1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 /* This file implements all the hardware specific functions for the ZD1211
21  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
22  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
33 
34 void zd_chip_init(struct zd_chip *chip,
35 	         struct ieee80211_hw *hw,
36 		 struct usb_interface *intf)
37 {
38 	memset(chip, 0, sizeof(*chip));
39 	mutex_init(&chip->mutex);
40 	zd_usb_init(&chip->usb, hw, intf);
41 	zd_rf_init(&chip->rf);
42 }
43 
44 void zd_chip_clear(struct zd_chip *chip)
45 {
46 	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
47 	zd_usb_clear(&chip->usb);
48 	zd_rf_clear(&chip->rf);
49 	mutex_destroy(&chip->mutex);
50 	ZD_MEMCLEAR(chip, sizeof(*chip));
51 }
52 
53 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
54 {
55 	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
56 	return scnprintf(buffer, size, "%02x-%02x-%02x",
57 		         addr[0], addr[1], addr[2]);
58 }
59 
60 /* Prints an identifier line, which will support debugging. */
61 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
62 {
63 	int i = 0;
64 
65 	i = scnprintf(buffer, size, "zd1211%s chip ",
66 		      zd_chip_is_zd1211b(chip) ? "b" : "");
67 	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
68 	i += scnprintf(buffer+i, size-i, " ");
69 	i += scnprint_mac_oui(chip, buffer+i, size-i);
70 	i += scnprintf(buffer+i, size-i, " ");
71 	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
72 	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
73 		chip->patch_cck_gain ? 'g' : '-',
74 		chip->patch_cr157 ? '7' : '-',
75 		chip->patch_6m_band_edge ? '6' : '-',
76 		chip->new_phy_layout ? 'N' : '-',
77 		chip->al2230s_bit ? 'S' : '-');
78 	return i;
79 }
80 
81 static void print_id(struct zd_chip *chip)
82 {
83 	char buffer[80];
84 
85 	scnprint_id(chip, buffer, sizeof(buffer));
86 	buffer[sizeof(buffer)-1] = 0;
87 	dev_info(zd_chip_dev(chip), "%s\n", buffer);
88 }
89 
90 static zd_addr_t inc_addr(zd_addr_t addr)
91 {
92 	u16 a = (u16)addr;
93 	/* Control registers use byte addressing, but everything else uses word
94 	 * addressing. */
95 	if ((a & 0xf000) == CR_START)
96 		a += 2;
97 	else
98 		a += 1;
99 	return (zd_addr_t)a;
100 }
101 
102 /* Read a variable number of 32-bit values. Parameter count is not allowed to
103  * exceed USB_MAX_IOREAD32_COUNT.
104  */
105 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
106 		 unsigned int count)
107 {
108 	int r;
109 	int i;
110 	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
111 	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
112 	unsigned int count16;
113 
114 	if (count > USB_MAX_IOREAD32_COUNT)
115 		return -EINVAL;
116 
117 	/* Use stack for values and addresses. */
118 	count16 = 2 * count;
119 	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
120 	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
121 
122 	for (i = 0; i < count; i++) {
123 		int j = 2*i;
124 		/* We read the high word always first. */
125 		a16[j] = inc_addr(addr[i]);
126 		a16[j+1] = addr[i];
127 	}
128 
129 	r = zd_ioread16v_locked(chip, v16, a16, count16);
130 	if (r) {
131 		dev_dbg_f(zd_chip_dev(chip),
132 			  "error: %s. Error number %d\n", __func__, r);
133 		return r;
134 	}
135 
136 	for (i = 0; i < count; i++) {
137 		int j = 2*i;
138 		values[i] = (v16[j] << 16) | v16[j+1];
139 	}
140 
141 	return 0;
142 }
143 
144 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
145 				       const struct zd_ioreq32 *ioreqs,
146 				       unsigned int count)
147 {
148 	int i, j, r;
149 	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
150 	unsigned int count16;
151 
152 	/* Use stack for values and addresses. */
153 
154 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
155 
156 	if (count == 0)
157 		return 0;
158 	if (count > USB_MAX_IOWRITE32_COUNT)
159 		return -EINVAL;
160 
161 	count16 = 2 * count;
162 	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
163 
164 	for (i = 0; i < count; i++) {
165 		j = 2*i;
166 		/* We write the high word always first. */
167 		ioreqs16[j].value   = ioreqs[i].value >> 16;
168 		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
169 		ioreqs16[j+1].value = ioreqs[i].value;
170 		ioreqs16[j+1].addr  = ioreqs[i].addr;
171 	}
172 
173 	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
174 #ifdef DEBUG
175 	if (r) {
176 		dev_dbg_f(zd_chip_dev(chip),
177 			  "error %d in zd_usb_write16v\n", r);
178 	}
179 #endif /* DEBUG */
180 	return r;
181 }
182 
183 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
184 			  unsigned int count)
185 {
186 	int r;
187 
188 	zd_usb_iowrite16v_async_start(&chip->usb);
189 	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
190 	if (r) {
191 		zd_usb_iowrite16v_async_end(&chip->usb, 0);
192 		return r;
193 	}
194 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
195 }
196 
197 int zd_iowrite16a_locked(struct zd_chip *chip,
198                   const struct zd_ioreq16 *ioreqs, unsigned int count)
199 {
200 	int r;
201 	unsigned int i, j, t, max;
202 
203 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
204 	zd_usb_iowrite16v_async_start(&chip->usb);
205 
206 	for (i = 0; i < count; i += j + t) {
207 		t = 0;
208 		max = count-i;
209 		if (max > USB_MAX_IOWRITE16_COUNT)
210 			max = USB_MAX_IOWRITE16_COUNT;
211 		for (j = 0; j < max; j++) {
212 			if (!ioreqs[i+j].addr) {
213 				t = 1;
214 				break;
215 			}
216 		}
217 
218 		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
219 		if (r) {
220 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
221 			dev_dbg_f(zd_chip_dev(chip),
222 				  "error zd_usb_iowrite16v. Error number %d\n",
223 				  r);
224 			return r;
225 		}
226 	}
227 
228 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
229 }
230 
231 /* Writes a variable number of 32 bit registers. The functions will split
232  * that in several USB requests. A split can be forced by inserting an IO
233  * request with an zero address field.
