid;
1093 			gop->source.offset = txp->offset;
1094 
1095 			gop->dest.domid = DOMID_SELF;
1096 
1097 			gop->dest.offset = dst_offset;
1098 			gop->dest.u.gmfn = virt_to_mfn(page_address(page));
1099 
1100 			if (dst_offset + txp->size > PAGE_SIZE) {
1101 				/* This page can only merge a portion
1102 				 * of tx request. Do not increment any
1103 				 * pointer / counter here. The txp
1104 				 * will be dealt with in future
1105 				 * rounds, eventually hitting the
1106 				 * `else` branch.
1107 				 */
1108 				gop->len = PAGE_SIZE - dst_offset;
1109 				txp->offset += gop->len;
1110 				txp->size -= gop->len;
1111 				dst_offset += gop->len; /* quit loop */
1112 			} else {
1113 				/* This tx request can be merged in the page */
1114 				gop->len = txp->size;
1115 				dst_offset += gop->len;
1116 
1117 				index = pending_index(netbk->pending_cons++);
1118 
1119 				pending_idx = netbk->pending_ring[index];
1120 
1121 				memcpy(&pending_tx_info[pending_idx].req, txp,
1122 				       sizeof(*txp));
1123 				xenvif_get(vif);
1124 
1125 				pending_tx_info[pending_idx].vif = vif;
1126 
1127 				/* Poison these fields, corresponding
1128 				 * fields for head tx req will be set
1129 				 * to correct values after the loop.
1130 				 */
1131 				netbk->mmap_pages[pending_idx] = (void *)(~0UL);
1132 				pending_tx_info[pending_idx].head =
1133 					INVALID_PENDING_RING_IDX;
1134 
1135 				if (!first) {
1136 					first = &pending_tx_info[pending_idx];
1137 					start_idx = index;
1138 					head_idx = pending_idx;
1139 				}
1140 
1141 				txp++;
1142 				slot++;
1143 			}
1144 
1145 			gop++;
1146 		}
1147 
1148 		first->req.offset = 0;
1149 		first->req.size = dst_offset;
1150 		first->head = start_idx;
1151 		set_page_ext(page, netbk, head_idx);
1152 		netbk->mmap_pages[head_idx] = page;
1153 		frag_set_pending_idx(&frags[shinfo->nr_frags], head_idx);
1154 	}
1155 
1156 	BUG_ON(shinfo->nr_frags > MAX_SKB_FRAGS);
1157 
1158 	return gop;
1159 err:
1160 	/* Unwind, freeing all pages and sending error responses. */
1161 	while (shinfo->nr_frags-- > start) {
1162 		xen_netbk_idx_release(netbk,
1163 				frag_get_pending_idx(&frags[shinfo->nr_frags]),
1164 				XEN_NETIF_RSP_ERROR);
1165 	}
1166 	/* The head too, if necessary. */
1167 	if (start)
1168 		xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
1169 
1170 	return NULL;
1171 }
1172 
1173 static int xen_netbk_tx_check_gop(struct xen_netbk *netbk,
1174 				  struct sk_buff *skb,
1175 				  struct gnttab_copy **gopp)
1176 {
1177 	struct gnttab_copy *gop = *gopp;
1178 	u16 pending_idx = *((u16 *)skb->data);
1179 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1180 	struct pending_tx_info *tx_info;
1181 	int nr_frags = shinfo->nr_frags;
1182 	int i, err, start;
1183 	u16 peek; /* peek into next tx request */
1184 
1185 	/* Check status of header. */
1186 	err = gop->status;
1187 	if (unlikely(err))
1188 		xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
1189 
1190 	/* Skip first skb fragment if it is on same page as header fragment. */
1191 	start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx);
1192 
1193 	for (i = start; i < nr_frags; i++) {
1194 		int j, newerr;
1195 		pending_ring_idx_t head;
1196 
1197 		pending_idx = frag_get_pending_idx(&shinfo->frags[i]);
1198 		tx_info = &netbk->pending_tx_info[pending_idx];
1199 		head = tx_info->head;
1200 
1201 		/* Check error status: if okay then remember grant handle. */
1202 		do {
1203 			newerr = (++gop)->status;
1204 			if (newerr)
1205 				break;
1206 			peek = netbk->pending_ring[pending_index(++head)];
1207 		} while (!pending_tx_is_head(netbk, peek));
1208 
1209 		if (likely(!newerr)) {
1210 			/* Had a previous error? Invalidate this fragment. */
1211 			if (unlikely(err))
1212 				xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
1213 			continue;
1214 		}
1215 
1216 		/* Error on this fragment: respond to client with an error. */
