1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* ZD1211 USB-WLAN driver for Linux 3 * 4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> 7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 8 */ 9 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/usb.h> 14 #include <linux/jiffies.h> 15 #include <net/ieee80211_radiotap.h> 16 17 #include "zd_def.h" 18 #include "zd_chip.h" 19 #include "zd_mac.h" 20 #include "zd_rf.h" 21 22 struct zd_reg_alpha2_map { 23 u32 reg; 24 char alpha2[2]; 25 }; 26 27 static struct zd_reg_alpha2_map reg_alpha2_map[] = { 28 { ZD_REGDOMAIN_FCC, "US" }, 29 { ZD_REGDOMAIN_IC, "CA" }, 30 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ 31 { ZD_REGDOMAIN_JAPAN, "JP" }, 32 { ZD_REGDOMAIN_JAPAN_2, "JP" }, 33 { ZD_REGDOMAIN_JAPAN_3, "JP" }, 34 { ZD_REGDOMAIN_SPAIN, "ES" }, 35 { ZD_REGDOMAIN_FRANCE, "FR" }, 36 }; 37 38 /* This table contains the hardware specific values for the modulation rates. */ 39 static const struct ieee80211_rate zd_rates[] = { 40 { .bitrate = 10, 41 .hw_value = ZD_CCK_RATE_1M, }, 42 { .bitrate = 20, 43 .hw_value = ZD_CCK_RATE_2M, 44 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, 45 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 46 { .bitrate = 55, 47 .hw_value = ZD_CCK_RATE_5_5M, 48 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, 49 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 50 { .bitrate = 110, 51 .hw_value = ZD_CCK_RATE_11M, 52 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, 53 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 54 { .bitrate = 60, 55 .hw_value = ZD_OFDM_RATE_6M, 56 .flags = 0 }, 57 { .bitrate = 90, 58 .hw_value = ZD_OFDM_RATE_9M, 59 .flags = 0 }, 60 { .bitrate = 120, 61 .hw_value = ZD_OFDM_RATE_12M, 62 .flags = 0 }, 63 { .bitrate = 180, 64 .hw_value = ZD_OFDM_RATE_18M, 65 .flags = 0 }, 66 { .bitrate = 240, 67 .hw_value = ZD_OFDM_RATE_24M, 68 .flags = 0 }, 69 { .bitrate = 360, 70 .hw_value = ZD_OFDM_RATE_36M, 71 .flags = 0 }, 72 { .bitrate = 480, 73 .hw_value = ZD_OFDM_RATE_48M, 74 .flags = 0 }, 75 { .bitrate = 540, 76 .hw_value = ZD_OFDM_RATE_54M, 77 .flags = 0 }, 78 }; 79 80 /* 81 * Zydas retry rates table. Each line is listed in the same order as 82 * in zd_rates[] and contains all the rate used when a packet is sent 83 * starting with a given rates. Let's consider an example : 84 * 85 * "11 Mbits : 4, 3, 2, 1, 0" means : 86 * - packet is sent using 4 different rates 87 * - 1st rate is index 3 (ie 11 Mbits) 88 * - 2nd rate is index 2 (ie 5.5 Mbits) 89 * - 3rd rate is index 1 (ie 2 Mbits) 90 * - 4th rate is index 0 (ie 1 Mbits) 91 */ 92 93 static const struct tx_retry_rate zd_retry_rates[] = { 94 { /* 1 Mbits */ 1, { 0 }}, 95 { /* 2 Mbits */ 2, { 1, 0 }}, 96 { /* 5.5 Mbits */ 3, { 2, 1, 0 }}, 97 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }}, 98 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }}, 99 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}}, 100 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }}, 101 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }}, 102 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }}, 103 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }}, 104 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }}, 105 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }} 106 }; 107 108 static const struct ieee80211_channel zd_channels[] = { 109 { .center_freq = 2412, .hw_value = 1 }, 110 { .center_freq = 2417, .hw_value = 2 }, 111 { .center_freq = 2422, .hw_value = 3 }, 112 { .center_freq = 2427, .hw_value = 4 }, 113 { .center_freq = 2432, .hw_value = 5 }, 114 { .center_freq = 2437, .hw_value = 6 }, 115 { .center_freq = 2442, .hw_value = 7 }, 116 { .center_freq = 2447, .hw_value = 8 }, 117 { .center_freq = 2452, .hw_value = 9 }, 118 { .center_freq = 2457, .hw_value = 10 }, 119 { .center_freq = 2462, .hw_value = 11 }, 120 { .center_freq = 2467, .hw_value = 12 }, 121 { .center_freq = 2472, .hw_value = 13 }, 122 { .center_freq = 2484, .hw_value = 14 }, 123 }; 124 125 static void housekeeping_init(struct zd_mac *mac); 126 static void housekeeping_enable(struct zd_mac *mac); 127 static void housekeeping_disable(struct zd_mac *mac); 128 static void beacon_init(struct zd_mac *mac); 129 static void beacon_enable(struct zd_mac *mac); 130 static void beacon_disable(struct zd_mac *mac); 131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble); 132 static int zd_mac_config_beacon(struct ieee80211_hw *hw, 133 struct sk_buff *beacon, bool in_intr); 134 135 static int zd_reg2alpha2(u8 regdomain, char *alpha2) 136 { 137 unsigned int i; 138 struct zd_reg_alpha2_map *reg_map; 139 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { 140 reg_map = ®_alpha2_map[i]; 141 if (regdomain == reg_map->reg) { 142 alpha2[0] = reg_map->alpha2[0]; 143 alpha2[1] = reg_map->alpha2[1]; 144 return 0; 145 } 146 } 147 return 1; 148 } 149 150 static int zd_check_signal(struct ieee80211_hw *hw, int signal) 151 { 152 struct zd_mac *mac = zd_hw_mac(hw); 153 154 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100, 155 "%s: signal value from device not in range 0..100, " 156 "but %d.