234  */
235 int zd_iowrite32a_locked(struct zd_chip *chip,
236 	          const struct zd_ioreq32 *ioreqs, unsigned int count)
237 {
238 	int r;
239 	unsigned int i, j, t, max;
240 
241 	zd_usb_iowrite16v_async_start(&chip->usb);
242 
243 	for (i = 0; i < count; i += j + t) {
244 		t = 0;
245 		max = count-i;
246 		if (max > USB_MAX_IOWRITE32_COUNT)
247 			max = USB_MAX_IOWRITE32_COUNT;
248 		for (j = 0; j < max; j++) {
249 			if (!ioreqs[i+j].addr) {
250 				t = 1;
251 				break;
252 			}
253 		}
254 
255 		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
256 		if (r) {
257 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
258 			dev_dbg_f(zd_chip_dev(chip),
259 				"error _%s. Error number %d\n", __func__,
260 				r);
261 			return r;
262 		}
263 	}
264 
265 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
266 }
267 
268 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
269 {
270 	int r;
271 
272 	mutex_lock(&chip->mutex);
273 	r = zd_ioread16_locked(chip, value, addr);
274 	mutex_unlock(&chip->mutex);
275 	return r;
276 }
277 
278 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
279 {
280 	int r;
281 
282 	mutex_lock(&chip->mutex);
283 	r = zd_ioread32_locked(chip, value, addr);
284 	mutex_unlock(&chip->mutex);
285 	return r;
286 }
287 
288 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
289 {
290 	int r;
291 
292 	mutex_lock(&chip->mutex);
293 	r = zd_iowrite16_locked(chip, value, addr);
294 	mutex_unlock(&chip->mutex);
295 	return r;
296 }
297 
298 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
299 {
300 	int r;
301 
302 	mutex_lock(&chip->mutex);
303 	r = zd_iowrite32_locked(chip, value, addr);
304 	mutex_unlock(&chip->mutex);
305 	return r;
306 }
307 
308 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
309 	          u32 *values, unsigned int count)
310 {
311 	int r;
312 
313 	mutex_lock(&chip->mutex);
314 	r = zd_ioread32v_locked(chip, values, addresses, count);
315 	mutex_unlock(&chip->mutex);
316 	return r;
317 }
318 
319 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
320 	          unsigned int count)
321 {
322 	int r;
323 
324 	mutex_lock(&chip->mutex);
325 	r = zd_iowrite32a_locked(chip, ioreqs, count);
326 	mutex_unlock(&chip->mutex);
327 	return r;
328 }
329 
330 static int read_pod(struct zd_chip *chip, u8 *rf_type)
331 {
332 	int r;
333 	u32 value;
334 
335 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
336 	r = zd_ioread32_locked(chip, &value, E2P_POD);
337 	if (r)
338 		goto error;
339 	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
340 
341 	/* FIXME: AL2230 handling (Bit 7 in POD) */
342 	*rf_type = value & 0x0f;
343 	chip->pa_type = (value >> 16) & 0x0f;
344 	chip->patch_cck_gain = (value >> 8) & 0x1;
345 	chip->patch_cr157 = (value >> 13) & 0x1;
346 	chip->patch_6m_band_edge = (value >> 21) & 0x1;
347 	chip->new_phy_layout = (value >> 31) & 0x1;
348 	chip->al2230s_bit = (value >> 7) & 0x1;
349 	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
350 	chip->supports_tx_led = 1;
351 	if (value & (1 << 24)) { /* LED scenario */
352 		if (value & (1 << 29))
353 			chip->supports_tx_led = 0;
354 	}
355 
356 	dev_dbg_f(zd_chip_dev(chip),
357 		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
358 		"patch 6M %d new PHY %d link LED%d tx led %d\n",
359 		zd_rf_name(*rf_type), *rf_type,
360 		chip->pa_type, chip->patch_cck_gain,
361 		chip->patch_cr157, chip->patch_6m_band_edge,
362 		chip->new_phy_layout,
363 		chip->link_led == LED1 ? 1 : 2,
364 		chip->supports_tx_led);
365 	return 0;
366 error:
367 	*rf_type = 0;
368 	chip->pa_type = 0;
369 	chip->patch_cck_gain = 0;
370 	chip->patch_cr157 = 0;
371 	chip->patch_6m_band_edge = 0;
372 	chip->new_phy_layout = 0;
373 	return r;
374 }
375 
376 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
377 				    const struct zd_ioreq32 *in_reqs,
378 				    const char *type)
379 {
380 	int r;
381 	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
382 
383 	if (mac_addr) {
384 		reqs[0].value = (mac_addr[3] << 24)
385 			      | (mac_addr[2] << 16)
386 			      | (mac_addr[1] <<  8)
387 			      |  mac_addr[0];
388 		reqs[1].value = (mac_addr[5] <<  8)
389 			      |  mac_addr[4];
390 		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
391 	} else {
392 		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
393 	}
394 
395 	mutex_lock(&chip->mutex);
396 	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
397 	mutex_unlock(&chip->mutex);
398 	return r;
399 }
400 
401 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
402  *              CR_MAC_ADDR_P2 must be overwritten
403  */
404 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
405 {
406 	static const struct zd_ioreq32 reqs[2] = {
407 		[0] = { .addr = CR_MAC_ADDR_P1 },
408 		[1] = { .addr = CR_MAC_ADDR_P2 },
409 	};
410 
411 	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
412 }
413 
414 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
415 {
416 	static const struct zd_ioreq32 reqs[2] = {
417 		[0] = { .addr = CR_BSSID_P1 },
418 		[1] = { .addr = CR_BSSID_P2 },
419 	};
420 
421 	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
422 }
423 
424 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
425 {
426 	int r;
427 	u32 value;
428 
429 	mutex_lock(&chip->mutex);
430 	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
431 	mutex_unlock(&chip->mutex);
432 	if (r)
433 		return r;
434 
435 	*regdomain = value >> 16;
436 	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
437 
438 	return 0;
439 }
440 
441 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
442 	               zd_addr_t e2p_addr, u32 guard)
443 {
444 	int r;
445 	int i;
446 	u32 v;
447 
448 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
449 	for (i = 0;;) {
450 		r = zd_ioread32_locked(chip, &v,
451 			               (zd_addr_t)((u16)e2p_addr+i/2));
452 		if (r)
453 			return r;
454 		v -= guard;
455 		if (i+4 < count) {
456 			values[i++] = v;
457 			values[i++] = v >>  8;
458 			values[i++] = v >> 16;
459 			values[i++] = v >> 24;
460 			continue;
461 		}
462 		for (;i < count; i++)
463 			values[i] = v >> (8*(i%3));
464 		return 0;
465 	}
466 }
467 
468 static int read_pwr_cal_values(struct zd_chip *chip)
469 {
470 	return read_values(chip, chip->pwr_cal_values,
471 		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
472 			0);
473 }
474 
475 static int read_pwr_int_values(struct zd_chip *chip)
476 {
477 	return read_values(chip, chip->pwr_int_values,
478 		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
479 			E2P_PWR_INT_GUARD);
480 }
481 
