1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* ZD1211 USB-WLAN driver for Linux 3 * 4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 6 */ 7 8 /* This file implements all the hardware specific functions for the ZD1211 9 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy 10 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/errno.h> 15 #include <linux/slab.h> 16 17 #include "zd_def.h" 18 #include "zd_chip.h" 19 #include "zd_mac.h" 20 #include "zd_rf.h" 21 22 void zd_chip_init(struct zd_chip *chip, 23 struct ieee80211_hw *hw, 24 struct usb_interface *intf) 25 { 26 memset(chip, 0, sizeof(*chip)); 27 mutex_init(&chip->mutex); 28 zd_usb_init(&chip->usb, hw, intf); 29 zd_rf_init(&chip->rf); 30 } 31 32 void zd_chip_clear(struct zd_chip *chip) 33 { 34 ZD_ASSERT(!mutex_is_locked(&chip->mutex)); 35 zd_usb_clear(&chip->usb); 36 zd_rf_clear(&chip->rf); 37 mutex_destroy(&chip->mutex); 38 ZD_MEMCLEAR(chip, sizeof(*chip)); 39 } 40 41 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size) 42 { 43 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip)); 44 return scnprintf(buffer, size, "%3phD", addr); 45 } 46 47 /* Prints an identifier line, which will support debugging. */ 48 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size) 49 { 50 int i = 0; 51 52 i = scnprintf(buffer, size, "zd1211%s chip ", 53 zd_chip_is_zd1211b(chip) ? "b" : ""); 54 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i); 55 i += scnprintf(buffer+i, size-i, " "); 56 i += scnprint_mac_oui(chip, buffer+i, size-i); 57 i += scnprintf(buffer+i, size-i, " "); 58 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i); 59 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type, 60 chip->patch_cck_gain ? 'g' : '-', 61 chip->patch_cr157 ? '7' : '-', 62 chip->patch_6m_band_edge ? '6' : '-', 63 chip->new_phy_layout ? 'N' : '-', 64 chip->al2230s_bit ? 'S' : '-'); 65 return i; 66 } 67 68 static void print_id(struct zd_chip *chip) 69 { 70 char buffer[80]; 71 72 scnprint_id(chip, buffer, sizeof(buffer)); 73 buffer[sizeof(buffer)-1] = 0; 74 dev_info(zd_chip_dev(chip), "%s\n", buffer); 75 } 76 77 static zd_addr_t inc_addr(zd_addr_t addr) 78 { 79 u16 a = (u16)addr; 80 /* Control registers use byte addressing, but everything else uses word 81 * addressing. */ 82 if ((a & 0xf000) == CR_START) 83 a += 2; 84 else 85 a += 1; 86 return (zd_addr_t)a; 87 } 88 89 /* Read a variable number of 32-bit values. Parameter count is not allowed to 90 * exceed USB_MAX_IOREAD32_COUNT. 91 */ 92 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr, 93 unsigned int count) 94 { 95 int r; 96 int i; 97 zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2]; 98 u16 v16[USB_MAX_IOREAD32_COUNT * 2]; 99 unsigned int count16; 100 101 if (count > USB_MAX_IOREAD32_COUNT) 102 return -EINVAL; 103 104 /* Use stack for values and addresses. */ 105 count16 = 2 * count; 106 BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16)); 107 BUG_ON(count16 * sizeof(u16) > sizeof(v16)); 108 109 for (i = 0; i < count; i++) { 110 int j = 2*i; 111 /* We read the high word always first. */ 112 a16[j] = inc_addr(addr[i]); 113 a16[j+1] = addr[i]; 114 } 115 116 r = zd_ioread16v_locked(chip, v16, a16, count16); 117 if (r) { 118 dev_dbg_f(zd_chip_dev(chip), 119 "error: %s. Error number %d\n", __func__, r); 120 return r; 121 } 122 123 for (i = 0; i < count; i++) { 124 int j = 2*i; 125 values[i] = (v16[j] << 16) | v16[j+1]; 126 } 127 128 return 0; 129 } 130 131 static int _zd_iowrite32v_async_locked(struct zd_chip *chip, 132 const struct zd_ioreq32 *ioreqs, 133 unsigned int count) 134 { 135 int i, j, r; 136 struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2]; 137 unsigned int count16; 138 139 /* Use stack for values and addresses. */ 140 141 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 142 143 if (count == 0) 144 return 0; 145 if (count > USB_MAX_IOWRITE32_COUNT) 146 return -EINVAL; 147 148 count16 = 2 * count; 149 BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16)); 150 151 for (i = 0; i < count; i++) { 152 j = 2*i; 153 /* We write the high word always first. */ 154 ioreqs16[j].value = ioreqs[i].value >> 16; 155 ioreqs16[j].addr = inc_addr(ioreqs[i].addr); 156 ioreqs16[j+1].value = ioreqs[i].value; 157 ioreqs16[j+1].addr = ioreqs[i].addr; 158 } 159 160 r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16); 161 #ifdef DEBUG 162 if (r) { 163 dev_dbg_f(zd_chip_dev(chip), 164 "error %d in zd_usb_write16v\n", r); 165 } 166 #endif /* DEBUG */ 167 return r; 168 } 169 170 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, 171 unsigned int count) 172 { 173 int r; 174 175 zd_usb_iowrite16v_async_start(&chip->usb); 176 r = _zd_iowrite32v_async_locked(chip, ioreqs, count); 177 if (r) { 178 zd_usb_iowrite16v_async_end(&chip->usb, 0); 179 return r; 180 } 181 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */); 182 } 183 184 int zd_iowrite16a_locked(struct zd_chip *chip, 185 const struct zd_ioreq16 *ioreqs, unsigned int count) 186 { 187 int r; 188 unsigned int i, j, t, max; 189 190 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 191 zd_usb_iowrite16v_async_start(&chip->usb); 192 193 for (i = 0; i < count; i += j + t) { 194 t = 0; 195 max = count-i; 196 if (max > USB_MAX_IOWRITE16_COUNT) 197 max = USB_MAX_IOWRITE16_COUNT; 198 for (j = 0; j < max; j++) { 199 if (!ioreqs[i+j].addr) { 200 t = 1; 201 break; 202 } 203 } 204 205 r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j); 206 if (r) { 207 zd_usb_iowrite16v_async_end(&chip->usb, 0); 208 dev_dbg_f(zd_chip_dev(chip), 209 "error zd_usb_iowrite16v. Error number %d\n", 210 r); 211 return r; 212 } 213 } 214 215 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */); 216 } 217 218 /* Writes a variable number of 32 bit registers. The functions will split 219 * that in several USB requests. A split can be forced by inserting an IO 220 * request with an zero address field. 221 */ 222 int zd_iowrite32a_locked(struct zd_chip *chip, 223 const struct zd_ioreq32 *ioreqs, unsigned int count) 224 { 225 int r; 226 unsigned int i, j, t, max; 227 228 zd_usb_iowrite16v_async_start(&chip->usb); 229 230 for (i = 0; i < count; i += j + t) { 231 t = 0; 232 max = count-i; 233 if (max > USB_MAX_IOWRITE32_COUNT) 234 max = USB_MAX_IOWRITE32_COUNT; 235 for (j = 0; j < max; j++) { 236 if (!ioreqs[i+j].addr) { 237 t = 1; 238 break; 239 } 240 } 241 242 r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j); 243 if (r) { 244 zd_usb_iowrite16v_async_end(&chip->usb, 0); 245 dev_dbg_f(zd_chip_dev(chip), 246 "error _%s. Error number %d\n", __func__, 247 r); 248 return r; 249 } 250 } 251 252 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */); 253 } 254 255 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value) 256 { 257 int r; 258 259 mutex_lock(&chip->mutex); 260 r = zd_ioread16_locked(chip, value, addr); 261 mutex_unlock(&chip->mutex); 262 return r; 263 } 264 265 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value) 266 { 267 int r; 268 269 mutex_lock(&chip->mutex); 270 r = zd_ioread32_locked(chip, value, addr); 271 mutex_unlock(&chip->mutex); 272 return r; 273 } 274 275 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value) 276 { 277 int r; 278 279 mutex_lock(&chip->mutex); 280 r = zd_iowrite16_locked(chip, value, addr); 281 mutex_unlock(&chip->mutex); 282 return r; 283 } 284 285 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value) 286 { 287 int r; 288 289 mutex_lock(&chip->mutex); 290 r = zd_iowrite32_locked(chip, value, addr); 291 mutex_unlock(&chip->mutex); 292 return r; 293 } 294 295 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses, 296 u32 *values, unsigned int count) 297 { 298 int r; 299 300 mutex_lock(&chip->mutex); 301 r = zd_ioread32v_locked(chip, values, addresses, count); 302 mutex_unlock(&chip->mutex); 303 return r; 304 } 305 306 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, 307 unsigned int count) 308 { 309 int r; 310 311 mutex_lock(&chip->mutex); 312 r = zd_iowrite32a_locked(chip, ioreqs, count); 313 mutex_unlock(&chip->mutex); 314 return r; 315 } 316 317 static int read_pod(struct zd_chip *chip, u8 *rf_type) 318 { 319 int r; 320 u32 value; 321 322 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 323 r = zd_ioread32_locked(chip, &value, E2P_POD); 324 if (r) 325 goto error; 326 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value); 327 328 /* FIXME: AL2230 handling (Bit 7 in POD) */ 329 *rf_type = value & 0x0f; 330 chip->pa_type = (value >> 16) & 0x0f; 331 chip->patch_cck_gain = (value >> 8) & 0x1; 332 chip->patch_cr157 = (value >> 13) & 0x1; 333 chip->patch_6m_band_edge = (value >> 21) & 0x1; 334 chip->new_phy_layout = (value >> 31) & 0x1; 335 chip->al2230s_bit = (value >> 7) & 0x1; 336 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2; 337 chip->supports_tx_led = 1; 338 if (value & (1 << 24)) { /* LED scenario */ 339 if (value & (1 << 29)) 340 chip->supports_tx_led = 0; 341 } 342 343 dev_dbg_f(zd_chip_dev(chip), 344 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d " 345 "patch 6M %d new PHY %d link LED%d tx led %d\n", 346 zd_rf_name(*rf_type), *rf_type, 347 chip->pa_type, chip->patch_cck_gain, 348 chip->patch_cr157, chip->patch_6m_band_edge, 349 chip->new_phy_layout, 350 chip->link_led == LED1 ? 