1 /* ZD1211 USB-WLAN driver for Linux 2 * 3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> 6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/slab.h> 25 #include <linux/usb.h> 26 #include <linux/jiffies.h> 27 #include <net/ieee80211_radiotap.h> 28 29 #include "zd_def.h" 30 #include "zd_chip.h" 31 #include "zd_mac.h" 32 #include "zd_rf.h" 33 34 struct zd_reg_alpha2_map { 35 u32 reg; 36 char alpha2[2]; 37 }; 38 39 static struct zd_reg_alpha2_map reg_alpha2_map[] = { 40 { ZD_REGDOMAIN_FCC, "US" }, 41 { ZD_REGDOMAIN_IC, "CA" }, 42 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ 43 { ZD_REGDOMAIN_JAPAN, "JP" }, 44 { ZD_REGDOMAIN_JAPAN_2, "JP" }, 45 { ZD_REGDOMAIN_JAPAN_3, "JP" }, 46 { ZD_REGDOMAIN_SPAIN, "ES" }, 47 { ZD_REGDOMAIN_FRANCE, "FR" }, 48 }; 49 50 /* This table contains the hardware specific values for the modulation rates. */ 51 static const struct ieee80211_rate zd_rates[] = { 52 { .bitrate = 10, 53 .hw_value = ZD_CCK_RATE_1M, }, 54 { .bitrate = 20, 55 .hw_value = ZD_CCK_RATE_2M, 56 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, 57 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 58 { .bitrate = 55, 59 .hw_value = ZD_CCK_RATE_5_5M, 60 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, 61 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 62 { .bitrate = 110, 63 .hw_value = ZD_CCK_RATE_11M, 64 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, 65 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 66 { .bitrate = 60, 67 .hw_value = ZD_OFDM_RATE_6M, 68 .flags = 0 }, 69 { .bitrate = 90, 70 .hw_value = ZD_OFDM_RATE_9M, 71 .flags = 0 }, 72 { .bitrate = 120, 73 .hw_value = ZD_OFDM_RATE_12M, 74 .flags = 0 }, 75 { .bitrate = 180, 76 .hw_value = ZD_OFDM_RATE_18M, 77 .flags = 0 }, 78 { .bitrate = 240, 79 .hw_value = ZD_OFDM_RATE_24M, 80 .flags = 0 }, 81 { .bitrate = 360, 82 .hw_value = ZD_OFDM_RATE_36M, 83 .flags = 0 }, 84 { .bitrate = 480, 85 .hw_value = ZD_OFDM_RATE_48M, 86 .flags = 0 }, 87 { .bitrate = 540, 88 .hw_value = ZD_OFDM_RATE_54M, 89 .flags = 0 }, 90 }; 91 92 /* 93 * Zydas retry rates table. Each line is listed in the same order as 94 * in zd_rates[] and contains all the rate used when a packet is sent 95 * starting with a given rates. Let's consider an example : 96 * 97 * "11 Mbits : 4, 3, 2, 1, 0" means : 98 * - packet is sent using 4 different rates 99 * - 1st rate is index 3 (ie 11 Mbits) 100 * - 2nd rate is index 2 (ie 5.5 Mbits) 101 * - 3rd rate is index 1 (ie 2 Mbits) 102 * - 4th rate is index 0 (ie 1 Mbits) 103 */ 104 105 static const struct tx_retry_rate zd_retry_rates[] = { 106 { /* 1 Mbits */ 1, { 0 }}, 107 { /* 2 Mbits */ 2, { 1, 0 }}, 108 { /* 5.5 Mbits */ 3, { 2, 1, 0 }}, 109 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }}, 110 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }}, 111 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}}, 112 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }}, 113 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }}, 114 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }}, 115 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }}, 116 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }}, 117 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }} 118 }; 119 120 static const struct ieee80211_channel zd_channels[] = { 121 { .center_freq = 2412, .hw_value = 1 }, 122 { .center_freq = 2417, .hw_value = 2 }, 123 { .center_freq = 2422, .hw_value = 3 }, 124 { .center_freq = 2427, .hw_value = 4 }, 125 { .center_freq = 2432, .hw_value = 5 }, 126 { .center_freq = 2437, .hw_value = 6 }, 127 { .center_freq = 2442, .hw_value = 7 }, 128 { .center_freq = 2447, .hw_value = 8 }, 129 { .center_freq = 2452, .hw_value = 9 }, 130 { .center_freq = 2457, .hw_value = 10 }, 131 { .center_freq = 2462, .hw_value = 11 }, 132 { .center_freq = 2467, .hw_value = 12 }, 133 { .center_freq = 2472, .hw_value = 13 }, 134 { .center_freq = 2484, .hw_value = 14 }, 135 }; 136 137 static void housekeeping_init(struct zd_mac *mac); 138 static void housekeeping_enable(struct zd_mac *mac); 139 static void housekeeping_disable(struct zd_mac *mac); 140 static void beacon_init(struct zd_mac *mac); 141 static void beacon_enable(struct zd_mac *mac); 142 static void beacon_disable(struct zd_mac *mac); 143 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble); 144 static int zd_mac_config_beacon(struct ieee80211_hw *hw, 145 struct sk_buff *beacon, bool in_intr); 146 147 static int zd_reg2alpha2(u8 regdomain, char *alpha2) 148 { 149 unsigned int i; 150 struct zd_reg_alpha2_map *reg_map; 151 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { 152 reg_map = ®_alpha2_map[i]; 153 if (regdomain == reg_map->reg) { 154 alpha2[0] = reg_map->alpha2[0]; 155 alpha2[1] = reg_map->alpha2[1]; 156 return 0; 157 } 158 } 159 return 1; 160 } 161 162 static int zd_check_signal(struct ieee80211_hw *hw, int signal) 163 { 164 struct zd_mac *mac = zd_hw_mac(hw); 165 166 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100, 167 "%s: signal value from device not in range 0..100, " 168 "but %d.