1 /* 2 * Back-end of the driver for virtual network devices. This portion of the 3 * driver exports a 'unified' network-device interface that can be accessed 4 * by any operating system that implements a compatible front end. A 5 * reference front-end implementation can be found in: 6 * drivers/net/xen-netfront.c 7 * 8 * Copyright (c) 2002-2005, K A Fraser 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License version 2 12 * as published by the Free Software Foundation; or, when distributed 13 * separately from the Linux kernel or incorporated into other 14 * software packages, subject to the following license: 15 * 16 * Permission is hereby granted, free of charge, to any person obtaining a copy 17 * of this source file (the "Software"), to deal in the Software without 18 * restriction, including without limitation the rights to use, copy, modify, 19 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 20 * and to permit persons to whom the Software is furnished to do so, subject to 21 * the following conditions: 22 * 23 * The above copyright notice and this permission notice shall be included in 24 * all copies or substantial portions of the Software. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 27 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 28 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 29 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 30 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 31 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 32 * IN THE SOFTWARE. 33 */ 34 35 #include "common.h" 36 37 #include <linux/kthread.h> 38 #include <linux/if_vlan.h> 39 #include <linux/udp.h> 40 41 #include <net/tcp.h> 42 43 #include <xen/xen.h> 44 #include <xen/events.h> 45 #include <xen/interface/memory.h> 46 47 #include <asm/xen/hypercall.h> 48 #include <asm/xen/page.h> 49 50 /* 51 * This is the maximum slots a skb can have. If a guest sends a skb 52 * which exceeds this limit it is considered malicious. 53 */ 54 #define FATAL_SKB_SLOTS_DEFAULT 20 55 static unsigned int fatal_skb_slots = FATAL_SKB_SLOTS_DEFAULT; 56 module_param(fatal_skb_slots, uint, 0444); 57 58 /* 59 * To avoid confusion, we define XEN_NETBK_LEGACY_SLOTS_MAX indicating 60 * the maximum slots a valid packet can use. Now this value is defined 61 * to be XEN_NETIF_NR_SLOTS_MIN, which is supposed to be supported by 62 * all backend. 63 */ 64 #define XEN_NETBK_LEGACY_SLOTS_MAX XEN_NETIF_NR_SLOTS_MIN 65 66 typedef unsigned int pending_ring_idx_t; 67 #define INVALID_PENDING_RING_IDX (~0U) 68 69 struct pending_tx_info { 70 struct xen_netif_tx_request req; /* coalesced tx request */ 71 struct xenvif *vif; 72 pending_ring_idx_t head; /* head != INVALID_PENDING_RING_IDX 73 * if it is head of one or more tx 74 * reqs 75 */ 76 }; 77 78 struct netbk_rx_meta { 79 int id; 80 int size; 81 int gso_size; 82 }; 83 84 #define MAX_PENDING_REQS 256 85 86 /* Discriminate from any valid pending_idx value. */ 87 #define INVALID_PENDING_IDX 0xFFFF 88 89 #define MAX_BUFFER_OFFSET PAGE_SIZE 90 91 /* extra field used in struct page */ 92 union page_ext { 93 struct { 94 #if BITS_PER_LONG < 64 95 #define IDX_WIDTH 8 96 #define GROUP_WIDTH (BITS_PER_LONG - IDX_WIDTH) 97 unsigned int group:GROUP_WIDTH; 98 unsigned int idx:IDX_WIDTH; 99 #else 100 unsigned int group, idx; 101 #endif 102 } e; 103 void *mapping; 104 }; 105 106 struct xen_netbk { 107 wait_queue_head_t wq; 108 struct task_struct *task; 109 110 struct sk_buff_head rx_queue; 111 struct sk_buff_head tx_queue; 112 113 struct timer_list net_timer; 114 115 struct page *mmap_pages[MAX_PENDING_REQS]; 116 117 pending_ring_idx_t pending_prod; 118 pending_ring_idx_t pending_cons; 119 struct list_head net_schedule_list; 120 121 /* Protect the net_schedule_list in netif. */ 122 spinlock_t net_schedule_list_lock; 123 124 atomic_t netfront_count; 125 126 struct pending_tx_info pending_tx_info[MAX_PENDING_REQS]; 127 /* Coalescing tx requests before copying makes number of grant 128 * copy ops greater or equal to number of slots required. In 129 * worst case a tx request consumes 2 gnttab_copy. 130 */ 131 struct gnttab_copy tx_copy_ops[2*MAX_PENDING_REQS]; 132 133 u16 pending_ring[MAX_PENDING_REQS]; 134 135 /* 136 * Given MAX_BUFFER_OFFSET of 4096 the worst case is that each 137 * head/fragment page uses 2 copy operations because it 138 * straddles two buffers in the frontend. 139 */ 140 struct gnttab_copy grant_copy_op[2*XEN_NETIF_RX_RING_SIZE]; 141 struct netbk_rx_meta meta[2*XEN_NETIF_RX_RING_SIZE]; 142 }; 143 144 static struct xen_netbk *xen_netbk; 145 static int xen_netbk_group_nr; 146 147 /* 148 * If head != INVALID_PENDING_RING_IDX, it means this tx request is head of 149 * one or more merged tx requests, otherwise it is the continuation of 150 * previous tx request. 151 */ 152 static inline int pending_tx_is_head(struct xen_netbk *netbk, RING_IDX idx) 153 { 154 return netbk->pending_tx_info[idx].head != INVALID_PENDING_RING_IDX; 155 } 156 157 void xen_netbk_add_xenvif(struct xenvif *vif) 158 { 159 int i; 160 int min_netfront_count; 161 int min_group = 0; 162 struct xen_netbk *netbk; 163 164 min_netfront_count = atomic_read(&xen_netbk[0].netfront_count); 165 for (i = 0; i < xen_netbk_group_nr; i++) { 166 int netfront_count = atomic_read(&xen_netbk[i].netfront_count); 167 if (netfront_count < min_netfront_count) { 168 min_group = i; 169 min_netfront_count = netfront_count; 170 } 171 } 172 173 netbk = &xen_netbk[min_group]; 174 175 vif->netbk = netbk; 176 atomic_inc(&netbk->netfront_count); 177 } 178 179 void xen_netbk_remove_xenvif(struct xenvif *vif) 180 { 181 struct xen_netbk *netbk = vif->netbk; 182 vif->netbk = NULL; 183 atomic_dec(&netbk->netfront_count); 184 } 185 186 static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx, 187 u8 status); 188 static void make_tx_response(struct xenvif *vif, 189 struct xen_netif_tx_request *txp, 190 s8 st); 191 static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif, 192 u16 id, 193 s8 st, 194 u16 offset, 195 u16 size, 196 u16 flags); 197 198 static inline unsigned long idx_to_pfn(struct xen_netbk *netbk, 199 u16 idx) 200 { 201 return page_to_pfn(netbk->mmap_pages[idx]); 202 } 203 204 static inline unsigned long idx_to_kaddr(struct xen_netbk *netbk, 205 u16 idx) 206 { 207 return (unsigned long)pfn_to_kaddr(idx_to_pfn(netbk, idx)); 208 } 209 210 /* extra field used in struct page */ 211 static inline void set_page_ext(struct page *pg, struct xen_netbk *netbk, 212 unsigned int idx) 213 { 214 unsigned int group = netbk - xen_netbk; 215 union page_ext ext = { .e = { .group = group + 1, .idx = idx } }; 216 217 BUILD_BUG_ON(sizeof(ext) > sizeof(ext.mapping)); 218 pg->mapping = ext.mapping; 219 } 220 221 static int get_page_ext(struct page *pg, 222 unsigned int *pgroup, unsigned int *pidx) 223 { 224 union page_ext ext = { .mapping = pg->mapping }; 225 struct xen_netbk *netbk; 226 unsigned int group, idx; 227 228 group = ext.e.group - 1; 229 230 if (group < 0 || group >= xen_netbk_group_nr) 231 return 0; 232 233 netbk = &xen_netbk[group]; 234 235 idx = ext.e.idx; 236 237 if ((idx < 0) || (idx >= MAX_PENDING_REQS)) 238 return 0; 239 240 if (netbk->mmap_pages[idx] != pg) 241 return 0; 242 243 *pgroup = group; 244 *pidx = idx; 245 246 return 1; 247 } 248 249 /* 250 * This is the amount of packet we copy rather than map, so that the 251 * guest can't fiddle with the contents of the headers while we do 252 * packet processing on them (netfilter, routing, etc). 