482 static int read_ofdm_cal_values(struct zd_chip *chip)
483 {
484 	int r;
485 	int i;
486 	static const zd_addr_t addresses[] = {
487 		E2P_36M_CAL_VALUE1,
488 		E2P_48M_CAL_VALUE1,
489 		E2P_54M_CAL_VALUE1,
490 	};
491 
492 	for (i = 0; i < 3; i++) {
493 		r = read_values(chip, chip->ofdm_cal_values[i],
494 				E2P_CHANNEL_COUNT, addresses[i], 0);
495 		if (r)
496 			return r;
497 	}
498 	return 0;
499 }
500 
501 static int read_cal_int_tables(struct zd_chip *chip)
502 {
503 	int r;
504 
505 	r = read_pwr_cal_values(chip);
506 	if (r)
507 		return r;
508 	r = read_pwr_int_values(chip);
509 	if (r)
510 		return r;
511 	r = read_ofdm_cal_values(chip);
512 	if (r)
513 		return r;
514 	return 0;
515 }
516 
517 /* phy means physical registers */
518 int zd_chip_lock_phy_regs(struct zd_chip *chip)
519 {
520 	int r;
521 	u32 tmp;
522 
523 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
524 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
525 	if (r) {
526 		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
527 		return r;
528 	}
529 
530 	tmp &= ~UNLOCK_PHY_REGS;
531 
532 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
533 	if (r)
534 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
535 	return r;
536 }
537 
538 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
539 {
540 	int r;
541 	u32 tmp;
542 
543 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
544 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
545 	if (r) {
546 		dev_err(zd_chip_dev(chip),
547 			"error ioread32(CR_REG1): %d\n", r);
548 		return r;
549 	}
550 
551 	tmp |= UNLOCK_PHY_REGS;
552 
553 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
554 	if (r)
555 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
556 	return r;
557 }
558 
559 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
560 static int patch_cr157(struct zd_chip *chip)
561 {
562 	int r;
563 	u16 value;
564 
565 	if (!chip->patch_cr157)
566 		return 0;
567 
568 	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
569 	if (r)
570 		return r;
571 
572 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
573 	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
574 }
575 
576 /*
577  * 6M band edge can be optionally overwritten for certain RF's
578  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
579  * bit (for AL2230, AL2230S)
580  */
581 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
582 {
583 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
584 	if (!chip->patch_6m_band_edge)
585 		return 0;
586 
587 	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
588 }
589 
590 /* Generic implementation of 6M band edge patching, used by most RFs via
591  * zd_rf_generic_patch_6m() */
592 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
593 {
594 	struct zd_ioreq16 ioreqs[] = {
595 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
596 		{ ZD_CR47,  0x1e },
597 	};
598 
599 	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
600 	if (channel == 1 || channel == 11)
601 		ioreqs[0].value = 0x12;
602 
603 	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
604 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
605 }
606 
607 static int zd1211_hw_reset_phy(struct zd_chip *chip)
608 {
609 	static const struct zd_ioreq16 ioreqs[] = {
610 		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
611 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
612 		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
613 		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
614 		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
615 		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
616 		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
617 		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
618 		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
619 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
620 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
621 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
622 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
623 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
624 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
625 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
626 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
627 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
628 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
629 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
630 		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
631 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
632 		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
633 		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
634 		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
635 		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
636 		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
637 		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
638 		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
639 		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
640 		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
641 		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
642 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
643 		{ },
644 		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
645 		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
646 		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
647 		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
648 		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
649 		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
650 		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
651 		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
652 		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
653 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
654 		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
655 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
656 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
657 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
658 		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
659 		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
660 		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
661 		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
662 		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
663 		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
664 		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
665 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
