xref: /openbmc/linux/drivers/net/wireless/zydas/zd1211rw/zd_mac.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/slab.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
28 
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
33 
34 struct zd_reg_alpha2_map {
35 	u32 reg;
36 	char alpha2[2];
37 };
38 
39 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
40 	{ ZD_REGDOMAIN_FCC, "US" },
41 	{ ZD_REGDOMAIN_IC, "CA" },
42 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
43 	{ ZD_REGDOMAIN_JAPAN, "JP" },
44 	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
45 	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
46 	{ ZD_REGDOMAIN_SPAIN, "ES" },
47 	{ ZD_REGDOMAIN_FRANCE, "FR" },
48 };
49 
50 /* This table contains the hardware specific values for the modulation rates. */
51 static const struct ieee80211_rate zd_rates[] = {
52 	{ .bitrate = 10,
53 	  .hw_value = ZD_CCK_RATE_1M, },
54 	{ .bitrate = 20,
55 	  .hw_value = ZD_CCK_RATE_2M,
56 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
57 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
58 	{ .bitrate = 55,
59 	  .hw_value = ZD_CCK_RATE_5_5M,
60 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
61 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
62 	{ .bitrate = 110,
63 	  .hw_value = ZD_CCK_RATE_11M,
64 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
65 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
66 	{ .bitrate = 60,
67 	  .hw_value = ZD_OFDM_RATE_6M,
68 	  .flags = 0 },
69 	{ .bitrate = 90,
70 	  .hw_value = ZD_OFDM_RATE_9M,
71 	  .flags = 0 },
72 	{ .bitrate = 120,
73 	  .hw_value = ZD_OFDM_RATE_12M,
74 	  .flags = 0 },
75 	{ .bitrate = 180,
76 	  .hw_value = ZD_OFDM_RATE_18M,
77 	  .flags = 0 },
78 	{ .bitrate = 240,
79 	  .hw_value = ZD_OFDM_RATE_24M,
80 	  .flags = 0 },
81 	{ .bitrate = 360,
82 	  .hw_value = ZD_OFDM_RATE_36M,
83 	  .flags = 0 },
84 	{ .bitrate = 480,
85 	  .hw_value = ZD_OFDM_RATE_48M,
86 	  .flags = 0 },
87 	{ .bitrate = 540,
88 	  .hw_value = ZD_OFDM_RATE_54M,
89 	  .flags = 0 },
90 };
91 
92 /*
93  * Zydas retry rates table. Each line is listed in the same order as
94  * in zd_rates[] and contains all the rate used when a packet is sent
95  * starting with a given rates. Let's consider an example :
96  *
97  * "11 Mbits : 4, 3, 2, 1, 0" means :
98  * - packet is sent using 4 different rates
99  * - 1st rate is index 3 (ie 11 Mbits)
100  * - 2nd rate is index 2 (ie 5.5 Mbits)
101  * - 3rd rate is index 1 (ie 2 Mbits)
102  * - 4th rate is index 0 (ie 1 Mbits)
103  */
104 
105 static const struct tx_retry_rate zd_retry_rates[] = {
106 	{ /*  1 Mbits */	1, { 0 }},
107 	{ /*  2 Mbits */	2, { 1,  0 }},
108 	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
109 	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
110 	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
111 	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
112 	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
113 	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
114 	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
115 	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
116 	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
117 	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
118 };
119 
120 static const struct ieee80211_channel zd_channels[] = {
121 	{ .center_freq = 2412, .hw_value = 1 },
122 	{ .center_freq = 2417, .hw_value = 2 },
123 	{ .center_freq = 2422, .hw_value = 3 },
124 	{ .center_freq = 2427, .hw_value = 4 },
125 	{ .center_freq = 2432, .hw_value = 5 },
126 	{ .center_freq = 2437, .hw_value = 6 },
127 	{ .center_freq = 2442, .hw_value = 7 },
128 	{ .center_freq = 2447, .hw_value = 8 },
129 	{ .center_freq = 2452, .hw_value = 9 },
130 	{ .center_freq = 2457, .hw_value = 10 },
131 	{ .center_freq = 2462, .hw_value = 11 },
132 	{ .center_freq = 2467, .hw_value = 12 },
133 	{ .center_freq = 2472, .hw_value = 13 },
134 	{ .center_freq = 2484, .hw_value = 14 },
135 };
136 
137 static void housekeeping_init(struct zd_mac *mac);
138 static void housekeeping_enable(struct zd_mac *mac);
139 static void housekeeping_disable(struct zd_mac *mac);
140 static void beacon_init(struct zd_mac *mac);
141 static void beacon_enable(struct zd_mac *mac);
142 static void beacon_disable(struct zd_mac *mac);
143 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
144 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
145 				struct sk_buff *beacon, bool in_intr);
146 
147 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
148 {
149 	unsigned int i;
150 	struct zd_reg_alpha2_map *reg_map;
151 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
152 		reg_map = &reg_alpha2_map[i];
153 		if (regdomain == reg_map->reg) {
154 			alpha2[0] = reg_map->alpha2[0];
155 			alpha2[1] = reg_map->alpha2[1];
156 			return 0;
157 		}
158 	}
159 	return 1;
160 }
161 
