1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* ZD1211 USB-WLAN driver for Linux 3 * 4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> 7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 8 */ 9 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/usb.h> 14 #include <linux/jiffies.h> 15 #include <net/ieee80211_radiotap.h> 16 17 #include "zd_def.h" 18 #include "zd_chip.h" 19 #include "zd_mac.h" 20 #include "zd_rf.h" 21 22 struct zd_reg_alpha2_map { 23 u32 reg; 24 char alpha2[2]; 25 }; 26 27 static struct zd_reg_alpha2_map reg_alpha2_map[] = { 28 { ZD_REGDOMAIN_FCC, "US" }, 29 { ZD_REGDOMAIN_IC, "CA" }, 30 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ 31 { ZD_REGDOMAIN_JAPAN, "JP" }, 32 { ZD_REGDOMAIN_JAPAN_2, "JP" }, 33 { ZD_REGDOMAIN_JAPAN_3, "JP" }, 34 { ZD_REGDOMAIN_SPAIN, "ES" }, 35 { ZD_REGDOMAIN_FRANCE, "FR" }, 36 }; 37 38 /* This table contains the hardware specific values for the modulation rates. */ 39 static const struct ieee80211_rate zd_rates[] = { 40 { .bitrate = 10, 41 .hw_value = ZD_CCK_RATE_1M, }, 42 { .bitrate = 20, 43 .hw_value = ZD_CCK_RATE_2M, 44 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, 45 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 46 { .bitrate = 55, 47 .hw_value = ZD_CCK_RATE_5_5M, 48 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, 49 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 50 { .bitrate = 110, 51 .hw_value = ZD_CCK_RATE_11M, 52 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, 53 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 54 { .bitrate = 60, 55 .hw_value = ZD_OFDM_RATE_6M, 56 .flags = 0 }, 57 { .bitrate = 90, 58 .hw_value = ZD_OFDM_RATE_9M, 59 .flags = 0 }, 60 { .bitrate = 120, 61 .hw_value = ZD_OFDM_RATE_12M, 62 .flags = 0 }, 63 { .bitrate = 180, 64 .hw_value = ZD_OFDM_RATE_18M, 65 .flags = 0 }, 66 { .bitrate = 240, 67 .hw_value = ZD_OFDM_RATE_24M, 68 .flags = 0 }, 69 { .bitrate = 360, 70 .hw_value = ZD_OFDM_RATE_36M, 71 .flags = 0 }, 72 { .bitrate = 480, 73 .hw_value = ZD_OFDM_RATE_48M, 74 .flags = 0 }, 75 { .bitrate = 540, 76 .hw_value = ZD_OFDM_RATE_54M, 77 .flags = 0 }, 78 }; 79 80 /* 81 * Zydas retry rates table. Each line is listed in the same order as 82 * in zd_rates[] and contains all the rate used when a packet is sent 83 * starting with a given rates. Let's consider an example : 84 * 85 * "11 Mbits : 4, 3, 2, 1, 0" means : 86 * - packet is sent using 4 different rates 87 * - 1st rate is index 3 (ie 11 Mbits) 88 * - 2nd rate is index 2 (ie 5.5 Mbits) 89 * - 3rd rate is index 1 (ie 2 Mbits) 90 * - 4th rate is index 0 (ie 1 Mbits) 91 */ 92 93 static const struct tx_retry_rate zd_retry_rates[] = { 94 { /* 1 Mbits */ 1, { 0 }}, 95 { /* 2 Mbits */ 2, { 1, 0 }}, 96 { /* 5.5 Mbits */ 3, { 2, 1, 0 }}, 97 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }}, 98 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }}, 99 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}}, 100 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }}, 101 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }}, 102 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }}, 103 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }}, 104 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }}, 105 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }} 106 }; 107 108 static const struct ieee80211_channel zd_channels[] = { 109 { .center_freq = 2412, .hw_value = 1 }, 110 { .center_freq = 2417, .hw_value = 2 }, 111 { .center_freq = 2422, .hw_value = 3 }, 112 { .center_freq = 2427, .hw_value = 4 }, 113 { .center_freq = 2432, .hw_value = 5 }, 114 { .center_freq = 2437, .hw_value = 6 }, 115 { .center_freq = 2442, .hw_value = 7 }, 116 { .center_freq = 2447, .hw_value = 8 }, 117 { .center_freq = 2452, .hw_value = 9 }, 118 { .center_freq = 2457, .hw_value = 10 }, 119 { .center_freq = 2462, .hw_value = 11 }, 120 { .center_freq = 2467, .hw_value = 12 }, 121 { .center_freq = 2472, .hw_value = 13 }, 122 { .center_freq = 2484, .hw_value = 14 }, 123 }; 124 125 static void housekeeping_init(struct zd_mac *mac); 126 static void housekeeping_enable(struct zd_mac *mac); 127 static void housekeeping_disable(struct zd_mac *mac); 128 static void beacon_init(struct zd_mac *mac); 129 static void beacon_enable(struct zd_mac *mac); 130 static void beacon_disable(struct zd_mac *mac); 131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble); 132 static int zd_mac_config_beacon(struct ieee80211_hw *hw, 133 struct sk_buff *beacon, bool in_intr); 134 135 static int zd_reg2alpha2(u8 regdomain, char *alpha2) 136 { 137 unsigned int i; 138 struct zd_reg_alpha2_map *reg_map; 139 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { 140 reg_map = ®_alpha2_map[i]; 141 if (regdomain == reg_map->reg) { 142 alpha2[0] = reg_map->alpha2[0]; 143 alpha2[1] = reg_map->alpha2[1]; 144 return 0; 145 } 146 } 147 return 1; 148 } 149 150 static int zd_check_signal(struct ieee80211_hw *hw, int signal) 151 { 152 struct zd_mac *mac = zd_hw_mac(hw); 153 154 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100, 155 "%s: signal value from device not in range 0..100, " 156 "but %d.