253 */ 254 #define PKT_PROT_LEN (ETH_HLEN + \ 255 VLAN_HLEN + \ 256 sizeof(struct iphdr) + MAX_IPOPTLEN + \ 257 sizeof(struct tcphdr) + MAX_TCP_OPTION_SPACE) 258 259 static u16 frag_get_pending_idx(skb_frag_t *frag) 260 { 261 return (u16)frag->page_offset; 262 } 263 264 static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx) 265 { 266 frag->page_offset = pending_idx; 267 } 268 269 static inline pending_ring_idx_t pending_index(unsigned i) 270 { 271 return i & (MAX_PENDING_REQS-1); 272 } 273 274 static inline pending_ring_idx_t nr_pending_reqs(struct xen_netbk *netbk) 275 { 276 return MAX_PENDING_REQS - 277 netbk->pending_prod + netbk->pending_cons; 278 } 279 280 static void xen_netbk_kick_thread(struct xen_netbk *netbk) 281 { 282 wake_up(&netbk->wq); 283 } 284 285 static int max_required_rx_slots(struct xenvif *vif) 286 { 287 int max = DIV_ROUND_UP(vif->dev->mtu, PAGE_SIZE); 288 289 /* XXX FIXME: RX path dependent on MAX_SKB_FRAGS */ 290 if (vif->can_sg || vif->gso || vif->gso_prefix) 291 max += MAX_SKB_FRAGS + 1; /* extra_info + frags */ 292 293 return max; 294 } 295 296 int xen_netbk_rx_ring_full(struct xenvif *vif) 297 { 298 RING_IDX peek = vif->rx_req_cons_peek; 299 RING_IDX needed = max_required_rx_slots(vif); 300 301 return ((vif->rx.sring->req_prod - peek) < needed) || 302 ((vif->rx.rsp_prod_pvt + XEN_NETIF_RX_RING_SIZE - peek) < needed); 303 } 304 305 int xen_netbk_must_stop_queue(struct xenvif *vif) 306 { 307 if (!xen_netbk_rx_ring_full(vif)) 308 return 0; 309 310 vif->rx.sring->req_event = vif->rx_req_cons_peek + 311 max_required_rx_slots(vif); 312 mb(); /* request notification /then/ check the queue */ 313 314 return xen_netbk_rx_ring_full(vif); 315 } 316 317 /* 318 * Returns true if we should start a new receive buffer instead of 319 * adding 'size' bytes to a buffer which currently contains 'offset' 320 * bytes. 321 */ 322 static bool start_new_rx_buffer(int offset, unsigned long size, int head) 323 { 324 /* simple case: we have completely filled the current buffer. */ 325 if (offset == MAX_BUFFER_OFFSET) 326 return true; 327 328 /* 329 * complex case: start a fresh buffer if the current frag 330 * would overflow the current buffer but only if: 331 * (i) this frag would fit completely in the next buffer 332 * and (ii) there is already some data in the current buffer 333 * and (iii) this is not the head buffer. 334 * 335 * Where: 336 * - (i) stops us splitting a frag into two copies 337 * unless the frag is too large for a single buffer. 338 * - (ii) stops us from leaving a buffer pointlessly empty. 339 * - (iii) stops us leaving the first buffer 340 * empty. Strictly speaking this is already covered 341 * by (ii) but is explicitly checked because 342 * netfront relies on the first buffer being 343 * non-empty and can crash otherwise. 344 * 345 * This means we will effectively linearise small 346 * frags but do not needlessly split large buffers 347 * into multiple copies tend to give large frags their 348 * own buffers as before. 349 */ 350 if ((offset + size > MAX_BUFFER_OFFSET) && 351 (size <= MAX_BUFFER_OFFSET) && offset && !head) 352 return true; 353 354 return false; 355 } 356 357 /* 358 * Figure out how many ring slots we're going to need to send @skb to 359 * the guest. This function is essentially a dry run of 360 * netbk_gop_frag_copy. 361 */ 362 unsigned int xen_netbk_count_skb_slots(struct xenvif *vif, struct sk_buff *skb) 363 { 364 unsigned int count; 365 int i, copy_off; 366 367 count = DIV_ROUND_UP(skb_headlen(skb), PAGE_SIZE); 368 369 copy_off = skb_headlen(skb) % PAGE_SIZE; 370 371 if (skb_shinfo(skb)->gso_size) 372 count++; 373 374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 375 unsigned long size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 376 unsigned long offset = skb_shinfo(skb)->frags[i].page_offset; 377 unsigned long bytes; 378 379 offset &= ~PAGE_MASK; 380 381 while (size > 0) { 382 BUG_ON(offset >= PAGE_SIZE); 383 BUG_ON(copy_off > MAX_BUFFER_OFFSET); 384 385 bytes = PAGE_SIZE - offset; 386 387 if (bytes > size) 388 bytes = size; 389 390 if (start_new_rx_buffer(copy_off, bytes, 0)) { 391 count++; 392 copy_off = 0; 393 } 394 395 if (copy_off + bytes > MAX_BUFFER_OFFSET) 396 bytes = MAX_BUFFER_OFFSET - copy_off; 397 398 copy_off += bytes; 399 400 offset += bytes; 401 size -= bytes; 402 403 if (offset == PAGE_SIZE) 404 offset = 0; 405 } 406 } 407 return count; 408 } 409 410 struct netrx_pending_operations { 411 unsigned copy_prod, copy_cons; 412 unsigned meta_prod, meta_cons; 413 struct gnttab_copy *copy; 414 struct netbk_rx_meta *meta; 415 int copy_off; 416 grant_ref_t copy_gref; 417 }; 418 419 static struct netbk_rx_meta *get_next_rx_buffer(struct xenvif *vif, 420 struct netrx_pending_operations *npo) 421 { 422 struct netbk_rx_meta *meta; 423 struct xen_netif_rx_request *req; 424 425 req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); 426 427 meta = npo->meta + npo->meta_prod++; 428 meta->gso_size = 0; 429 meta->size = 0; 430 meta->id = req->id; 431 432 npo->copy_off = 0; 433 npo->copy_gref = req->gref; 434 435 return meta; 436 } 437 438 /* 439 * Set up the grant operations for this fragment. If it's a flipping 440 * interface, we also set up the unmap request from here. 441 */ 442 static void netbk_gop_frag_copy(struct xenvif *vif, struct sk_buff *skb, 443 struct netrx_pending_operations *npo, 444 struct page *page, unsigned long size, 445 unsigned long offset, int *head) 446 { 447 struct gnttab_copy *copy_gop; 448 struct netbk_rx_meta *meta; 449 /* 450 * These variables are used iff get_page_ext returns true, 451 * in which case they are guaranteed to be initialized. 452 */ 453 unsigned int uninitialized_var(group), uninitialized_var(idx); 454 int foreign = get_page_ext(page, &group, &idx); 455 unsigned long bytes; 456 457 /* Data must not cross a page boundary. */ 458 BUG_ON(size + offset > PAGE_SIZE<<compound_order(page)); 459 460 meta = npo->meta + npo->meta_prod - 1; 461 462 /* Skip unused frames from start of page */ 463 page += offset >> PAGE_SHIFT; 464 offset &= ~PAGE_MASK; 465 466 while (size > 0) { 467 BUG_ON(offset >= PAGE_SIZE); 468 BUG_ON(npo->copy_off > MAX_BUFFER_OFFSET); 469 470 bytes = PAGE_SIZE - offset; 471 472 if (bytes > size) 473 bytes = size; 474 475 if (start_new_rx_buffer(npo->copy_off, bytes, *head)) { 476 /* 477 * Netfront requires there to be some data in the head 478 * buffer. 