\n", __func__, signal); 157 158 if (signal < 0) 159 signal = 0; 160 else if (signal > 100) 161 signal = 100; 162 163 return signal; 164 } 165 166 int zd_mac_preinit_hw(struct ieee80211_hw *hw) 167 { 168 int r; 169 u8 addr[ETH_ALEN]; 170 struct zd_mac *mac = zd_hw_mac(hw); 171 172 r = zd_chip_read_mac_addr_fw(&mac->chip, addr); 173 if (r) 174 return r; 175 176 SET_IEEE80211_PERM_ADDR(hw, addr); 177 178 return 0; 179 } 180 181 int zd_mac_init_hw(struct ieee80211_hw *hw) 182 { 183 int r; 184 struct zd_mac *mac = zd_hw_mac(hw); 185 struct zd_chip *chip = &mac->chip; 186 char alpha2[2]; 187 u8 default_regdomain; 188 189 r = zd_chip_enable_int(chip); 190 if (r) 191 goto out; 192 r = zd_chip_init_hw(chip); 193 if (r) 194 goto disable_int; 195 196 ZD_ASSERT(!irqs_disabled()); 197 198 r = zd_read_regdomain(chip, &default_regdomain); 199 if (r) 200 goto disable_int; 201 spin_lock_irq(&mac->lock); 202 mac->regdomain = mac->default_regdomain = default_regdomain; 203 spin_unlock_irq(&mac->lock); 204 205 /* We must inform the device that we are doing encryption/decryption in 206 * software at the moment. */ 207 r = zd_set_encryption_type(chip, ENC_SNIFFER); 208 if (r) 209 goto disable_int; 210 211 r = zd_reg2alpha2(mac->regdomain, alpha2); 212 if (r) 213 goto disable_int; 214 215 r = regulatory_hint(hw->wiphy, alpha2); 216 disable_int: 217 zd_chip_disable_int(chip); 218 out: 219 return r; 220 } 221 222 void zd_mac_clear(struct zd_mac *mac) 223 { 224 flush_workqueue(zd_workqueue); 225 zd_chip_clear(&mac->chip); 226 lockdep_assert_held(&mac->lock); 227 ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); 228 } 229 230 static int set_rx_filter(struct zd_mac *mac) 231 { 232 unsigned long flags; 233 u32 filter = STA_RX_FILTER; 234 235 spin_lock_irqsave(&mac->lock, flags); 236 if (mac->pass_ctrl) 237 filter |= RX_FILTER_CTRL; 238 spin_unlock_irqrestore(&mac->lock, flags); 239 240 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); 241 } 242 243 static int set_mac_and_bssid(struct zd_mac *mac) 244 { 245 int r; 246 247 if (!mac->vif) 248 return -1; 249 250 r = zd_write_mac_addr(&mac->chip, mac->vif->addr); 251 if (r) 252 return r; 253 254 /* Vendor driver after setting MAC either sets BSSID for AP or 255 * filter for other modes. 256 */ 257 if (mac->type != NL80211_IFTYPE_AP) 258 return set_rx_filter(mac); 259 else 260 return zd_write_bssid(&mac->chip, mac->vif->addr); 261 } 262 263 static int set_mc_hash(struct zd_mac *mac) 264 { 265 struct zd_mc_hash hash; 266 zd_mc_clear(&hash); 267 return zd_chip_set_multicast_hash(&mac->chip, &hash); 268 } 269 270 int zd_op_start(struct ieee80211_hw *hw) 271 { 272 struct zd_mac *mac = zd_hw_mac(hw); 273 struct zd_chip *chip = &mac->chip; 274 struct zd_usb *usb = &chip->usb; 275 int r; 276 277 if (!usb->initialized) { 278 r = zd_usb_init_hw(usb); 279 if (r) 280 goto out; 281 } 282 283 r = zd_chip_enable_int(chip); 284 if (r < 0) 285 goto out; 286 287 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); 288 if (r < 0) 289 goto disable_int; 290 r = set_rx_filter(mac); 291 if (r) 292 goto disable_int; 293 r = set_mc_hash(mac); 294 if (r) 295 goto disable_int; 296 297 /* Wait after setting the multicast hash table and powering on 298 * the radio otherwise interface bring up will fail. This matches 299 * what the vendor driver did. 300 */ 301 msleep(10); 302 303 r = zd_chip_switch_radio_on(chip); 304 if (r < 0) { 305 dev_err(zd_chip_dev(chip), 306 "%s: failed to set radio on\n", __func__); 307 goto disable_int; 308 } 309 r = zd_chip_enable_rxtx(chip); 310 if (r < 0) 311 goto disable_radio; 312 r = zd_chip_enable_hwint(chip); 313 if (r < 0) 314 goto disable_rxtx; 315 316 housekeeping_enable(mac); 317 beacon_enable(mac); 318 set_bit(ZD_DEVICE_RUNNING, &mac->flags); 319 return 0; 320 disable_rxtx: 321 zd_chip_disable_rxtx(chip); 322 disable_radio: 323 zd_chip_switch_radio_off(chip); 324 disable_int: 325 zd_chip_disable_int(chip); 326 out: 327 return r; 328 } 329 330 void zd_op_stop(struct ieee80211_hw *hw) 331 { 332 struct zd_mac *mac = zd_hw_mac(hw); 333 struct zd_chip *chip = &mac->chip; 334 struct sk_buff *skb; 335 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; 336 337 clear_bit(ZD_DEVICE_RUNNING, &mac->flags); 338 339 /* The order here deliberately is a little different from the open() 340 * method, since we need to make sure there is no opportunity for RX 341 * frames to be processed by mac80211 after we have stopped it. 342 */ 343 344 zd_chip_disable_rxtx(chip); 345 beacon_disable(mac); 346 housekeeping_disable(mac); 347 flush_workqueue(zd_workqueue); 348 349 zd_chip_disable_hwint(chip); 350 zd_chip_switch_radio_off(chip); 351 zd_chip_disable_int(chip); 352 353 354 while ((skb = skb_dequeue(ack_wait_queue))) 355 dev_kfree_skb_any(skb); 356 } 357 358 int zd_restore_settings(struct zd_mac *mac) 359 { 360 struct sk_buff *beacon; 361 struct zd_mc_hash multicast_hash; 362 unsigned int short_preamble; 363 int r, beacon_interval, beacon_period; 364 u8 channel; 365 366 dev_dbg_f(zd_mac_dev(mac), "\n"); 367 368 spin_lock_irq(&mac->lock); 369 multicast_hash = mac->multicast_hash; 370 short_preamble = mac->short_preamble; 371 beacon_interval = mac->beacon.interval; 372 beacon_period = mac->beacon.period; 373 channel = mac->channel; 374 spin_unlock_irq(&mac->lock); 375 376 r = set_mac_and_bssid(mac); 377 if (r < 0) { 378 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r); 379 return r; 380 } 381 382 r = zd_chip_set_channel(&mac->chip, channel); 383 if (r < 0) { 384 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n", 385 r); 386 return r; 387 } 388 389 set_rts_cts(mac, short_preamble); 390 391 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash); 392 if (r < 0) { 393 dev_dbg_f(zd_mac_dev(mac), 394 "zd_chip_set_multicast_hash failed, %d\n", r); 395 return r; 396 } 397 398 if (mac->type == NL80211_IFTYPE_MESH_POINT || 399 mac->type == NL80211_IFTYPE_ADHOC || 400 mac->type == NL80211_IFTYPE_AP) { 401 if (mac->vif != NULL) { 402 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 403 if (beacon) 404 zd_mac_config_beacon(mac->hw, beacon, false); 405 } 406 407 zd_set_beacon_interval(&mac->chip, beacon_interval, 408 beacon_period, mac->type); 409 410 spin_lock_irq(&mac->lock); 411 mac->beacon.last_update = jiffies; 412 spin_unlock_irq(&mac->lock); 413 } 414 415 return 0; 416 } 417 418 /** 419 * zd_mac_tx_status - reports tx status of a packet if required 420 * @hw - a &struct ieee80211_hw pointer 421 * @skb - a sk-buffer 422 * @flags: extra flags to set in the TX status info 423 * @ackssi: ACK signal strength 424 * @success - True for successful transmission of the frame 425 * 426 * This information calls ieee80211_tx_status_irqsafe() if required by the 427 * control information. It copies the control information into the status 428 * information. 