162 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
163 {
164 	struct zd_mac *mac = zd_hw_mac(hw);
165 
166 	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
167 			"%s: signal value from device not in range 0..100, "
168 			"but %d.\n", __func__, signal);
169 
170 	if (signal < 0)
171 		signal = 0;
172 	else if (signal > 100)
173 		signal = 100;
174 
175 	return signal;
176 }
177 
178 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
179 {
180 	int r;
181 	u8 addr[ETH_ALEN];
182 	struct zd_mac *mac = zd_hw_mac(hw);
183 
184 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
185 	if (r)
186 		return r;
187 
188 	SET_IEEE80211_PERM_ADDR(hw, addr);
189 
190 	return 0;
191 }
192 
193 int zd_mac_init_hw(struct ieee80211_hw *hw)
194 {
195 	int r;
196 	struct zd_mac *mac = zd_hw_mac(hw);
197 	struct zd_chip *chip = &mac->chip;
198 	char alpha2[2];
199 	u8 default_regdomain;
200 
201 	r = zd_chip_enable_int(chip);
202 	if (r)
203 		goto out;
204 	r = zd_chip_init_hw(chip);
205 	if (r)
206 		goto disable_int;
207 
208 	ZD_ASSERT(!irqs_disabled());
209 
210 	r = zd_read_regdomain(chip, &default_regdomain);
211 	if (r)
212 		goto disable_int;
213 	spin_lock_irq(&mac->lock);
214 	mac->regdomain = mac->default_regdomain = default_regdomain;
215 	spin_unlock_irq(&mac->lock);
216 
217 	/* We must inform the device that we are doing encryption/decryption in
218 	 * software at the moment. */
219 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
220 	if (r)
221 		goto disable_int;
222 
223 	r = zd_reg2alpha2(mac->regdomain, alpha2);
224 	if (r)
225 		goto disable_int;
226 
227 	r = regulatory_hint(hw->wiphy, alpha2);
228 disable_int:
229 	zd_chip_disable_int(chip);
230 out:
231 	return r;
232 }
233 
234 void zd_mac_clear(struct zd_mac *mac)
235 {
236 	flush_workqueue(zd_workqueue);
237 	zd_chip_clear(&mac->chip);
238 	ZD_ASSERT(!spin_is_locked(&mac->lock));
239 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
240 }
241 
242 static int set_rx_filter(struct zd_mac *mac)
243 {
244 	unsigned long flags;
245 	u32 filter = STA_RX_FILTER;
246 
247 	spin_lock_irqsave(&mac->lock, flags);
248 	if (mac->pass_ctrl)
249 		filter |= RX_FILTER_CTRL;
250 	spin_unlock_irqrestore(&mac->lock, flags);
251 
252 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
253 }
254 
255 static int set_mac_and_bssid(struct zd_mac *mac)
256 {
257 	int r;
258 
259 	if (!mac->vif)
260 		return -1;
261 
262 	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
263 	if (r)
264 		return r;
265 
266 	/* Vendor driver after setting MAC either sets BSSID for AP or
267 	 * filter for other modes.
268 	 */
269 	if (mac->type != NL80211_IFTYPE_AP)
270 		return set_rx_filter(mac);
271 	else
272 		return zd_write_bssid(&mac->chip, mac->vif->addr);
273 }
274 
275 static int set_mc_hash(struct zd_mac *mac)
276 {
277 	struct zd_mc_hash hash;
278 	zd_mc_clear(&hash);
279 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
280 }
281 
282 int zd_op_start(struct ieee80211_hw *hw)
283 {
284 	struct zd_mac *mac = zd_hw_mac(hw);
285 	struct zd_chip *chip = &mac->chip;
286 	struct zd_usb *usb = &chip->usb;
287 	int r;
288 
289 	if (!usb->initialized) {
290 		r = zd_usb_init_hw(usb);
291 		if (r)
292 			goto out;
293 	}
294 
295 	r = zd_chip_enable_int(chip);
296 	if (r < 0)
297 		goto out;
298 
299 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
300 	if (r < 0)
301 		goto disable_int;
302 	r = set_rx_filter(mac);
303 	if (r)
304 		goto disable_int;
305 	r = set_mc_hash(mac);
306 	if (r)
307 		goto disable_int;
308 
309 	/* Wait after setting the multicast hash table and powering on
310 	 * the radio otherwise interface bring up will fail. This matches
311 	 * what the vendor driver did.
312 	 */
313 	msleep(10);
314 
315 	r = zd_chip_switch_radio_on(chip);
316 	if (r < 0) {
317 		dev_err(zd_chip_dev(chip),
318 			"%s: failed to set radio on\n", __func__);
319 		goto disable_int;
320 	}
321 	r = zd_chip_enable_rxtx(chip);
322 	if (r < 0)
323 		goto disable_radio;
324 	r = zd_chip_enable_hwint(chip);
325 	if (r < 0)
326 		goto disable_rxtx;
327 
328 	housekeeping_enable(mac);
329 	beacon_enable(mac);
330 	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
331 	return 0;
332 disable_rxtx:
333 	zd_chip_disable_rxtx(chip);
334 disable_radio:
335 	zd_chip_switch_radio_off(chip);
336 disable_int:
337 	zd_chip_disable_int(chip);
338 out:
339 	return r;
340 }
341 
342 void zd_op_stop(struct ieee80211_hw *hw)
343 {
344 	struct zd_mac *mac = zd_hw_mac(hw);
345 	struct zd_chip *chip = &mac->chip;
346 	struct sk_buff *skb;
347 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
348 
349 	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
350 
351 	/* The order here deliberately is a little different from the open()
352 	 * method, since we need to make sure there is no opportunity for RX
353 	 * frames to be processed by mac80211 after we have stopped it.