1 : 2, 351 chip->supports_tx_led); 352 return 0; 353 error: 354 *rf_type = 0; 355 chip->pa_type = 0; 356 chip->patch_cck_gain = 0; 357 chip->patch_cr157 = 0; 358 chip->patch_6m_band_edge = 0; 359 chip->new_phy_layout = 0; 360 return r; 361 } 362 363 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr, 364 const struct zd_ioreq32 *in_reqs, 365 const char *type) 366 { 367 int r; 368 struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]}; 369 370 if (mac_addr) { 371 reqs[0].value = (mac_addr[3] << 24) 372 | (mac_addr[2] << 16) 373 | (mac_addr[1] << 8) 374 | mac_addr[0]; 375 reqs[1].value = (mac_addr[5] << 8) 376 | mac_addr[4]; 377 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr); 378 } else { 379 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type); 380 } 381 382 mutex_lock(&chip->mutex); 383 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); 384 mutex_unlock(&chip->mutex); 385 return r; 386 } 387 388 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and 389 * CR_MAC_ADDR_P2 must be overwritten 390 */ 391 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr) 392 { 393 static const struct zd_ioreq32 reqs[2] = { 394 [0] = { .addr = CR_MAC_ADDR_P1 }, 395 [1] = { .addr = CR_MAC_ADDR_P2 }, 396 }; 397 398 return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac"); 399 } 400 401 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid) 402 { 403 static const struct zd_ioreq32 reqs[2] = { 404 [0] = { .addr = CR_BSSID_P1 }, 405 [1] = { .addr = CR_BSSID_P2 }, 406 }; 407 408 return zd_write_mac_addr_common(chip, bssid, reqs, "bssid"); 409 } 410 411 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain) 412 { 413 int r; 414 u32 value; 415 416 mutex_lock(&chip->mutex); 417 r = zd_ioread32_locked(chip, &value, E2P_SUBID); 418 mutex_unlock(&chip->mutex); 419 if (r) 420 return r; 421 422 *regdomain = value >> 16; 423 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain); 424 425 return 0; 426 } 427 428 static int read_values(struct zd_chip *chip, u8 *values, size_t count, 429 zd_addr_t e2p_addr, u32 guard) 430 { 431 int r; 432 int i; 433 u32 v; 434 435 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 436 for (i = 0;;) { 437 r = zd_ioread32_locked(chip, &v, 438 (zd_addr_t)((u16)e2p_addr+i/2)); 439 if (r) 440 return r; 441 v -= guard; 442 if (i+4 < count) { 443 values[i++] = v; 444 values[i++] = v >> 8; 445 values[i++] = v >> 16; 446 values[i++] = v >> 24; 447 continue; 448 } 449 for (;i < count; i++) 450 values[i] = v >> (8*(i%3)); 451 return 0; 452 } 453 } 454 455 static int read_pwr_cal_values(struct zd_chip *chip) 456 { 457 return read_values(chip, chip->pwr_cal_values, 458 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1, 459 0); 460 } 461 462 static int read_pwr_int_values(struct zd_chip *chip) 463 { 464 return read_values(chip, chip->pwr_int_values, 465 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1, 466 E2P_PWR_INT_GUARD); 467 } 468 469 static int read_ofdm_cal_values(struct zd_chip *chip) 470 { 471 int r; 472 int i; 473 static const zd_addr_t addresses[] = { 474 E2P_36M_CAL_VALUE1, 475 E2P_48M_CAL_VALUE1, 476 E2P_54M_CAL_VALUE1, 477 }; 478 479 for (i = 0; i < 3; i++) { 480 r = read_values(chip, chip->ofdm_cal_values[i], 481 E2P_CHANNEL_COUNT, addresses[i], 0); 482 if (r) 483 return r; 484 } 485 return 0; 486 } 487 488 static int read_cal_int_tables(struct zd_chip *chip) 489 { 490 int r; 491 492 r = read_pwr_cal_values(chip); 493 if (r) 494 return r; 495 r = read_pwr_int_values(chip); 496 if (r) 497 return r; 498 r = read_ofdm_cal_values(chip); 499 if (r) 500 return r; 501 return 0; 502 } 503 504 /* phy means physical registers */ 505 int zd_chip_lock_phy_regs(struct zd_chip *chip) 506 { 507 int r; 508 u32 tmp; 509 510 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 511 r = zd_ioread32_locked(chip, &tmp, CR_REG1); 512 if (r) { 513 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r); 514 return r; 515 } 516 517 tmp &= ~UNLOCK_PHY_REGS; 518 519 r = zd_iowrite32_locked(chip, tmp, CR_REG1); 