429 * 430 * If no status information has been requested, the skb is freed. 431 */ 432 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, 433 int ackssi, struct tx_status *tx_status) 434 { 435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 436 int i; 437 int success = 1, retry = 1; 438 int first_idx; 439 const struct tx_retry_rate *retries; 440 441 ieee80211_tx_info_clear_status(info); 442 443 if (tx_status) { 444 success = !tx_status->failure; 445 retry = tx_status->retry + success; 446 } 447 448 if (success) { 449 /* success */ 450 info->flags |= IEEE80211_TX_STAT_ACK; 451 } else { 452 /* failure */ 453 info->flags &= ~IEEE80211_TX_STAT_ACK; 454 } 455 456 first_idx = info->status.rates[0].idx; 457 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 458 retries = &zd_retry_rates[first_idx]; 459 ZD_ASSERT(1 <= retry && retry <= retries->count); 460 461 info->status.rates[0].idx = retries->rate[0]; 462 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1); 463 464 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) { 465 info->status.rates[i].idx = retries->rate[i]; 466 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2); 467 } 468 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) { 469 info->status.rates[i].idx = retries->rate[retry - 1]; 470 info->status.rates[i].count = 1; // (success ? 1:2); 471 } 472 if (i<IEEE80211_TX_MAX_RATES) 473 info->status.rates[i].idx = -1; /* terminate */ 474 475 info->status.ack_signal = zd_check_signal(hw, ackssi); 476 ieee80211_tx_status_irqsafe(hw, skb); 477 } 478 479 /** 480 * zd_mac_tx_failed - callback for failed frames 481 * @dev: the mac80211 wireless device 482 * 483 * This function is called if a frame couldn't be successfully 484 * transferred. The first frame from the tx queue, will be selected and 485 * reported as error to the upper layers. 486 */ 487 void zd_mac_tx_failed(struct urb *urb) 488 { 489 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context); 490 struct zd_mac *mac = zd_hw_mac(hw); 491 struct sk_buff_head *q = &mac->ack_wait_queue; 492 struct sk_buff *skb; 493 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer; 494 unsigned long flags; 495 int success = !tx_status->failure; 496 int retry = tx_status->retry + success; 497 int found = 0; 498 int i, position = 0; 499 500 spin_lock_irqsave(&q->lock, flags); 501 502 skb_queue_walk(q, skb) { 503 struct ieee80211_hdr *tx_hdr; 504 struct ieee80211_tx_info *info; 505 int first_idx, final_idx; 506 const struct tx_retry_rate *retries; 507 u8 final_rate; 508 509 position ++; 510 511 /* if the hardware reports a failure and we had a 802.11 ACK 512 * pending, then we skip the first skb when searching for a 513 * matching frame */ 514 if (tx_status->failure && mac->ack_pending && 515 skb_queue_is_first(q, skb)) { 516 continue; 517 } 518 519 tx_hdr = (struct ieee80211_hdr *)skb->data; 520 521 /* we skip all frames not matching the reported destination */ 522 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac))) 523 continue; 524 525 /* we skip all frames not matching the reported final rate */ 526 527 info = IEEE80211_SKB_CB(skb); 528 first_idx = info->status.rates[0].idx; 529 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 530 retries = &zd_retry_rates[first_idx]; 531 if (retry <= 0 || retry > retries->count) 532 continue; 533 534 final_idx = retries->rate[retry - 1]; 535 final_rate = zd_rates[final_idx].hw_value; 536 537 if (final_rate != tx_status->rate) { 538 continue; 539 } 540 541 found = 1; 542 break; 543 } 544 545 if (found) { 546 for (i=1; i<=position; i++) { 547 skb = __skb_dequeue(q); 548 zd_mac_tx_status(hw, skb, 549 mac->ack_pending ? mac->ack_signal : 0, 550 i == position ? tx_status : NULL); 551 mac->ack_pending = 0; 552 } 553 } 554 555 spin_unlock_irqrestore(&q->lock, flags); 556 } 557 558 /** 559 * zd_mac_tx_to_dev - callback for USB layer 560 * @skb: a &sk_buff pointer 561 * @error: error value, 0 if transmission successful 562 * 563 * Informs the MAC layer that the frame has successfully transferred to the 564 * device. If an ACK is required and the transfer to the device has been 565 * successful, the packets are put on the @ack_wait_queue with 566 * the control set removed. 567 */ 568 void zd_mac_tx_to_dev(struct sk_buff *skb, int error) 569 { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 struct ieee80211_hw *hw = info->rate_driver_data[0]; 572 struct zd_mac *mac = zd_hw_mac(hw); 573 574 ieee80211_tx_info_clear_status(info); 575 576 skb_pull(skb, sizeof(struct zd_ctrlset)); 577 if (unlikely(error || 578 (info->flags & IEEE80211_TX_CTL_NO_ACK))) { 579 /* 580 * FIXME : do we need to fill in anything ? 