666 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
667 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
668 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
669 		/* Note: ZD_CR204 must lead the ZD_CR203 */
670 		{ ZD_CR204, 0x7d },
671 		{ },
672 		{ ZD_CR203, 0x30 },
673 	};
674 
675 	int r, t;
676 
677 	dev_dbg_f(zd_chip_dev(chip), "\n");
678 
679 	r = zd_chip_lock_phy_regs(chip);
680 	if (r)
681 		goto out;
682 
683 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
684 	if (r)
685 		goto unlock;
686 
687 	r = patch_cr157(chip);
688 unlock:
689 	t = zd_chip_unlock_phy_regs(chip);
690 	if (t && !r)
691 		r = t;
692 out:
693 	return r;
694 }
695 
696 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
697 {
698 	static const struct zd_ioreq16 ioreqs[] = {
699 		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
700 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
701 		{ ZD_CR10,  0x81 },
702 		/* power control { { ZD_CR11,  1 << 6 }, */
703 		{ ZD_CR11,  0x00 },
704 		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
705 		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
706 		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
707 		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
708 		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
709 		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
710 		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
711 		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
712 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
713 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
714 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
715 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
716 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
717 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
718 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
719 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
720 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
721 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
722 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
723 		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
724 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
725 		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
726 		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
727 		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
728 		{ ZD_CR94,  0x01 },
729 		{ ZD_CR95,  0x20 }, /* ZD1211B */
730 		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
731 		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
732 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
733 		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
734 		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
735 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
736 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
737 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
738 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
739 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
740 		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
741 		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
742 		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
743 		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
744 		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
745 		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
746 		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
747 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
748 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
749 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
750 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
751 		/* Note: ZD_CR204 must lead the ZD_CR203 */
752 		{ ZD_CR204, 0x7d },
753 		{},
754 		{ ZD_CR203, 0x30 },
755 	};
756 
757 	int r, t;
758 
759 	dev_dbg_f(zd_chip_dev(chip), "\n");
760 
761 	r = zd_chip_lock_phy_regs(chip);
762 	if (r)
763 		goto out;
764 
765 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
766 	t = zd_chip_unlock_phy_regs(chip);
767 	if (t && !r)
768 		r = t;
769 out:
770 	return r;
771 }
772 
773 static int hw_reset_phy(struct zd_chip *chip)
774 {
775 	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
776 		                  zd1211_hw_reset_phy(chip);
777 }
778 
779 static int zd1211_hw_init_hmac(struct zd_chip *chip)
780 {
781 	static const struct zd_ioreq32 ioreqs[] = {
782 		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
783 		{ CR_RX_THRESHOLD,		0x000c0640 },
784 	};
785 
786 	dev_dbg_f(zd_chip_dev(chip), "\n");
787 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
788 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
789 }
790 
791 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
792 {
793 	static const struct zd_ioreq32 ioreqs[] = {
794 		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
795 		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
796 		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
797 		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
798 		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
799 		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
800 		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
801 		{ CR_ZD1211B_TXOP,		0x01800824 },
802 		{ CR_RX_THRESHOLD,		0x000c0eff, },
803 	};
804 
805 	dev_dbg_f(zd_chip_dev(chip), "\n");
806 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
807 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
808 }
809 
810 static int hw_init_hmac(struct zd_chip *chip)
811 {
812 	int r;
813 	static const struct zd_ioreq32 ioreqs[] = {
814 		{ CR_ACK_TIMEOUT_EXT,		0x20 },
815 		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
816 		{ CR_SNIFFER_ON,		0 },
817 		{ CR_RX_FILTER,			STA_RX_FILTER },
818 		{ CR_GROUP_HASH_P1,		0x00 },
819 		{ CR_GROUP_HASH_P2,		0x80000000 },
820 		{ CR_REG1,			0xa4 },
821 		{ CR_ADDA_PWR_DWN,		0x7f },
822 		{ CR_BCN_PLCP_CFG,		0x00f00401 },
823 		{ CR_PHY_DELAY,			0x00 },
824 		{ CR_ACK_TIMEOUT_EXT,		0x80 },
825 		{ CR_ADDA_PWR_DWN,		0x00 },
826 		{ CR_ACK_TIME_80211,		0x100 },
827 		{ CR_RX_PE_DELAY,		0x70 },
828 		{ CR_PS_CTRL,			0x10000000 },
829 		{ CR_RTS_CTS_RATE,		0x02030203 },
830 		{ CR_AFTER_PNP,			0x1 },
831 		{ CR_WEP_PROTECT,		0x114 },
832 		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
833 		{ CR_CAM_MODE,			MODE_AP_WDS},
834 	};
835 
836 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
837 	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
838 	if (r)
839 		return r;
840 
841 	return zd_chip_is_zd1211b(chip) ?