1217 		xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR);
1218 
1219 		/* Not the first error? Preceding frags already invalidated. */
1220 		if (err)
1221 			continue;
1222 
1223 		/* First error: invalidate header and preceding fragments. */
1224 		pending_idx = *((u16 *)skb->data);
1225 		xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
1226 		for (j = start; j < i; j++) {
1227 			pending_idx = frag_get_pending_idx(&shinfo->frags[j]);
1228 			xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
1229 		}
1230 
1231 		/* Remember the error: invalidate all subsequent fragments. */
1232 		err = newerr;
1233 	}
1234 
1235 	*gopp = gop + 1;
1236 	return err;
1237 }
1238 
1239 static void xen_netbk_fill_frags(struct xen_netbk *netbk, struct sk_buff *skb)
1240 {
1241 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1242 	int nr_frags = shinfo->nr_frags;
1243 	int i;
1244 
1245 	for (i = 0; i < nr_frags; i++) {
1246 		skb_frag_t *frag = shinfo->frags + i;
1247 		struct xen_netif_tx_request *txp;
1248 		struct page *page;
1249 		u16 pending_idx;
1250 
1251 		pending_idx = frag_get_pending_idx(frag);
1252 
1253 		txp = &netbk->pending_tx_info[pending_idx].req;
1254 		page = virt_to_page(idx_to_kaddr(netbk, pending_idx));
1255 		__skb_fill_page_desc(skb, i, page, txp->offset, txp->size);
1256 		skb->len += txp->size;
1257 		skb->data_len += txp->size;
1258 		skb->truesize += txp->size;
1259 
1260 		/* Take an extra reference to offset xen_netbk_idx_release */
1261 		get_page(netbk->mmap_pages[pending_idx]);
1262 		xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
1263 	}
1264 }
1265 
1266 static int xen_netbk_get_extras(struct xenvif *vif,
1267 				struct xen_netif_extra_info *extras,
1268 				int work_to_do)
1269 {
1270 	struct xen_netif_extra_info extra;
1271 	RING_IDX cons = vif->tx.req_cons;
1272 
1273 	do {
1274 		if (unlikely(work_to_do-- <= 0)) {
1275 			netdev_err(vif->dev, "Missing extra info\n");
1276 			netbk_fatal_tx_err(vif);
1277 			return -EBADR;
1278 		}
1279 
1280 		memcpy(&extra, RING_GET_REQUEST(&vif->tx, cons),
1281 		       sizeof(extra));
1282 		if (unlikely(!extra.type ||
1283 			     extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1284 			vif->tx.req_cons = ++cons;
1285 			netdev_err(vif->dev,
1286 				   "Invalid extra type: %d\n", extra.type);
1287 			netbk_fatal_tx_err(vif);
1288 			return -EINVAL;
1289 		}
1290 
1291 		memcpy(&extras[extra.type - 1], &extra, sizeof(extra));
1292 		vif->tx.req_cons = ++cons;
1293 	} while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE);
1294 
1295 	return work_to_do;
1296 }
1297 
1298 static int netbk_set_skb_gso(struct xenvif *vif,
1299 			     struct sk_buff *skb,
1300 			     struct xen_netif_extra_info *gso)
1301 {
1302 	if (!gso->u.gso.size) {
1303 		netdev_err(vif->dev, "GSO size must not be zero.\n");
1304 		netbk_fatal_tx_err(vif);
1305 		return -EINVAL;
1306 	}
1307 
1308 	/* Currently only TCPv4 S.O. is supported. */
1309 	if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) {
1310 		netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type);
1311 		netbk_fatal_tx_err(vif);
1312 		return -EINVAL;
1313 	}
1314 
1315 	skb_shinfo(skb)->gso_size = gso->u.gso.size;
1316 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1317 
1318 	/* Header must be checked, and gso_segs computed. */
1319 	skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
1320 	skb_shinfo(skb)->gso_segs = 0;
1321 
1322 	return 0;
1323 }
1324 
1325 static int checksum_setup(struct xenvif *vif, struct sk_buff *skb)
1326 {
1327 	struct iphdr *iph;
1328 	int err = -EPROTO;
1329 	int recalculate_partial_csum = 0;
1330 
1331 	/*
1332 	 * A GSO SKB must be CHECKSUM_PARTIAL. However some buggy
1333 	 * peers can fail to set NETRXF_csum_blank when sending a GSO
1334 	 * frame. In this case force the SKB to CHECKSUM_PARTIAL and
1335 	 * recalculate the partial checksum.