581 */ 582 ieee80211_tx_status_irqsafe(hw, skb); 583 } else { 584 struct sk_buff_head *q = &mac->ack_wait_queue; 585 586 skb_queue_tail(q, skb); 587 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) { 588 zd_mac_tx_status(hw, skb_dequeue(q), 589 mac->ack_pending ? mac->ack_signal : 0, 590 NULL); 591 mac->ack_pending = 0; 592 } 593 } 594 } 595 596 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) 597 { 598 /* ZD_PURE_RATE() must be used to remove the modulation type flag of 599 * the zd-rate values. 600 */ 601 static const u8 rate_divisor[] = { 602 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, 603 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, 604 /* Bits must be doubled. */ 605 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, 606 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, 607 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, 608 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, 609 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, 610 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, 611 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, 612 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, 613 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, 614 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, 615 }; 616 617 u32 bits = (u32)tx_length * 8; 618 u32 divisor; 619 620 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; 621 if (divisor == 0) 622 return -EINVAL; 623 624 switch (zd_rate) { 625 case ZD_CCK_RATE_5_5M: 626 bits = (2*bits) + 10; /* round up to the next integer */ 627 break; 628 case ZD_CCK_RATE_11M: 629 if (service) { 630 u32 t = bits % 11; 631 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; 632 if (0 < t && t <= 3) { 633 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; 634 } 635 } 636 bits += 10; /* round up to the next integer */ 637 break; 638 } 639 640 return bits/divisor; 641 } 642 643 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, 644 struct ieee80211_hdr *header, 645 struct ieee80211_tx_info *info) 646 { 647 /* 648 * CONTROL TODO: 649 * - if backoff needed, enable bit 0 650 * - if burst (backoff not needed) disable bit 0 651 */ 652 653 cs->control = 0; 654 655 /* First fragment */ 656 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 657 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; 658 659 /* No ACK expected (multicast, etc.) */ 660 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 661 cs->control |= ZD_CS_NO_ACK; 662 663 /* PS-POLL */ 664 if (ieee80211_is_pspoll(header->frame_control)) 665 cs->control |= ZD_CS_PS_POLL_FRAME; 666 667 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) 668 cs->control |= ZD_CS_RTS; 669 670 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) 671 cs->control |= ZD_CS_SELF_CTS; 672 673 /* FIXME: Management frame? */ 674 } 675 676 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon) 677 { 678 if (!mac->beacon.cur_beacon) 679 return false; 680 681 if (mac->beacon.cur_beacon->len != beacon->len) 682 return false; 683 684 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len); 685 } 686 687 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac) 688 { 689 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex)); 690 691 kfree_skb(mac->beacon.cur_beacon); 692 mac->beacon.cur_beacon = NULL; 693 } 694 695 static void zd_mac_free_cur_beacon(struct zd_mac *mac) 696 { 697 mutex_lock(&mac->chip.mutex); 698 zd_mac_free_cur_beacon_locked(mac); 699 mutex_unlock(&mac->chip.mutex); 700 } 701 702 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon, 703 bool in_intr) 704 { 705 struct zd_mac *mac = zd_hw_mac(hw); 706 int r, ret, num_cmds, req_pos = 0; 707 u32 tmp, j = 0; 708 /* 4 more bytes for tail CRC */ 709 u32 full_len = beacon->len + 4; 710 unsigned long end_jiffies, message_jiffies; 711 struct zd_ioreq32 *ioreqs; 712 713 mutex_lock(&mac->chip.mutex); 714 715 /* Check if hw already has this beacon. */ 716 if (zd_mac_match_cur_beacon(mac, beacon)) { 717 r = 0; 718 goto out_nofree; 719 } 720 721 /* Alloc memory for full beacon write at once. */ 722 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len; 723 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32), 724 GFP_KERNEL); 725 if (!ioreqs) { 726 r = -ENOMEM; 727 goto out_nofree; 728 } 729 730 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE); 731 if (r < 0) 732 goto out; 733 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 734 if (r < 0) 735 goto release_sema; 736 if (in_intr && tmp & 0x2) { 737 r = -EBUSY; 738 goto release_sema; 739 } 740 741 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 742 message_jiffies = jiffies + HZ / 10; /*~100ms*/ 743 while (tmp & 0x2) { 744 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 745 if (r < 0) 746 goto release_sema; 747 if (time_is_before_eq_jiffies(message_jiffies)) { 748 message_jiffies = jiffies + HZ / 10; 749 dev_err(zd_mac_dev(mac), 750 "CR_BCN_FIFO_SEMAPHORE not ready\n"); 751 if (time_is_before_eq_jiffies(end_jiffies)) { 752 dev_err(zd_mac_dev(mac), 753 "Giving up beacon config.\n"); 754 r = -ETIMEDOUT; 755 goto reset_device; 756 } 757 } 758 msleep(20); 759 } 760 761 ioreqs[req_pos].addr = CR_BCN_FIFO; 762 ioreqs[req_pos].value = full_len - 1; 763 req_pos++; 764 if (zd_chip_is_zd1211b(&mac->chip)) { 765 ioreqs[req_pos].addr = CR_BCN_LENGTH; 766 ioreqs[req_pos].value = full_len - 1; 767 req_pos++; 768 } 769 770 for (j = 0 ; j < beacon->len; j++) { 771 ioreqs[req_pos].addr = CR_BCN_FIFO; 772 ioreqs[req_pos].value = *((u8 *)(beacon->data + j)); 773 req_pos++; 774 } 775 776 for (j = 0; j < 4; j++) { 777 ioreqs[req_pos].addr = CR_BCN_FIFO; 778 ioreqs[req_pos].value = 0x0; 779 req_pos++; 780 } 781 782 BUG_ON(req_pos != num_cmds); 783 784 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds); 785 786 release_sema: 787 /* 788 * Try very hard to release device beacon semaphore, as otherwise 789 * device/driver can be left in unusable state. 