842 		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
843 }
844 
845 struct aw_pt_bi {
846 	u32 atim_wnd_period;
847 	u32 pre_tbtt;
848 	u32 beacon_interval;
849 };
850 
851 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
852 {
853 	int r;
854 	static const zd_addr_t aw_pt_bi_addr[] =
855 		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
856 	u32 values[3];
857 
858 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
859 		         ARRAY_SIZE(aw_pt_bi_addr));
860 	if (r) {
861 		memset(s, 0, sizeof(*s));
862 		return r;
863 	}
864 
865 	s->atim_wnd_period = values[0];
866 	s->pre_tbtt = values[1];
867 	s->beacon_interval = values[2];
868 	return 0;
869 }
870 
871 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
872 {
873 	struct zd_ioreq32 reqs[3];
874 	u16 b_interval = s->beacon_interval & 0xffff;
875 
876 	if (b_interval <= 5)
877 		b_interval = 5;
878 	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
879 		s->pre_tbtt = b_interval - 1;
880 	if (s->atim_wnd_period >= s->pre_tbtt)
881 		s->atim_wnd_period = s->pre_tbtt - 1;
882 
883 	reqs[0].addr = CR_ATIM_WND_PERIOD;
884 	reqs[0].value = s->atim_wnd_period;
885 	reqs[1].addr = CR_PRE_TBTT;
886 	reqs[1].value = s->pre_tbtt;
887 	reqs[2].addr = CR_BCN_INTERVAL;
888 	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
889 
890 	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
891 }
892 
893 
894 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
895 			       u8 dtim_period, int type)
896 {
897 	int r;
898 	struct aw_pt_bi s;
899 	u32 b_interval, mode_flag;
900 
901 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
902 
903 	if (interval > 0) {
904 		switch (type) {
905 		case NL80211_IFTYPE_ADHOC:
906 		case NL80211_IFTYPE_MESH_POINT:
907 			mode_flag = BCN_MODE_IBSS;
908 			break;
909 		case NL80211_IFTYPE_AP:
910 			mode_flag = BCN_MODE_AP;
911 			break;
912 		default:
913 			mode_flag = 0;
914 			break;
915 		}
916 	} else {
917 		dtim_period = 0;
918 		mode_flag = 0;
919 	}
920 
921 	b_interval = mode_flag | (dtim_period << 16) | interval;
922 
923 	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
924 	if (r)
925 		return r;
926 	r = get_aw_pt_bi(chip, &s);
927 	if (r)
928 		return r;
929 	return set_aw_pt_bi(chip, &s);
930 }
931 
932 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
933 			   int type)
934 {
935 	int r;
936 
937 	mutex_lock(&chip->mutex);
938 	r = set_beacon_interval(chip, interval, dtim_period, type);
939 	mutex_unlock(&chip->mutex);
940 	return r;
941 }
942 
943 static int hw_init(struct zd_chip *chip)
944 {
945 	int r;
946 
947 	dev_dbg_f(zd_chip_dev(chip), "\n");
948 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
949 	r = hw_reset_phy(chip);
950 	if (r)
951 		return r;
952 
953 	r = hw_init_hmac(chip);
954 	if (r)
955 		return r;
956 
957 	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
958 }
959 
960 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
961 {
962 	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
963 }
964 
965 #ifdef DEBUG
966 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
967 	           const char *addr_string)
968 {
969 	int r;
970 	u32 value;
971 
972 	r = zd_ioread32_locked(chip, &value, addr);
973 	if (r) {
974 		dev_dbg_f(zd_chip_dev(chip),
975 			"error reading %s. Error number %d\n", addr_string, r);
976 		return r;
977 	}
978 
979 	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
980 		addr_string, (unsigned int)value);
981 	return 0;
982 }
983 
984 static int test_init(struct zd_chip *chip)
985 {
986 	int r;
987 
988 	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
989 	if (r)
990 		return r;
991 	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
992 	if (r)
993 		return r;
994 	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
995 }
996 
997 static void dump_fw_registers(struct zd_chip *chip)
998 {
999 	const zd_addr_t addr[4] = {
1000 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1001 		fw_reg_addr(chip, FW_REG_USB_SPEED),
1002 		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1003 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1004 	};
1005 
1006 	int r;
1007 	u16 values[4];
1008 
1009 	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1010 		         ARRAY_SIZE(addr));
1011 	if (r) {
1012 		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1013 			 r);
1014 		return;
1015 	}
1016 
1017 	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1018 	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1019 	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1020 	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1021 }
1022 #endif /* DEBUG */
1023 
1024 static int print_fw_version(struct zd_chip *chip)
1025 {
1026 	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1027 	int r;
1028 	u16 version;
1029 
1030 	r = zd_ioread16_locked(chip, &version,
1031 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1032 	if (r)
1033 		return r;
1034 
1035 	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1036 
1037 	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1038 			"%04hx", version);
1039 
1040 	return 0;
1041 }
1042 
1043 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1044 {
1045 	u32 rates;
1046 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1047 	/* This sets the mandatory rates, which only depend from the standard
1048 	 * that the device is supporting. Until further notice we should try
1049 	 * to support 802.11g also for full speed USB.