1336 	 */
1337 	if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) {
1338 		vif->rx_gso_checksum_fixup++;
1339 		skb->ip_summed = CHECKSUM_PARTIAL;
1340 		recalculate_partial_csum = 1;
1341 	}
1342 
1343 	/* A non-CHECKSUM_PARTIAL SKB does not require setup. */
1344 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1345 		return 0;
1346 
1347 	if (skb->protocol != htons(ETH_P_IP))
1348 		goto out;
1349 
1350 	iph = (void *)skb->data;
1351 	switch (iph->protocol) {
1352 	case IPPROTO_TCP:
1353 		if (!skb_partial_csum_set(skb, 4 * iph->ihl,
1354 					  offsetof(struct tcphdr, check)))
1355 			goto out;
1356 
1357 		if (recalculate_partial_csum) {
1358 			struct tcphdr *tcph = tcp_hdr(skb);
1359 			tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1360 							 skb->len - iph->ihl*4,
1361 							 IPPROTO_TCP, 0);
1362 		}
1363 		break;
1364 	case IPPROTO_UDP:
1365 		if (!skb_partial_csum_set(skb, 4 * iph->ihl,
1366 					  offsetof(struct udphdr, check)))
1367 			goto out;
1368 
1369 		if (recalculate_partial_csum) {
1370 			struct udphdr *udph = udp_hdr(skb);
1371 			udph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1372 							 skb->len - iph->ihl*4,
1373 							 IPPROTO_UDP, 0);
1374 		}
1375 		break;
1376 	default:
1377 		if (net_ratelimit())
1378 			netdev_err(vif->dev,
1379 				   "Attempting to checksum a non-TCP/UDP packet, dropping a protocol %d packet\n",
1380 				   iph->protocol);
1381 		goto out;
1382 	}
1383 
1384 	err = 0;
1385 
1386 out:
1387 	return err;
1388 }
1389 
1390 static bool tx_credit_exceeded(struct xenvif *vif, unsigned size)
1391 {
1392 	unsigned long now = jiffies;
1393 	unsigned long next_credit =
1394 		vif->credit_timeout.expires +
1395 		msecs_to_jiffies(vif->credit_usec / 1000);
1396 
1397 	/* Timer could already be pending in rare cases. */
1398 	if (timer_pending(&vif->credit_timeout))
1399 		return true;
1400 
1401 	/* Passed the point where we can replenish credit? */
1402 	if (time_after_eq(now, next_credit)) {
1403 		vif->credit_timeout.expires = now;
1404 		tx_add_credit(vif);
1405 	}
1406 
1407 	/* Still too big to send right now? Set a callback. */
1408 	if (size > vif->remaining_credit) {
1409 		vif->credit_timeout.data     =
1410 			(unsigned long)vif;
1411 		vif->credit_timeout.function =
1412 			tx_credit_callback;
1413 		mod_timer(&vif->credit_timeout,
1414 			  next_credit);
1415 
1416 		return true;
1417 	}
1418 
1419 	return false;
1420 }
1421 
1422 static unsigned xen_netbk_tx_build_gops(struct xen_netbk *netbk)
1423 {
1424 	struct gnttab_copy *gop = netbk->tx_copy_ops, *request_gop;
1425 	struct sk_buff *skb;
1426 	int ret;
1427 
1428 	while ((nr_pending_reqs(netbk) + XEN_NETBK_LEGACY_SLOTS_MAX
1429 		< MAX_PENDING_REQS) &&
1430 		!list_empty(&netbk->net_schedule_list)) {
1431 		struct xenvif *vif;
1432 		struct xen_netif_tx_request txreq;
1433 		struct xen_netif_tx_request txfrags[XEN_NETBK_LEGACY_SLOTS_MAX];
1434 		struct page *page;
1435 		struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1];
1436 		u16 pending_idx;
1437 		RING_IDX idx;
1438 		int work_to_do;
1439 		unsigned int data_len;
1440 		pending_ring_idx_t index;
1441 
1442 		/* Get a netif from the list with work to do. */
1443 		vif = poll_net_schedule_list(netbk);
1444 		/* This can sometimes happen because the test of
1445 		 * list_empty(net_schedule_list) at the top of the
1446 		 * loop is unlocked.  Just go back and have another
1447 		 * look.