\n", __func__, signal); 157 158 if (signal < 0) 159 signal = 0; 160 else if (signal > 100) 161 signal = 100; 162 163 return signal; 164 } 165 166 int zd_mac_preinit_hw(struct ieee80211_hw *hw) 167 { 168 int r; 169 u8 addr[ETH_ALEN]; 170 struct zd_mac *mac = zd_hw_mac(hw); 171 172 r = zd_chip_read_mac_addr_fw(&mac->chip, addr); 173 if (r) 174 return r; 175 176 SET_IEEE80211_PERM_ADDR(hw, addr); 177 178 return 0; 179 } 180 181 int zd_mac_init_hw(struct ieee80211_hw *hw) 182 { 183 int r; 184 struct zd_mac *mac = zd_hw_mac(hw); 185 struct zd_chip *chip = &mac->chip; 186 char alpha2[2]; 187 u8 default_regdomain; 188 189 r = zd_chip_enable_int(chip); 190 if (r) 191 goto out; 192 r = zd_chip_init_hw(chip); 193 if (r) 194 goto disable_int; 195 196 ZD_ASSERT(!irqs_disabled()); 197 198 r = zd_read_regdomain(chip, &default_regdomain); 199 if (r) 200 goto disable_int; 201 spin_lock_irq(&mac->lock); 202 mac->regdomain = mac->default_regdomain = default_regdomain; 203 spin_unlock_irq(&mac->lock); 204 205 /* We must inform the device that we are doing encryption/decryption in 206 * software at the moment. */ 207 r = zd_set_encryption_type(chip, ENC_SNIFFER); 208 if (r) 209 goto disable_int; 210 211 r = zd_reg2alpha2(mac->regdomain, alpha2); 212 if (r) 213 goto disable_int; 214 215 r = regulatory_hint(hw->wiphy, alpha2); 216 disable_int: 217 zd_chip_disable_int(chip); 218 out: 219 return r; 220 } 221 222 void zd_mac_clear(struct zd_mac *mac) 223 { 224 flush_workqueue(zd_workqueue); 225 zd_chip_clear(&mac->chip); 226 ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); 227 } 228 229 static int set_rx_filter(struct zd_mac *mac) 230 { 231 unsigned long flags; 232 u32 filter = STA_RX_FILTER; 233 234 spin_lock_irqsave(&mac->lock, flags); 235 if (mac->pass_ctrl) 236 filter |= RX_FILTER_CTRL; 237 spin_unlock_irqrestore(&mac->lock, flags); 238 239 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); 240 } 241 242 static int set_mac_and_bssid(struct zd_mac *mac) 243 { 244 int r; 245 246 if (!mac->vif) 247 return -1; 248 249 r = zd_write_mac_addr(&mac->chip, mac->vif->addr); 250 if (r) 251 return r; 252 253 /* Vendor driver after setting MAC either sets BSSID for AP or 254 * filter for other modes. 255 */ 256 if (mac->type != NL80211_IFTYPE_AP) 257 return set_rx_filter(mac); 258 else 259 return zd_write_bssid(&mac->chip, mac->vif->addr); 260 } 261 262 static int set_mc_hash(struct zd_mac *mac) 263 { 264 struct zd_mc_hash hash; 265 zd_mc_clear(&hash); 266 return zd_chip_set_multicast_hash(&mac->chip, &hash); 267 } 268 269 int zd_op_start(struct ieee80211_hw *hw) 270 { 271 struct zd_mac *mac = zd_hw_mac(hw); 272 struct zd_chip *chip = &mac->chip; 273 struct zd_usb *usb = &chip->usb; 274 int r; 275 276 if (!usb->initialized) { 277 r = zd_usb_init_hw(usb); 278 if (r) 279 goto out; 280 } 281 282 r = zd_chip_enable_int(chip); 283 if (r < 0) 284 goto out; 285 286 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); 287 if (r < 0) 288 goto disable_int; 289 r = set_rx_filter(mac); 290 if (r) 291 goto disable_int; 292 r = set_mc_hash(mac); 293 if (r) 294 goto disable_int; 295 296 /* Wait after setting the multicast hash table and powering on 297 * the radio otherwise interface bring up will fail. This matches 298 * what the vendor driver did. 299 */ 300 msleep(10); 301 302 r = zd_chip_switch_radio_on(chip); 303 if (r < 0) { 304 dev_err(zd_chip_dev(chip), 305 "%s: failed to set radio on\n", __func__); 306 goto disable_int; 307 } 308 r = zd_chip_enable_rxtx(chip); 309 if (r < 0) 310 goto disable_radio; 311 r = zd_chip_enable_hwint(chip); 312 if (r < 0) 313 goto disable_rxtx; 314 315 housekeeping_enable(mac); 316 beacon_enable(mac); 317 set_bit(ZD_DEVICE_RUNNING, &mac->flags); 318 return 0; 319 disable_rxtx: 320 zd_chip_disable_rxtx(chip); 321 disable_radio: 322 zd_chip_switch_radio_off(chip); 323 disable_int: 324 zd_chip_disable_int(chip); 325 out: 326 return r; 327 } 328 329 void zd_op_stop(struct ieee80211_hw *hw) 330 { 331 struct zd_mac *mac = zd_hw_mac(hw); 332 struct zd_chip *chip = &mac->chip; 333 struct sk_buff *skb; 334 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; 335 336 clear_bit(ZD_DEVICE_RUNNING, &mac->flags); 337 338 /* The order here deliberately is a little different from the open() 339 * method, since we need to make sure there is no opportunity for RX 340 * frames to be processed by mac80211 after we have stopped it. 341 */ 342 343 zd_chip_disable_rxtx(chip); 344 beacon_disable(mac); 345 housekeeping_disable(mac); 346 flush_workqueue(zd_workqueue); 347 348 zd_chip_disable_hwint(chip); 349 zd_chip_switch_radio_off(chip); 350 zd_chip_disable_int(chip); 351 352 353 while ((skb = skb_dequeue(ack_wait_queue))) 354 dev_kfree_skb_any(skb); 355 } 356 357 int zd_restore_settings(struct zd_mac *mac) 358 { 359 struct sk_buff *beacon; 360 struct zd_mc_hash multicast_hash; 361 unsigned int short_preamble; 362 int r, beacon_interval, beacon_period; 363 u8 channel; 364 365 dev_dbg_f(zd_mac_dev(mac), "\n"); 366 367 spin_lock_irq(&mac->lock); 368 multicast_hash = mac->multicast_hash; 369 short_preamble = mac->short_preamble; 370 beacon_interval = mac->beacon.interval; 371 beacon_period = mac->beacon.period; 372 channel = mac->channel; 373 spin_unlock_irq(&mac->lock); 374 375 r = set_mac_and_bssid(mac); 376 if (r < 0) { 377 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r); 378 return r; 379 } 380 381 r = zd_chip_set_channel(&mac->chip, channel); 382 if (r < 0) { 383 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n", 384 r); 385 return r; 386 } 387 388 set_rts_cts(mac, short_preamble); 389 390 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash); 391 if (r < 0) { 392 dev_dbg_f(zd_mac_dev(mac), 393 "zd_chip_set_multicast_hash failed, %d\n", r); 394 return r; 395 } 396 397 if (mac->type == NL80211_IFTYPE_MESH_POINT || 398 mac->type == NL80211_IFTYPE_ADHOC || 399 mac->type == NL80211_IFTYPE_AP) { 400 if (mac->vif != NULL) { 401 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 402 if (beacon) 403 zd_mac_config_beacon(mac->hw, beacon, false); 404 } 405 406 zd_set_beacon_interval(&mac->chip, beacon_interval, 407 beacon_period, mac->type); 408 409 spin_lock_irq(&mac->lock); 410 mac->beacon.last_update = jiffies; 411 spin_unlock_irq(&mac->lock); 412 } 413 414 return 0; 415 } 416 417 /** 418 * zd_mac_tx_status - reports tx status of a packet if required 419 * @hw: a &struct ieee80211_hw pointer 420 * @skb: a sk-buffer 421 * @ackssi: ACK signal strength 422 * @tx_status: success and/or retry 423 * 424 * This information calls ieee80211_tx_status_irqsafe() if required by the 425 * control information. It copies the control information into the status 426 * information. 