1050 	 */
1051 	if (!gmode)
1052 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1053 	else
1054 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1055 			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1056 
1057 	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1058 }
1059 
1060 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1061 				    int preamble)
1062 {
1063 	u32 value = 0;
1064 
1065 	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1066 	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1067 	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1068 
1069 	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1070 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1071 	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1072 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1073 	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1074 
1075 	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1076 }
1077 
1078 int zd_chip_enable_hwint(struct zd_chip *chip)
1079 {
1080 	int r;
1081 
1082 	mutex_lock(&chip->mutex);
1083 	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1084 	mutex_unlock(&chip->mutex);
1085 	return r;
1086 }
1087 
1088 static int disable_hwint(struct zd_chip *chip)
1089 {
1090 	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1091 }
1092 
1093 int zd_chip_disable_hwint(struct zd_chip *chip)
1094 {
1095 	int r;
1096 
1097 	mutex_lock(&chip->mutex);
1098 	r = disable_hwint(chip);
1099 	mutex_unlock(&chip->mutex);
1100 	return r;
1101 }
1102 
1103 static int read_fw_regs_offset(struct zd_chip *chip)
1104 {
1105 	int r;
1106 
1107 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1108 	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1109 		               FWRAW_REGS_ADDR);
1110 	if (r)
1111 		return r;
1112 	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1113 		  (u16)chip->fw_regs_base);
1114 
1115 	return 0;
1116 }
1117 
1118 /* Read mac address using pre-firmware interface */
1119 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1120 {
1121 	dev_dbg_f(zd_chip_dev(chip), "\n");
1122 	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1123 		ETH_ALEN);
1124 }
1125 
1126 int zd_chip_init_hw(struct zd_chip *chip)
1127 {
1128 	int r;
1129 	u8 rf_type;
1130 
1131 	dev_dbg_f(zd_chip_dev(chip), "\n");
1132 
1133 	mutex_lock(&chip->mutex);
1134 
1135 #ifdef DEBUG
1136 	r = test_init(chip);
1137 	if (r)
1138 		goto out;
1139 #endif
1140 	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1141 	if (r)
1142 		goto out;
1143 
1144 	r = read_fw_regs_offset(chip);
1145 	if (r)
1146 		goto out;
1147 
1148 	/* GPI is always disabled, also in the other driver.
1149 	 */
1150 	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1151 	if (r)
1152 		goto out;
1153 	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1154 	if (r)
1155 		goto out;
1156 	/* Currently we support IEEE 802.11g for full and high speed USB.
1157 	 * It might be discussed, whether we should support pure b mode for
1158 	 * full speed USB.
1159 	 */
1160 	r = set_mandatory_rates(chip, 1);
1161 	if (r)
1162 		goto out;
1163 	/* Disabling interrupts is certainly a smart thing here.