790 */ 791 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 792 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 793 while (ret < 0) { 794 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) { 795 ret = -ETIMEDOUT; 796 break; 797 } 798 799 msleep(20); 800 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 801 } 802 803 if (ret < 0) 804 dev_err(zd_mac_dev(mac), "Could not release " 805 "CR_BCN_FIFO_SEMAPHORE!\n"); 806 if (r < 0 || ret < 0) { 807 if (r >= 0) 808 r = ret; 809 810 /* We don't know if beacon was written successfully or not, 811 * so clear current. */ 812 zd_mac_free_cur_beacon_locked(mac); 813 814 goto out; 815 } 816 817 /* Beacon has now been written successfully, update current. */ 818 zd_mac_free_cur_beacon_locked(mac); 819 mac->beacon.cur_beacon = beacon; 820 beacon = NULL; 821 822 /* 802.11b/g 2.4G CCK 1Mb 823 * 802.11a, not yet implemented, uses different values (see GPL vendor 824 * driver) 825 */ 826 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19), 827 CR_BCN_PLCP_CFG); 828 out: 829 kfree(ioreqs); 830 out_nofree: 831 kfree_skb(beacon); 832 mutex_unlock(&mac->chip.mutex); 833 834 return r; 835 836 reset_device: 837 zd_mac_free_cur_beacon_locked(mac); 838 kfree_skb(beacon); 839 840 mutex_unlock(&mac->chip.mutex); 841 kfree(ioreqs); 842 843 /* semaphore stuck, reset device to avoid fw freeze later */ 844 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, " 845 "resetting device..."); 846 usb_queue_reset_device(mac->chip.usb.intf); 847 848 return r; 849 } 850 851 static int fill_ctrlset(struct zd_mac *mac, 852 struct sk_buff *skb) 853 { 854 int r; 855 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 856 unsigned int frag_len = skb->len + FCS_LEN; 857 unsigned int packet_length; 858 struct ieee80211_rate *txrate; 859 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset)); 860 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 861 862 ZD_ASSERT(frag_len <= 0xffff); 863 864 /* 865 * Firmware computes the duration itself (for all frames except PSPoll) 866 * and needs the field set to 0 at input, otherwise firmware messes up 867 * duration_id and sets bits 14 and 15 on. 868 */ 869 if (!ieee80211_is_pspoll(hdr->frame_control)) 870 hdr->duration_id = 0; 871 872 txrate = ieee80211_get_tx_rate(mac->hw, info); 873 874 cs->modulation = txrate->hw_value; 875 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 876 cs->modulation = txrate->hw_value_short; 877 878 cs->tx_length = cpu_to_le16(frag_len); 879 880 cs_set_control(mac, cs, hdr, info); 881 882 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; 883 ZD_ASSERT(packet_length <= 0xffff); 884 /* ZD1211B: Computing the length difference this way, gives us 885 * flexibility to compute the packet length. 886 */ 887 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? 888 packet_length - frag_len : packet_length); 889 890 /* 891 * CURRENT LENGTH: 892 * - transmit frame length in microseconds 893 * - seems to be derived from frame length 894 * - see Cal_Us_Service() in zdinlinef.h 895 * - if macp->bTxBurstEnable is enabled, then multiply by 4 896 * - bTxBurstEnable is never set in the vendor driver 897 * 898 * SERVICE: 899 * - "for PLCP configuration" 900 * - always 0 except in some situations at 802.11b 11M 901 * - see line 53 of zdinlinef.h 902 */ 903 cs->service = 0; 904 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), 905 le16_to_cpu(cs->tx_length)); 906 if (r < 0) 907 return r; 908 cs->current_length = cpu_to_le16(r); 909 cs->next_frame_length = 0; 910 911 return 0; 912 } 913 914 /** 915 * zd_op_tx - transmits a network frame to the device 916 * 917 * @dev: mac80211 hardware device 918 * @skb: socket buffer 919 * @control: the control structure 920 * 921 * This function transmit an IEEE 802.11 network frame to the device. The 922 * control block of the skbuff will be initialized. If necessary the incoming 923 * mac80211 queues will be stopped. 924 */ 925 static void zd_op_tx(struct ieee80211_hw *hw, 926 struct ieee80211_tx_control *control, 927 struct sk_buff *skb) 928 { 929 struct zd_mac *mac = zd_hw_mac(hw); 930 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 931 int r; 932 933 r = fill_ctrlset(mac, skb); 934 if (r) 935 goto fail; 936 937 info->rate_driver_data[0] = hw; 938 939 r = zd_usb_tx(&mac->chip.usb, skb); 940 if (r) 941 goto fail; 942 return; 943 944 fail: 945 dev_kfree_skb(skb); 946 } 947 948 /** 949 * filter_ack - filters incoming packets for acknowledgements 950 * @dev: the mac80211 device 951 * @rx_hdr: received header 952 * @stats: the status for the received packet 953 * 954 * This functions looks for ACK packets and tries to match them with the 955 * frames in the tx queue. If a match is found the frame will be dequeued and 956 * the upper layers is informed about the successful transmission. If 957 * mac80211 queues have been stopped and the number of frames still to be 958 * transmitted is low the queues will be opened again. 959 * 960 * Returns 1 if the frame was an ACK, 0 if it was ignored. 