\n", __func__, signal); 169 170 if (signal < 0) 171 signal = 0; 172 else if (signal > 100) 173 signal = 100; 174 175 return signal; 176 } 177 178 int zd_mac_preinit_hw(struct ieee80211_hw *hw) 179 { 180 int r; 181 u8 addr[ETH_ALEN]; 182 struct zd_mac *mac = zd_hw_mac(hw); 183 184 r = zd_chip_read_mac_addr_fw(&mac->chip, addr); 185 if (r) 186 return r; 187 188 SET_IEEE80211_PERM_ADDR(hw, addr); 189 190 return 0; 191 } 192 193 int zd_mac_init_hw(struct ieee80211_hw *hw) 194 { 195 int r; 196 struct zd_mac *mac = zd_hw_mac(hw); 197 struct zd_chip *chip = &mac->chip; 198 char alpha2[2]; 199 u8 default_regdomain; 200 201 r = zd_chip_enable_int(chip); 202 if (r) 203 goto out; 204 r = zd_chip_init_hw(chip); 205 if (r) 206 goto disable_int; 207 208 ZD_ASSERT(!irqs_disabled()); 209 210 r = zd_read_regdomain(chip, &default_regdomain); 211 if (r) 212 goto disable_int; 213 spin_lock_irq(&mac->lock); 214 mac->regdomain = mac->default_regdomain = default_regdomain; 215 spin_unlock_irq(&mac->lock); 216 217 /* We must inform the device that we are doing encryption/decryption in 218 * software at the moment. */ 219 r = zd_set_encryption_type(chip, ENC_SNIFFER); 220 if (r) 221 goto disable_int; 222 223 r = zd_reg2alpha2(mac->regdomain, alpha2); 224 if (r) 225 goto disable_int; 226 227 r = regulatory_hint(hw->wiphy, alpha2); 228 disable_int: 229 zd_chip_disable_int(chip); 230 out: 231 return r; 232 } 233 234 void zd_mac_clear(struct zd_mac *mac) 235 { 236 flush_workqueue(zd_workqueue); 237 zd_chip_clear(&mac->chip); 238 lockdep_assert_held(&mac->lock); 239 ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); 240 } 241 242 static int set_rx_filter(struct zd_mac *mac) 243 { 244 unsigned long flags; 245 u32 filter = STA_RX_FILTER; 246 247 spin_lock_irqsave(&mac->lock, flags); 248 if (mac->pass_ctrl) 249 filter |= RX_FILTER_CTRL; 250 spin_unlock_irqrestore(&mac->lock, flags); 251 252 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); 253 } 254 255 static int set_mac_and_bssid(struct zd_mac *mac) 256 { 257 int r; 258 259 if (!mac->vif) 260 return -1; 261 262 r = zd_write_mac_addr(&mac->chip, mac->vif->addr); 263 if (r) 264 return r; 265 266 /* Vendor driver after setting MAC either sets BSSID for AP or 267 * filter for other modes. 268 */ 269 if (mac->type != NL80211_IFTYPE_AP) 270 return set_rx_filter(mac); 271 else 272 return zd_write_bssid(&mac->chip, mac->vif->addr); 273 } 274 275 static int set_mc_hash(struct zd_mac *mac) 276 { 277 struct zd_mc_hash hash; 278 zd_mc_clear(&hash); 279 return zd_chip_set_multicast_hash(&mac->chip, &hash); 280 } 281 282 int zd_op_start(struct ieee80211_hw *hw) 283 { 284 struct zd_mac *mac = zd_hw_mac(hw); 285 struct zd_chip *chip = &mac->chip; 286 struct zd_usb *usb = &chip->usb; 287 int r; 288 289 if (!usb->initialized) { 290 r = zd_usb_init_hw(usb); 291 if (r) 292 goto out; 293 } 294 295 r = zd_chip_enable_int(chip); 296 if (r < 0) 297 goto out; 298 299 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); 300 if (r < 0) 301 goto disable_int; 302 r = set_rx_filter(mac); 303 if (r) 304 goto disable_int; 305 r = set_mc_hash(mac); 306 if (r) 307 goto disable_int; 308 309 /* Wait after setting the multicast hash table and powering on 310 * the radio otherwise interface bring up will fail. This matches 311 * what the vendor driver did. 312 */ 313 msleep(10); 314 315 r = zd_chip_switch_radio_on(chip); 316 if (r < 0) { 317 dev_err(zd_chip_dev(chip), 318 "%s: failed to set radio on\n", __func__); 319 goto disable_int; 320 } 321 r = zd_chip_enable_rxtx(chip); 322 if (r < 0) 323 goto disable_radio; 324 r = zd_chip_enable_hwint(chip); 325 if (r < 0) 326 goto disable_rxtx; 327 328 housekeeping_enable(mac); 329 beacon_enable(mac); 330 set_bit(ZD_DEVICE_RUNNING, &mac->flags); 331 return 0; 332 disable_rxtx: 333 zd_chip_disable_rxtx(chip); 334 disable_radio: 335 zd_chip_switch_radio_off(chip); 336 disable_int: 337 zd_chip_disable_int(chip); 338 out: 339 return r; 340 } 341 342 void zd_op_stop(struct ieee80211_hw *hw) 343 { 344 struct zd_mac *mac = zd_hw_mac(hw); 345 struct zd_chip *chip = &mac->chip; 346 struct sk_buff *skb; 347 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; 348 349 clear_bit(ZD_DEVICE_RUNNING, &mac->flags); 350 351 /* The order here deliberately is a little different from the open() 352 * method, since we need to make sure there is no opportunity for RX 353 * frames to be processed by mac80211 after we have stopped it. 354 */ 355 356 zd_chip_disable_rxtx(chip); 357 beacon_disable(mac); 358 housekeeping_disable(mac); 359 flush_workqueue(zd_workqueue); 360 361 zd_chip_disable_hwint(chip); 362 zd_chip_switch_radio_off(chip); 363 zd_chip_disable_int(chip); 364 365 366 while ((skb = skb_dequeue(ack_wait_queue))) 367 dev_kfree_skb_any(skb); 368 } 369 370 int zd_restore_settings(struct zd_mac *mac) 371 { 372 struct sk_buff *beacon; 373 struct zd_mc_hash multicast_hash; 374 unsigned int short_preamble; 375 int r, beacon_interval, beacon_period; 376 u8 channel; 377 378 dev_dbg_f(zd_mac_dev(mac), "\n"); 379 380 spin_lock_irq(&mac->lock); 381 multicast_hash = mac->multicast_hash; 382 short_preamble = mac->short_preamble; 383 beacon_interval = mac->beacon.interval; 384 beacon_period = mac->beacon.period; 385 channel = mac->channel; 386 spin_unlock_irq(&mac->lock); 387 388 r = set_mac_and_bssid(mac); 389 if (r < 0) { 390 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r); 391 return r; 392 } 393 394 r = zd_chip_set_channel(&mac->chip, channel); 395 if (r < 0) { 396 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n", 397 r); 398 return r; 399 } 400 401 set_rts_cts(mac, short_preamble); 402 403 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash); 404 if (r < 0) { 405 dev_dbg_f(zd_mac_dev(mac), 406 "zd_chip_set_multicast_hash failed, %d\n", r); 407 return r; 408 } 409 410 if (mac->type == NL80211_IFTYPE_MESH_POINT || 411 mac->type == NL80211_IFTYPE_ADHOC || 412 mac->type == NL80211_IFTYPE_AP) { 413 if (mac->vif != NULL) { 414 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 415 if (beacon) 416 zd_mac_config_beacon(mac->hw, beacon, false); 417 } 418 419 zd_set_beacon_interval(&mac->chip, beacon_interval, 420 beacon_period, mac->type); 421 422 spin_lock_irq(&mac->lock); 423 mac->beacon.last_update = jiffies; 424 spin_unlock_irq(&mac->lock); 425 } 426 427 return 0; 428 } 429 430 /** 431 * zd_mac_tx_status - reports tx status of a packet if required 432 * @hw - a &struct ieee80211_hw pointer 433 * @skb - a sk-buffer 434 * @flags: extra flags to set in the TX status info 435 * @ackssi: ACK signal strength 436 * @success - True for successful transmission of the frame 437 * 438 * This information calls ieee80211_tx_status_irqsafe() if required by the 439 * control information. It copies the control information into the status 440 * information. 