427 * 428 * If no status information has been requested, the skb is freed. 429 */ 430 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, 431 int ackssi, struct tx_status *tx_status) 432 { 433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 434 int i; 435 int success = 1, retry = 1; 436 int first_idx; 437 const struct tx_retry_rate *retries; 438 439 ieee80211_tx_info_clear_status(info); 440 441 if (tx_status) { 442 success = !tx_status->failure; 443 retry = tx_status->retry + success; 444 } 445 446 if (success) { 447 /* success */ 448 info->flags |= IEEE80211_TX_STAT_ACK; 449 } else { 450 /* failure */ 451 info->flags &= ~IEEE80211_TX_STAT_ACK; 452 } 453 454 first_idx = info->status.rates[0].idx; 455 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 456 retries = &zd_retry_rates[first_idx]; 457 ZD_ASSERT(1 <= retry && retry <= retries->count); 458 459 info->status.rates[0].idx = retries->rate[0]; 460 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1); 461 462 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) { 463 info->status.rates[i].idx = retries->rate[i]; 464 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2); 465 } 466 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) { 467 info->status.rates[i].idx = retries->rate[retry - 1]; 468 info->status.rates[i].count = 1; // (success ? 1:2); 469 } 470 if (i<IEEE80211_TX_MAX_RATES) 471 info->status.rates[i].idx = -1; /* terminate */ 472 473 info->status.ack_signal = zd_check_signal(hw, ackssi); 474 ieee80211_tx_status_irqsafe(hw, skb); 475 } 476 477 /** 478 * zd_mac_tx_failed - callback for failed frames 479 * @urb: pointer to the urb structure 480 * 481 * This function is called if a frame couldn't be successfully 482 * transferred. The first frame from the tx queue, will be selected and 483 * reported as error to the upper layers. 484 */ 485 void zd_mac_tx_failed(struct urb *urb) 486 { 487 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context); 488 struct zd_mac *mac = zd_hw_mac(hw); 489 struct sk_buff_head *q = &mac->ack_wait_queue; 490 struct sk_buff *skb; 491 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer; 492 unsigned long flags; 493 int success = !tx_status->failure; 494 int retry = tx_status->retry + success; 495 int found = 0; 496 int i, position = 0; 497 498 spin_lock_irqsave(&q->lock, flags); 499 500 skb_queue_walk(q, skb) { 501 struct ieee80211_hdr *tx_hdr; 502 struct ieee80211_tx_info *info; 503 int first_idx, final_idx; 504 const struct tx_retry_rate *retries; 505 u8 final_rate; 506 507 position ++; 508 509 /* if the hardware reports a failure and we had a 802.11 ACK 510 * pending, then we skip the first skb when searching for a 511 * matching frame */ 512 if (tx_status->failure && mac->ack_pending && 513 skb_queue_is_first(q, skb)) { 514 continue; 515 } 516 517 tx_hdr = (struct ieee80211_hdr *)skb->data; 518 519 /* we skip all frames not matching the reported destination */ 520 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac))) 521 continue; 522 523 /* we skip all frames not matching the reported final rate */ 524 525 info = IEEE80211_SKB_CB(skb); 526 first_idx = info->status.rates[0].idx; 527 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); 528 retries = &zd_retry_rates[first_idx]; 529 if (retry <= 0 || retry > retries->count) 530 continue; 531 532 final_idx = retries->rate[retry - 1]; 533 final_rate = zd_rates[final_idx].hw_value; 534 535 if (final_rate != tx_status->rate) { 536 continue; 537 } 538 539 found = 1; 540 break; 541 } 542 543 if (found) { 544 for (i=1; i<=position; i++) { 545 skb = __skb_dequeue(q); 546 zd_mac_tx_status(hw, skb, 547 mac->ack_pending ? mac->ack_signal : 0, 548 i == position ? tx_status : NULL); 549 mac->ack_pending = 0; 550 } 551 } 552 553 spin_unlock_irqrestore(&q->lock, flags); 554 } 555 556 /** 557 * zd_mac_tx_to_dev - callback for USB layer 558 * @skb: a &sk_buff pointer 559 * @error: error value, 0 if transmission successful 560 * 561 * Informs the MAC layer that the frame has successfully transferred to the 562 * device. If an ACK is required and the transfer to the device has been 563 * successful, the packets are put on the @ack_wait_queue with 564 * the control set removed. 565 */ 566 void zd_mac_tx_to_dev(struct sk_buff *skb, int error) 567 { 568 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 569 struct ieee80211_hw *hw = info->rate_driver_data[0]; 570 struct zd_mac *mac = zd_hw_mac(hw); 571 572 ieee80211_tx_info_clear_status(info); 573 574 skb_pull(skb, sizeof(struct zd_ctrlset)); 575 if (unlikely(error || 576 (info->flags & IEEE80211_TX_CTL_NO_ACK))) { 577 /* 578 * FIXME : do we need to fill in anything ? 579 */ 580 ieee80211_tx_status_irqsafe(hw, skb); 581 } else { 582 struct sk_buff_head *q = &mac->ack_wait_queue; 583 584 skb_queue_tail(q, skb); 585 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) { 586 zd_mac_tx_status(hw, skb_dequeue(q), 587 mac->ack_pending ? mac->ack_signal : 0, 588 NULL); 589 mac->ack_pending = 0; 590 } 591 } 592 } 593 594 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) 595 { 596 /* ZD_PURE_RATE() must be used to remove the modulation type flag of 597 * the zd-rate values. 