354 	 */
355 
356 	zd_chip_disable_rxtx(chip);
357 	beacon_disable(mac);
358 	housekeeping_disable(mac);
359 	flush_workqueue(zd_workqueue);
360 
361 	zd_chip_disable_hwint(chip);
362 	zd_chip_switch_radio_off(chip);
363 	zd_chip_disable_int(chip);
364 
365 
366 	while ((skb = skb_dequeue(ack_wait_queue)))
367 		dev_kfree_skb_any(skb);
368 }
369 
370 int zd_restore_settings(struct zd_mac *mac)
371 {
372 	struct sk_buff *beacon;
373 	struct zd_mc_hash multicast_hash;
374 	unsigned int short_preamble;
375 	int r, beacon_interval, beacon_period;
376 	u8 channel;
377 
378 	dev_dbg_f(zd_mac_dev(mac), "\n");
379 
380 	spin_lock_irq(&mac->lock);
381 	multicast_hash = mac->multicast_hash;
382 	short_preamble = mac->short_preamble;
383 	beacon_interval = mac->beacon.interval;
384 	beacon_period = mac->beacon.period;
385 	channel = mac->channel;
386 	spin_unlock_irq(&mac->lock);
387 
388 	r = set_mac_and_bssid(mac);
389 	if (r < 0) {
390 		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
391 		return r;
392 	}
393 
394 	r = zd_chip_set_channel(&mac->chip, channel);
395 	if (r < 0) {
396 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
397 			  r);
398 		return r;
399 	}
400 
401 	set_rts_cts(mac, short_preamble);
402 
403 	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
404 	if (r < 0) {
405 		dev_dbg_f(zd_mac_dev(mac),
406 			  "zd_chip_set_multicast_hash failed, %d\n", r);
407 		return r;
408 	}
409 
410 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
411 	    mac->type == NL80211_IFTYPE_ADHOC ||
412 	    mac->type == NL80211_IFTYPE_AP) {
413 		if (mac->vif != NULL) {
414 			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
415 			if (beacon)
416 				zd_mac_config_beacon(mac->hw, beacon, false);
417 		}
418 
419 		zd_set_beacon_interval(&mac->chip, beacon_interval,
420 					beacon_period, mac->type);
421 
422 		spin_lock_irq(&mac->lock);
423 		mac->beacon.last_update = jiffies;
424 		spin_unlock_irq(&mac->lock);
425 	}
426 
427 	return 0;
428 }
429 
430 /**
431  * zd_mac_tx_status - reports tx status of a packet if required
432  * @hw - a &struct ieee80211_hw pointer
433  * @skb - a sk-buffer
434  * @flags: extra flags to set in the TX status info
435  * @ackssi: ACK signal strength
436  * @success - True for successful transmission of the frame
437  *
438  * This information calls ieee80211_tx_status_irqsafe() if required by the
439  * control information. It copies the control information into the status
440  * information.
441  *
442  * If no status information has been requested, the skb is freed.
443  */
444 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
445 		      int ackssi, struct tx_status *tx_status)
446 {
447 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
448 	int i;
449 	int success = 1, retry = 1;
450 	int first_idx;
451 	const struct tx_retry_rate *retries;
452 
453 	ieee80211_tx_info_clear_status(info);
454 
455 	if (tx_status) {
456 		success = !tx_status->failure;
457 		retry = tx_status->retry + success;
458 	}
459 
460 	if (success) {
461 		/* success */
462 		info->flags |= IEEE80211_TX_STAT_ACK;
463 	} else {
464 		/* failure */
465 		info->flags &= ~IEEE80211_TX_STAT_ACK;
466 	}
467 
468 	first_idx = info->status.rates[0].idx;
469 	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
470 	retries = &zd_retry_rates[first_idx];
471 	ZD_ASSERT(1 <= retry && retry <= retries->count);
472 
473 	info->status.rates[0].idx = retries->rate[0];
474 	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
475 
476 	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
477 		info->status.rates[i].idx = retries->rate[i];
478 		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
479 	}
480 	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
481 		info->status.rates[i].idx = retries->rate[retry - 1];
482 		info->status.rates[i].count = 1; // (success ? 1:2);
483 	}
484 	if (i<IEEE80211_TX_MAX_RATES)
485 		info->status.rates[i].idx = -1; /* terminate */
486 
487 	info->status.ack_signal = zd_check_signal(hw, ackssi);
488 	ieee80211_tx_status_irqsafe(hw, skb);
489 }
490 
491 /**
492  * zd_mac_tx_failed - callback for failed frames
493  * @dev: the mac80211 wireless device
494  *
495  * This function is called if a frame couldn't be successfully
496  * transferred. The first frame from the tx queue, will be selected and
497  * reported as error to the upper layers.
498  */
499 void zd_mac_tx_failed(struct urb *urb)
500 {
501 	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
502 	struct zd_mac *mac = zd_hw_mac(hw);
503 	struct sk_buff_head *q = &mac->ack_wait_queue;
504 	struct sk_buff *skb;
505 	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
506 	unsigned long flags;
507 	int success = !tx_status->failure;
508 	int retry = tx_status->retry + success;
509 	int found = 0;
510 	int i, position = 0;
511 
512 	spin_lock_irqsave(&q->lock, flags);
513 
514 	skb_queue_walk(q, skb) {
515 		struct ieee80211_hdr *tx_hdr;
516 		struct ieee80211_tx_info *info;
517 		int first_idx, final_idx;
518 		const struct tx_retry_rate *retries;
519 		u8 final_rate;
520 
521 		position ++;
522 
523 		/* if the hardware reports a failure and we had a 802.11 ACK
524 		 * pending, then we skip the first skb when searching for a
525 		 * matching frame */
526 		if (tx_status->failure && mac->ack_pending &&
527 		    skb_queue_is_first(q, skb)) {
528 			continue;
529 		}
530 
531 		tx_hdr = (struct ieee80211_hdr *)skb->data;
532 
533 		/* we skip all frames not matching the reported destination */
534 		if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
535 			continue;
536 
537 		/* we skip all frames not matching the reported final rate */
538 
539 		info = IEEE80211_SKB_CB(skb);
540 		first_idx = info->status.rates[0].idx;
541 		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
542 		retries = &zd_retry_rates[first_idx];
543 		if (retry <= 0 || retry > retries->count)
544 			continue;
545 
546 		final_idx = retries->rate[retry - 1];
547 		final_rate = zd_rates[final_idx].hw_value;
548 
549 		if (final_rate != tx_status->rate) {
550 			continue;
551 		}
552 
553 		found = 1;
554 		break;
555 	}
556 
557 	if (found) {
558 		for (i=1; i<=position; i++) {
559 			skb = __skb_dequeue(q);
560 			zd_mac_tx_status(hw, skb,
561 					 mac->ack_pending ? mac->ack_signal : 0,
562 					 i == position ? tx_status : NULL);
563 			mac->ack_pending = 0;
564 		}
565 	}
566 
567 	spin_unlock_irqrestore(&q->lock, flags);
568 }
569 
570 /**
571  * zd_mac_tx_to_dev - callback for USB layer
572  * @skb: a &sk_buff pointer
573  * @error: error value, 0 if transmission successful
574  *
575  * Informs the MAC layer that the frame has successfully transferred to the
576  * device. If an ACK is required and the transfer to the device has been
577  * successful, the packets are put on the @ack_wait_queue with
578  * the control set removed.