961 */ 962 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, 963 struct ieee80211_rx_status *stats) 964 { 965 struct zd_mac *mac = zd_hw_mac(hw); 966 struct sk_buff *skb; 967 struct sk_buff_head *q; 968 unsigned long flags; 969 int found = 0; 970 int i, position = 0; 971 972 if (!ieee80211_is_ack(rx_hdr->frame_control)) 973 return 0; 974 975 q = &mac->ack_wait_queue; 976 spin_lock_irqsave(&q->lock, flags); 977 skb_queue_walk(q, skb) { 978 struct ieee80211_hdr *tx_hdr; 979 980 position ++; 981 982 if (mac->ack_pending && skb_queue_is_first(q, skb)) 983 continue; 984 985 tx_hdr = (struct ieee80211_hdr *)skb->data; 986 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) 987 { 988 found = 1; 989 break; 990 } 991 } 992 993 if (found) { 994 for (i=1; i<position; i++) { 995 skb = __skb_dequeue(q); 996 zd_mac_tx_status(hw, skb, 997 mac->ack_pending ? mac->ack_signal : 0, 998 NULL); 999 mac->ack_pending = 0; 1000 } 1001 1002 mac->ack_pending = 1; 1003 mac->ack_signal = stats->signal; 1004 1005 /* Prevent pending tx-packet on AP-mode */ 1006 if (mac->type == NL80211_IFTYPE_AP) { 1007 skb = __skb_dequeue(q); 1008 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL); 1009 mac->ack_pending = 0; 1010 } 1011 } 1012 1013 spin_unlock_irqrestore(&q->lock, flags); 1014 return 1; 1015 } 1016 1017 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) 1018 { 1019 struct zd_mac *mac = zd_hw_mac(hw); 1020 struct ieee80211_rx_status stats; 1021 const struct rx_status *status; 1022 struct sk_buff *skb; 1023 int bad_frame = 0; 1024 __le16 fc; 1025 int need_padding; 1026 int i; 1027 u8 rate; 1028 1029 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + 1030 FCS_LEN + sizeof(struct rx_status)) 1031 return -EINVAL; 1032 1033 memset(&stats, 0, sizeof(stats)); 1034 1035 /* Note about pass_failed_fcs and pass_ctrl access below: 1036 * mac locking intentionally omitted here, as this is the only unlocked 1037 * reader and the only writer is configure_filter. Plus, if there were 1038 * any races accessing these variables, it wouldn't really matter. 1039 * If mac80211 ever provides a way for us to access filter flags 1040 * from outside configure_filter, we could improve on this. Also, this 1041 * situation may change once we implement some kind of DMA-into-skb 1042 * RX path. */ 1043 1044 /* Caller has to ensure that length >= sizeof(struct rx_status). */ 1045 status = (struct rx_status *) 1046 (buffer + (length - sizeof(struct rx_status))); 1047 if (status->frame_status & ZD_RX_ERROR) { 1048 if (mac->pass_failed_fcs && 1049 (status->frame_status & ZD_RX_CRC32_ERROR)) { 1050 stats.flag |= RX_FLAG_FAILED_FCS_CRC; 1051 bad_frame = 1; 1052 } else { 1053 return -EINVAL; 1054 } 1055 } 1056 1057 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; 1058 stats.band = NL80211_BAND_2GHZ; 1059 stats.signal = zd_check_signal(hw, status->signal_strength); 1060 1061 rate = zd_rx_rate(buffer, status); 1062 1063 /* todo: return index in the big switches in zd_rx_rate instead */ 1064 for (i = 0; i < mac->band.n_bitrates; i++) 1065 if (rate == mac->band.bitrates[i].hw_value) 1066 stats.rate_idx = i; 1067 1068 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); 1069 buffer += ZD_PLCP_HEADER_SIZE; 1070 1071 /* Except for bad frames, filter each frame to see if it is an ACK, in 1072 * which case our internal TX tracking is updated. Normally we then 1073 * bail here as there's no need to pass ACKs on up to the stack, but 1074 * there is also the case where the stack has requested us to pass 1075 * control frames on up (pass_ctrl) which we must consider. */ 1076 if (!bad_frame && 1077 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) 1078 && !mac->pass_ctrl) 1079 return 0; 1080 1081 fc = get_unaligned((__le16*)buffer); 1082 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); 1083 1084 skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); 1085 if (skb == NULL) 1086 return -ENOMEM; 1087 if (need_padding) { 1088 /* Make sure the payload data is 4 byte aligned. */ 1089 skb_reserve(skb, 2); 1090 } 1091 1092 /* FIXME : could we avoid this big memcpy ? */ 1093 skb_put_data(skb, buffer, length); 1094 1095 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); 1096 ieee80211_rx_irqsafe(hw, skb); 1097 return 0; 1098 } 1099 1100 static int zd_op_add_interface(struct ieee80211_hw *hw, 1101 struct ieee80211_vif *vif) 1102 { 1103 struct zd_mac *mac = zd_hw_mac(hw); 1104 1105 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ 1106 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) 1107 return -EOPNOTSUPP; 1108 1109 switch (vif->type) { 1110 case NL80211_IFTYPE_MONITOR: 1111 case NL80211_IFTYPE_MESH_POINT: 1112 case NL80211_IFTYPE_STATION: 1113 case NL80211_IFTYPE_ADHOC: 1114 case NL80211_IFTYPE_AP: 1115 mac->type = vif->type; 1116 break; 1117 default: 1118 return -EOPNOTSUPP; 1119 } 1120 1121 mac->vif = vif; 1122 1123 return set_mac_and_bssid(mac); 1124 } 1125 1126 static void zd_op_remove_interface(struct ieee80211_hw *hw, 1127 struct ieee80211_vif *vif) 1128 { 1129 struct zd_mac *mac = zd_hw_mac(hw); 1130 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1131 mac->vif = NULL; 1132 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED); 1133 zd_write_mac_addr(&mac->chip, NULL); 1134 1135 zd_mac_free_cur_beacon(mac); 1136 } 1137 1138 static int zd_op_config(struct ieee80211_hw *hw, u32 changed) 1139 { 1140 struct zd_mac *mac = zd_hw_mac(hw); 1141 struct ieee80211_conf *conf = &hw->conf; 1142 1143 spin_lock_irq(&mac->lock); 1144 mac->channel = conf->chandef.chan->hw_value; 1145 spin_unlock_irq(&mac->lock); 1146 1147 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value); 1148 } 1149 1150 static void zd_beacon_done(struct zd_mac *mac) 1151 { 1152 struct sk_buff *skb, *beacon; 1153 1154 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1155 return; 1156 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP) 1157 return; 1158 1159 /* 1160 * Send out buffered broad- and multicast frames. 