1164 	 */
1165 	r = disable_hwint(chip);
1166 	if (r)
1167 		goto out;
1168 	r = read_pod(chip, &rf_type);
1169 	if (r)
1170 		goto out;
1171 	r = hw_init(chip);
1172 	if (r)
1173 		goto out;
1174 	r = zd_rf_init_hw(&chip->rf, rf_type);
1175 	if (r)
1176 		goto out;
1177 
1178 	r = print_fw_version(chip);
1179 	if (r)
1180 		goto out;
1181 
1182 #ifdef DEBUG
1183 	dump_fw_registers(chip);
1184 	r = test_init(chip);
1185 	if (r)
1186 		goto out;
1187 #endif /* DEBUG */
1188 
1189 	r = read_cal_int_tables(chip);
1190 	if (r)
1191 		goto out;
1192 
1193 	print_id(chip);
1194 out:
1195 	mutex_unlock(&chip->mutex);
1196 	return r;
1197 }
1198 
1199 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1200 {
1201 	u8 value = chip->pwr_int_values[channel - 1];
1202 	return zd_iowrite16_locked(chip, value, ZD_CR31);
1203 }
1204 
1205 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1206 {
1207 	u8 value = chip->pwr_cal_values[channel-1];
1208 	return zd_iowrite16_locked(chip, value, ZD_CR68);
1209 }
1210 
1211 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1212 {
1213 	struct zd_ioreq16 ioreqs[3];
1214 
1215 	ioreqs[0].addr = ZD_CR67;
1216 	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1217 	ioreqs[1].addr = ZD_CR66;
1218 	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1219 	ioreqs[2].addr = ZD_CR65;
1220 	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1221 
1222 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1223 }
1224 
1225 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1226 	                                              u8 channel)
1227 {
1228 	int r;
1229 
1230 	if (!zd_rf_should_update_pwr_int(&chip->rf))
1231 		return 0;
1232 
1233 	r = update_pwr_int(chip, channel);
1234 	if (r)
1235 		return r;
1236 	if (zd_chip_is_zd1211b(chip)) {
1237 		static const struct zd_ioreq16 ioreqs[] = {
1238 			{ ZD_CR69, 0x28 },
1239 			{},
1240 			{ ZD_CR69, 0x2a },
1241 		};
1242 
1243 		r = update_ofdm_cal(chip, channel);
1244 		if (r)
1245 			return r;
1246 		r = update_pwr_cal(chip, channel);
1247 		if (r)
1248 			return r;
1249 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1250 		if (r)
1251 			return r;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 /* The CCK baseband gain can be optionally patched by the EEPROM */
1258 static int patch_cck_gain(struct zd_chip *chip)
1259 {
1260 	int r;
1261 	u32 value;
1262 
1263 	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1264 		return 0;
1265 
1266 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1267 	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1268 	if (r)
1269 		return r;
1270 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1271 	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1272 }
1273 
1274 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1275 {
1276 	int r, t;
1277 
1278 	mutex_lock(&chip->mutex);
1279 	r = zd_chip_lock_phy_regs(chip);
1280 	if (r)
1281 		goto out;
1282 	r = zd_rf_set_channel(&chip->rf, channel);
1283 	if (r)
1284 		goto unlock;
1285 	r = update_channel_integration_and_calibration(chip, channel);
1286 	if (r)
1287 		goto unlock;
1288 	r = patch_cck_gain(chip);
1289 	if (r)
1290 		goto unlock;
1291 	r = patch_6m_band_edge(chip, channel);
1292 	if (r)
1293 		goto unlock;
1294 	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1295 unlock:
1296 	t = zd_chip_unlock_phy_regs(chip);
1297 	if (t && !r)
1298 		r = t;
1299 out:
1300 	mutex_unlock(&chip->mutex);
1301 	return r;
1302 }
1303 
1304 u8 zd_chip_get_channel(struct zd_chip *chip)
1305 {
1306 	u8 channel;
1307 
1308 	mutex_lock(&chip->mutex);
1309 	channel = chip->rf.channel;
1310 	mutex_unlock(&chip->mutex);
1311 	return channel;
1312 }
1313 
1314 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1315 {
1316 	const zd_addr_t a[] = {
1317 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1318 		CR_LED,
1319 	};
1320 
1321 	int r;
1322 	u16 v[ARRAY_SIZE(a)];
1323 	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1324 		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1325 		[1] = { CR_LED },
1326 	};
1327 	u16 other_led;
1328 
1329 	mutex_lock(&chip->mutex);
1330 	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1331 	if (r)
1332 		goto out;
1333 
1334 	other_led = chip->link_led == LED1 ? LED2 : LED1;
1335 
1336 	switch (status) {
1337 	case ZD_LED_OFF:
1338 		ioreqs[0].value = FW_LINK_OFF;
1339 		ioreqs[1].value = v[1] & ~(LED1|LED2);
1340 		break;
1341 	case ZD_LED_SCANNING:
1342 		ioreqs[0].value = FW_LINK_OFF;
1343 		ioreqs[1].value = v[1] & ~other_led;
1344 		if (get_seconds() % 3 == 0) {
1345 			ioreqs[1].value &= ~chip->link_led;
1346 		} else {
1347 			ioreqs[1].value |= chip->link_led;
1348 		}
1349 		break;
1350 	case ZD_LED_ASSOCIATED:
1351 		ioreqs[0].value = FW_LINK_TX;
1352 		ioreqs[1].value = v[1] & ~other_led;
1353 		ioreqs[1].value |= chip->link_led;
1354 		break;
1355 	default:
1356 		r = -EINVAL;
1357 		goto out;
1358 	}
1359 
1360 	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1361 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1362 		if (r)
1363 			goto out;
1364 	}
1365 	r = 0;
1366 out:
1367 	mutex_unlock(&chip->mutex);
1368 	return r;
1369 }
1370 
1371 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1372 {
1373 	int r;
1374 
1375 	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1376 		return -EINVAL;
1377 
1378 	mutex_lock(&chip->mutex);
1379 	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1380 	mutex_unlock(&chip->mutex);
1381 	return r;
1382 }
1383 
1384 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1385 {
1386 	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1387 }
1388 
1389 /**
1390  * zd_rx_rate - report zd-rate
1391  * @rx_frame - received frame
1392  * @rx_status - rx_status as given by the device
1393  *
1394  * This function converts the rate as encoded in the received packet to the
1395  * zd-rate, we are using on other places in the driver.