1448 		 */
1449 		if (!vif)
1450 			continue;
1451 
1452 		if (vif->tx.sring->req_prod - vif->tx.req_cons >
1453 		    XEN_NETIF_TX_RING_SIZE) {
1454 			netdev_err(vif->dev,
1455 				   "Impossible number of requests. "
1456 				   "req_prod %d, req_cons %d, size %ld\n",
1457 				   vif->tx.sring->req_prod, vif->tx.req_cons,
1458 				   XEN_NETIF_TX_RING_SIZE);
1459 			netbk_fatal_tx_err(vif);
1460 			continue;
1461 		}
1462 
1463 		RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, work_to_do);
1464 		if (!work_to_do) {
1465 			xenvif_put(vif);
1466 			continue;
1467 		}
1468 
1469 		idx = vif->tx.req_cons;
1470 		rmb(); /* Ensure that we see the request before we copy it. */
1471 		memcpy(&txreq, RING_GET_REQUEST(&vif->tx, idx), sizeof(txreq));
1472 
1473 		/* Credit-based scheduling. */
1474 		if (txreq.size > vif->remaining_credit &&
1475 		    tx_credit_exceeded(vif, txreq.size)) {
1476 			xenvif_put(vif);
1477 			continue;
1478 		}
1479 
1480 		vif->remaining_credit -= txreq.size;
1481 
1482 		work_to_do--;
1483 		vif->tx.req_cons = ++idx;
1484 
1485 		memset(extras, 0, sizeof(extras));
1486 		if (txreq.flags & XEN_NETTXF_extra_info) {
1487 			work_to_do = xen_netbk_get_extras(vif, extras,
1488 							  work_to_do);
1489 			idx = vif->tx.req_cons;
1490 			if (unlikely(work_to_do < 0))
1491 				continue;
1492 		}
1493 
1494 		ret = netbk_count_requests(vif, &txreq, txfrags, work_to_do);
1495 		if (unlikely(ret < 0))
1496 			continue;
1497 
1498 		idx += ret;
1499 
1500 		if (unlikely(txreq.size < ETH_HLEN)) {
1501 			netdev_dbg(vif->dev,
1502 				   "Bad packet size: %d\n", txreq.size);
1503 			netbk_tx_err(vif, &txreq, idx);
1504 			continue;
1505 		}
1506 
1507 		/* No crossing a page as the payload mustn't fragment. */
1508 		if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) {
1509 			netdev_err(vif->dev,
1510 				   "txreq.offset: %x, size: %u, end: %lu\n",
1511 				   txreq.offset, txreq.size,
1512 				   (txreq.offset&~PAGE_MASK) + txreq.size);
1513 			netbk_fatal_tx_err(vif);
1514 			continue;
1515 		}
1516 
1517 		index = pending_index(netbk->pending_cons);
1518 		pending_idx = netbk->pending_ring[index];
1519 
1520 		data_len = (txreq.size > PKT_PROT_LEN &&
1521 			    ret < XEN_NETBK_LEGACY_SLOTS_MAX) ?