479 */ 480 BUG_ON(*head); 481 482 meta = get_next_rx_buffer(vif, npo); 483 } 484 485 if (npo->copy_off + bytes > MAX_BUFFER_OFFSET) 486 bytes = MAX_BUFFER_OFFSET - npo->copy_off; 487 488 copy_gop = npo->copy + npo->copy_prod++; 489 copy_gop->flags = GNTCOPY_dest_gref; 490 if (foreign) { 491 struct xen_netbk *netbk = &xen_netbk[group]; 492 struct pending_tx_info *src_pend; 493 494 src_pend = &netbk->pending_tx_info[idx]; 495 496 copy_gop->source.domid = src_pend->vif->domid; 497 copy_gop->source.u.ref = src_pend->req.gref; 498 copy_gop->flags |= GNTCOPY_source_gref; 499 } else { 500 void *vaddr = page_address(page); 501 copy_gop->source.domid = DOMID_SELF; 502 copy_gop->source.u.gmfn = virt_to_mfn(vaddr); 503 } 504 copy_gop->source.offset = offset; 505 copy_gop->dest.domid = vif->domid; 506 507 copy_gop->dest.offset = npo->copy_off; 508 copy_gop->dest.u.ref = npo->copy_gref; 509 copy_gop->len = bytes; 510 511 npo->copy_off += bytes; 512 meta->size += bytes; 513 514 offset += bytes; 515 size -= bytes; 516 517 /* Next frame */ 518 if (offset == PAGE_SIZE && size) { 519 BUG_ON(!PageCompound(page)); 520 page++; 521 offset = 0; 522 } 523 524 /* Leave a gap for the GSO descriptor. */ 525 if (*head && skb_shinfo(skb)->gso_size && !vif->gso_prefix) 526 vif->rx.req_cons++; 527 528 *head = 0; /* There must be something in this buffer now. */ 529 530 } 531 } 532 533 /* 534 * Prepare an SKB to be transmitted to the frontend. 535 * 536 * This function is responsible for allocating grant operations, meta 537 * structures, etc. 538 * 539 * It returns the number of meta structures consumed. The number of 540 * ring slots used is always equal to the number of meta slots used 541 * plus the number of GSO descriptors used. Currently, we use either 542 * zero GSO descriptors (for non-GSO packets) or one descriptor (for 543 * frontend-side LRO). 544 */ 545 static int netbk_gop_skb(struct sk_buff *skb, 546 struct netrx_pending_operations *npo) 547 { 548 struct xenvif *vif = netdev_priv(skb->dev); 549 int nr_frags = skb_shinfo(skb)->nr_frags; 550 int i; 551 struct xen_netif_rx_request *req; 552 struct netbk_rx_meta *meta; 553 unsigned char *data; 554 int head = 1; 555 int old_meta_prod; 556 557 old_meta_prod = npo->meta_prod; 558 559 /* Set up a GSO prefix descriptor, if necessary */ 560 if (skb_shinfo(skb)->gso_size && vif->gso_prefix) { 561 req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); 562 meta = npo->meta + npo->meta_prod++; 563 meta->gso_size = skb_shinfo(skb)->gso_size; 564 meta->size = 0; 565 meta->id = req->id; 566 } 567 568 req = RING_GET_REQUEST(&vif->rx, vif->rx.req_cons++); 569 meta = npo->meta + npo->meta_prod++; 570 571 if (!vif->gso_prefix) 572 meta->gso_size = skb_shinfo(skb)->gso_size; 573 else 574 meta->gso_size = 0; 575 576 meta->size = 0; 577 meta->id = req->id; 578 npo->copy_off = 0; 579 npo->copy_gref = req->gref; 580 581 data = skb->data; 582 while (data < skb_tail_pointer(skb)) { 583 unsigned int offset = offset_in_page(data); 584 unsigned int len = PAGE_SIZE - offset; 585 586 if (data + len > skb_tail_pointer(skb)) 587 len = skb_tail_pointer(skb) - data; 588 589 netbk_gop_frag_copy(vif, skb, npo, 590 virt_to_page(data), len, offset, &head); 591 data += len; 592 } 593 594 for (i = 0; i < nr_frags; i++) { 595 netbk_gop_frag_copy(vif, skb, npo, 596 skb_frag_page(&skb_shinfo(skb)->frags[i]), 597 skb_frag_size(&skb_shinfo(skb)->frags[i]), 598 skb_shinfo(skb)->frags[i].page_offset, 599 &head); 600 } 601 602 return npo->meta_prod - old_meta_prod; 603 } 604 605 /* 606 * This is a twin to netbk_gop_skb. Assume that netbk_gop_skb was 607 * used to set up the operations on the top of 608 * netrx_pending_operations, which have since been done. Check that 609 * they didn't give any errors and advance over them. 610 */ 611 static int netbk_check_gop(struct xenvif *vif, int nr_meta_slots, 612 struct netrx_pending_operations *npo) 613 { 614 struct gnttab_copy *copy_op; 615 int status = XEN_NETIF_RSP_OKAY; 616 int i; 617 618 for (i = 0; i < nr_meta_slots; i++) { 619 copy_op = npo->copy + npo->copy_cons++; 620 if (copy_op->status != GNTST_okay) { 621 netdev_dbg(vif->dev, 622 "Bad status %d from copy to DOM%d.\n", 623 copy_op->status, vif->domid); 624 status = XEN_NETIF_RSP_ERROR; 625 } 626 } 627 628 return status; 629 } 630 631 static void netbk_add_frag_responses(struct xenvif *vif, int status, 632 struct netbk_rx_meta *meta, 633 int nr_meta_slots) 634 { 635 int i; 636 unsigned long offset; 637 638 /* No fragments used */ 639 if (nr_meta_slots <= 1) 640 return; 641 642 nr_meta_slots--; 643 644 for (i = 0; i < nr_meta_slots; i++) { 645 int flags; 646 if (i == nr_meta_slots - 1) 647 flags = 0; 648 else 649 flags = XEN_NETRXF_more_data; 650 651 offset = 0; 652 make_rx_response(vif, meta[i].id, status, offset, 653 meta[i].size, flags); 654 } 655 } 656 657 struct skb_cb_overlay { 658 int meta_slots_used; 659 }; 660 661 static void xen_netbk_rx_action(struct xen_netbk *netbk) 662 { 663 struct xenvif *vif = NULL, *tmp; 664 s8 status; 665 u16 irq, flags; 666 struct xen_netif_rx_response *resp; 667 struct sk_buff_head rxq; 668 struct sk_buff *skb; 669 LIST_HEAD(notify); 670 int ret; 671 int nr_frags; 672 int count; 673 unsigned long offset; 674 struct skb_cb_overlay *sco; 675 676 struct netrx_pending_operations npo = { 677 .copy = netbk->grant_copy_op, 678 .meta = netbk->meta, 679 }; 680 681 skb_queue_head_init(&rxq); 682 683 count = 0; 684 685 while ((skb = skb_dequeue(&netbk->rx_queue)) != NULL) { 686 vif = netdev_priv(skb->dev); 687 nr_frags = skb_shinfo(skb)->nr_frags; 688 689 sco = (struct skb_cb_overlay *)skb->cb; 690 sco->meta_slots_used = netbk_gop_skb(skb, &npo); 691 692 count += nr_frags + 1; 693 694 __skb_queue_tail(&rxq, skb); 695 696 /* Filled the batch queue? */ 697 /* XXX FIXME: RX path dependent on MAX_SKB_FRAGS */ 698 if (count + MAX_SKB_FRAGS >= XEN_NETIF_RX_RING_SIZE) 699 break; 700 } 701 702 BUG_ON(npo.meta_prod > ARRAY_SIZE(netbk->meta)); 703 704 if (!npo.copy_prod) 705 return; 706 707 BUG_ON(npo.copy_prod > ARRAY_SIZE(netbk->grant_copy_op)); 708 gnttab_batch_copy(netbk->grant_copy_op, npo.copy_prod); 709 710 while ((skb = __skb_dequeue(&rxq)) != NULL) { 711 sco = (struct skb_cb_overlay *)skb->cb; 712 713 vif = netdev_priv(skb->dev); 714 715 if (netbk->meta[npo.meta_cons].gso_size && vif->gso_prefix) { 716 resp = RING_GET_RESPONSE(&vif->rx, 717 vif->rx.rsp_prod_pvt++); 718 719 resp->flags = XEN_NETRXF_gso_prefix | XEN_NETRXF_more_data; 720 721 resp->offset = netbk->meta[npo.meta_cons].gso_size; 722 resp->id = netbk->meta[npo.meta_cons].id; 723 resp->status = sco->meta_slots_used; 724 725 npo.meta_cons++; 726 sco->meta_slots_used--; 727 } 728 729 730 vif->dev->stats.tx_bytes += skb->len; 731 vif->dev->stats.tx_packets++; 732 733 status = netbk_check_gop(vif, sco->meta_slots_used, &npo); 734 735 if (sco->meta_slots_used == 1) 736 