441 * 442 * If no status information has been requested, the skb is freed. 443 */ 444 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, 445 int ackssi, struct tx_status *tx_status) 446 { 447 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 448 int i; 449 int success = 1, retry = 1; 450 int first_idx; 451 const struct tx_retry_rate *retries; 452 453 ieee80211_tx_info_clear_status(info); 454 455 if (tx_status) { 456 success = !tx_status->failure; 457 retry = tx_status->retry + success; 458 } 459 460 if (success) { 461 /* success */ 462 info->flags |= IEEE80211_TX_STAT_ACK; 463 } else { 464 /* failure */ 465 info->flags &= ~IEEE80211_TX_STAT_ACK; 466 } 467 468 first_idx = info->status.rates[0].idx; 469 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 470 retries = &zd_retry_rates[first_idx]; 471 ZD_ASSERT(1 <= retry && retry <= retries->count); 472 473 info->status.rates[0].idx = retries->rate[0]; 474 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1); 475 476 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) { 477 info->status.rates[i].idx = retries->rate[i]; 478 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2); 479 } 480 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) { 481 info->status.rates[i].idx = retries->rate[retry - 1]; 482 info->status.rates[i].count = 1; // (success ? 1:2); 483 } 484 if (i<IEEE80211_TX_MAX_RATES) 485 info->status.rates[i].idx = -1; /* terminate */ 486 487 info->status.ack_signal = zd_check_signal(hw, ackssi); 488 ieee80211_tx_status_irqsafe(hw, skb); 489 } 490 491 /** 492 * zd_mac_tx_failed - callback for failed frames 493 * @dev: the mac80211 wireless device 494 * 495 * This function is called if a frame couldn't be successfully 496 * transferred. The first frame from the tx queue, will be selected and 497 * reported as error to the upper layers. 498 */ 499 void zd_mac_tx_failed(struct urb *urb) 500 { 501 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context); 502 struct zd_mac *mac = zd_hw_mac(hw); 503 struct sk_buff_head *q = &mac->ack_wait_queue; 504 struct sk_buff *skb; 505 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer; 506 unsigned long flags; 507 int success = !tx_status->failure; 508 int retry = tx_status->retry + success; 509 int found = 0; 510 int i, position = 0; 511 512 spin_lock_irqsave(&q->lock, flags); 513 514 skb_queue_walk(q, skb) { 515 struct ieee80211_hdr *tx_hdr; 516 struct ieee80211_tx_info *info; 517 int first_idx, final_idx; 518 const struct tx_retry_rate *retries; 519 u8 final_rate; 520 521 position ++; 522 523 /* if the hardware reports a failure and we had a 802.11 ACK 524 * pending, then we skip the first skb when searching for a 525 * matching frame */ 526 if (tx_status->failure && mac->ack_pending && 527 skb_queue_is_first(q, skb)) { 528 continue; 529 } 530 531 tx_hdr = (struct ieee80211_hdr *)skb->data; 532 533 /* we skip all frames not matching the reported destination */ 534 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac))) 535 continue; 536 537 /* we skip all frames not matching the reported final rate */ 538 539 info = IEEE80211_SKB_CB(skb); 540 first_idx = info->status.rates[0].idx; 541 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 542 retries = &zd_retry_rates[first_idx]; 543 if (retry <= 0 || retry > retries->count) 544 continue; 545 546 final_idx = retries->rate[retry - 1]; 547 final_rate = zd_rates[final_idx].hw_value; 548 549 if (final_rate != tx_status->rate) { 550 continue; 551 } 552 553 found = 1; 554 break; 555 } 556 557 if (found) { 558 for (i=1; i<=position; i++) { 559 skb = __skb_dequeue(q); 560 zd_mac_tx_status(hw, skb, 561 mac->ack_pending ? mac->ack_signal : 0, 562 i == position ? tx_status : NULL); 563 mac->ack_pending = 0; 564 } 565 } 566 567 spin_unlock_irqrestore(&q->lock, flags); 568 } 569 570 /** 571 * zd_mac_tx_to_dev - callback for USB layer 572 * @skb: a &sk_buff pointer 573 * @error: error value, 0 if transmission successful 574 * 575 * Informs the MAC layer that the frame has successfully transferred to the 576 * device. If an ACK is required and the transfer to the device has been 577 * successful, the packets are put on the @ack_wait_queue with 578 * the control set removed. 579 */ 580 void zd_mac_tx_to_dev(struct sk_buff *skb, int error) 581 { 582 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 583 struct ieee80211_hw *hw = info->rate_driver_data[0]; 584 struct zd_mac *mac = zd_hw_mac(hw); 585 586 ieee80211_tx_info_clear_status(info); 587 588 skb_pull(skb, sizeof(struct zd_ctrlset)); 589 if (unlikely(error || 590 (info->flags & IEEE80211_TX_CTL_NO_ACK))) { 591 /* 592 * FIXME : do we need to fill in anything ? 593 */ 594 ieee80211_tx_status_irqsafe(hw, skb); 595 } else { 596 struct sk_buff_head *q = &mac->ack_wait_queue; 597 598 skb_queue_tail(q, skb); 599 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) { 600 zd_mac_tx_status(hw, skb_dequeue(q), 601 mac->ack_pending ? mac->ack_signal : 0, 602 NULL); 603 mac->ack_pending = 0; 604 } 605 } 606 } 607 608 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) 609 { 610 /* ZD_PURE_RATE() must be used to remove the modulation type flag of 611 * the zd-rate values. 