579  */
580 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
581 {
582 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
583 	struct ieee80211_hw *hw = info->rate_driver_data[0];
584 	struct zd_mac *mac = zd_hw_mac(hw);
585 
586 	ieee80211_tx_info_clear_status(info);
587 
588 	skb_pull(skb, sizeof(struct zd_ctrlset));
589 	if (unlikely(error ||
590 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
591 		/*
592 		 * FIXME : do we need to fill in anything ?
593 		 */
594 		ieee80211_tx_status_irqsafe(hw, skb);
595 	} else {
596 		struct sk_buff_head *q = &mac->ack_wait_queue;
597 
598 		skb_queue_tail(q, skb);
599 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
600 			zd_mac_tx_status(hw, skb_dequeue(q),
601 					 mac->ack_pending ? mac->ack_signal : 0,
602 					 NULL);
603 			mac->ack_pending = 0;
604 		}
605 	}
606 }
607 
608 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
609 {
610 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
611 	 * the zd-rate values.
612 	 */
613 	static const u8 rate_divisor[] = {
614 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
615 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
616 		/* Bits must be doubled. */
617 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
618 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
619 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
620 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
621 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
622 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
623 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
624 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
625 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
626 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
627 	};
628 
629 	u32 bits = (u32)tx_length * 8;
630 	u32 divisor;
631 
632 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
633 	if (divisor == 0)
634 		return -EINVAL;
635 
636 	switch (zd_rate) {
637 	case ZD_CCK_RATE_5_5M:
638 		bits = (2*bits) + 10; /* round up to the next integer */
639 		break;
640 	case ZD_CCK_RATE_11M:
641 		if (service) {
642 			u32 t = bits % 11;
643 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
644 			if (0 < t && t <= 3) {
645 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
646 			}
647 		}
648 		bits += 10; /* round up to the next integer */
649 		break;
650 	}
651 
652 	return bits/divisor;
653 }
654 
655 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
656 	                   struct ieee80211_hdr *header,
657 	                   struct ieee80211_tx_info *info)
658 {
659 	/*
660 	 * CONTROL TODO:
661 	 * - if backoff needed, enable bit 0
662 	 * - if burst (backoff not needed) disable bit 0
663 	 */
664 
665 	cs->control = 0;
666 
667 	/* First fragment */
668 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
669 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
670 
671 	/* No ACK expected (multicast, etc.) */
672 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
673 		cs->control |= ZD_CS_NO_ACK;
674 
675 	/* PS-POLL */
676 	if (ieee80211_is_pspoll(header->frame_control))
677 		cs->control |= ZD_CS_PS_POLL_FRAME;
678 
679 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
680 		cs->control |= ZD_CS_RTS;
681 
682 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
683 		cs->control |= ZD_CS_SELF_CTS;
684 
685 	/* FIXME: Management frame? */
686 }
687 
688 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
689 {
690 	if (!mac->beacon.cur_beacon)
691 		return false;
692 
693 	if (mac->beacon.cur_beacon->len != beacon->len)
694 		return false;
695 
696 	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
697 }
698 
699 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
700 {
701 	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
702 
703 	kfree_skb(mac->beacon.cur_beacon);
704 	mac->beacon.cur_beacon = NULL;
705 }
706 
707 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
708 {
709 	mutex_lock(&mac->chip.mutex);
710 	zd_mac_free_cur_beacon_locked(mac);
711 	mutex_unlock(&mac->chip.mutex);
712 }
713 
714 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
715 				bool in_intr)
716 {
717 	struct zd_mac *mac = zd_hw_mac(hw);
718 	int r, ret, num_cmds, req_pos = 0;
719 	u32 tmp, j = 0;
720 	/* 4 more bytes for tail CRC */
721 	u32 full_len = beacon->len + 4;
722 	unsigned long end_jiffies, message_jiffies;
723 	struct zd_ioreq32 *ioreqs;
724 
725 	mutex_lock(&mac->chip.mutex);
726 
727 	/* Check if hw already has this beacon. */
728 	if (zd_mac_match_cur_beacon(mac, beacon)) {
729 		r = 0;
730 		goto out_nofree;
731 	}
732 
733 	/* Alloc memory for full beacon write at once. */
734 	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
735 	ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
736 	if (!ioreqs) {
737 		r = -ENOMEM;
738 		goto out_nofree;
739 	}
740 
741 	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
742 	if (r < 0)
743 		goto out;
744 	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
745 	if (r < 0)
746 		goto release_sema;
747 	if (in_intr && tmp & 0x2) {
748 		r = -EBUSY;
749 		goto release_sema;
750 	}
751 
752 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
753 	message_jiffies = jiffies + HZ / 10; /*~100ms*/
754 	while (tmp & 0x2) {
755 		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
756 		if (r < 0)
757 			goto release_sema;
758 		if (time_is_before_eq_jiffies(message_jiffies)) {
759 			message_jiffies = jiffies + HZ / 10;
760 			dev_err(zd_mac_dev(mac),
761 					"CR_BCN_FIFO_SEMAPHORE not ready\n");
762 			if (time_is_before_eq_jiffies(end_jiffies))  {
763 				dev_err(zd_mac_dev(mac),
764 						"Giving up beacon config.\n");
765 				r = -ETIMEDOUT;
766 				goto reset_device;
767 			}
768 		}
769 		msleep(20);
770 	}
771 
772 	ioreqs[req_pos].addr = CR_BCN_FIFO;
773 	ioreqs[req_pos].value = full_len - 1;
774 	req_pos++;
775 	if (zd_chip_is_zd1211b(&mac->chip)) {
776 		ioreqs[req_pos].addr = CR_BCN_LENGTH;
777 		ioreqs[req_pos].value = full_len - 1;
778 		req_pos++;
779 	}
780 
781 	for (j = 0 ; j < beacon->len; j++) {
782 		ioreqs[req_pos].addr = CR_BCN_FIFO;
783 		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
784 		req_pos++;
785 	}
786 
787 	for (j = 0; j < 4; j++) {
788 		ioreqs[req_pos].addr = CR_BCN_FIFO;
789 		ioreqs[req_pos].value = 0x0;
790 		req_pos++;
791 	}
792 
793 	BUG_ON(req_pos != num_cmds);
794 
795 	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
796 
797 release_sema:
798 	/*
799 	 * Try very hard to release device beacon semaphore, as otherwise
800 	 * device/driver can be left in unusable state.