1522 			PKT_PROT_LEN : txreq.size;
1523 
1524 		skb = alloc_skb(data_len + NET_SKB_PAD + NET_IP_ALIGN,
1525 				GFP_ATOMIC | __GFP_NOWARN);
1526 		if (unlikely(skb == NULL)) {
1527 			netdev_dbg(vif->dev,
1528 				   "Can't allocate a skb in start_xmit.\n");
1529 			netbk_tx_err(vif, &txreq, idx);
1530 			break;
1531 		}
1532 
1533 		/* Packets passed to netif_rx() must have some headroom. */
1534 		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
1535 
1536 		if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
1537 			struct xen_netif_extra_info *gso;
1538 			gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
1539 
1540 			if (netbk_set_skb_gso(vif, skb, gso)) {
1541 				/* Failure in netbk_set_skb_gso is fatal. */
1542 				kfree_skb(skb);
1543 				continue;
1544 			}
1545 		}
1546 
1547 		/* XXX could copy straight to head */
1548 		page = xen_netbk_alloc_page(netbk, pending_idx);
1549 		if (!page) {
1550 			kfree_skb(skb);
1551 			netbk_tx_err(vif, &txreq, idx);
1552 			continue;
1553 		}
1554 
1555 		gop->source.u.ref = txreq.gref;
1556 		gop->source.domid = vif->domid;
1557 		gop->source.offset = txreq.offset;
1558 
1559 		gop->dest.u.gmfn = virt_to_mfn(page_address(page));
1560 		gop->dest.domid = DOMID_SELF;
1561 		gop->dest.offset = txreq.offset;
1562 
1563 		gop->len = txreq.size;
1564 		gop->flags = GNTCOPY_source_gref;
1565 
1566 		gop++;
1567 
1568 		memcpy(&netbk->pending_tx_info[pending_idx].req,
1569 		       &txreq, sizeof(txreq));
1570 		netbk->pending_tx_info[pending_idx].vif = vif;
1571 		netbk->pending_tx_info[pending_idx].head = index;
1572 		*((u16 *)skb->data) = pending_idx;
1573 
1574 		__skb_put(skb, data_len);
1575 
1576 		skb_shinfo(skb)->nr_frags = ret;
1577 		if (data_len < txreq.size) {
1578 			skb_shinfo(skb)->nr_frags++;
1579 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1580 					     pending_idx);
1581 		} else {
1582 			frag_set_pending_idx(&skb_shinfo(skb)->frags[0],
1583 					     INVALID_PENDING_IDX);
1584 		}
1585 
1586 		netbk->pending_cons++;
1587 
1588 		request_gop = xen_netbk_get_requests(netbk, vif,
1589 						     skb, txfrags, gop);
1590 		if (request_gop == NULL) {
1591 			kfree_skb(skb);
1592 			netbk_tx_err(vif, &txreq, idx);
1593 			continue;
1594 		}
1595 		gop = request_gop;
1596 
1597 		__skb_queue_tail(&netbk->tx_queue, skb);
1598 
1599 		vif->tx.req_cons = idx;
1600 		xen_netbk_check_rx_xenvif(vif);
1601 
1602 		if ((gop-netbk->tx_copy_ops) >= ARRAY_SIZE(netbk->tx_copy_ops))
1603 			break;
1604 	}
1605 
1606 	return gop - netbk->tx_copy_ops;
1607 }
1608 
1609 static void xen_netbk_tx_submit(struct xen_netbk *netbk)
1610 {
1611 	struct gnttab_copy *gop = netbk->tx_copy_ops;
1612 	struct sk_buff *skb;
1613 
1614 	while ((skb = __skb_dequeue(&netbk->tx_queue)) != NULL) {
1615 		struct xen_netif_tx_request *txp;
1616 		struct xenvif *vif;
1617 		u16 pending_idx;
1618 		unsigned data_len;
1619 
1620 		pending_idx = *((u16 *)skb->data);
1621 		vif = netbk->pending_tx_info[pending_idx].vif;
1622 		txp = &netbk->pending_tx_info[pending_idx].req;
1623 
1624 		/* Check the remap error code. */
1625 		if (unlikely(xen_netbk_tx_check_gop(netbk, skb, &gop))) {
1626 			netdev_dbg(vif->dev, "netback grant failed.\n");
1627 			skb_shinfo(skb)->nr_frags = 0;
1628 			kfree_skb(skb);
1629 			continue;
1630 		}
1631 
1632 		data_len = skb->len;
1633 		memcpy(skb->data,
1634 		       (void *)(idx_to_kaddr(netbk, pending_idx)|txp->offset),
1635 		       data_len);
1636 		if (data_len < txp->size) {
1637 			/* Append the packet payload as a fragment. */
1638 			txp->offset += data_len;
1639 			txp->size -= data_len;
1640 		} else {
1641 			/* Schedule a response immediately. */
1642 			xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY);
1643 		}
1644 
1645 		if (txp->flags & XEN_NETTXF_csum_blank)
1646 			skb->ip_summed = CHECKSUM_PARTIAL;
1647 		else if (txp->flags & XEN_NETTXF_data_validated)
1648 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1649 
1650 		xen_netbk_fill_frags(netbk, skb);
1651 
1652 		/*
1653 		 * If the initial fragment was < PKT_PROT_LEN then
1654 		 * pull through some bytes from the other fragments to
1655 		 * increase the linear region to PKT_PROT_LEN bytes.