612 */ 613 static const u8 rate_divisor[] = { 614 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, 615 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, 616 /* Bits must be doubled. */ 617 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, 618 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, 619 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, 620 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, 621 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, 622 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, 623 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, 624 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, 625 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, 626 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, 627 }; 628 629 u32 bits = (u32)tx_length * 8; 630 u32 divisor; 631 632 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; 633 if (divisor == 0) 634 return -EINVAL; 635 636 switch (zd_rate) { 637 case ZD_CCK_RATE_5_5M: 638 bits = (2*bits) + 10; /* round up to the next integer */ 639 break; 640 case ZD_CCK_RATE_11M: 641 if (service) { 642 u32 t = bits % 11; 643 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; 644 if (0 < t && t <= 3) { 645 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; 646 } 647 } 648 bits += 10; /* round up to the next integer */ 649 break; 650 } 651 652 return bits/divisor; 653 } 654 655 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, 656 struct ieee80211_hdr *header, 657 struct ieee80211_tx_info *info) 658 { 659 /* 660 * CONTROL TODO: 661 * - if backoff needed, enable bit 0 662 * - if burst (backoff not needed) disable bit 0 663 */ 664 665 cs->control = 0; 666 667 /* First fragment */ 668 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 669 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; 670 671 /* No ACK expected (multicast, etc.) */ 672 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 673 cs->control |= ZD_CS_NO_ACK; 674 675 /* PS-POLL */ 676 if (ieee80211_is_pspoll(header->frame_control)) 677 cs->control |= ZD_CS_PS_POLL_FRAME; 678 679 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) 680 cs->control |= ZD_CS_RTS; 681 682 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) 683 cs->control |= ZD_CS_SELF_CTS; 684 685 /* FIXME: Management frame? */ 686 } 687 688 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon) 689 { 690 if (!mac->beacon.cur_beacon) 691 return false; 692 693 if (mac->beacon.cur_beacon->len != beacon->len) 694 return false; 695 696 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len); 697 } 698 699 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac) 700 { 701 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex)); 702 703 kfree_skb(mac->beacon.cur_beacon); 704 mac->beacon.cur_beacon = NULL; 705 } 706 707 static void zd_mac_free_cur_beacon(struct zd_mac *mac) 708 { 709 mutex_lock(&mac->chip.mutex); 710 zd_mac_free_cur_beacon_locked(mac); 711 mutex_unlock(&mac->chip.mutex); 712 } 713 714 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon, 715 bool in_intr) 716 { 717 struct zd_mac *mac = zd_hw_mac(hw); 718 int r, ret, num_cmds, req_pos = 0; 719 u32 tmp, j = 0; 720 /* 4 more bytes for tail CRC */ 721 u32 full_len = beacon->len + 4; 722 unsigned long end_jiffies, message_jiffies; 723 struct zd_ioreq32 *ioreqs; 724 725 mutex_lock(&mac->chip.mutex); 726 727 /* Check if hw already has this beacon. */ 728 if (zd_mac_match_cur_beacon(mac, beacon)) { 729 r = 0; 730 goto out_nofree; 731 } 732 733 /* Alloc memory for full beacon write at once. */ 734 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len; 735 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32), 736 GFP_KERNEL); 737 if (!ioreqs) { 738 r = -ENOMEM; 739 goto out_nofree; 740 } 741 742 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE); 743 if (r < 0) 744 goto out; 745 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 746 if (r < 0) 747 goto release_sema; 748 if (in_intr && tmp & 0x2) { 749 r = -EBUSY; 750 goto release_sema; 751 } 752 753 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 754 message_jiffies = jiffies + HZ / 10; /*~100ms*/ 755 while (tmp & 0x2) { 756 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 757 if (r < 0) 758 goto release_sema; 759 if (time_is_before_eq_jiffies(message_jiffies)) { 760 message_jiffies = jiffies + HZ / 10; 761 dev_err(zd_mac_dev(mac), 762 "CR_BCN_FIFO_SEMAPHORE not ready\n"); 763 if (time_is_before_eq_jiffies(end_jiffies)) { 764 dev_err(zd_mac_dev(mac), 765 "Giving up beacon config.\n"); 766 r = -ETIMEDOUT; 767 goto reset_device; 768 } 769 } 770 msleep(20); 771 } 772 773 ioreqs[req_pos].addr = CR_BCN_FIFO; 774 ioreqs[req_pos].value = full_len - 1; 775 req_pos++; 776 if (zd_chip_is_zd1211b(&mac->chip)) { 777 ioreqs[req_pos].addr = CR_BCN_LENGTH; 778 ioreqs[req_pos].value = full_len - 1; 779 req_pos++; 780 } 781 782 for (j = 0 ; j < beacon->len; j++) { 783 ioreqs[req_pos].addr = CR_BCN_FIFO; 784 ioreqs[req_pos].value = *((u8 *)(beacon->data + j)); 785 req_pos++; 786 } 787 788 for (j = 0; j < 4; j++) { 789 ioreqs[req_pos].addr = CR_BCN_FIFO; 790 ioreqs[req_pos].value = 0x0; 791 req_pos++; 792 } 793 794 BUG_ON(req_pos != num_cmds); 795 796 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds); 797 798 release_sema: 799 /* 800 * Try very hard to release device beacon semaphore, as otherwise 801 * device/driver can be left in unusable state. 