801 	 */
802 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
803 	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
804 	while (ret < 0) {
805 		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
806 			ret = -ETIMEDOUT;
807 			break;
808 		}
809 
810 		msleep(20);
811 		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
812 	}
813 
814 	if (ret < 0)
815 		dev_err(zd_mac_dev(mac), "Could not release "
816 					 "CR_BCN_FIFO_SEMAPHORE!\n");
817 	if (r < 0 || ret < 0) {
818 		if (r >= 0)
819 			r = ret;
820 
821 		/* We don't know if beacon was written successfully or not,
822 		 * so clear current. */
823 		zd_mac_free_cur_beacon_locked(mac);
824 
825 		goto out;
826 	}
827 
828 	/* Beacon has now been written successfully, update current. */
829 	zd_mac_free_cur_beacon_locked(mac);
830 	mac->beacon.cur_beacon = beacon;
831 	beacon = NULL;
832 
833 	/* 802.11b/g 2.4G CCK 1Mb
834 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
835 	 * driver)
836 	 */
837 	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
838 				CR_BCN_PLCP_CFG);
839 out:
840 	kfree(ioreqs);
841 out_nofree:
842 	kfree_skb(beacon);
843 	mutex_unlock(&mac->chip.mutex);
844 
845 	return r;
846 
847 reset_device:
848 	zd_mac_free_cur_beacon_locked(mac);
849 	kfree_skb(beacon);
850 
851 	mutex_unlock(&mac->chip.mutex);
852 	kfree(ioreqs);
853 
854 	/* semaphore stuck, reset device to avoid fw freeze later */
855 	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
856 				  "resetting device...");
857 	usb_queue_reset_device(mac->chip.usb.intf);
858 
859 	return r;
860 }
861 
862 static int fill_ctrlset(struct zd_mac *mac,
863 			struct sk_buff *skb)
864 {
865 	int r;
866 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
867 	unsigned int frag_len = skb->len + FCS_LEN;
868 	unsigned int packet_length;
869 	struct ieee80211_rate *txrate;
870 	struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
871 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
872 
873 	ZD_ASSERT(frag_len <= 0xffff);
874 
875 	/*
876 	 * Firmware computes the duration itself (for all frames except PSPoll)
877 	 * and needs the field set to 0 at input, otherwise firmware messes up
878 	 * duration_id and sets bits 14 and 15 on.
879 	 */
880 	if (!ieee80211_is_pspoll(hdr->frame_control))
881 		hdr->duration_id = 0;
882 
883 	txrate = ieee80211_get_tx_rate(mac->hw, info);
884 
885 	cs->modulation = txrate->hw_value;
886 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
887 		cs->modulation = txrate->hw_value_short;
888 
889 	cs->tx_length = cpu_to_le16(frag_len);
890 
891 	cs_set_control(mac, cs, hdr, info);
892 
893 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
894 	ZD_ASSERT(packet_length <= 0xffff);
895 	/* ZD1211B: Computing the length difference this way, gives us
896 	 * flexibility to compute the packet length.
897 	 */
898 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
899 			packet_length - frag_len : packet_length);
900 
901 	/*
902 	 * CURRENT LENGTH:
903 	 * - transmit frame length in microseconds
904 	 * - seems to be derived from frame length
905 	 * - see Cal_Us_Service() in zdinlinef.h
906 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
907 	 *  - bTxBurstEnable is never set in the vendor driver
908 	 *
909 	 * SERVICE:
910 	 * - "for PLCP configuration"
911 	 * - always 0 except in some situations at 802.11b 11M
912 	 * - see line 53 of zdinlinef.h
913 	 */
914 	cs->service = 0;
915 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
916 		                 le16_to_cpu(cs->tx_length));
917 	if (r < 0)
918 		return r;
919 	cs->current_length = cpu_to_le16(r);
920 	cs->next_frame_length = 0;
921 
922 	return 0;
923 }
924 
925 /**
926  * zd_op_tx - transmits a network frame to the device
927  *
928  * @dev: mac80211 hardware device
929  * @skb: socket buffer
930  * @control: the control structure
931  *
932  * This function transmit an IEEE 802.11 network frame to the device. The
933  * control block of the skbuff will be initialized. If necessary the incoming
934  * mac80211 queues will be stopped.
935  */
936 static void zd_op_tx(struct ieee80211_hw *hw,
937 		     struct ieee80211_tx_control *control,
938 		     struct sk_buff *skb)
939 {
940 	struct zd_mac *mac = zd_hw_mac(hw);
941 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
942 	int r;
943 
944 	r = fill_ctrlset(mac, skb);
945 	if (r)
946 		goto fail;
947 
948 	info->rate_driver_data[0] = hw;
949 
950 	r = zd_usb_tx(&mac->chip.usb, skb);
951 	if (r)
952 		goto fail;
953 	return;
954 
955 fail:
956 	dev_kfree_skb(skb);
957 }
958 
959 /**
960  * filter_ack - filters incoming packets for acknowledgements
961  * @dev: the mac80211 device
962  * @rx_hdr: received header
963  * @stats: the status for the received packet
964  *
965  * This functions looks for ACK packets and tries to match them with the
966  * frames in the tx queue. If a match is found the frame will be dequeued and
967  * the upper layers is informed about the successful transmission. If
968  * mac80211 queues have been stopped and the number of frames still to be
969  * transmitted is low the queues will be opened again.
970  *
971  * Returns 1 if the frame was an ACK, 0 if it was ignored.