flags = 0; 737 else 738 flags = XEN_NETRXF_more_data; 739 740 if (skb->ip_summed == CHECKSUM_PARTIAL) /* local packet? */ 741 flags |= XEN_NETRXF_csum_blank | XEN_NETRXF_data_validated; 742 else if (skb->ip_summed == CHECKSUM_UNNECESSARY) 743 /* remote but checksummed. */ 744 flags |= XEN_NETRXF_data_validated; 745 746 offset = 0; 747 resp = make_rx_response(vif, netbk->meta[npo.meta_cons].id, 748 status, offset, 749 netbk->meta[npo.meta_cons].size, 750 flags); 751 752 if (netbk->meta[npo.meta_cons].gso_size && !vif->gso_prefix) { 753 struct xen_netif_extra_info *gso = 754 (struct xen_netif_extra_info *) 755 RING_GET_RESPONSE(&vif->rx, 756 vif->rx.rsp_prod_pvt++); 757 758 resp->flags |= XEN_NETRXF_extra_info; 759 760 gso->u.gso.size = netbk->meta[npo.meta_cons].gso_size; 761 gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 762 gso->u.gso.pad = 0; 763 gso->u.gso.features = 0; 764 765 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 766 gso->flags = 0; 767 } 768 769 netbk_add_frag_responses(vif, status, 770 netbk->meta + npo.meta_cons + 1, 771 sco->meta_slots_used); 772 773 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->rx, ret); 774 irq = vif->irq; 775 if (ret && list_empty(&vif->notify_list)) 776 list_add_tail(&vif->notify_list, ¬ify); 777 778 xenvif_notify_tx_completion(vif); 779 780 xenvif_put(vif); 781 npo.meta_cons += sco->meta_slots_used; 782 dev_kfree_skb(skb); 783 } 784 785 list_for_each_entry_safe(vif, tmp, ¬ify, notify_list) { 786 notify_remote_via_irq(vif->irq); 787 list_del_init(&vif->notify_list); 788 } 789 790 /* More work to do? */ 791 if (!skb_queue_empty(&netbk->rx_queue) && 792 !timer_pending(&netbk->net_timer)) 793 xen_netbk_kick_thread(netbk); 794 } 795 796 void xen_netbk_queue_tx_skb(struct xenvif *vif, struct sk_buff *skb) 797 { 798 struct xen_netbk *netbk = vif->netbk; 799 800 skb_queue_tail(&netbk->rx_queue, skb); 801 802 xen_netbk_kick_thread(netbk); 803 } 804 805 static void xen_netbk_alarm(unsigned long data) 806 { 807 struct xen_netbk *netbk = (struct xen_netbk *)data; 808 xen_netbk_kick_thread(netbk); 809 } 810 811 static int __on_net_schedule_list(struct xenvif *vif) 812 { 813 return !list_empty(&vif->schedule_list); 814 } 815 816 /* Must be called with net_schedule_list_lock held */ 817 static void remove_from_net_schedule_list(struct xenvif *vif) 818 { 819 if (likely(__on_net_schedule_list(vif))) { 820 list_del_init(&vif->schedule_list); 821 xenvif_put(vif); 822 } 823 } 824 825 static struct xenvif *poll_net_schedule_list(struct xen_netbk *netbk) 826 { 827 struct xenvif *vif = NULL; 828 829 spin_lock_irq(&netbk->net_schedule_list_lock); 830 if (list_empty(&netbk->net_schedule_list)) 831 goto out; 832 833 vif = list_first_entry(&netbk->net_schedule_list, 834 struct xenvif, schedule_list); 835 if (!vif) 836 goto out; 837 838 xenvif_get(vif); 839 840 remove_from_net_schedule_list(vif); 841 out: 842 spin_unlock_irq(&netbk->net_schedule_list_lock); 843 return vif; 844 } 845 846 void xen_netbk_schedule_xenvif(struct xenvif *vif) 847 { 848 unsigned long flags; 849 struct xen_netbk *netbk = vif->netbk; 850 851 if (__on_net_schedule_list(vif)) 852 goto kick; 853 854 spin_lock_irqsave(&netbk->net_schedule_list_lock, flags); 855 if (!__on_net_schedule_list(vif) && 856 likely(xenvif_schedulable(vif))) { 857 list_add_tail(&vif->schedule_list, &netbk->net_schedule_list); 858 xenvif_get(vif); 859 } 860 spin_unlock_irqrestore(&netbk->net_schedule_list_lock, flags); 861 862 kick: 863 smp_mb(); 864 if ((nr_pending_reqs(netbk) < (MAX_PENDING_REQS/2)) && 865 !list_empty(&netbk->net_schedule_list)) 866 xen_netbk_kick_thread(netbk); 867 } 868 869 void xen_netbk_deschedule_xenvif(struct xenvif *vif) 870 { 871 struct xen_netbk *netbk = vif->netbk; 872 spin_lock_irq(&netbk->net_schedule_list_lock); 873 remove_from_net_schedule_list(vif); 874 spin_unlock_irq(&netbk->net_schedule_list_lock); 875 } 876 877 void xen_netbk_check_rx_xenvif(struct xenvif *vif) 878 { 879 int more_to_do; 880 881 RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, more_to_do); 882 883 if (more_to_do) 884 xen_netbk_schedule_xenvif(vif); 885 } 886 887 static void tx_add_credit(struct xenvif *vif) 888 { 889 unsigned long max_burst, max_credit; 890 891 /* 892 * Allow a burst big enough to transmit a jumbo packet of up to 128kB. 893 * Otherwise the interface can seize up due to insufficient credit. 894 */ 895 max_burst = RING_GET_REQUEST(&vif->tx, vif->tx.req_cons)->size; 896 max_burst = min(max_burst, 131072UL); 897 max_burst = max(max_burst, vif->credit_bytes); 898 899 /* Take care that adding a new chunk of credit doesn't wrap to zero. */ 900 max_credit = vif->remaining_credit + vif->credit_bytes; 901 if (max_credit < vif->remaining_credit) 902 max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */ 903 904 vif->remaining_credit = min(max_credit, max_burst); 905 } 906 907 static void tx_credit_callback(unsigned long data) 908 { 909 struct xenvif *vif = (struct xenvif *)data; 910 tx_add_credit(vif); 911 xen_netbk_check_rx_xenvif(vif); 912 } 913 914 static void netbk_tx_err(struct xenvif *vif, 915 struct xen_netif_tx_request *txp, RING_IDX end) 916 { 917 RING_IDX cons = vif->tx.req_cons; 918 919 do { 920 make_tx_response(vif, txp, XEN_NETIF_RSP_ERROR); 921 if (cons == end) 922 break; 923 txp = RING_GET_REQUEST(&vif->tx, cons++); 924 } while (1); 925 vif->tx.req_cons = cons; 926 xen_netbk_check_rx_xenvif(vif); 927 xenvif_put(vif); 928 } 929 930 static void netbk_fatal_tx_err(struct xenvif *vif) 931 { 932 netdev_err(vif->dev, "fatal error; disabling device\n"); 933 xenvif_carrier_off(vif); 934 xenvif_put(vif); 935 } 936 937 static int netbk_count_requests(struct xenvif *vif, 938 struct xen_netif_tx_request *first, 939 struct xen_netif_tx_request *txp, 940 int work_to_do) 941 { 942 RING_IDX cons = vif->tx.req_cons; 943 int slots = 0; 944 int drop_err = 0; 945 int more_data; 946 947 if (!(first->flags & XEN_NETTXF_more_data)) 948 return 0; 949 950 do { 951 struct xen_netif_tx_request dropped_tx = { 0 }; 952 953 if (slots >= work_to_do) { 954 netdev_err(vif->dev, 955 "Asked for %d slots but exceeds this limit\n", 956 work_to_do); 957 netbk_fatal_tx_err(vif); 958 return -ENODATA; 959 } 960 961 /* This guest is really using too many slots and 962 * considered malicious. 963 */ 964 if (unlikely(slots >= fatal_skb_slots)) { 965 netdev_err(vif->dev, 966 "Malicious frontend using %d slots, threshold %u\n", 967 slots, fatal_skb_slots); 968 netbk_fatal_tx_err(vif); 969 return -E2BIG; 970 } 971 972 /* Xen network protocol had implicit dependency on 973 * MAX_SKB_FRAGS. XEN_NETBK_LEGACY_SLOTS_MAX is set to 974 * the historical MAX_SKB_FRAGS value 18 to honor the 975 * same behavior as before. Any packet using more than 976 * 18 slots but less than fatal_skb_slots slots is 977 * dropped 978 */ 979 if (!drop_err && slots >= XEN_NETBK_LEGACY_SLOTS_MAX) { 980 if (net_ratelimit()) 981 netdev_dbg(vif->dev, 982 "Too many slots (%d) exceeding limit (%d), dropping packet\n", 983 slots, XEN_NETBK_LEGACY_SLOTS_MAX); 984 drop_err = -E2BIG; 985 } 986 987 if (drop_err) 988 txp = &dropped_tx; 989 990 memcpy(txp, RING_GET_REQUEST(&vif->tx, cons + slots), 991 sizeof(*txp)); 992 993 /* If the guest submitted a frame >= 64 KiB then 994 * first->size overflowed and following slots will 995 * appear to be larger than the frame. 