598 */ 599 static const u8 rate_divisor[] = { 600 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, 601 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, 602 /* Bits must be doubled. */ 603 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, 604 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, 605 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, 606 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, 607 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, 608 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, 609 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, 610 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, 611 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, 612 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, 613 }; 614 615 u32 bits = (u32)tx_length * 8; 616 u32 divisor; 617 618 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; 619 if (divisor == 0) 620 return -EINVAL; 621 622 switch (zd_rate) { 623 case ZD_CCK_RATE_5_5M: 624 bits = (2*bits) + 10; /* round up to the next integer */ 625 break; 626 case ZD_CCK_RATE_11M: 627 if (service) { 628 u32 t = bits % 11; 629 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; 630 if (0 < t && t <= 3) { 631 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; 632 } 633 } 634 bits += 10; /* round up to the next integer */ 635 break; 636 } 637 638 return bits/divisor; 639 } 640 641 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, 642 struct ieee80211_hdr *header, 643 struct ieee80211_tx_info *info) 644 { 645 /* 646 * CONTROL TODO: 647 * - if backoff needed, enable bit 0 648 * - if burst (backoff not needed) disable bit 0 649 */ 650 651 cs->control = 0; 652 653 /* First fragment */ 654 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 655 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; 656 657 /* No ACK expected (multicast, etc.) */ 658 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 659 cs->control |= ZD_CS_NO_ACK; 660 661 /* PS-POLL */ 662 if (ieee80211_is_pspoll(header->frame_control)) 663 cs->control |= ZD_CS_PS_POLL_FRAME; 664 665 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) 666 cs->control |= ZD_CS_RTS; 667 668 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) 669 cs->control |= ZD_CS_SELF_CTS; 670 671 /* FIXME: Management frame? */ 672 } 673 674 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon) 675 { 676 if (!mac->beacon.cur_beacon) 677 return false; 678 679 if (mac->beacon.cur_beacon->len != beacon->len) 680 return false; 681 682 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len); 683 } 684 685 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac) 686 { 687 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex)); 688 689 kfree_skb(mac->beacon.cur_beacon); 690 mac->beacon.cur_beacon = NULL; 691 } 692 693 static void zd_mac_free_cur_beacon(struct zd_mac *mac) 694 { 695 mutex_lock(&mac->chip.mutex); 696 zd_mac_free_cur_beacon_locked(mac); 697 mutex_unlock(&mac->chip.mutex); 698 } 699 700 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon, 701 bool in_intr) 702 { 703 struct zd_mac *mac = zd_hw_mac(hw); 704 int r, ret, num_cmds, req_pos = 0; 705 u32 tmp, j = 0; 706 /* 4 more bytes for tail CRC */ 707 u32 full_len = beacon->len + 4; 708 unsigned long end_jiffies, message_jiffies; 709 struct zd_ioreq32 *ioreqs; 710 711 mutex_lock(&mac->chip.mutex); 712 713 /* Check if hw already has this beacon. */ 714 if (zd_mac_match_cur_beacon(mac, beacon)) { 715 r = 0; 716 goto out_nofree; 717 } 718 719 /* Alloc memory for full beacon write at once. */ 720 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len; 721 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32), 722 GFP_KERNEL); 723 if (!ioreqs) { 724 r = -ENOMEM; 725 goto out_nofree; 726 } 727 728 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE); 729 if (r < 0) 730 goto out; 731 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 732 if (r < 0) 733 goto release_sema; 734 if (in_intr && tmp & 0x2) { 735 r = -EBUSY; 736 goto release_sema; 737 } 738 739 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 740 message_jiffies = jiffies + HZ / 10; /*~100ms*/ 741 while (tmp & 0x2) { 742 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE); 743 if (r < 0) 744 goto release_sema; 745 if (time_is_before_eq_jiffies(message_jiffies)) { 746 message_jiffies = jiffies + HZ / 10; 747 dev_err(zd_mac_dev(mac), 748 "CR_BCN_FIFO_SEMAPHORE not ready\n"); 749 if (time_is_before_eq_jiffies(end_jiffies)) { 750 dev_err(zd_mac_dev(mac), 751 "Giving up beacon config.\n"); 752 r = -ETIMEDOUT; 753 goto reset_device; 754 } 755 } 756 msleep(20); 757 } 758 759 ioreqs[req_pos].addr = CR_BCN_FIFO; 760 ioreqs[req_pos].value = full_len - 1; 761 req_pos++; 762 if (zd_chip_is_zd1211b(&mac->chip)) { 763 ioreqs[req_pos].addr = CR_BCN_LENGTH; 764 ioreqs[req_pos].value = full_len - 1; 765 req_pos++; 766 } 767 768 for (j = 0 ; j < beacon->len; j++) { 769 ioreqs[req_pos].addr = CR_BCN_FIFO; 770 ioreqs[req_pos].value = *((u8 *)(beacon->data + j)); 771 req_pos++; 772 } 773 774 for (j = 0; j < 4; j++) { 775 ioreqs[req_pos].addr = CR_BCN_FIFO; 776 ioreqs[req_pos].value = 0x0; 777 req_pos++; 778 } 779 780 BUG_ON(req_pos != num_cmds); 781 782 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds); 783 784 release_sema: 785 /* 786 * Try very hard to release device beacon semaphore, as otherwise 787 * device/driver can be left in unusable state. 