972  */
973 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
974 		      struct ieee80211_rx_status *stats)
975 {
976 	struct zd_mac *mac = zd_hw_mac(hw);
977 	struct sk_buff *skb;
978 	struct sk_buff_head *q;
979 	unsigned long flags;
980 	int found = 0;
981 	int i, position = 0;
982 
983 	if (!ieee80211_is_ack(rx_hdr->frame_control))
984 		return 0;
985 
986 	q = &mac->ack_wait_queue;
987 	spin_lock_irqsave(&q->lock, flags);
988 	skb_queue_walk(q, skb) {
989 		struct ieee80211_hdr *tx_hdr;
990 
991 		position ++;
992 
993 		if (mac->ack_pending && skb_queue_is_first(q, skb))
994 		    continue;
995 
996 		tx_hdr = (struct ieee80211_hdr *)skb->data;
997 		if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
998 		{
999 			found = 1;
1000 			break;
1001 		}
1002 	}
1003 
1004 	if (found) {
1005 		for (i=1; i<position; i++) {
1006 			skb = __skb_dequeue(q);
1007 			zd_mac_tx_status(hw, skb,
1008 					 mac->ack_pending ? mac->ack_signal : 0,
1009 					 NULL);
1010 			mac->ack_pending = 0;
1011 		}
1012 
1013 		mac->ack_pending = 1;
1014 		mac->ack_signal = stats->signal;
1015 
1016 		/* Prevent pending tx-packet on AP-mode */
1017 		if (mac->type == NL80211_IFTYPE_AP) {
1018 			skb = __skb_dequeue(q);
1019 			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1020 			mac->ack_pending = 0;
1021 		}
1022 	}
1023 
1024 	spin_unlock_irqrestore(&q->lock, flags);
1025 	return 1;
1026 }
1027 
1028 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1029 {
1030 	struct zd_mac *mac = zd_hw_mac(hw);
1031 	struct ieee80211_rx_status stats;
1032 	const struct rx_status *status;
1033 	struct sk_buff *skb;
1034 	int bad_frame = 0;
1035 	__le16 fc;
1036 	int need_padding;
1037 	int i;
1038 	u8 rate;
1039 
1040 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1041 	             FCS_LEN + sizeof(struct rx_status))
1042 		return -EINVAL;
1043 
1044 	memset(&stats, 0, sizeof(stats));
1045 
1046 	/* Note about pass_failed_fcs and pass_ctrl access below:
1047 	 * mac locking intentionally omitted here, as this is the only unlocked
1048 	 * reader and the only writer is configure_filter. Plus, if there were
1049 	 * any races accessing these variables, it wouldn't really matter.
1050 	 * If mac80211 ever provides a way for us to access filter flags
1051 	 * from outside configure_filter, we could improve on this. Also, this
1052 	 * situation may change once we implement some kind of DMA-into-skb
1053 	 * RX path. */
1054 
1055 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
1056 	status = (struct rx_status *)
1057 		(buffer + (length - sizeof(struct rx_status)));
1058 	if (status->frame_status & ZD_RX_ERROR) {
1059 		if (mac->pass_failed_fcs &&
1060 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
1061 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1062 			bad_frame = 1;
1063 		} else {
1064 			return -EINVAL;
1065 		}
1066 	}
1067 
1068 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1069 	stats.band = NL80211_BAND_2GHZ;
1070 	stats.signal = zd_check_signal(hw, status->signal_strength);
1071 
1072 	rate = zd_rx_rate(buffer, status);
1073 
1074 	/* todo: return index in the big switches in zd_rx_rate instead */
1075 	for (i = 0; i < mac->band.n_bitrates; i++)
1076 		if (rate == mac->band.bitrates[i].hw_value)
1077 			stats.rate_idx = i;
1078 
1079 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1080 	buffer += ZD_PLCP_HEADER_SIZE;
1081 
1082 	/* Except for bad frames, filter each frame to see if it is an ACK, in
1083 	 * which case our internal TX tracking is updated. Normally we then
1084 	 * bail here as there's no need to pass ACKs on up to the stack, but
1085 	 * there is also the case where the stack has requested us to pass
1086 	 * control frames on up (pass_ctrl) which we must consider. */
1087 	if (!bad_frame &&
1088 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1089 			&& !mac->pass_ctrl)
1090 		return 0;
1091 
1092 	fc = get_unaligned((__le16*)buffer);
1093 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1094 
1095 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1096 	if (skb == NULL)
1097 		return -ENOMEM;
1098 	if (need_padding) {
1099 		/* Make sure the payload data is 4 byte aligned. */
1100 		skb_reserve(skb, 2);
1101 	}
1102 
1103 	/* FIXME : could we avoid this big memcpy ? */
1104 	skb_put_data(skb, buffer, length);
1105 
1106 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1107 	ieee80211_rx_irqsafe(hw, skb);
1108 	return 0;
1109 }
1110 
1111 static int zd_op_add_interface(struct ieee80211_hw *hw,
1112 				struct ieee80211_vif *vif)
1113 {
1114 	struct zd_mac *mac = zd_hw_mac(hw);
1115 
1116 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1117 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1118 		return -EOPNOTSUPP;
1119 
1120 	switch (vif->type) {
1121 	case NL80211_IFTYPE_MONITOR:
1122 	case NL80211_IFTYPE_MESH_POINT:
1123 	case NL80211_IFTYPE_STATION:
1124 	case NL80211_IFTYPE_ADHOC:
1125 	case NL80211_IFTYPE_AP:
1126 		mac->type = vif->type;
1127 		break;
1128 	default:
1129 		return -EOPNOTSUPP;
1130 	}
1131 
1132 	mac->vif = vif;
1133 
1134 	return set_mac_and_bssid(mac);
1135 }
1136 
1137 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1138 				    struct ieee80211_vif *vif)
1139 {
1140 	struct zd_mac *mac = zd_hw_mac(hw);
1141 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1142 	mac->vif = NULL;
1143 	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1144 	zd_write_mac_addr(&mac->chip, NULL);
1145 
1146 	zd_mac_free_cur_beacon(mac);
1147 }
1148 
1149 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1150 {
1151 	struct zd_mac *mac = zd_hw_mac(hw);
1152 	struct ieee80211_conf *conf = &hw->conf;
1153 
1154 	spin_lock_irq(&mac->lock);
1155 	mac->channel = conf->chandef.chan->hw_value;
1156 	spin_unlock_irq(&mac->lock);
1157 
1158 	return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1159 }
1160 
1161 static void zd_beacon_done(struct zd_mac *mac)
1162 {
1163 	struct sk_buff *skb, *beacon;
1164 
1165 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1166 		return;
1167 	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1168 		return;
1169 
1170 	/*
1171 	 * Send out buffered broad- and multicast frames.