996 * 997 * This cannot be fatal error as there are buggy 998 * frontends that do this. 999 * 1000 * Consume all slots and drop the packet. 1001 */ 1002 if (!drop_err && txp->size > first->size) { 1003 if (net_ratelimit()) 1004 netdev_dbg(vif->dev, 1005 "Invalid tx request, slot size %u > remaining size %u\n", 1006 txp->size, first->size); 1007 drop_err = -EIO; 1008 } 1009 1010 first->size -= txp->size; 1011 slots++; 1012 1013 if (unlikely((txp->offset + txp->size) > PAGE_SIZE)) { 1014 netdev_err(vif->dev, "Cross page boundary, txp->offset: %x, size: %u\n", 1015 txp->offset, txp->size); 1016 netbk_fatal_tx_err(vif); 1017 return -EINVAL; 1018 } 1019 1020 more_data = txp->flags & XEN_NETTXF_more_data; 1021 1022 if (!drop_err) 1023 txp++; 1024 1025 } while (more_data); 1026 1027 if (drop_err) { 1028 netbk_tx_err(vif, first, cons + slots); 1029 return drop_err; 1030 } 1031 1032 return slots; 1033 } 1034 1035 static struct page *xen_netbk_alloc_page(struct xen_netbk *netbk, 1036 u16 pending_idx) 1037 { 1038 struct page *page; 1039 page = alloc_page(GFP_KERNEL|__GFP_COLD); 1040 if (!page) 1041 return NULL; 1042 set_page_ext(page, netbk, pending_idx); 1043 netbk->mmap_pages[pending_idx] = page; 1044 return page; 1045 } 1046 1047 static struct gnttab_copy *xen_netbk_get_requests(struct xen_netbk *netbk, 1048 struct xenvif *vif, 1049 struct sk_buff *skb, 1050 struct xen_netif_tx_request *txp, 1051 struct gnttab_copy *gop) 1052 { 1053 struct skb_shared_info *shinfo = skb_shinfo(skb); 1054 skb_frag_t *frags = shinfo->frags; 1055 u16 pending_idx = *((u16 *)skb->data); 1056 u16 head_idx = 0; 1057 int slot, start; 1058 struct page *page; 1059 pending_ring_idx_t index, start_idx = 0; 1060 uint16_t dst_offset; 1061 unsigned int nr_slots; 1062 struct pending_tx_info *first = NULL; 1063 1064 /* At this point shinfo->nr_frags is in fact the number of 1065 * slots, which can be as large as XEN_NETBK_LEGACY_SLOTS_MAX. 1066 */ 1067 nr_slots = shinfo->nr_frags; 1068 1069 /* Skip first skb fragment if it is on same page as header fragment. */ 1070 start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx); 1071 1072 /* Coalesce tx requests, at this point the packet passed in 1073 * should be <= 64K. Any packets larger than 64K have been 1074 * handled in netbk_count_requests(). 1075 */ 1076 for (shinfo->nr_frags = slot = start; slot < nr_slots; 1077 shinfo->nr_frags++) { 1078 struct pending_tx_info *pending_tx_info = 1079 netbk->pending_tx_info; 1080 1081 page = alloc_page(GFP_KERNEL|__GFP_COLD); 1082 if (!page) 1083 goto err; 1084 1085 dst_offset = 0; 1086 first = NULL; 1087 while (dst_offset < PAGE_SIZE && slot < nr_slots) { 1088 gop->flags = GNTCOPY_source_gref; 1089 1090 gop->source.u.ref = txp->gref; 1091 gop->source.domid = vif->domid; 1092 gop->source.offset = txp->offset; 1093 1094 gop->dest.domid = DOMID_SELF; 1095 1096 gop->dest.offset = dst_offset; 1097 gop->dest.u.gmfn = virt_to_mfn(page_address(page)); 1098 1099 if (dst_offset + txp->size > PAGE_SIZE) { 1100 /* This page can only merge a portion 1101 * of tx request. Do not increment any 1102 * pointer / counter here. The txp 1103 * will be dealt with in future 1104 * rounds, eventually hitting the 1105 * `else` branch. 1106 */ 1107 gop->len = PAGE_SIZE - dst_offset; 1108 txp->offset += gop->len; 1109 txp->size -= gop->len; 1110 dst_offset += gop->len; /* quit loop */ 1111 } else { 1112 /* This tx request can be merged in the page */ 1113 gop->len = txp->size; 1114 dst_offset += gop->len; 1115 1116 index = pending_index(netbk->pending_cons++); 1117 1118 pending_idx = netbk->pending_ring[index]; 1119 1120 memcpy(&pending_tx_info[pending_idx].req, txp, 1121 sizeof(*txp)); 1122 xenvif_get(vif); 1123 1124 pending_tx_info[pending_idx].vif = vif; 1125 1126 /* Poison these fields, corresponding 1127 * fields for head tx req will be set 1128 * to correct values after the loop. 1129 */ 1130 netbk->mmap_pages[pending_idx] = (void *)(~0UL); 1131 pending_tx_info[pending_idx].head = 1132 INVALID_PENDING_RING_IDX; 1133 1134 if (!first) { 1135 first = &pending_tx_info[pending_idx]; 1136 start_idx = index; 1137 head_idx = pending_idx; 1138 } 1139 1140 txp++; 1141 slot++; 1142 } 1143 1144 gop++; 1145 } 1146 1147 first->req.offset = 0; 1148 first->req.size = dst_offset; 1149 first->head = start_idx; 1150 set_page_ext(page, netbk, head_idx); 1151 netbk->mmap_pages[head_idx] = page; 1152 frag_set_pending_idx(&frags[shinfo->nr_frags], head_idx); 1153 } 1154 1155 BUG_ON(shinfo->nr_frags > MAX_SKB_FRAGS); 1156 1157 return gop; 1158 err: 1159 /* Unwind, freeing all pages and sending error responses. */ 1160 while (shinfo->nr_frags-- > start) { 1161 xen_netbk_idx_release(netbk, 1162 frag_get_pending_idx(&frags[shinfo->nr_frags]), 1163 XEN_NETIF_RSP_ERROR); 1164 } 1165 /* The head too, if necessary. */ 1166 if (start) 1167 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR); 1168 1169 return NULL; 1170 } 1171 1172 static int xen_netbk_tx_check_gop(struct xen_netbk *netbk, 1173 struct sk_buff *skb, 1174 struct gnttab_copy **gopp) 1175 { 1176 struct gnttab_copy *gop = *gopp; 1177 u16 pending_idx = *((u16 *)skb->data); 1178 struct skb_shared_info *shinfo = skb_shinfo(skb); 1179 struct pending_tx_info *tx_info; 1180 int nr_frags = shinfo->nr_frags; 1181 int i, err, start; 1182 u16 peek; /* peek into next tx request */ 1183 1184 /* Check status of header. */ 1185 err = gop->status; 1186 if (unlikely(err)) 1187 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR); 1188 1189 /* Skip first skb fragment if it is on same page as header fragment. */ 1190 start = (frag_get_pending_idx(&shinfo->frags[0]) == pending_idx); 1191 1192 for (i = start; i < nr_frags; i++) { 1193 int j, newerr; 1194 pending_ring_idx_t head; 1195 1196 pending_idx = frag_get_pending_idx(&shinfo->frags[i]); 1197 tx_info = &netbk->pending_tx_info[pending_idx]; 1198 head = tx_info->head; 1199 1200 /* Check error status: if okay then remember grant handle. */ 1201 do { 1202 newerr = (++gop)->status; 1203 if (newerr) 1204 break; 1205 peek = netbk->pending_ring[pending_index(++head)]; 1206 } while (!pending_tx_is_head(netbk, peek)); 1207 1208 if (likely(!newerr)) { 1209 /* Had a previous error? Invalidate this fragment. */ 1210 if (unlikely(err)) 1211 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY); 1212 continue; 1213 } 1214 1215 /* Error on this fragment: respond to client with an error. */ 1216 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_ERROR); 1217 1218 /* Not the