1396  */
1397 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1398 {
1399 	u8 zd_rate;
1400 	if (status->frame_status & ZD_RX_OFDM) {
1401 		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1402 	} else {
1403 		switch (zd_cck_plcp_header_signal(rx_frame)) {
1404 		case ZD_CCK_PLCP_SIGNAL_1M:
1405 			zd_rate = ZD_CCK_RATE_1M;
1406 			break;
1407 		case ZD_CCK_PLCP_SIGNAL_2M:
1408 			zd_rate = ZD_CCK_RATE_2M;
1409 			break;
1410 		case ZD_CCK_PLCP_SIGNAL_5M5:
1411 			zd_rate = ZD_CCK_RATE_5_5M;
1412 			break;
1413 		case ZD_CCK_PLCP_SIGNAL_11M:
1414 			zd_rate = ZD_CCK_RATE_11M;
1415 			break;
1416 		default:
1417 			zd_rate = 0;
1418 		}
1419 	}
1420 
1421 	return zd_rate;
1422 }
1423 
1424 int zd_chip_switch_radio_on(struct zd_chip *chip)
1425 {
1426 	int r;
1427 
1428 	mutex_lock(&chip->mutex);
1429 	r = zd_switch_radio_on(&chip->rf);
1430 	mutex_unlock(&chip->mutex);
1431 	return r;
1432 }
1433 
1434 int zd_chip_switch_radio_off(struct zd_chip *chip)
1435 {
1436 	int r;
1437 
1438 	mutex_lock(&chip->mutex);
1439 	r = zd_switch_radio_off(&chip->rf);
1440 	mutex_unlock(&chip->mutex);
1441 	return r;
1442 }
1443 
1444 int zd_chip_enable_int(struct zd_chip *chip)
1445 {
1446 	int r;
1447 
1448 	mutex_lock(&chip->mutex);
1449 	r = zd_usb_enable_int(&chip->usb);
1450 	mutex_unlock(&chip->mutex);
1451 	return r;
1452 }
1453 
1454 void zd_chip_disable_int(struct zd_chip *chip)
1455 {
1456 	mutex_lock(&chip->mutex);
1457 	zd_usb_disable_int(&chip->usb);
1458 	mutex_unlock(&chip->mutex);
1459 
1460 	/* cancel pending interrupt work */
1461 	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1462 }
1463 
1464 int zd_chip_enable_rxtx(struct zd_chip *chip)
1465 {
1466 	int r;
1467 
1468 	mutex_lock(&chip->mutex);
1469 	zd_usb_enable_tx(&chip->usb);
1470 	r = zd_usb_enable_rx(&chip->usb);
1471 	zd_tx_watchdog_enable(&chip->usb);
1472 	mutex_unlock(&chip->mutex);
1473 	return r;
1474 }
1475 
1476 void zd_chip_disable_rxtx(struct zd_chip *chip)
1477 {
1478 	mutex_lock(&chip->mutex);
1479 	zd_tx_watchdog_disable(&chip->usb);
1480 	zd_usb_disable_rx(&chip->usb);
1481 	zd_usb_disable_tx(&chip->usb);
1482 	mutex_unlock(&chip->mutex);
1483 }
1484 
1485 int zd_rfwritev_locked(struct zd_chip *chip,
1486 	               const u32* values, unsigned int count, u8 bits)
1487 {
1488 	int r;
1489 	unsigned int i;
1490 
1491 	for (i = 0; i < count; i++) {
1492 		r = zd_rfwrite_locked(chip, values[i], bits);
1493 		if (r)
1494 			return r;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * We can optionally program the RF directly through CR regs, if supported by
1502  * the hardware. This is much faster than the older method.
1503  */
1504 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1505 {
1506 	const struct zd_ioreq16 ioreqs[] = {
1507 		{ ZD_CR244, (value >> 16) & 0xff },
1508 		{ ZD_CR243, (value >>  8) & 0xff },
1509 		{ ZD_CR242,  value        & 0xff },
1510 	};
1511 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1512 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1513 }
1514 
1515 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1516 	                  const u32 *values, unsigned int count)
1517 {
1518 	int r;
1519 	unsigned int i;
1520 
1521 	for (i = 0; i < count; i++) {
1522 		r = zd_rfwrite_cr_locked(chip, values[i]);
1523 		if (r)
1524 			return r;
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1531 	                       struct zd_mc_hash *hash)
1532 {
1533 	const struct zd_ioreq32 ioreqs[] = {
1534 		{ CR_GROUP_HASH_P1, hash->low },
1535 		{ CR_GROUP_HASH_P2, hash->high },
1536 	};
1537 
1538 	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1539 }
1540 
1541 u64 zd_chip_get_tsf(struct zd_chip *chip)
1542 {
1543 	int r;
1544 	static const zd_addr_t aw_pt_bi_addr[] =
1545 		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1546 	u32 values[2];
1547 	u64 tsf;
1548 
1549 	mutex_lock(&chip->mutex);
1550 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1551 	                        ARRAY_SIZE(aw_pt_bi_addr));
1552 	mutex_unlock(&chip->mutex);
1553 	if (r)
1554 		return 0;
1555 
1556 	tsf = values[1];
1557 	tsf = (tsf << 32) | values[0];
1558 
1559 	return tsf;
1560 }
1561