802 */ 803 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 804 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 805 while (ret < 0) { 806 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) { 807 ret = -ETIMEDOUT; 808 break; 809 } 810 811 msleep(20); 812 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 813 } 814 815 if (ret < 0) 816 dev_err(zd_mac_dev(mac), "Could not release " 817 "CR_BCN_FIFO_SEMAPHORE!\n"); 818 if (r < 0 || ret < 0) { 819 if (r >= 0) 820 r = ret; 821 822 /* We don't know if beacon was written successfully or not, 823 * so clear current. */ 824 zd_mac_free_cur_beacon_locked(mac); 825 826 goto out; 827 } 828 829 /* Beacon has now been written successfully, update current. */ 830 zd_mac_free_cur_beacon_locked(mac); 831 mac->beacon.cur_beacon = beacon; 832 beacon = NULL; 833 834 /* 802.11b/g 2.4G CCK 1Mb 835 * 802.11a, not yet implemented, uses different values (see GPL vendor 836 * driver) 837 */ 838 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19), 839 CR_BCN_PLCP_CFG); 840 out: 841 kfree(ioreqs); 842 out_nofree: 843 kfree_skb(beacon); 844 mutex_unlock(&mac->chip.mutex); 845 846 return r; 847 848 reset_device: 849 zd_mac_free_cur_beacon_locked(mac); 850 kfree_skb(beacon); 851 852 mutex_unlock(&mac->chip.mutex); 853 kfree(ioreqs); 854 855 /* semaphore stuck, reset device to avoid fw freeze later */ 856 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, " 857 "resetting device..."); 858 usb_queue_reset_device(mac->chip.usb.intf); 859 860 return r; 861 } 862 863 static int fill_ctrlset(struct zd_mac *mac, 864 struct sk_buff *skb) 865 { 866 int r; 867 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 868 unsigned int frag_len = skb->len + FCS_LEN; 869 unsigned int packet_length; 870 struct ieee80211_rate *txrate; 871 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset)); 872 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 873 874 ZD_ASSERT(frag_len <= 0xffff); 875 876 /* 877 * Firmware computes the duration itself (for all frames except PSPoll) 878 * and needs the field set to 0 at input, otherwise firmware messes up 879 * duration_id and sets bits 14 and 15 on. 880 */ 881 if (!ieee80211_is_pspoll(hdr->frame_control)) 882 hdr->duration_id = 0; 883 884 txrate = ieee80211_get_tx_rate(mac->hw, info); 885 886 cs->modulation = txrate->hw_value; 887 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 888 cs->modulation = txrate->hw_value_short; 889 890 cs->tx_length = cpu_to_le16(frag_len); 891 892 cs_set_control(mac, cs, hdr, info); 893 894 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; 895 ZD_ASSERT(packet_length <= 0xffff); 896 /* ZD1211B: Computing the length difference this way, gives us 897 * flexibility to compute the packet length. 898 */ 899 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? 900 packet_length - frag_len : packet_length); 901 902 /* 903 * CURRENT LENGTH: 904 * - transmit frame length in microseconds 905 * - seems to be derived from frame length 906 * - see Cal_Us_Service() in zdinlinef.h 907 * - if macp->bTxBurstEnable is enabled, then multiply by 4 908 * - bTxBurstEnable is never set in the vendor driver 909 * 910 * SERVICE: 911 * - "for PLCP configuration" 912 * - always 0 except in some situations at 802.11b 11M 913 * - see line 53 of zdinlinef.h 914 */ 915 cs->service = 0; 916 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), 917 le16_to_cpu(cs->tx_length)); 918 if (r < 0) 919 return r; 920 cs->current_length = cpu_to_le16(r); 921 cs->next_frame_length = 0; 922 923 return 0; 924 } 925 926 /** 927 * zd_op_tx - transmits a network frame to the device 928 * 929 * @dev: mac80211 hardware device 930 * @skb: socket buffer 931 * @control: the control structure 932 * 933 * This function transmit an IEEE 802.11 network frame to the device. The 934 * control block of the skbuff will be initialized. If necessary the incoming 935 * mac80211 queues will be stopped. 936 */ 937 static void zd_op_tx(struct ieee80211_hw *hw, 938 struct ieee80211_tx_control *control, 939 struct sk_buff *skb) 940 { 941 struct zd_mac *mac = zd_hw_mac(hw); 942 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 943 int r; 944 945 r = fill_ctrlset(mac, skb); 946 if (r) 947 goto fail; 948 949 info->rate_driver_data[0] = hw; 950 951 r = zd_usb_tx(&mac->chip.usb, skb); 952 if (r) 953 goto fail; 954 return; 955 956 fail: 957 dev_kfree_skb(skb); 958 } 959 960 /** 961 * filter_ack - filters incoming packets for acknowledgements 962 * @dev: the mac80211 device 963 * @rx_hdr: received header 964 * @stats: the status for the received packet 965 * 966 * This functions looks for ACK packets and tries to match them with the 967 * frames in the tx queue. If a match is found the frame will be dequeued and 968 * the upper layers is informed about the successful transmission. If 969 * mac80211 queues have been stopped and the number of frames still to be 970 * transmitted is low the queues will be opened again. 971 * 972 * Returns 1 if the frame was an ACK, 0 if it was ignored. 