788 */ 789 end_jiffies = jiffies + HZ / 2; /*~500ms*/ 790 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 791 while (ret < 0) { 792 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) { 793 ret = -ETIMEDOUT; 794 break; 795 } 796 797 msleep(20); 798 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE); 799 } 800 801 if (ret < 0) 802 dev_err(zd_mac_dev(mac), "Could not release " 803 "CR_BCN_FIFO_SEMAPHORE!\n"); 804 if (r < 0 || ret < 0) { 805 if (r >= 0) 806 r = ret; 807 808 /* We don't know if beacon was written successfully or not, 809 * so clear current. */ 810 zd_mac_free_cur_beacon_locked(mac); 811 812 goto out; 813 } 814 815 /* Beacon has now been written successfully, update current. */ 816 zd_mac_free_cur_beacon_locked(mac); 817 mac->beacon.cur_beacon = beacon; 818 beacon = NULL; 819 820 /* 802.11b/g 2.4G CCK 1Mb 821 * 802.11a, not yet implemented, uses different values (see GPL vendor 822 * driver) 823 */ 824 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19), 825 CR_BCN_PLCP_CFG); 826 out: 827 kfree(ioreqs); 828 out_nofree: 829 kfree_skb(beacon); 830 mutex_unlock(&mac->chip.mutex); 831 832 return r; 833 834 reset_device: 835 zd_mac_free_cur_beacon_locked(mac); 836 kfree_skb(beacon); 837 838 mutex_unlock(&mac->chip.mutex); 839 kfree(ioreqs); 840 841 /* semaphore stuck, reset device to avoid fw freeze later */ 842 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, " 843 "resetting device..."); 844 usb_queue_reset_device(mac->chip.usb.intf); 845 846 return r; 847 } 848 849 static int fill_ctrlset(struct zd_mac *mac, 850 struct sk_buff *skb) 851 { 852 int r; 853 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 854 unsigned int frag_len = skb->len + FCS_LEN; 855 unsigned int packet_length; 856 struct ieee80211_rate *txrate; 857 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset)); 858 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 859 860 ZD_ASSERT(frag_len <= 0xffff); 861 862 /* 863 * Firmware computes the duration itself (for all frames except PSPoll) 864 * and needs the field set to 0 at input, otherwise firmware messes up 865 * duration_id and sets bits 14 and 15 on. 866 */ 867 if (!ieee80211_is_pspoll(hdr->frame_control)) 868 hdr->duration_id = 0; 869 870 txrate = ieee80211_get_tx_rate(mac->hw, info); 871 872 cs->modulation = txrate->hw_value; 873 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 874 cs->modulation = txrate->hw_value_short; 875 876 cs->tx_length = cpu_to_le16(frag_len); 877 878 cs_set_control(mac, cs, hdr, info); 879 880 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; 881 ZD_ASSERT(packet_length <= 0xffff); 882 /* ZD1211B: Computing the length difference this way, gives us 883 * flexibility to compute the packet length. 884 */ 885 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? 886 packet_length - frag_len : packet_length); 887 888 /* 889 * CURRENT LENGTH: 890 * - transmit frame length in microseconds 891 * - seems to be derived from frame length 892 * - see Cal_Us_Service() in zdinlinef.h 893 * - if macp->bTxBurstEnable is enabled, then multiply by 4 894 * - bTxBurstEnable is never set in the vendor driver 895 * 896 * SERVICE: 897 * - "for PLCP configuration" 898 * - always 0 except in some situations at 802.11b 11M 899 * - see line 53 of zdinlinef.h 900 */ 901 cs->service = 0; 902 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), 903 le16_to_cpu(cs->tx_length)); 904 if (r < 0) 905 return r; 906 cs->current_length = cpu_to_le16(r); 907 cs->next_frame_length = 0; 908 909 return 0; 910 } 911 912 /** 913 * zd_op_tx - transmits a network frame to the device 914 * 915 * @hw: a &struct ieee80211_hw pointer 916 * @control: the control structure 917 * @skb: socket buffer 918 * 919 * This function transmit an IEEE 802.11 network frame to the device. The 920 * control block of the skbuff will be initialized. If necessary the incoming 921 * mac80211 queues will be stopped. 922 */ 923 static void zd_op_tx(struct ieee80211_hw *hw, 924 struct ieee80211_tx_control *control, 925 struct sk_buff *skb) 926 { 927 struct zd_mac *mac = zd_hw_mac(hw); 928 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 929 int r; 930 931 r = fill_ctrlset(mac, skb); 932 if (r) 933 goto fail; 934 935 info->rate_driver_data[0] = hw; 936 937 r = zd_usb_tx(&mac->chip.usb, skb); 938 if (r) 939 goto fail; 940 return; 941 942 fail: 943 dev_kfree_skb(skb); 944 } 945 946 /** 947 * filter_ack - filters incoming packets for acknowledgements 948 * @hw: a &struct ieee80211_hw pointer 949 * @rx_hdr: received header 950 * @stats: the status for the received packet 951 * 952 * This functions looks for ACK packets and tries to match them with the 953 * frames in the tx queue. If a match is found the frame will be dequeued and 954 * the upper layers is informed about the successful transmission. If 955 * mac80211 queues have been stopped and the number of frames still to be 956 * transmitted is low the queues will be opened again. 957 * 958 * Returns 1 if the frame was an ACK, 0 if it was ignored. 