first error? Preceding frags already invalidated. */ 1219 if (err) 1220 continue; 1221 1222 /* First error: invalidate header and preceding fragments. */ 1223 pending_idx = *((u16 *)skb->data); 1224 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY); 1225 for (j = start; j < i; j++) { 1226 pending_idx = frag_get_pending_idx(&shinfo->frags[j]); 1227 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY); 1228 } 1229 1230 /* Remember the error: invalidate all subsequent fragments. */ 1231 err = newerr; 1232 } 1233 1234 *gopp = gop + 1; 1235 return err; 1236 } 1237 1238 static void xen_netbk_fill_frags(struct xen_netbk *netbk, struct sk_buff *skb) 1239 { 1240 struct skb_shared_info *shinfo = skb_shinfo(skb); 1241 int nr_frags = shinfo->nr_frags; 1242 int i; 1243 1244 for (i = 0; i < nr_frags; i++) { 1245 skb_frag_t *frag = shinfo->frags + i; 1246 struct xen_netif_tx_request *txp; 1247 struct page *page; 1248 u16 pending_idx; 1249 1250 pending_idx = frag_get_pending_idx(frag); 1251 1252 txp = &netbk->pending_tx_info[pending_idx].req; 1253 page = virt_to_page(idx_to_kaddr(netbk, pending_idx)); 1254 __skb_fill_page_desc(skb, i, page, txp->offset, txp->size); 1255 skb->len += txp->size; 1256 skb->data_len += txp->size; 1257 skb->truesize += txp->size; 1258 1259 /* Take an extra reference to offset xen_netbk_idx_release */ 1260 get_page(netbk->mmap_pages[pending_idx]); 1261 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY); 1262 } 1263 } 1264 1265 static int xen_netbk_get_extras(struct xenvif *vif, 1266 struct xen_netif_extra_info *extras, 1267 int work_to_do) 1268 { 1269 struct xen_netif_extra_info extra; 1270 RING_IDX cons = vif->tx.req_cons; 1271 1272 do { 1273 if (unlikely(work_to_do-- <= 0)) { 1274 netdev_err(vif->dev, "Missing extra info\n"); 1275 netbk_fatal_tx_err(vif); 1276 return -EBADR; 1277 } 1278 1279 memcpy(&extra, RING_GET_REQUEST(&vif->tx, cons), 1280 sizeof(extra)); 1281 if (unlikely(!extra.type || 1282 extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1283 vif->tx.req_cons = ++cons; 1284 netdev_err(vif->dev, 1285 "Invalid extra type: %d\n", extra.type); 1286 netbk_fatal_tx_err(vif); 1287 return -EINVAL; 1288 } 1289 1290 memcpy(&extras[extra.type - 1], &extra, sizeof(extra)); 1291 vif->tx.req_cons = ++cons; 1292 } while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE); 1293 1294 return work_to_do; 1295 } 1296 1297 static int netbk_set_skb_gso(struct xenvif *vif, 1298 struct sk_buff *skb, 1299 struct xen_netif_extra_info *gso) 1300 { 1301 if (!gso->u.gso.size) { 1302 netdev_err(vif->dev, "GSO size must not be zero.\n"); 1303 netbk_fatal_tx_err(vif); 1304 return -EINVAL; 1305 } 1306 1307 /* Currently only TCPv4 S.O. is supported. */ 1308 if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) { 1309 netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type); 1310 netbk_fatal_tx_err(vif); 1311 return -EINVAL; 1312 } 1313 1314 skb_shinfo(skb)->gso_size = gso->u.gso.size; 1315 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 1316 1317 /* Header must be checked, and gso_segs computed. */ 1318 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 1319 skb_shinfo(skb)->gso_segs = 0; 1320 1321 return 0; 1322 } 1323 1324 static int checksum_setup(struct xenvif *vif, struct sk_buff *skb) 1325 { 1326 struct iphdr *iph; 1327 int err = -EPROTO; 1328 int recalculate_partial_csum = 0; 1329 1330 /* 1331 * A GSO SKB must be CHECKSUM_PARTIAL. However some buggy 1332 * peers can fail to set NETRXF_csum_blank when sending a GSO 1333 * frame. In this case force the SKB to CHECKSUM_PARTIAL and 1334 * recalculate the partial checksum. 1335 */ 1336 if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) { 1337 vif->rx_gso_checksum_fixup++; 1338 skb->ip_summed = CHECKSUM_PARTIAL; 1339 recalculate_partial_csum = 1; 1340 } 1341 1342 /* A non-CHECKSUM_PARTIAL SKB does not require setup. */ 1343 if (skb->ip_summed != CHECKSUM_PARTIAL) 1344 return 0; 1345 1346 if (skb->protocol != htons(ETH_P_IP)) 1347 goto out; 1348 1349 iph = (void *)skb->data; 1350 switch (iph->protocol) { 1351 case IPPROTO_TCP: 1352 if (!skb_partial_csum_set(skb, 4 * iph->ihl, 1353 offsetof(struct tcphdr, check))) 1354 goto out; 1355 1356 if (recalculate_partial_csum) { 1357 struct tcphdr *tcph = tcp_hdr(skb); 1358 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 1359 skb->len - iph->ihl*4, 1360 IPPROTO_TCP, 0); 1361 } 1362 break; 1363 case IPPROTO_UDP: 1364 if (!skb_partial_csum_set(skb, 4 * iph->ihl, 1365 offsetof(struct udphdr, check))) 1366 goto out; 1367 1368 if (recalculate_partial_csum) { 1369 struct udphdr *udph = udp_hdr(skb); 1370 udph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 1371 skb->len - iph->ihl*4, 1372 IPPROTO_UDP, 0); 1373 } 1374 break; 1375 default: 1376 if (net_ratelimit()) 1377 netdev_err(vif->dev, 1378 "Attempting to checksum a non-TCP/UDP packet, dropping a protocol %d packet\n", 1379 iph->protocol); 1380 goto out; 1381 } 1382 1383 err = 0; 1384 1385 out: 1386 return err; 1387 } 1388 1389 static bool tx_credit_exceeded(struct xenvif *vif, unsigned size) 1390 { 1391 unsigned long now = jiffies; 1392 unsigned long next_credit = 1393 vif->credit_timeout.expires + 1394 msecs_to_jiffies(vif->credit_usec / 1000); 1395 1396 /* Timer could already be pending in rare cases. */ 1397 if (timer_pending(&vif->credit_timeout)) 1398 return true; 1399 1400 /* Passed the point where we can replenish credit? */ 1401 if (time_after_eq(now, next_credit)) { 1402 vif->credit_timeout.expires = now; 1403 tx_add_credit(vif); 1404 } 1405 1406 /* Still too big to send right now? Set a callback. */ 1407 if (size > vif->remaining_credit) { 1408 vif->credit_timeout.data = 1409 (unsigned long)vif; 1410 vif->credit_timeout.function = 1411 tx_credit_callback; 1412 mod_timer(&vif->credit_timeout, 1413 next_credit); 1414 1415 return true; 1416 } 1417 1418 return false; 1419 } 1420 1421 static unsigned xen_netbk_tx_build_gops(struct xen_netbk *netbk) 1422 { 1423 struct gnttab_copy *gop = netbk->tx_copy_ops, *request_gop; 1424 struct sk_buff *skb; 1425 int ret; 1426 1427 while ((nr_pending_reqs(netbk) + XEN_NETBK_LEGACY_SLOTS_MAX 1428 < MAX_PENDING_REQS) && 1429 !list_empty(&netbk->net_schedule_list)) { 1430 struct xenvif *vif; 1431 struct xen_netif_tx_request txreq; 1432 struct xen_netif_tx_request txfrags[XEN_NETBK_LEGACY_SLOTS_MAX]; 1433 struct page *page; 1434 struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1]; 1435 u16 pending_idx; 1436 RING_IDX idx; 1437 int work_to_do; 1438 unsigned int data_len; 1439 pending_ring_idx_t index; 1440 1441 /* Get a netif from the list with work to do. */ 1442 vif = poll_net_schedule_list(netbk); 1443 /* This can sometimes happen because the test of 1444 * list_empty(net_schedule_list) at the top of the 1445 * loop is unlocked. Just go back and have another 1446 * look. 1447 */ 1448 if (!vif) 1449 continue; 1450 1451 if (vif->tx.sring->req_prod - vif->tx.req_cons > 1452 XEN_NETIF_TX_RING_SIZE) { 1453 netdev_err(vif->dev, 1454 "Impossible number of requests. " 1455 "req_prod %d, req_cons %d, size %ld\n", 1456 vif->tx.sring->req_prod, vif->tx.req_cons, 1457 XEN_NETIF_TX_RING_SIZE); 1458 netbk_fatal_tx_err(vif); 1459 continue; 1460 } 1461 1462 RING_FINAL_CHECK_FOR_REQUESTS(&vif->tx, work_to_do); 1463 if (!work_to_do) { 1464 xenvif_put(vif); 1465 continue; 1466 } 1467 1468 idx = vif->tx.req_cons; 1469 rmb(); /* Ensure that we see the request before we copy it. */ 1470 memcpy(&txreq, RING_GET_REQUEST(&vif->tx, idx), sizeof(txreq)); 1471 1472 /* Credit-based scheduling. */ 1473 if (txreq.size > vif->remaining_credit && 1474 tx_credit_exceeded(vif, txreq.size)) { 1475 xenvif_put(vif); 1476 continue; 1477 } 1478 1479 vif->remaining_credit -= txreq.size; 1480 1481 work_to_do--; 1482 vif->tx.req_cons = ++idx; 1483 1484 memset(extras, 0, sizeof(extras)); 1485 if (txreq.flags & XEN_NETTXF_extra_info) { 1486 work_to_do = xen_netbk_get_extras(vif, extras, 1487 work_to_do); 1488 idx = vif->tx.req_cons; 1489 if (unlikely(work_to_do < 0)) 1490 continue; 1491 } 1492 1493 ret = netbk_count_requests(vif, &txreq, txfrags, work_to_do); 1494 if (unlikely(ret < 0)) 1495 continue; 1496 1497 idx += ret; 1498 1499 if (unlikely(txreq.size < ETH_HLEN)) { 1500 netdev_dbg(vif->dev, 1501 "Bad packet size: %d\n", txreq.size); 1502 netbk_tx_err(vif, &txreq, idx); 1503 continue; 1504 } 1505 1506 /* No crossing a page as the payload mustn't fragment. */ 1507 if (unlikely((txreq.offset + txreq.size) > PAGE_SIZE)) { 1508 netdev_err(vif->dev, 1509 "txreq.offset: %x, size: %u, end: %lu\n", 1510 txreq.offset, txreq.size, 1511 (txreq.offset&~PAGE_MASK) + txreq.size); 1512 netbk_fatal_tx_err(vif); 1513 continue; 1514 } 1515 1516 index = pending_index(netbk->pending_cons); 1517 pending_idx = netbk->pending_ring[index]; 1518 1519 data_len = (txreq.size > PKT_PROT_LEN && 1520 ret < XEN_NETBK_LEGACY_SLOTS_MAX) ? 1521 PKT_PROT_LEN : txreq.size; 1522 1523 skb = alloc_skb(data_len + NET_SKB_PAD + NET_IP_ALIGN, 1524 GFP_ATOMIC | __GFP_NOWARN); 1525 if (unlikely(skb == NULL)) { 1526 netdev_dbg(vif->dev, 1527 "Can't allocate a skb in start_xmit.\n"); 1528 netbk_tx_err(vif, &txreq, idx); 1529 break; 1530 } 1531 1532 /* Packets passed to netif_rx() must have some headroom. */ 1533 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 1534 1535 if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) { 1536 struct xen_netif_extra_info *gso; 1537 gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1]; 1538 1539 if (netbk_set_skb_gso(vif, skb, gso)) { 1540 /* Failure in netbk_set_skb_gso is fatal. */ 1541 kfree_skb(skb); 1542 continue; 1543 } 1544 } 1545 1546 /* XXX could copy straight to head */ 1547 page = xen_netbk_alloc_page(netbk, pending_idx); 1548 if (!page) { 1549 kfree_skb(skb); 1550 netbk_tx_err(vif, &txreq, idx); 1551 continue; 1552 } 1553 1554 gop->source.u.ref = txreq.gref; 1555 gop->source.domid = vif->domid; 1556 gop->source.offset = txreq.offset; 1557 1558 gop->dest.u.gmfn = virt_to_mfn(page_address(page)); 1559 gop->dest.domid = DOMID_SELF; 1560 gop->dest.offset = txreq.offset; 1561 1562 gop->len = txreq.size; 1563 gop->flags = GNTCOPY_source_gref; 1564 1565 gop++; 1566 1567 memcpy(&netbk->pending_tx_info[pending_idx].req, 1568 &txreq, sizeof(txreq)); 1569 netbk->pending_tx_info[pending_idx].vif = vif; 1570 netbk->pending_tx_info[pending_idx].head = index; 1571 *((u16 *)skb->data) = pending_idx; 1572 1573 __skb_put(skb, data_len); 1574 1575 skb_shinfo(skb)->nr_frags = ret; 1576 if (data_len < txreq.size) { 1577 skb_shinfo(skb)->nr_frags++; 1578 frag_set_pending_idx(&skb_shinfo(skb)->frags[0], 1579 pending_idx); 1580 } else { 1581 frag_set_pending_idx(&skb_shinfo(skb)->frags[0], 1582 INVALID_PENDING_IDX); 1583 } 1584 1585 netbk->pending_cons++; 1586 1587 request_gop = xen_netbk_get_requests(netbk, vif, 1588 skb, txfrags, gop); 1589 if (request_gop == NULL) { 1590 kfree_skb(skb); 1591 netbk_tx_err(vif, &txreq, idx); 1592 continue; 1593 } 1594 gop = request_gop; 1595 1596 __skb_queue_tail(&netbk->tx_queue, skb); 1597 1598 vif->tx.req_cons = idx; 1599 xen_netbk_check_rx_xenvif(vif); 1600 1601 if ((gop-netbk->tx_copy_ops) >= ARRAY_SIZE(netbk->tx_copy_ops)) 1602 break; 1603 } 1604 1605 return gop - netbk->tx_copy_ops; 1606 } 1607 1608 static void xen_netbk_tx_submit(struct xen_netbk *netbk) 1609 { 1610 struct gnttab_copy *gop = netbk->tx_copy_ops; 1611 struct sk_buff *skb; 1612 1613 while ((skb = __skb_dequeue(&netbk->tx_queue)) != NULL) { 1614 struct xen_netif_tx_request *txp; 1615 struct xenvif *vif; 1616 u16 pending_idx; 1617 unsigned data_len; 1618 1619 pending_idx = *((u16 *)skb->data); 1620 vif = netbk->pending_tx_info[pending_idx].vif; 1621 txp = &netbk->pending_tx_info[pending_idx].req; 1622 1623 /* Check the remap error code. */ 1624 if (unlikely(xen_netbk_tx_check_gop(netbk, skb, &gop))) { 1625 netdev_dbg(vif->dev, "netback grant failed.\n"); 1626 skb_shinfo(skb)->nr_frags = 0; 1627 kfree_skb(skb); 1628 continue; 1629 } 1630 1631 data_len = skb->len; 1632 memcpy(skb->data, 1633 (void *)(idx_to_kaddr(netbk, pending_idx)|txp->offset), 1634 data_len); 1635 if (data_len < txp->size) { 1636 /* Append the packet payload as a fragment. */ 1637 txp->offset += data_len; 1638 txp->size -= data_len; 1639 } else { 1640 /* Schedule a response immediately. */ 1641 xen_netbk_idx_release(netbk, pending_idx, XEN_NETIF_RSP_OKAY); 1642 } 1643 1644 if (txp->flags & XEN_NETTXF_csum_blank) 1645 skb->ip_summed = CHECKSUM_PARTIAL; 1646 else if (txp->flags & XEN_NETTXF_data_validated) 1647 skb->ip_summed = CHECKSUM_UNNECESSARY; 1648 1649 xen_netbk_fill_frags(netbk, skb); 1650 1651 /* 1652 * If the initial fragment was < PKT_PROT_LEN then 1653 * pull through some bytes from the other fragments to 1654 * increase the linear region to PKT_PROT_LEN bytes. 1655 */ 1656 if (skb_headlen(skb) < PKT_PROT_LEN && skb_is_nonlinear(skb)) { 1657 int target = min_t(int, skb->len, PKT_PROT_LEN); 1658 __pskb_pull_tail(skb, target - skb_headlen(skb)); 1659 } 1660 1661 skb->dev = vif->dev; 1662 skb->protocol = eth_type_trans(skb, skb->dev); 1663 skb_reset_network_header(skb); 1664 1665 if (checksum_setup(vif, skb)) { 1666 netdev_dbg(vif->dev, 1667 "Can't setup checksum in net_tx_action\n"); 1668 kfree_skb(skb); 1669 continue; 1670 } 1671 1672 skb_probe_transport_header(skb, 0); 1673 1674 vif->dev->stats.rx_bytes += skb->len; 1675 vif->dev->stats.rx_packets++; 1676 1677 xenvif_receive_skb(vif, skb); 1678 } 1679 } 1680 1681 /* Called after netfront has transmitted */ 1682 static void xen_netbk_tx_action(struct xen_netbk *netbk) 1683 { 1684 unsigned nr_gops; 1685 1686 nr_gops = xen_netbk_tx_build_gops(netbk); 1687 1688 if (nr_gops == 0) 1689 return; 1690 1691 gnttab_batch_copy(netbk->tx_copy_ops, nr_gops); 1692 1693 xen_netbk_tx_submit(netbk); 1694 } 1695 1696 static void xen_netbk_idx_release(struct