1161 */ 1162 while (!ieee80211_queue_stopped(mac->hw, 0)) { 1163 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif); 1164 if (!skb) 1165 break; 1166 zd_op_tx(mac->hw, NULL, skb); 1167 } 1168 1169 /* 1170 * Fetch next beacon so that tim_count is updated. 1171 */ 1172 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 1173 if (beacon) 1174 zd_mac_config_beacon(mac->hw, beacon, true); 1175 1176 spin_lock_irq(&mac->lock); 1177 mac->beacon.last_update = jiffies; 1178 spin_unlock_irq(&mac->lock); 1179 } 1180 1181 static void zd_process_intr(struct work_struct *work) 1182 { 1183 u16 int_status; 1184 unsigned long flags; 1185 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); 1186 1187 spin_lock_irqsave(&mac->lock, flags); 1188 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4)); 1189 spin_unlock_irqrestore(&mac->lock, flags); 1190 1191 if (int_status & INT_CFG_NEXT_BCN) { 1192 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/ 1193 zd_beacon_done(mac); 1194 } else { 1195 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); 1196 } 1197 1198 zd_chip_enable_hwint(&mac->chip); 1199 } 1200 1201 1202 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw, 1203 struct netdev_hw_addr_list *mc_list) 1204 { 1205 struct zd_mac *mac = zd_hw_mac(hw); 1206 struct zd_mc_hash hash; 1207 struct netdev_hw_addr *ha; 1208 1209 zd_mc_clear(&hash); 1210 1211 netdev_hw_addr_list_for_each(ha, mc_list) { 1212 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr); 1213 zd_mc_add_addr(&hash, ha->addr); 1214 } 1215 1216 return hash.low | ((u64)hash.high << 32); 1217 } 1218 1219 #define SUPPORTED_FIF_FLAGS \ 1220 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ 1221 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) 1222 static void zd_op_configure_filter(struct ieee80211_hw *hw, 1223 unsigned int changed_flags, 1224 unsigned int *new_flags, 1225 u64 multicast) 1226 { 1227 struct zd_mc_hash hash = { 1228 .low = multicast, 1229 .high = multicast >> 32, 1230 }; 1231 struct zd_mac *mac = zd_hw_mac(hw); 1232 unsigned long flags; 1233 int r; 1234 1235 /* Only deal with supported flags */ 1236 changed_flags &= SUPPORTED_FIF_FLAGS; 1237 *new_flags &= SUPPORTED_FIF_FLAGS; 1238 1239 /* 1240 * If multicast parameter (as returned by zd_op_prepare_multicast) 1241 * has changed, no bit in changed_flags is set. To handle this 1242 * situation, we do not return if changed_flags is 0. If we do so, 1243 * we will have some issue with IPv6 which uses multicast for link 1244 * layer address resolution. 1245 */ 1246 if (*new_flags & FIF_ALLMULTI) 1247 zd_mc_add_all(&hash); 1248 1249 spin_lock_irqsave(&mac->lock, flags); 1250 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); 1251 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); 1252 mac->multicast_hash = hash; 1253 spin_unlock_irqrestore(&mac->lock, flags); 1254 1255 zd_chip_set_multicast_hash(&mac->chip, &hash); 1256 1257 if (changed_flags & FIF_CONTROL) { 1258 r = set_rx_filter(mac); 1259 if (r) 1260 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r); 1261 } 1262 1263 /* no handling required for FIF_OTHER_BSS as we don't currently 1264 * do BSSID filtering */ 1265 /* FIXME: in future it would be nice to enable the probe response 1266 * filter (so that the driver doesn't see them) until 1267 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd 1268 * have to schedule work to enable prbresp reception, which might 1269 * happen too late. For now we'll just listen and forward them all the 1270 * time. */ 1271 } 1272 1273 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble) 1274 { 1275 mutex_lock(&mac->chip.mutex); 1276 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); 1277 mutex_unlock(&mac->chip.mutex); 1278 } 1279 1280 static void zd_op_bss_info_changed(struct ieee80211_hw *hw, 1281 struct ieee80211_vif *vif, 1282 struct ieee80211_bss_conf *bss_conf, 1283 u32 changes) 1284 { 1285 struct zd_mac *mac = zd_hw_mac(hw); 1286 int associated; 1287 1288 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes); 1289 1290 if (mac->type == NL80211_IFTYPE_MESH_POINT || 1291 mac->type == NL80211_IFTYPE_ADHOC || 1292 mac->type == NL80211_IFTYPE_AP) { 1293 associated = true; 1294 if (changes & BSS_CHANGED_BEACON) { 1295 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif); 1296 1297 if (beacon) { 1298 zd_chip_disable_hwint(&mac->chip); 1299 zd_mac_config_beacon(hw, beacon, false); 1300 zd_chip_enable_hwint(&mac->chip); 1301 } 1302 } 1303 1304 if (changes & BSS_CHANGED_BEACON_ENABLED) { 1305 u16 interval = 0; 1306 u8 period = 0; 1307 1308 if (bss_conf->enable_beacon) { 1309 period = bss_conf->dtim_period; 1310 interval = bss_conf->beacon_int; 1311 } 1312 1313 spin_lock_irq(&mac->lock); 1314 mac->beacon.period = period; 1315 mac->beacon.interval = interval; 1316 mac->beacon.last_update = jiffies; 1317 spin_unlock_irq(&mac->lock); 1318 1319 zd_set_beacon_interval(&mac->chip, interval, period, 1320 mac->type); 1321 } 1322 } else 1323 associated = is_valid_ether_addr(bss_conf->bssid); 1324 1325 spin_lock_irq(&mac->lock); 1326 mac->associated = associated; 1327 spin_unlock_irq(&mac->lock); 1328 1329 /* TODO: do hardware bssid filtering */ 1330 1331 if (changes & BSS_CHANGED_ERP_PREAMBLE) { 1332 spin_lock_irq(&mac->lock); 1333 mac->short_preamble = bss_conf->use_short_preamble; 1334 spin_unlock_irq(&mac->lock); 1335 1336 set_rts_cts(mac, bss_conf->use_short_preamble); 1337 } 1338 } 1339 1340 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1341 { 1342 struct zd_mac *mac = zd_hw_mac(hw); 1343 return zd_chip_get_tsf(&mac->chip); 1344 } 1345 1346 static const struct ieee80211_ops zd_ops = { 1347 .tx = zd_op_tx, 1348 .start = zd_op_start, 1349 .stop = zd_op_stop, 1350 .add_interface = zd_op_add_interface, 1351 .remove_interface = zd_op_remove_interface, 1352 .config = zd_op_config, 1353 .prepare_multicast = zd_op_prepare_multicast, 1354 .configure_filter = zd_op_configure_filter, 1355 .bss_info_changed = zd_op_bss_info_changed, 1356 .get_tsf = zd_op_get_tsf, 1357 }; 1358 1359 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) 1360 { 1361 struct zd_mac *mac; 1362 struct ieee80211_hw *hw; 1363 1364 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); 1365 if (!hw) { 1366 dev_dbg_f(&intf->dev, "out of memory\n"); 1367 return NULL; 1368 } 1369 1370 mac = zd_hw_mac(hw); 1371 1372 memset(mac, 0, sizeof(*mac)); 1373 spin_lock_init(&mac->lock); 1374 mac->hw = hw; 1375 1376 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1377 1378 memcpy(mac->channels, zd_channels, sizeof(zd_channels)); 1379 memcpy(mac->rates, zd_rates, sizeof(zd_rates)); 1380 mac->band.n_bitrates = ARRAY_SIZE(zd_rates); 1381 mac->band.bitrates = mac->rates; 1382 mac->band.n_channels = ARRAY_SIZE(zd_channels); 1383 mac->band.channels = mac->channels; 1384 1385 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band; 1386 1387 ieee80211_hw_set(hw, MFP_CAPABLE); 1388 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 1389 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1390 ieee80211_hw_set(hw, SIGNAL_UNSPEC); 1391 1392 hw->wiphy->interface_modes = 1393 BIT(NL80211_IFTYPE_MESH_POINT) | 1394 BIT(NL80211_IFTYPE_STATION) | 1395 BIT(NL80211_IFTYPE_ADHOC) | 1396 BIT(NL80211_IFTYPE_AP); 1397 1398 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1399 1400 hw->max_signal = 100; 1401 hw->queues = 1; 1402 hw->extra_tx_headroom = sizeof(struct zd_ctrlset); 1403 1404 /* 1405 * Tell mac80211 that we support multi rate retries 1406 */ 1407 hw->max_rates = IEEE80211_TX_MAX_RATES; 1408 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ 1409 1410 skb_queue_head_init(&mac->ack_wait_queue); 1411 mac->ack_pending = 0; 1412 1413 zd_chip_init(&mac->chip, hw, intf); 1414 housekeeping_init(mac); 1415 beacon_init(mac); 1416 INIT_WORK(&mac->process_intr, zd_process_intr); 1417 1418 SET_IEEE80211_DEV(hw, &intf->dev); 1419 return hw; 1420 } 1421 1422 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ) 1423 1424 static void beacon_watchdog_handler(struct work_struct *work) 1425 { 1426 struct zd_mac *mac = 1427 container_of(work, struct zd_mac, beacon.watchdog_work.work); 1428 struct sk_buff *beacon; 1429 unsigned long timeout; 1430 int interval, period; 1431 1432 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1433 goto rearm; 1434 if (mac->type != NL80211_IFTYPE_AP || !mac->vif) 1435 goto rearm; 1436 1437 spin_lock_irq(&mac->lock); 1438 interval = mac->beacon.interval; 1439 period = mac->beacon.period; 1440 timeout = mac->beacon.last_update + 1441 msecs_to_jiffies(interval * 1024 / 1000) * 3; 1442 spin_unlock_irq(&mac->lock); 1443 1444 if (interval > 0 && time_is_before_jiffies(timeout)) { 1445 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, " 1446 "restarting. " 1447 "(interval: %d, dtim: %d)\n", 1448 interval, period); 1449 1450 zd_chip_disable_hwint(&mac->chip); 1451 1452 beacon = ieee80211_beacon_get(mac->hw, mac->vif); 1453 if (beacon) { 1454 zd_mac_free_cur_beacon(mac); 1455 1456 zd_mac_config_beacon(mac->hw, beacon, false); 1457 } 1458 1459 zd_set_beacon_interval(&mac->chip, interval, period, mac->type); 1460 1461 zd_chip_enable_hwint(&mac->chip); 1462 1463 spin_lock_irq(&mac->lock); 1464 mac->beacon.last_update = jiffies; 1465 spin_unlock_irq(&mac->lock); 1466 } 1467 1468 rearm: 1469 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1470 BEACON_WATCHDOG_DELAY); 1471 } 1472 1473 static void beacon_init(struct zd_mac *mac) 1474 { 1475 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler); 1476 } 1477 1478 static void beacon_enable(struct zd_mac *mac) 1479 { 1480 dev_dbg_f(zd_mac_dev(mac), "\n"); 1481 1482 mac->beacon.last_update = jiffies; 1483 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1484 BEACON_WATCHDOG_DELAY); 1485 } 1486 1487 static void beacon_disable(struct zd_mac *mac) 1488 { 1489 dev_dbg_f(zd_mac_dev(mac), "\n"); 1490 cancel_delayed_work_sync(&mac->beacon.watchdog_work); 1491 1492 zd_mac_free_cur_beacon(mac); 1493 } 1494 1495 #define LINK_LED_WORK_DELAY HZ 1496 1497 static void link_led_handler(struct work_struct *work) 1498 { 1499 struct zd_mac *mac = 1500 container_of(work, struct zd_mac, housekeeping.link_led_work.work); 1501 struct zd_chip *chip = &mac->chip; 1502 int is_associated; 1503 int r; 1504 1505 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1506 goto requeue; 1507 1508 spin_lock_irq(&mac->lock); 1509 is_associated = mac->associated; 1510 spin_unlock_irq(&mac->lock); 1511 1512 r = zd_chip_control_leds(chip, 1513 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING); 1514 if (r) 1515 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); 1516 1517 requeue: 1518 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1519 LINK_LED_WORK_DELAY); 1520 } 1521 1522 static void housekeeping_init(struct zd_mac *mac) 1523 { 1524 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); 1525 } 1526 1527 static void housekeeping_enable(struct zd_mac *mac) 1528 { 1529 dev_dbg_f(zd_mac_dev(mac), "\n"); 1530 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1531 0); 1532 } 1533 1534 static void housekeeping_disable(struct zd_mac *mac) 1535 { 1536 dev_dbg_f(zd_mac_dev(mac), "\n"); 1537 cancel_delayed_work_sync(&mac->housekeeping.link_led_work); 1538 zd_chip_control_leds(&mac->chip, ZD_LED_OFF); 1539 } 1540