973 */ 974 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, 975 struct ieee80211_rx_status *stats) 976 { 977 struct zd_mac *mac = zd_hw_mac(hw); 978 struct sk_buff *skb; 979 struct sk_buff_head *q; 980 unsigned long flags; 981 int found = 0; 982 int i, position = 0; 983 984 if (!ieee80211_is_ack(rx_hdr->frame_control)) 985 return 0; 986 987 q = &mac->ack_wait_queue; 988 spin_lock_irqsave(&q->lock, flags); 989 skb_queue_walk(q, skb) { 990 struct ieee80211_hdr *tx_hdr; 991 992 position ++; 993 994 if (mac->ack_pending && skb_queue_is_first(q, skb)) 995 continue; 996 997 tx_hdr = (struct ieee80211_hdr *)skb->data; 998 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) 999 { 1000 found = 1; 1001 break; 1002 } 1003 } 1004 1005 if (found) { 1006 for (i=1; i<position; i++) { 1007 skb = __skb_dequeue(q); 1008 zd_mac_tx_status(hw, skb, 1009 mac->ack_pending ? mac->ack_signal : 0, 1010 NULL); 1011 mac->ack_pending = 0; 1012 } 1013 1014 mac->ack_pending = 1; 1015 mac->ack_signal = stats->signal; 1016 1017 /* Prevent pending tx-packet on AP-mode */ 1018 if (mac->type == NL80211_IFTYPE_AP) { 1019 skb = __skb_dequeue(q); 1020 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL); 1021 mac->ack_pending = 0; 1022 } 1023 } 1024 1025 spin_unlock_irqrestore(&q->lock, flags); 1026 return 1; 1027 } 1028 1029 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) 1030 { 1031 struct zd_mac *mac = zd_hw_mac(hw); 1032 struct ieee80211_rx_status stats; 1033 const struct rx_status *status; 1034 struct sk_buff *skb; 1035 int bad_frame = 0; 1036 __le16 fc; 1037 int need_padding; 1038 int i; 1039 u8 rate; 1040 1041 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + 1042 FCS_LEN + sizeof(struct rx_status)) 1043 return -EINVAL; 1044 1045 memset(&stats, 0, sizeof(stats)); 1046 1047 /* Note about pass_failed_fcs and pass_ctrl access below: 1048 * mac locking intentionally omitted here, as this is the only unlocked 1049 * reader and the only writer is configure_filter. Plus, if there were 1050 * any races accessing these variables, it wouldn't really matter. 1051 * If mac80211 ever provides a way for us to access filter flags 1052 * from outside configure_filter, we could improve on this. Also, this 1053 * situation may change once we implement some kind of DMA-into-skb 1054 * RX path. */ 1055 1056 /* Caller has to ensure that length >= sizeof(struct rx_status). */ 1057 status = (struct rx_status *) 1058 (buffer + (length - sizeof(struct rx_status))); 1059 if (status->frame_status & ZD_RX_ERROR) { 1060 if (mac->pass_failed_fcs && 1061 (status->frame_status & ZD_RX_CRC32_ERROR)) { 1062 stats.flag |= RX_FLAG_FAILED_FCS_CRC; 1063 bad_frame = 1; 1064 } else { 1065 return -EINVAL; 1066 } 1067 } 1068 1069 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; 1070 stats.band = NL80211_BAND_2GHZ; 1071 stats.signal = zd_check_signal(hw, status->signal_strength); 1072 1073 rate = zd_rx_rate(buffer, status); 1074 1075 /* todo: return index in the big switches in zd_rx_rate instead */ 1076 for (i = 0; i < mac->band.n_bitrates; i++) 1077 if (rate == mac->band.bitrates[i].hw_value) 1078 stats.rate_idx = i; 1079 1080 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); 1081 buffer += ZD_PLCP_HEADER_SIZE; 1082 1083 /* Except for bad frames, filter each frame to see if it is an ACK, in 1084 * which case our internal TX tracking is updated. Normally we then 1085 * bail here as there's no need to pass ACKs on up to the stack, but 1086 * there is also the case where the stack has requested us to pass 1087 * control frames on up (pass_ctrl) which we must consider. */ 1088 if (!bad_frame && 1089 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) 1090 && !mac->pass_ctrl) 1091 return 0; 1092 1093 fc = get_unaligned((__le16*)buffer); 1094 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); 1095 1096 skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); 1097 if (skb == NULL) 1098 return -ENOMEM; 1099 if (need_padding) { 1100 /* Make sure the payload data is 4 byte aligned. */ 1101 skb_reserve(skb, 2); 1102 } 1103 1104 /* FIXME : could we avoid this big memcpy ? */ 1105 skb_put_data(skb, buffer, length); 1106 1107 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); 1108 ieee80211_rx_irqsafe(hw, skb); 1109 return 0; 1110 } 1111 1112 static int zd_op_add_interface(struct ieee80211_hw *hw, 1113 struct ieee80211_vif *vif) 1114 { 1115 struct zd_mac *mac = zd_hw_mac(hw); 1116 1117 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ 1118 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) 1119 return -EOPNOTSUPP; 1120 1121 switch (vif->type) { 1122 case NL80211_IFTYPE_MONITOR: 1123 case NL80211_IFTYPE_MESH_POINT: 1124 case NL80211_IFTYPE_STATION: 1125 case NL80211_IFTYPE_ADHOC: 1126 case NL80211_IFTYPE_AP: 1127 mac->type = vif->type; 1128 break; 1129 default: 1130 return -EOPNOTSUPP; 1131 } 1132 1133 mac->vif = vif; 1134 1135 return set_mac_and_bssid(mac); 1136 } 1137 1138 static void zd_op_remove_interface(struct ieee80211_hw *hw, 1139 struct ieee80211_vif *vif) 1140 { 1141 struct zd_mac *mac = zd_hw_mac(hw); 1142 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1143 mac->vif = NULL; 1144 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED); 1145 zd_write_mac_addr(&mac->chip, NULL); 1146 1147 zd_mac_free_cur_beacon(mac); 1148 } 1149 1150 static int zd_op_config(struct ieee80211_hw *hw, u32 changed) 1151 { 1152 struct zd_mac *mac = zd_hw_mac(hw); 1153 struct ieee80211_conf *conf = &hw->conf; 1154 1155 spin_lock_irq(&mac->lock); 1156 mac->channel = conf->chandef.chan->hw_value; 1157 spin_unlock_irq(&mac->lock); 1158 1159 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value); 1160 } 1161 1162 static void zd_beacon_done(struct zd_mac *mac) 1163 { 1164 struct sk_buff *skb, *beacon; 1165 1166 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1167 return; 1168 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP) 1169 return; 1170 1171 /* 1172 * Send out buffered broad- and multicast frames. 