1656 		 */
1657 		if (skb_headlen(skb) < PKT_PROT_LEN && skb_is_nonlinear(skb)) {
1658 			int target = min_t(int, skb->len, PKT_PROT_LEN);
1659 			__pskb_pull_tail(skb, target - skb_headlen(skb));
1660 		}
1661 
1662 		skb->dev      = vif->dev;
1663 		skb->protocol = eth_type_trans(skb, skb->dev);
1664 		skb_reset_network_header(skb);
1665 
1666 		if (checksum_setup(vif, skb)) {
1667 			netdev_dbg(vif->dev,
1668 				   "Can't setup checksum in net_tx_action\n");
1669 			kfree_skb(skb);
1670 			continue;
1671 		}
1672 
1673 		skb_probe_transport_header(skb, 0);
1674 
1675 		vif->dev->stats.rx_bytes += skb->len;
1676 		vif->dev->stats.rx_packets++;
1677 
1678 		xenvif_receive_skb(vif, skb);
1679 	}
1680 }
1681 
1682 /* Called after netfront has transmitted */
1683 static void xen_netbk_tx_action(struct xen_netbk *netbk)
1684 {
1685 	unsigned nr_gops;
1686 
1687 	nr_gops = xen_netbk_tx_build_gops(netbk);
1688 
1689 	if (nr_gops == 0)
1690 		return;
1691 
1692 	gnttab_batch_copy(netbk->tx_copy_ops, nr_gops);
1693 
1694 	xen_netbk_tx_submit(netbk);
1695 }
1696 
1697 static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx,
1698 				  u8 status)
1699 {
1700 	struct xenvif *vif;
1701 	struct pending_tx_info *pending_tx_info;
1702 	pending_ring_idx_t head;
1703 	u16 peek; /* peek into next tx request */
1704 
1705 	BUG_ON(netbk->mmap_pages[pending_idx] == (void *)(~0UL));
1706 
1707 	/* Already complete? */
1708 	if (netbk->mmap_pages[pending_idx] == NULL)
1709 		return;
1710 
1711 	pending_tx_info = &netbk->pending_tx_info[pending_idx];
1712 
1713 	vif = pending_tx_info->vif;
1714 	head = pending_tx_info->head;
1715 
1716 	BUG_ON(!pending_tx_is_head(netbk, head));
1717 	BUG_ON(netbk->pending_ring[pending_index(head)] != pending_idx);
1718 
1719 	do {
1720 		pending_ring_idx_t index;
1721 		pending_ring_idx_t idx = pending_index(head);
1722 		u16 info_idx = netbk->pending_ring[idx];
1723 
1724 		pending_tx_info = &netbk->pending_tx_info[info_idx];
1725 		make_tx_response(vif, &pending_tx_info->req, status);
1726 
1727 		/* Setting any number other than
1728 		 * INVALID_PENDING_RING_IDX indicates this slot is
1729 		 * starting a new packet / ending a previous packet.