1172 	 */
1173 	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1174 		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1175 		if (!skb)
1176 			break;
1177 		zd_op_tx(mac->hw, NULL, skb);
1178 	}
1179 
1180 	/*
1181 	 * Fetch next beacon so that tim_count is updated.
1182 	 */
1183 	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1184 	if (beacon)
1185 		zd_mac_config_beacon(mac->hw, beacon, true);
1186 
1187 	spin_lock_irq(&mac->lock);
1188 	mac->beacon.last_update = jiffies;
1189 	spin_unlock_irq(&mac->lock);
1190 }
1191 
1192 static void zd_process_intr(struct work_struct *work)
1193 {
1194 	u16 int_status;
1195 	unsigned long flags;
1196 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1197 
1198 	spin_lock_irqsave(&mac->lock, flags);
1199 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1200 	spin_unlock_irqrestore(&mac->lock, flags);
1201 
1202 	if (int_status & INT_CFG_NEXT_BCN) {
1203 		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1204 		zd_beacon_done(mac);
1205 	} else {
1206 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1207 	}
1208 
1209 	zd_chip_enable_hwint(&mac->chip);
1210 }
1211 
1212 
1213 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1214 				   struct netdev_hw_addr_list *mc_list)
1215 {
1216 	struct zd_mac *mac = zd_hw_mac(hw);
1217 	struct zd_mc_hash hash;
1218 	struct netdev_hw_addr *ha;
1219 
1220 	zd_mc_clear(&hash);
1221 
1222 	netdev_hw_addr_list_for_each(ha, mc_list) {
1223 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1224 		zd_mc_add_addr(&hash, ha->addr);
1225 	}
1226 
1227 	return hash.low | ((u64)hash.high << 32);
1228 }
1229 
1230 #define SUPPORTED_FIF_FLAGS \
1231 	(FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1232 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1233 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1234 			unsigned int changed_flags,
1235 			unsigned int *new_flags,
1236 			u64 multicast)
1237 {
1238 	struct zd_mc_hash hash = {
1239 		.low = multicast,
1240 		.high = multicast >> 32,
1241 	};
1242 	struct zd_mac *mac = zd_hw_mac(hw);
1243 	unsigned long flags;
1244 	int r;
1245 
1246 	/* Only deal with supported flags */
1247 	changed_flags &= SUPPORTED_FIF_FLAGS;
1248 	*new_flags &= SUPPORTED_FIF_FLAGS;
1249 
1250 	/*
1251 	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1252 	 * has changed, no bit in changed_flags is set. To handle this
1253 	 * situation, we do not return if changed_flags is 0. If we do so,
1254 	 * we will have some issue with IPv6 which uses multicast for link
1255 	 * layer address resolution.
1256 	 */
1257 	if (*new_flags & FIF_ALLMULTI)
1258 		zd_mc_add_all(&hash);
1259 
1260 	spin_lock_irqsave(&mac->lock, flags);
1261 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1262 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1263 	mac->multicast_hash = hash;
1264 	spin_unlock_irqrestore(&mac->lock, flags);
1265 
1266 	zd_chip_set_multicast_hash(&mac->chip, &hash);
1267 
1268 	if (changed_flags & FIF_CONTROL) {
1269 		r = set_rx_filter(mac);
1270 		if (r)
1271 			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1272 	}
1273 
1274 	/* no handling required for FIF_OTHER_BSS as we don't currently
1275 	 * do BSSID filtering */
1276 	/* FIXME: in future it would be nice to enable the probe response
1277 	 * filter (so that the driver doesn't see them) until
1278 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1279 	 * have to schedule work to enable prbresp reception, which might
1280 	 * happen too late. For now we'll just listen and forward them all the
1281 	 * time. */
1282 }
1283 
1284 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1285 {
1286 	mutex_lock(&mac->chip.mutex);
1287 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1288 	mutex_unlock(&mac->chip.mutex);
1289 }
1290 
1291 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1292 				   struct ieee80211_vif *vif,
1293 				   struct ieee80211_bss_conf *bss_conf,
1294 				   u32 changes)
1295 {
1296 	struct zd_mac *mac = zd_hw_mac(hw);
1297 	int associated;
1298 
1299 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1300 
1301 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1302 	    mac->type == NL80211_IFTYPE_ADHOC ||
1303 	    mac->type == NL80211_IFTYPE_AP) {
1304 		associated = true;
1305 		if (changes & BSS_CHANGED_BEACON) {
1306 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1307 
1308 			if (beacon) {
1309 				zd_chip_disable_hwint(&mac->chip);
1310 				zd_mac_config_beacon(hw, beacon, false);
1311 				zd_chip_enable_hwint(&mac->chip);
1312 			}
1313 		}
1314 
1315 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1316 			u16 interval = 0;
1317 			u8 period = 0;
1318 
1319 			if (bss_conf->enable_beacon) {
1320 				period = bss_conf->dtim_period;
1321 				interval = bss_conf->beacon_int;
1322 			}
1323 
1324 			spin_lock_irq(&mac->lock);
1325 			mac->beacon.period = period;
1326 			mac->beacon.interval = interval;
1327 			mac->beacon.last_update = jiffies;
1328 			spin_unlock_irq(&mac->lock);
1329 
1330 			zd_set_beacon_interval(&mac->chip, interval, period,
1331 					       mac->type);
1332 		}
1333 	} else
1334 		associated = is_valid_ether_addr(bss_conf->bssid);
1335 
1336 	spin_lock_irq(&mac->lock);
1337 	mac->associated = associated;
1338 	spin_unlock_irq(&mac->lock);
1339 
1340 	/* TODO: do hardware bssid filtering */
1341 
1342 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1343 		spin_lock_irq(&mac->lock);
1344 		mac->short_preamble = bss_conf->use_short_preamble;
1345 		spin_unlock_irq(&mac->lock);
1346 
1347 		set_rts_cts(mac, bss_conf->use_short_preamble);
1348 	}
1349 }
1350 
1351 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1352 {
1353 	struct zd_mac *mac = zd_hw_mac(hw);
1354 	return zd_chip_get_tsf(&mac->chip);
1355 }
1356 
1357 static const struct ieee80211_ops zd_ops = {