1173 */ 1174 while (!ieee80211_queue_stopped(mac->hw, 0)) { 1175 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif); 1176 if (!skb) 1177 break; 1178 zd_op_tx(mac->hw, NULL, skb); 1179 } 1180 1181 /* 1182 * Fetch next beacon so that tim_count is updated. 1183 */ 1184 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 1185 if (beacon) 1186 zd_mac_config_beacon(mac->hw, beacon, true); 1187 1188 spin_lock_irq(&mac->lock); 1189 mac->beacon.last_update = jiffies; 1190 spin_unlock_irq(&mac->lock); 1191 } 1192 1193 static void zd_process_intr(struct work_struct *work) 1194 { 1195 u16 int_status; 1196 unsigned long flags; 1197 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); 1198 1199 spin_lock_irqsave(&mac->lock, flags); 1200 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4)); 1201 spin_unlock_irqrestore(&mac->lock, flags); 1202 1203 if (int_status & INT_CFG_NEXT_BCN) { 1204 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/ 1205 zd_beacon_done(mac); 1206 } else { 1207 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); 1208 } 1209 1210 zd_chip_enable_hwint(&mac->chip); 1211 } 1212 1213 1214 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw, 1215 struct netdev_hw_addr_list *mc_list) 1216 { 1217 struct zd_mac *mac = zd_hw_mac(hw); 1218 struct zd_mc_hash hash; 1219 struct netdev_hw_addr *ha; 1220 1221 zd_mc_clear(&hash); 1222 1223 netdev_hw_addr_list_for_each(ha, mc_list) { 1224 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr); 1225 zd_mc_add_addr(&hash, ha->addr); 1226 } 1227 1228 return hash.low | ((u64)hash.high << 32); 1229 } 1230 1231 #define SUPPORTED_FIF_FLAGS \ 1232 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ 1233 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) 1234 static void zd_op_configure_filter(struct ieee80211_hw *hw, 1235 unsigned int changed_flags, 1236 unsigned int *new_flags, 1237 u64 multicast) 1238 { 1239 struct zd_mc_hash hash = { 1240 .low = multicast, 1241 .high = multicast >> 32, 1242 }; 1243 struct zd_mac *mac = zd_hw_mac(hw); 1244 unsigned long flags; 1245 int r; 1246 1247 /* Only deal with supported flags */ 1248 changed_flags &= SUPPORTED_FIF_FLAGS; 1249 *new_flags &= SUPPORTED_FIF_FLAGS; 1250 1251 /* 1252 * If multicast parameter (as returned by zd_op_prepare_multicast) 1253 * has changed, no bit in changed_flags is set. To handle this 1254 * situation, we do not return if changed_flags is 0. If we do so, 1255 * we will have some issue with IPv6 which uses multicast for link 1256 * layer address resolution. 1257 */ 1258 if (*new_flags & FIF_ALLMULTI) 1259 zd_mc_add_all(&hash); 1260 1261 spin_lock_irqsave(&mac->lock, flags); 1262 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); 1263 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); 1264 mac->multicast_hash = hash; 1265 spin_unlock_irqrestore(&mac->lock, flags); 1266 1267 zd_chip_set_multicast_hash(&mac->chip, &hash); 1268 1269 if (changed_flags & FIF_CONTROL) { 1270 r = set_rx_filter(mac); 1271 if (r) 1272 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r); 1273 } 1274 1275 /* no handling required for FIF_OTHER_BSS as we don't currently 1276 * do BSSID filtering */ 1277 /* FIXME: in future it would be nice to enable the probe response 1278 * filter (so that the driver doesn't see them) until 1279 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd 1280 * have to schedule work to enable prbresp reception, which might 1281 * happen too late. For now we'll just listen and forward them all the 1282 * time. */ 1283 } 1284 1285 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble) 1286 { 1287 mutex_lock(&mac->chip.mutex); 1288 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); 1289 mutex_unlock(&mac->chip.mutex); 1290 } 1291 1292 static void zd_op_bss_info_changed(struct ieee80211_hw *hw, 1293 struct ieee80211_vif *vif, 1294 struct ieee80211_bss_conf *bss_conf, 1295 u32 changes) 1296 { 1297 struct zd_mac *mac = zd_hw_mac(hw); 1298 int associated; 1299 1300 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes); 1301 1302 if (mac->type == NL80211_IFTYPE_MESH_POINT || 1303 mac->type == NL80211_IFTYPE_ADHOC || 1304 mac->type == NL80211_IFTYPE_AP) { 1305 associated = true; 1306 if (changes & BSS_CHANGED_BEACON) { 1307 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif); 1308 1309 if (beacon) { 1310 zd_chip_disable_hwint(&mac->chip); 1311 zd_mac_config_beacon(hw, beacon, false); 1312 zd_chip_enable_hwint(&mac->chip); 1313 } 1314 } 1315 1316 if (changes & BSS_CHANGED_BEACON_ENABLED) { 1317 u16 interval = 0; 1318 u8 period = 0; 1319 1320 if (bss_conf->enable_beacon) { 1321 period = bss_conf->dtim_period; 1322 interval = bss_conf->beacon_int; 1323 } 1324 1325 spin_lock_irq(&mac->lock); 1326 mac->beacon.period = period; 1327 mac->beacon.interval = interval; 1328 mac->beacon.last_update = jiffies; 1329 spin_unlock_irq(&mac->lock); 1330 1331 zd_set_beacon_interval(&mac->chip, interval, period, 1332 mac->type); 1333 } 1334 } else 1335 associated = is_valid_ether_addr(bss_conf->bssid); 1336 1337 spin_lock_irq(&mac->lock); 1338 mac->associated = associated; 1339 spin_unlock_irq(&mac->lock); 1340 1341 /* TODO: do hardware bssid filtering */ 1342 1343 if (changes & BSS_CHANGED_ERP_PREAMBLE) { 1344 spin_lock_irq(&mac->lock); 1345 mac->short_preamble = bss_conf->use_short_preamble; 1346 spin_unlock_irq(&mac->lock); 1347 1348 set_rts_cts(mac, bss_conf->use_short_preamble); 1349 } 1350 } 1351 1352 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1353 { 1354 struct zd_mac *mac = zd_hw_mac(hw); 1355 return zd_chip_get_tsf(&mac->chip); 1356 } 1357 1358 static const struct ieee80211_ops zd_ops = { 1359 .tx = zd_op_tx, 1360 .start = zd_op_start, 