1730 		 */
1731 		pending_tx_info->head = 0;
1732 
1733 		index = pending_index(netbk->pending_prod++);
1734 		netbk->pending_ring[index] = netbk->pending_ring[info_idx];
1735 
1736 		xenvif_put(vif);
1737 
1738 		peek = netbk->pending_ring[pending_index(++head)];
1739 
1740 	} while (!pending_tx_is_head(netbk, peek));
1741 
1742 	netbk->mmap_pages[pending_idx]->mapping = 0;
1743 	put_page(netbk->mmap_pages[pending_idx]);
1744 	netbk->mmap_pages[pending_idx] = NULL;
1745 }
1746 
1747 
1748 static void make_tx_response(struct xenvif *vif,
1749 			     struct xen_netif_tx_request *txp,
1750 			     s8       st)
1751 {
1752 	RING_IDX i = vif->tx.rsp_prod_pvt;
1753 	struct xen_netif_tx_response *resp;
1754 	int notify;
1755 
1756 	resp = RING_GET_RESPONSE(&vif->tx, i);
1757 	resp->id     = txp->id;
1758 	resp->status = st;
1759 
1760 	if (txp->flags & XEN_NETTXF_extra_info)
1761 		RING_GET_RESPONSE(&vif->tx, ++i)->status = XEN_NETIF_RSP_NULL;
1762 
1763 	vif->tx.rsp_prod_pvt = ++i;
1764 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->tx, notify);
1765 	if (notify)
1766 		notify_remote_via_irq(vif->irq);
1767 }
1768 
1769 static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif,
1770 					     u16      id,
1771 					     s8       st,
1772 					     u16      offset,
1773 					     u16      size,
1774 					     u16      flags)
1775 {
1776 	RING_IDX i = vif->rx.rsp_prod_pvt;
1777 	struct xen_netif_rx_response *resp;
1778 
1779 	resp = RING_GET_RESPONSE(&vif->rx, i);
1780 	resp->offset     = offset;
1781 	resp->flags      = flags;
1782 	resp->id         = id;
1783 	resp->status     = (s16)size;
1784 	if (st < 0)
1785 		resp->status = (s16)st;
1786 
1787 	vif->rx.rsp_prod_pvt = ++i;
1788 
1789 	return resp;
1790 }
1791 
1792 static inline int rx_work_todo(struct xen_netbk *netbk)
1793 {
1794 	return !skb_queue_empty(&netbk->rx_queue);
1795 }
1796 
1797 static inline int tx_work_todo(struct xen_netbk *netbk)
1798 {
1799 
1800 	if ((nr_pending_reqs(netbk) + XEN_NETBK_LEGACY_SLOTS_MAX
1801 	     < MAX_PENDING_REQS) &&
1802 	     !list_empty(&netbk->net_schedule_list))
1803 		return 1;
1804 
1805 	return 0;
1806 }
1807 
1808 static int xen_netbk_kthread(void *data)
1809 {
1810 	struct xen_netbk *netbk = data;
1811 	while (!kthread_should_stop()) {
1812 		wait_event_interruptible(netbk->wq,
1813 				rx_work_todo(netbk) ||
1814 				tx_work_todo(netbk) ||
1815 				kthread_should_stop());
1816 		cond_resched();
1817 
1818 		if (kthread_should_stop())
1819 			break;
1820 
1821 		if (rx_work_todo(netbk))
1822 			xen_netbk_rx_action(netbk);
1823 
1824 		if (tx_work_todo(netbk))
1825 			xen_netbk_tx_action(netbk);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 void xen_netbk_unmap_frontend_rings(struct xenvif *vif)
1832 {
1833 	if (vif->tx.sring)
1834 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif),
1835 					vif->tx.sring);
1836 	if (vif->rx.sring)
1837 		xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif),
1838 					vif->rx.sring);
1839 }
1840 
1841 int xen_netbk_map_frontend_rings(struct xenvif *vif,
1842 				 grant_ref_t tx_ring_ref,
1843 				 grant_ref_t rx_ring_ref)
1844 {