xen_netbk *netbk, u16 pending_idx, 1697 u8 status) 1698 { 1699 struct xenvif *vif; 1700 struct pending_tx_info *pending_tx_info; 1701 pending_ring_idx_t head; 1702 u16 peek; /* peek into next tx request */ 1703 1704 BUG_ON(netbk->mmap_pages[pending_idx] == (void *)(~0UL)); 1705 1706 /* Already complete? */ 1707 if (netbk->mmap_pages[pending_idx] == NULL) 1708 return; 1709 1710 pending_tx_info = &netbk->pending_tx_info[pending_idx]; 1711 1712 vif = pending_tx_info->vif; 1713 head = pending_tx_info->head; 1714 1715 BUG_ON(!pending_tx_is_head(netbk, head)); 1716 BUG_ON(netbk->pending_ring[pending_index(head)] != pending_idx); 1717 1718 do { 1719 pending_ring_idx_t index; 1720 pending_ring_idx_t idx = pending_index(head); 1721 u16 info_idx = netbk->pending_ring[idx]; 1722 1723 pending_tx_info = &netbk->pending_tx_info[info_idx]; 1724 make_tx_response(vif, &pending_tx_info->req, status); 1725 1726 /* Setting any number other than 1727 * INVALID_PENDING_RING_IDX indicates this slot is 1728 * starting a new packet / ending a previous packet. 1729 */ 1730 pending_tx_info->head = 0; 1731 1732 index = pending_index(netbk->pending_prod++); 1733 netbk->pending_ring[index] = netbk->pending_ring[info_idx]; 1734 1735 xenvif_put(vif); 1736 1737 peek = netbk->pending_ring[pending_index(++head)]; 1738 1739 } while (!pending_tx_is_head(netbk, peek)); 1740 1741 netbk->mmap_pages[pending_idx]->mapping = 0; 1742 put_page(netbk->mmap_pages[pending_idx]); 1743 netbk->mmap_pages[pending_idx] = NULL; 1744 } 1745 1746 1747 static void make_tx_response(struct xenvif *vif, 1748 struct xen_netif_tx_request *txp, 1749 s8 st) 1750 { 1751 RING_IDX i = vif->tx.rsp_prod_pvt; 1752 struct xen_netif_tx_response *resp; 1753 int notify; 1754 1755 resp = RING_GET_RESPONSE(&vif->tx, i); 1756 resp->id = txp->id; 1757 resp->status = st; 1758 1759 if (txp->flags & XEN_NETTXF_extra_info) 1760 RING_GET_RESPONSE(&vif->tx, ++i)->status = XEN_NETIF_RSP_NULL; 1761 1762 vif->tx.rsp_prod_pvt = ++i; 1763 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->tx, notify); 1764 if (notify) 1765 notify_remote_via_irq(vif->irq); 1766 } 1767 1768 static struct xen_netif_rx_response *make_rx_response(struct xenvif *vif, 1769 u16 id, 1770 s8 st, 1771 u16 offset, 1772 u16 size, 1773 u16 flags) 1774 { 1775 RING_IDX i = vif->rx.rsp_prod_pvt; 1776 struct xen_netif_rx_response *resp; 1777 1778 resp = RING_GET_RESPONSE(&vif->rx, i); 1779 resp->offset = offset; 1780 resp->flags = flags; 1781 resp->id = id; 1782 resp->status = (s16)size; 1783 if (st < 0) 1784 resp->status = (s16)st; 1785 1786 vif->rx.rsp_prod_pvt = ++i; 1787 1788 return resp; 1789 } 1790 1791 static inline int rx_work_todo(struct xen_netbk *netbk) 1792 { 1793 return !skb_queue_empty(&netbk->rx_queue); 1794 } 1795 1796 static inline int tx_work_todo(struct xen_netbk *netbk) 1797 { 1798 1799 if ((nr_pending_reqs(netbk) + XEN_NETBK_LEGACY_SLOTS_MAX 1800 < MAX_PENDING_REQS) && 1801 !list_empty(&netbk->net_schedule_list)) 1802 return 1; 1803 1804 return 0; 1805 } 1806 1807 static int xen_netbk_kthread(void *data) 1808 { 1809 struct xen_netbk *netbk = data; 1810 while (!kthread_should_stop()) { 1811 wait_event_interruptible(netbk->wq, 1812 rx_work_todo(netbk) || 1813 tx_work_todo(netbk) || 1814 kthread_should_stop()); 1815 cond_resched(); 1816 1817 if (kthread_should_stop()) 1818 break; 1819 1820 if (rx_work_todo(netbk)) 1821 xen_netbk_rx_action(netbk); 1822 1823 if (tx_work_todo(netbk)) 1824 xen_netbk_tx_action(netbk); 1825 } 1826 1827 return 0; 1828 } 1829 1830 void xen_netbk_unmap_frontend_rings(struct xenvif *vif) 1831 { 1832 if (vif->tx.sring) 1833 xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif), 1834 vif->tx.sring); 1835 if (vif->rx.sring) 1836 xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(vif), 1837 vif->rx.sring); 1838 } 1839 1840 int xen_netbk_map_frontend_rings(struct xenvif *vif, 1841 grant_ref_t tx_ring_ref, 1842 grant_ref_t rx_ring_ref) 1843 { 1844 void *addr; 1845 struct xen_netif_tx_sring *txs; 1846 struct xen_netif_rx_sring *rxs; 1847 1848 int err = -ENOMEM; 1849 1850 err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif), 1851 tx_ring_ref, &addr); 1852 if (err) 1853 goto err; 1854 1855 txs = (struct xen_netif_tx_sring *)addr; 1856 BACK_RING_INIT(&vif->tx, txs, PAGE_SIZE); 1857 1858 err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(vif), 1859 rx_ring_ref, &addr); 1860 if (err) 1861 goto err; 1862 1863 rxs = (struct xen_netif_rx_sring *)addr; 1864 BACK_RING_INIT(&vif->rx, rxs, PAGE_SIZE); 1865 1866 vif->rx_req_cons_peek = 0; 1867 1868 return 0; 1869 1870 err: 1871 xen_netbk_unmap_frontend_rings(vif); 1872 return err; 1873 } 1874 1875 static int __init netback_init(void) 1876 { 1877 int i; 1878 int rc = 0; 1879 int group; 1880 1881 if (!xen_domain()) 1882 return -ENODEV; 1883 1884 if (fatal_skb_slots < XEN_NETBK_LEGACY_SLOTS_MAX) { 1885 printk(KERN_INFO 1886 "xen-netback: fatal_skb_slots too small (%d), bump it to XEN_NETBK_LEGACY_SLOTS_MAX (%d)\n", 1887 fatal_skb_slots, XEN_NETBK_LEGACY_SLOTS_MAX); 1888 fatal_skb_slots = XEN_NETBK_LEGACY_SLOTS_MAX; 1889 } 1890 1891 xen_netbk_group_nr = num_online_cpus(); 1892 xen_netbk = vzalloc(sizeof(struct xen_netbk) * xen_netbk_group_nr); 1893 if (!xen_netbk) 1894 return -ENOMEM; 1895 1896 for (group = 0; group < xen_netbk_group_nr; group++) { 1897 struct xen_netbk *netbk = &xen_netbk[group]; 1898 skb_queue_head_init(&netbk->rx_queue); 1899 skb_queue_head_init(&netbk->tx_queue); 1900 1901 init_timer(&netbk->net_timer); 1902 netbk->net_timer.data = (unsigned long)netbk; 1903 netbk->net_timer.function = xen_netbk_alarm; 1904 1905 netbk->pending_cons = 0; 1906 netbk->pending_prod = MAX_PENDING_REQS; 1907 for (i = 0; i < MAX_PENDING_REQS; i++) 1908 netbk->pending_ring[i] = i; 1909 1910 init_waitqueue_head(&netbk->wq); 1911 netbk->task = kthread_create(xen_netbk_kthread, 1912 (void *)netbk, 1913 "netback/%u", group); 1914 1915 if (IS_ERR(netbk->task)) { 1916 printk(KERN_ALERT "kthread_create() fails at netback\n"); 1917 del_timer(&netbk->net_timer); 1918 rc = PTR_ERR(netbk->task); 1919 goto failed_init; 1920 } 1921 1922 kthread_bind(netbk->task, group); 1923 1924 INIT_LIST_HEAD(&netbk->net_schedule_list); 1925 1926 spin_lock_init(&netbk->net_schedule_list_lock); 1927 1928 atomic_set(&netbk->netfront_count, 0); 1929 1930 wake_up_process(netbk->task); 1931 } 1932 1933 rc = xenvif_xenbus_init(); 1934 if (rc) 1935 goto failed_init; 1936 1937 return 0; 1938 1939 failed_init: 1940 while (--group >= 0) { 1941 struct xen_netbk *netbk = &xen_netbk[group]; 1942 for (i = 0; i < MAX_PENDING_REQS; i++) { 1943 if (netbk->mmap_pages[i]) 1944 __free_page(netbk->mmap_pages[i]); 1945 } 1946 del_timer(&netbk->net_timer); 1947 kthread_stop(netbk->task); 1948 } 1949 vfree(xen_netbk); 1950 return rc; 1951 1952 } 1953 1954 module_init(netback_init); 1955 1956 MODULE_LICENSE("Dual BSD/GPL"); 1957 MODULE_ALIAS("xen-backend:vif"); 1958