1361 .stop = zd_op_stop, 1362 .add_interface = zd_op_add_interface, 1363 .remove_interface = zd_op_remove_interface, 1364 .config = zd_op_config, 1365 .prepare_multicast = zd_op_prepare_multicast, 1366 .configure_filter = zd_op_configure_filter, 1367 .bss_info_changed = zd_op_bss_info_changed, 1368 .get_tsf = zd_op_get_tsf, 1369 }; 1370 1371 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) 1372 { 1373 struct zd_mac *mac; 1374 struct ieee80211_hw *hw; 1375 1376 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); 1377 if (!hw) { 1378 dev_dbg_f(&intf->dev, "out of memory\n"); 1379 return NULL; 1380 } 1381 1382 mac = zd_hw_mac(hw); 1383 1384 memset(mac, 0, sizeof(*mac)); 1385 spin_lock_init(&mac->lock); 1386 mac->hw = hw; 1387 1388 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1389 1390 memcpy(mac->channels, zd_channels, sizeof(zd_channels)); 1391 memcpy(mac->rates, zd_rates, sizeof(zd_rates)); 1392 mac->band.n_bitrates = ARRAY_SIZE(zd_rates); 1393 mac->band.bitrates = mac->rates; 1394 mac->band.n_channels = ARRAY_SIZE(zd_channels); 1395 mac->band.channels = mac->channels; 1396 1397 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band; 1398 1399 ieee80211_hw_set(hw, MFP_CAPABLE); 1400 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 1401 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1402 ieee80211_hw_set(hw, SIGNAL_UNSPEC); 1403 1404 hw->wiphy->interface_modes = 1405 BIT(NL80211_IFTYPE_MESH_POINT) | 1406 BIT(NL80211_IFTYPE_STATION) | 1407 BIT(NL80211_IFTYPE_ADHOC) | 1408 BIT(NL80211_IFTYPE_AP); 1409 1410 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1411 1412 hw->max_signal = 100; 1413 hw->queues = 1; 1414 hw->extra_tx_headroom = sizeof(struct zd_ctrlset); 1415 1416 /* 1417 * Tell mac80211 that we support multi rate retries 1418 */ 1419 hw->max_rates = IEEE80211_TX_MAX_RATES; 1420 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ 1421 1422 skb_queue_head_init(&mac->ack_wait_queue); 1423 mac->ack_pending = 0; 1424 1425 zd_chip_init(&mac->chip, hw, intf); 1426 housekeeping_init(mac); 1427 beacon_init(mac); 1428 INIT_WORK(&mac->process_intr, zd_process_intr); 1429 1430 SET_IEEE80211_DEV(hw, &intf->dev); 1431 return hw; 1432 } 1433 1434 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ) 1435 1436 static void beacon_watchdog_handler(struct work_struct *work) 1437 { 1438 struct zd_mac *mac = 1439 container_of(work, struct zd_mac, beacon.watchdog_work.work); 1440 struct sk_buff *beacon; 1441 unsigned long timeout; 1442 int interval, period; 1443 1444 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1445 goto rearm; 1446 if (mac->type != NL80211_IFTYPE_AP || !mac->vif) 1447 goto rearm; 1448 1449 spin_lock_irq(&mac->lock); 1450 interval = mac->beacon.interval; 1451 period = mac->beacon.period; 1452 timeout = mac->beacon.last_update + 1453 msecs_to_jiffies(interval * 1024 / 1000) * 3; 1454 spin_unlock_irq(&mac->lock); 1455 1456 if (interval > 0 && time_is_before_jiffies(timeout)) { 1457 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, " 1458 "restarting. " 1459 "(interval: %d, dtim: %d)\n", 1460 interval, period); 1461 1462 zd_chip_disable_hwint(&mac->chip); 1463 1464 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 1465 if (beacon) { 1466 zd_mac_free_cur_beacon(mac); 1467 1468 zd_mac_config_beacon(mac->hw, beacon, false); 1469 } 1470 1471 zd_set_beacon_interval(&mac->chip, interval, period, mac->type); 1472 1473 zd_chip_enable_hwint(&mac->chip); 1474 1475 spin_lock_irq(&mac->lock); 1476 mac->beacon.last_update = jiffies; 1477 spin_unlock_irq(&mac->lock); 1478 } 1479 1480 rearm: 1481 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1482 BEACON_WATCHDOG_DELAY); 1483 } 1484 1485 static void beacon_init(struct zd_mac *mac) 1486 { 1487 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler); 1488 } 1489 1490 static void beacon_enable(struct zd_mac *mac) 1491 { 1492 dev_dbg_f(zd_mac_dev(mac), "\n"); 1493 1494 mac->beacon.last_update = jiffies; 1495 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1496 BEACON_WATCHDOG_DELAY); 1497 } 1498 1499 static void beacon_disable(struct zd_mac *mac) 1500 { 1501 dev_dbg_f(zd_mac_dev(mac), "\n"); 1502 cancel_delayed_work_sync(&mac->beacon.watchdog_work); 1503 1504 zd_mac_free_cur_beacon(mac); 1505 } 1506 1507 #define LINK_LED_WORK_DELAY HZ 1508 1509 static void link_led_handler(struct work_struct *work) 1510 { 1511 struct zd_mac *mac = 1512 container_of(work, struct zd_mac, housekeeping.link_led_work.work); 1513 struct zd_chip *chip = &mac->chip; 1514 int is_associated; 1515 int r; 1516 1517 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1518 goto requeue; 1519 1520 spin_lock_irq(&mac->lock); 1521 is_associated = mac->associated; 1522 spin_unlock_irq(&mac->lock); 1523 1524 r = zd_chip_control_leds(chip, 1525 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING); 1526 if (r) 1527 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); 1528 1529 requeue: 1530 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1531 LINK_LED_WORK_DELAY); 1532 } 1533 1534 static void housekeeping_init(struct zd_mac *mac) 1535 { 1536 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); 1537 } 1538 1539 static void housekeeping_enable(struct zd_mac *mac) 1540 { 1541 dev_dbg_f(zd_mac_dev(mac), "\n"); 1542 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1543 0); 1544 } 1545 1546 static void housekeeping_disable(struct zd_mac *mac) 1547 { 1548 dev_dbg_f(zd_mac_dev(mac), "\n"); 1549 cancel_delayed_work_sync(&mac->housekeeping.link_led_work); 1550 zd_chip_control_leds(&mac->chip, ZD_LED_OFF); 1551 } 1552