1845 	void *addr;
1846 	struct xen_netif_tx_sring *txs;
1847 	struct xen_netif_rx_sring *rxs;
1848 
1849 	int err = -ENOMEM;
1850 
1851 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif),
1852 				     tx_ring_ref, &addr);
1853 	if (err)
1854 		goto err;
1855 
1856 	txs = (struct xen_netif_tx_sring *)addr;
1857 	BACK_RING_INIT(&vif->tx, txs, PAGE_SIZE);
1858 
1859 	err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif),
1860 				     rx_ring_ref, &addr);
1861 	if (err)
1862 		goto err;
1863 
1864 	rxs = (struct xen_netif_rx_sring *)addr;
1865 	BACK_RING_INIT(&vif->rx, rxs, PAGE_SIZE);
1866 
1867 	vif->rx_req_cons_peek = 0;
1868 
1869 	return 0;
1870 
1871 err:
1872 	xen_netbk_unmap_frontend_rings(vif);
1873 	return err;
1874 }
1875 
1876 static int __init netback_init(void)
1877 {
1878 	int i;
1879 	int rc = 0;
1880 	int group;
1881 
1882 	if (!xen_domain())
1883 		return -ENODEV;
1884 
1885 	if (fatal_skb_slots < XEN_NETBK_LEGACY_SLOTS_MAX) {
1886 		printk(KERN_INFO
1887 		       "xen-netback: fatal_skb_slots too small (%d), bump it to XEN_NETBK_LEGACY_SLOTS_MAX (%d)\n",
1888 		       fatal_skb_slots, XEN_NETBK_LEGACY_SLOTS_MAX);
1889 		fatal_skb_slots = XEN_NETBK_LEGACY_SLOTS_MAX;
1890 	}
1891 
1892 	xen_netbk_group_nr = num_online_cpus();
1893 	xen_netbk = vzalloc(sizeof(struct xen_netbk) * xen_netbk_group_nr);
1894 	if (!xen_netbk)
1895 		return -ENOMEM;
1896 
1897 	for (group = 0; group < xen_netbk_group_nr; group++) {
1898 		struct xen_netbk *netbk = &xen_netbk[group];
1899 		skb_queue_head_init(&netbk->rx_queue);
1900 		skb_queue_head_init(&netbk->tx_queue);
1901 
1902 		init_timer(&netbk->net_timer);
1903 		netbk->net_timer.data = (unsigned long)netbk;
1904 		netbk->net_timer.function = xen_netbk_alarm;
1905 
1906 		netbk->pending_cons = 0;
1907 		netbk->pending_prod = MAX_PENDING_REQS;
1908 		for (i = 0; i < MAX_PENDING_REQS; i++)
1909 			netbk->pending_ring[i] = i;
1910 
1911 		init_waitqueue_head(&netbk->wq);
1912 		netbk->task = kthread_create(xen_netbk_kthread,
1913 					     (void *)netbk,
1914 					     "netback/%u", group);
1915 
1916 		if (IS_ERR(netbk->task)) {
1917 			printk(KERN_ALERT "kthread_create() fails at netback\n");
1918 			del_timer(&netbk->net_timer);
1919 			rc = PTR_ERR(netbk->task);
1920 			goto failed_init;
1921 		}
1922 
1923 		kthread_bind(netbk->task, group);
1924 
1925 		INIT_LIST_HEAD(&netbk->net_schedule_list);
1926 
1927 		spin_lock_init(&netbk->net_schedule_list_lock);
1928 
1929 		atomic_set(&netbk->netfront_count, 0);
1930 
1931 		wake_up_process(netbk->task);
1932 	}
1933 
1934 	rc = xenvif_xenbus_init();
1935 	if (rc)
1936 		goto failed_init;
1937 
1938 	return 0;
1939 
1940 failed_init:
1941 	while (--group >= 0) {
1942 		struct xen_netbk *netbk = &xen_netbk[group];
1943 		for (i = 0; i < MAX_PENDING_REQS; i++) {
1944 			if (netbk->mmap_pages[i])
1945 				__free_page(netbk->mmap_pages[i]);
1946 		}
1947 		del_timer(&netbk->net_timer);
1948 		kthread_stop(netbk->task);
1949 	}
1950 	vfree(xen_netbk);
1951 	return rc;
1952 
1953 }
1954 
1955 module_init(netback_init);
1956 
1957 MODULE_LICENSE("Dual BSD/GPL");
1958 MODULE_ALIAS("xen-backend:vif");
1959