959 */ 960 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, 961 struct ieee80211_rx_status *stats) 962 { 963 struct zd_mac *mac = zd_hw_mac(hw); 964 struct sk_buff *skb; 965 struct sk_buff_head *q; 966 unsigned long flags; 967 int found = 0; 968 int i, position = 0; 969 970 if (!ieee80211_is_ack(rx_hdr->frame_control)) 971 return 0; 972 973 q = &mac->ack_wait_queue; 974 spin_lock_irqsave(&q->lock, flags); 975 skb_queue_walk(q, skb) { 976 struct ieee80211_hdr *tx_hdr; 977 978 position ++; 979 980 if (mac->ack_pending && skb_queue_is_first(q, skb)) 981 continue; 982 983 tx_hdr = (struct ieee80211_hdr *)skb->data; 984 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) 985 { 986 found = 1; 987 break; 988 } 989 } 990 991 if (found) { 992 for (i=1; i<position; i++) { 993 skb = __skb_dequeue(q); 994 zd_mac_tx_status(hw, skb, 995 mac->ack_pending ? mac->ack_signal : 0, 996 NULL); 997 mac->ack_pending = 0; 998 } 999 1000 mac->ack_pending = 1; 1001 mac->ack_signal = stats->signal; 1002 1003 /* Prevent pending tx-packet on AP-mode */ 1004 if (mac->type == NL80211_IFTYPE_AP) { 1005 skb = __skb_dequeue(q); 1006 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL); 1007 mac->ack_pending = 0; 1008 } 1009 } 1010 1011 spin_unlock_irqrestore(&q->lock, flags); 1012 return 1; 1013 } 1014 1015 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) 1016 { 1017 struct zd_mac *mac = zd_hw_mac(hw); 1018 struct ieee80211_rx_status stats; 1019 const struct rx_status *status; 1020 struct sk_buff *skb; 1021 int bad_frame = 0; 1022 __le16 fc; 1023 int need_padding; 1024 int i; 1025 u8 rate; 1026 1027 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + 1028 FCS_LEN + sizeof(struct rx_status)) 1029 return -EINVAL; 1030 1031 memset(&stats, 0, sizeof(stats)); 1032 1033 /* Note about pass_failed_fcs and pass_ctrl access below: 1034 * mac locking intentionally omitted here, as this is the only unlocked 1035 * reader and the only writer is configure_filter. Plus, if there were 1036 * any races accessing these variables, it wouldn't really matter. 1037 * If mac80211 ever provides a way for us to access filter flags 1038 * from outside configure_filter, we could improve on this. Also, this 1039 * situation may change once we implement some kind of DMA-into-skb 1040 * RX path. */ 1041 1042 /* Caller has to ensure that length >= sizeof(struct rx_status). */ 1043 status = (struct rx_status *) 1044 (buffer + (length - sizeof(struct rx_status))); 1045 if (status->frame_status & ZD_RX_ERROR) { 1046 if (mac->pass_failed_fcs && 1047 (status->frame_status & ZD_RX_CRC32_ERROR)) { 1048 stats.flag |= RX_FLAG_FAILED_FCS_CRC; 1049 bad_frame = 1; 1050 } else { 1051 return -EINVAL; 1052 } 1053 } 1054 1055 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; 1056 stats.band = NL80211_BAND_2GHZ; 1057 stats.signal = zd_check_signal(hw, status->signal_strength); 1058 1059 rate = zd_rx_rate(buffer, status); 1060 1061 /* todo: return index in the big switches in zd_rx_rate instead */ 1062 for (i = 0; i < mac->band.n_bitrates; i++) 1063 if (rate == mac->band.bitrates[i].hw_value) 1064 stats.rate_idx = i; 1065 1066 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); 1067 buffer += ZD_PLCP_HEADER_SIZE; 1068 1069 /* Except for bad frames, filter each frame to see if it is an ACK, in 1070 * which case our internal TX tracking is updated. Normally we then 1071 * bail here as there's no need to pass ACKs on up to the stack, but 1072 * there is also the case where the stack has requested us to pass 1073 * control frames on up (pass_ctrl) which we must consider. */ 1074 if (!bad_frame && 1075 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) 1076 && !mac->pass_ctrl) 1077 return 0; 1078 1079 fc = get_unaligned((__le16*)buffer); 1080 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); 1081 1082 skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); 1083 if (skb == NULL) 1084 return -ENOMEM; 1085 if (need_padding) { 1086 /* Make sure the payload data is 4 byte aligned. */ 1087 skb_reserve(skb, 2); 1088 } 1089 1090 /* FIXME : could we avoid this big memcpy ? */ 1091 skb_put_data(skb, buffer, length); 1092 1093 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); 1094 ieee80211_rx_irqsafe(hw, skb); 1095 return 0; 1096 } 1097 1098 static int zd_op_add_interface(struct ieee80211_hw *hw, 1099 struct ieee80211_vif *vif) 1100 { 1101 struct zd_mac *mac = zd_hw_mac(hw); 1102 1103 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ 1104 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) 1105 return -EOPNOTSUPP; 1106 1107 switch (vif->type) { 1108 case NL80211_IFTYPE_MONITOR: 1109 case NL80211_IFTYPE_MESH_POINT: 1110 case NL80211_IFTYPE_STATION: 1111 case NL80211_IFTYPE_ADHOC: 1112 case NL80211_IFTYPE_AP: 1113 mac->type = vif->type; 1114 break; 1115 default: 1116 return -EOPNOTSUPP; 1117 } 1118 1119 mac->vif = vif; 1120 1121 return set_mac_and_bssid(mac); 1122 } 1123 1124 static void zd_op_remove_interface(struct ieee80211_hw *hw, 1125 struct ieee80211_vif *vif) 1126 { 1127 struct zd_mac *mac = zd_hw_mac(hw); 1128 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1129 mac->vif = NULL; 1130 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED); 1131 zd_write_mac_addr(&mac->chip, NULL); 1132 1133 zd_mac_free_cur_beacon(mac); 1134 } 1135 1136 static int zd_op_config(struct ieee80211_hw *hw, u32 changed) 1137 { 1138 struct zd_mac *mac = zd_hw_mac(hw); 1139 struct ieee80211_conf *conf = &hw->conf; 1140 1141 spin_lock_irq(&mac->lock); 1142 mac->channel = conf->chandef.chan->hw_value; 1143 spin_unlock_irq(&mac->lock); 1144 1145 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value); 1146 } 1147 1148 static void zd_beacon_done(struct zd_mac *mac) 1149 { 1150 struct sk_buff *skb, *beacon; 1151 1152 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1153 return; 1154 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP) 1155 return; 1156 1157 /* 1158 * Send out buffered broad- and multicast frames. 