1358 	.tx			= zd_op_tx,
1359 	.start			= zd_op_start,
1360 	.stop			= zd_op_stop,
1361 	.add_interface		= zd_op_add_interface,
1362 	.remove_interface	= zd_op_remove_interface,
1363 	.config			= zd_op_config,
1364 	.prepare_multicast	= zd_op_prepare_multicast,
1365 	.configure_filter	= zd_op_configure_filter,
1366 	.bss_info_changed	= zd_op_bss_info_changed,
1367 	.get_tsf		= zd_op_get_tsf,
1368 };
1369 
1370 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1371 {
1372 	struct zd_mac *mac;
1373 	struct ieee80211_hw *hw;
1374 
1375 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1376 	if (!hw) {
1377 		dev_dbg_f(&intf->dev, "out of memory\n");
1378 		return NULL;
1379 	}
1380 
1381 	mac = zd_hw_mac(hw);
1382 
1383 	memset(mac, 0, sizeof(*mac));
1384 	spin_lock_init(&mac->lock);
1385 	mac->hw = hw;
1386 
1387 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1388 
1389 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1390 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1391 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1392 	mac->band.bitrates = mac->rates;
1393 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1394 	mac->band.channels = mac->channels;
1395 
1396 	hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1397 
1398 	ieee80211_hw_set(hw, MFP_CAPABLE);
1399 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1400 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1401 	ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1402 
1403 	hw->wiphy->interface_modes =
1404 		BIT(NL80211_IFTYPE_MESH_POINT) |
1405 		BIT(NL80211_IFTYPE_STATION) |
1406 		BIT(NL80211_IFTYPE_ADHOC) |
1407 		BIT(NL80211_IFTYPE_AP);
1408 
1409 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1410 
1411 	hw->max_signal = 100;
1412 	hw->queues = 1;
1413 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1414 
1415 	/*
1416 	 * Tell mac80211 that we support multi rate retries
1417 	 */
1418 	hw->max_rates = IEEE80211_TX_MAX_RATES;
1419 	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1420 
1421 	skb_queue_head_init(&mac->ack_wait_queue);
1422 	mac->ack_pending = 0;
1423 
1424 	zd_chip_init(&mac->chip, hw, intf);
1425 	housekeeping_init(mac);
1426 	beacon_init(mac);
1427 	INIT_WORK(&mac->process_intr, zd_process_intr);
1428 
1429 	SET_IEEE80211_DEV(hw, &intf->dev);
1430 	return hw;
1431 }
1432 
1433 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1434 
1435 static void beacon_watchdog_handler(struct work_struct *work)
1436 {
1437 	struct zd_mac *mac =
1438 		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1439 	struct sk_buff *beacon;
1440 	unsigned long timeout;
1441 	int interval, period;
1442 
1443 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1444 		goto rearm;
1445 	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1446 		goto rearm;
1447 
1448 	spin_lock_irq(&mac->lock);
1449 	interval = mac->beacon.interval;
1450 	period = mac->beacon.period;
1451 	timeout = mac->beacon.last_update +
1452 			msecs_to_jiffies(interval * 1024 / 1000) * 3;
1453 	spin_unlock_irq(&mac->lock);
1454 
1455 	if (interval > 0 && time_is_before_jiffies(timeout)) {
1456 		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1457 					   "restarting. "
1458 					   "(interval: %d, dtim: %d)\n",
1459 					   interval, period);
1460 
1461 		zd_chip_disable_hwint(&mac->chip);
1462 
1463 		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1464 		if (beacon) {
1465 			zd_mac_free_cur_beacon(mac);
1466 
1467 			zd_mac_config_beacon(mac->hw, beacon, false);
1468 		}
1469 
1470 		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1471 
1472 		zd_chip_enable_hwint(&mac->chip);
1473 
1474 		spin_lock_irq(&mac->lock);
1475 		mac->beacon.last_update = jiffies;
1476 		spin_unlock_irq(&mac->lock);
1477 	}
1478 
1479 rearm:
1480 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1481 			   BEACON_WATCHDOG_DELAY);
1482 }
1483 
1484 static void beacon_init(struct zd_mac *mac)
1485 {
1486 	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1487 }
1488 
1489 static void beacon_enable(struct zd_mac *mac)
1490 {
1491 	dev_dbg_f(zd_mac_dev(mac), "\n");
1492 
1493 	mac->beacon.last_update = jiffies;
1494 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1495 			   BEACON_WATCHDOG_DELAY);
1496 }
1497 
1498 static void beacon_disable(struct zd_mac *mac)
1499 {
1500 	dev_dbg_f(zd_mac_dev(mac), "\n");
1501 	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1502 
1503 	zd_mac_free_cur_beacon(mac);
1504 }
1505 
1506 #define LINK_LED_WORK_DELAY HZ
1507 
1508 static void link_led_handler(struct work_struct *work)
1509 {
1510 	struct zd_mac *mac =
1511 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1512 	struct zd_chip *chip = &mac->chip;
1513 	int is_associated;
1514 	int r;
1515 
1516 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1517 		goto requeue;
1518 
1519 	spin_lock_irq(&mac->lock);
1520 	is_associated = mac->associated;
1521 	spin_unlock_irq(&mac->lock);
1522 
1523 	r = zd_chip_control_leds(chip,
1524 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1525 	if (r)
1526 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1527 
1528 requeue:
1529 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1530 		           LINK_LED_WORK_DELAY);
1531 }
1532 
1533 static void housekeeping_init(struct zd_mac *mac)
1534 {
1535 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1536 }
1537 
1538 static void housekeeping_enable(struct zd_mac *mac)
1539 {
1540 	dev_dbg_f(zd_mac_dev(mac), "\n");
1541 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1542 			   0);
1543 }
1544 
1545 static void housekeeping_disable(struct zd_mac *mac)
1546 {
1547 	dev_dbg_f(zd_mac_dev(mac), "\n");
1548 	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1549 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1550 }
1551