1159 */ 1160 while (!ieee80211_queue_stopped(mac->hw, 0)) { 1161 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif); 1162 if (!skb) 1163 break; 1164 zd_op_tx(mac->hw, NULL, skb); 1165 } 1166 1167 /* 1168 * Fetch next beacon so that tim_count is updated. 1169 */ 1170 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 1171 if (beacon) 1172 zd_mac_config_beacon(mac->hw, beacon, true); 1173 1174 spin_lock_irq(&mac->lock); 1175 mac->beacon.last_update = jiffies; 1176 spin_unlock_irq(&mac->lock); 1177 } 1178 1179 static void zd_process_intr(struct work_struct *work) 1180 { 1181 u16 int_status; 1182 unsigned long flags; 1183 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); 1184 1185 spin_lock_irqsave(&mac->lock, flags); 1186 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4)); 1187 spin_unlock_irqrestore(&mac->lock, flags); 1188 1189 if (int_status & INT_CFG_NEXT_BCN) { 1190 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/ 1191 zd_beacon_done(mac); 1192 } else { 1193 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); 1194 } 1195 1196 zd_chip_enable_hwint(&mac->chip); 1197 } 1198 1199 1200 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw, 1201 struct netdev_hw_addr_list *mc_list) 1202 { 1203 struct zd_mac *mac = zd_hw_mac(hw); 1204 struct zd_mc_hash hash; 1205 struct netdev_hw_addr *ha; 1206 1207 zd_mc_clear(&hash); 1208 1209 netdev_hw_addr_list_for_each(ha, mc_list) { 1210 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr); 1211 zd_mc_add_addr(&hash, ha->addr); 1212 } 1213 1214 return hash.low | ((u64)hash.high << 32); 1215 } 1216 1217 #define SUPPORTED_FIF_FLAGS \ 1218 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ 1219 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) 1220 static void zd_op_configure_filter(struct ieee80211_hw *hw, 1221 unsigned int changed_flags, 1222 unsigned int *new_flags, 1223 u64 multicast) 1224 { 1225 struct zd_mc_hash hash = { 1226 .low = multicast, 1227 .high = multicast >> 32, 1228 }; 1229 struct zd_mac *mac = zd_hw_mac(hw); 1230 unsigned long flags; 1231 int r; 1232 1233 /* Only deal with supported flags */ 1234 changed_flags &= SUPPORTED_FIF_FLAGS; 1235 *new_flags &= SUPPORTED_FIF_FLAGS; 1236 1237 /* 1238 * If multicast parameter (as returned by zd_op_prepare_multicast) 1239 * has changed, no bit in changed_flags is set. To handle this 1240 * situation, we do not return if changed_flags is 0. If we do so, 1241 * we will have some issue with IPv6 which uses multicast for link 1242 * layer address resolution. 1243 */ 1244 if (*new_flags & FIF_ALLMULTI) 1245 zd_mc_add_all(&hash); 1246 1247 spin_lock_irqsave(&mac->lock, flags); 1248 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); 1249 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); 1250 mac->multicast_hash = hash; 1251 spin_unlock_irqrestore(&mac->lock, flags); 1252 1253 zd_chip_set_multicast_hash(&mac->chip, &hash); 1254 1255 if (changed_flags & FIF_CONTROL) { 1256 r = set_rx_filter(mac); 1257 if (r) 1258 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r); 1259 } 1260 1261 /* no handling required for FIF_OTHER_BSS as we don't currently 1262 * do BSSID filtering */ 1263 /* FIXME: in future it would be nice to enable the probe response 1264 * filter (so that the driver doesn't see them) until 1265 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd 1266 * have to schedule work to enable prbresp reception, which might 1267 * happen too late. For now we'll just listen and forward them all the 1268 * time. */ 1269 } 1270 1271 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble) 1272 { 1273 mutex_lock(&mac->chip.mutex); 1274 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); 1275 mutex_unlock(&mac->chip.mutex); 1276 } 1277 1278 static void zd_op_bss_info_changed(struct ieee80211_hw *hw, 1279 struct ieee80211_vif *vif, 1280 struct ieee80211_bss_conf *bss_conf, 1281 u64 changes) 1282 { 1283 struct zd_mac *mac = zd_hw_mac(hw); 1284 int associated; 1285 1286 dev_dbg_f(zd_mac_dev(mac), "changes: %llx\n", changes); 1287 1288 if (mac->type == NL80211_IFTYPE_MESH_POINT || 1289 mac->type == NL80211_IFTYPE_ADHOC || 1290 mac->type == NL80211_IFTYPE_AP) { 1291 associated = true; 1292 if (changes & BSS_CHANGED_BEACON) { 1293 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif, 1294 0); 1295 1296 if (beacon) { 1297 zd_chip_disable_hwint(&mac->chip); 1298 zd_mac_config_beacon(hw, beacon, false); 1299 zd_chip_enable_hwint(&mac->chip); 1300 } 1301 } 1302 1303 if (changes & BSS_CHANGED_BEACON_ENABLED) { 1304 u16 interval = 0; 1305 u8 period = 0; 1306 1307 if (bss_conf->enable_beacon) { 1308 period = bss_conf->dtim_period; 1309 interval = bss_conf->beacon_int; 1310 } 1311 1312 spin_lock_irq(&mac->lock); 1313 mac->beacon.period = period; 1314 mac->beacon.interval = interval; 1315 mac->beacon.last_update = jiffies; 1316 spin_unlock_irq(&mac->lock); 1317 1318 zd_set_beacon_interval(&mac->chip, interval, period, 1319 mac->type); 1320 } 1321 } else 1322 associated = is_valid_ether_addr(bss_conf->bssid); 1323 1324 spin_lock_irq(&mac->lock); 1325 mac->associated = associated; 1326 spin_unlock_irq(&mac->lock); 1327 1328 /* TODO: do hardware bssid filtering */ 1329 1330 if (changes & BSS_CHANGED_ERP_PREAMBLE) { 1331 spin_lock_irq(&mac->lock); 1332 mac->short_preamble = bss_conf->use_short_preamble; 1333 spin_unlock_irq(&mac->lock); 1334 1335 set_rts_cts(mac, bss_conf->use_short_preamble); 1336 } 1337 } 1338 1339 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1340 { 1341 struct zd_mac *mac = zd_hw_mac(hw); 1342 return zd_chip_get_tsf(&mac->chip); 1343 } 1344 1345 static const struct ieee80211_ops zd_ops = { 1346 .tx = zd_op_tx, 1347 .start = zd_op_start, 1348 .stop = zd_op_stop, 1349 .add_interface = zd_op_add_interface, 1350 .remove_interface = zd_op_remove_interface, 1351 .config = zd_op_config, 1352 .prepare_multicast = zd_op_prepare_multicast, 1353 .configure_filter = zd_op_configure_filter, 1354 .bss_info_changed = zd_op_bss_info_changed, 1355 .get_tsf = zd_op_get_tsf, 1356 }; 1357 1358 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) 1359 { 1360 struct zd_mac *mac; 1361 struct ieee80211_hw *hw; 1362 1363 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); 1364 if (!hw) { 1365 dev_dbg_f(&intf->dev, "out of memory\n"); 1366 return NULL; 1367 } 1368 1369 mac = zd_hw_mac(hw); 1370 1371 memset(mac, 0, sizeof(*mac)); 1372 spin_lock_init(&mac->lock); 1373 mac->hw = hw; 1374 1375 mac->type = NL80211_IFTYPE_UNSPECIFIED; 1376 1377 memcpy(mac->channels, zd_channels, sizeof(zd_channels)); 1378 memcpy(mac->rates, zd_rates, sizeof(zd_rates)); 1379 mac->band.n_bitrates = ARRAY_SIZE(zd_rates); 1380 mac->band.bitrates = mac->rates; 1381 mac->band.n_channels = ARRAY_SIZE(zd_channels); 1382 mac->band.channels = mac->channels; 1383 1384 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band; 1385 1386 ieee80211_hw_set(hw, MFP_CAPABLE); 1387 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 1388 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1389 ieee80211_hw_set(hw, SIGNAL_UNSPEC); 1390 1391 hw->wiphy->interface_modes = 1392 BIT(NL80211_IFTYPE_MESH_POINT) | 1393 BIT(NL80211_IFTYPE_STATION) | 1394 BIT(NL80211_IFTYPE_ADHOC) | 1395 BIT(NL80211_IFTYPE_AP); 1396 1397 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1398 1399 hw->max_signal = 100; 1400 hw->queues = 1; 1401 hw->extra_tx_headroom = sizeof(struct zd_ctrlset); 1402 1403 /* 1404 * Tell mac80211 that we support multi rate retries 1405 */ 1406 hw->max_rates = IEEE80211_TX_MAX_RATES; 1407 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ 1408 1409 skb_queue_head_init(&mac->ack_wait_queue); 1410 mac->ack_pending = 0; 1411 1412 zd_chip_init(&mac->chip, hw, intf); 1413 housekeeping_init(mac); 1414 beacon_init(mac); 1415 INIT_WORK(&mac->process_intr, zd_process_intr); 1416 1417 SET_IEEE80211_DEV(hw, &intf->dev); 1418 return hw; 1419 } 1420 1421 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ) 1422 1423 static void beacon_watchdog_handler(struct work_struct *work) 1424 { 1425 struct zd_mac *mac = 1426 container_of(work, struct zd_mac, beacon.watchdog_work.work); 1427 struct sk_buff *beacon; 1428 unsigned long timeout; 1429 int interval, period; 1430 1431 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1432 goto rearm; 1433 if (mac->type != NL80211_IFTYPE_AP || !mac->vif) 1434 goto rearm; 1435 1436 spin_lock_irq(&mac->lock); 1437 interval = mac->beacon.interval; 1438 period = mac->beacon.period; 1439 timeout = mac->beacon.last_update + 1440 msecs_to_jiffies(interval * 1024 / 1000) * 3; 1441 spin_unlock_irq(&mac->lock); 1442 1443 if (interval > 0 && time_is_before_jiffies(timeout)) { 1444 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, " 1445 "restarting. " 1446 "(interval: %d, dtim: %d)\n", 1447 interval, period); 1448 1449 zd_chip_disable_hwint(&mac->chip); 1450 1451 beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); 1452 if (beacon) { 1453 zd_mac_free_cur_beacon(mac); 1454 1455 zd_mac_config_beacon(mac->hw, beacon, false); 1456 } 1457 1458 zd_set_beacon_interval(&mac->chip, interval, period, mac->type); 1459 1460 zd_chip_enable_hwint(&mac->chip); 1461 1462 spin_lock_irq(&mac->lock); 1463 mac->beacon.last_update = jiffies; 1464 spin_unlock_irq(&mac->lock); 1465 } 1466 1467 rearm: 1468 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1469 BEACON_WATCHDOG_DELAY); 1470 } 1471 1472 static void beacon_init(struct zd_mac *mac) 1473 { 1474 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler); 1475 } 1476 1477 static void beacon_enable(struct zd_mac *mac) 1478 { 1479 dev_dbg_f(zd_mac_dev(mac), "\n"); 1480 1481 mac->beacon.last_update = jiffies; 1482 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work, 1483 BEACON_WATCHDOG_DELAY); 1484 } 1485 1486 static void beacon_disable(struct zd_mac *mac) 1487 { 1488 dev_dbg_f(zd_mac_dev(mac), "\n"); 1489 cancel_delayed_work_sync(&mac->beacon.watchdog_work); 1490 1491 zd_mac_free_cur_beacon(mac); 1492 } 1493 1494 #define LINK_LED_WORK_DELAY HZ 1495 1496 static void link_led_handler(struct work_struct *work) 1497 { 1498 struct zd_mac *mac = 1499 container_of(work, struct zd_mac, housekeeping.link_led_work.work); 1500 struct zd_chip *chip = &mac->chip; 1501 int is_associated; 1502 int r; 1503 1504 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags)) 1505 goto requeue; 1506 1507 spin_lock_irq(&mac->lock); 1508 is_associated = mac->associated; 1509 spin_unlock_irq(&mac->lock); 1510 1511 r = zd_chip_control_leds(chip, 1512 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING); 1513 if (r) 1514 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); 1515 1516 requeue: 1517 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1518 LINK_LED_WORK_DELAY); 1519 } 1520 1521 static void housekeeping_init(struct zd_mac *mac) 1522 { 1523 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); 1524 } 1525 1526 static void housekeeping_enable(struct zd_mac *mac) 1527 { 1528 dev_dbg_f(zd_mac_dev(mac), "\n"); 1529 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 1530 0); 1531 } 1532 1533 static void housekeeping_disable(struct zd_mac *mac) 1534 { 1535 dev_dbg_f(zd_mac_dev(mac), "\n"); 1536 cancel_delayed_work_sync(&mac->housekeeping.link_led_work); 1537 zd_chip_control_leds(&mac->chip, ZD_LED_OFF); 1538 } 1539