520 if (r) 521 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); 522 return r; 523 } 524 525 int zd_chip_unlock_phy_regs(struct zd_chip *chip) 526 { 527 int r; 528 u32 tmp; 529 530 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 531 r = zd_ioread32_locked(chip, &tmp, CR_REG1); 532 if (r) { 533 dev_err(zd_chip_dev(chip), 534 "error ioread32(CR_REG1): %d\n", r); 535 return r; 536 } 537 538 tmp |= UNLOCK_PHY_REGS; 539 540 r = zd_iowrite32_locked(chip, tmp, CR_REG1); 541 if (r) 542 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); 543 return r; 544 } 545 546 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */ 547 static int patch_cr157(struct zd_chip *chip) 548 { 549 int r; 550 u16 value; 551 552 if (!chip->patch_cr157) 553 return 0; 554 555 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG); 556 if (r) 557 return r; 558 559 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8); 560 return zd_iowrite32_locked(chip, value >> 8, ZD_CR157); 561 } 562 563 /* 564 * 6M band edge can be optionally overwritten for certain RF's 565 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge 566 * bit (for AL2230, AL2230S) 567 */ 568 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel) 569 { 570 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 571 if (!chip->patch_6m_band_edge) 572 return 0; 573 574 return zd_rf_patch_6m_band_edge(&chip->rf, channel); 575 } 576 577 /* Generic implementation of 6M band edge patching, used by most RFs via 578 * zd_rf_generic_patch_6m() */ 579 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel) 580 { 581 struct zd_ioreq16 ioreqs[] = { 582 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, 583 { ZD_CR47, 0x1e }, 584 }; 585 586 /* FIXME: Channel 11 is not the edge for all regulatory domains. */ 587 if (channel == 1 || channel == 11) 588 ioreqs[0].value = 0x12; 589 590 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel); 591 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 592 } 593 594 static int zd1211_hw_reset_phy(struct zd_chip *chip) 595 { 596 static const struct zd_ioreq16 ioreqs[] = { 597 { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 }, 598 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 }, 599 { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f }, 600 { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d }, 601 { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a }, 602 { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c }, 603 { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 }, 604 { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 }, 605 { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b }, 606 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 }, 607 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 }, 608 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c }, 609 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 }, 610 { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff }, 611 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b }, 612 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 }, 613 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 }, 614 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff }, 615 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 }, 616 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 }, 617 { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 }, 618 { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 }, 619 { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 }, 620 { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 }, 621 { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 }, 622 { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff }, 623 { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 }, 624 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 }, 625 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 }, 626 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a }, 627 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 }, 628 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e }, 629 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 }, 630 { }, 631 { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 }, 632 { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 }, 633 { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 }, 634 { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 }, 635 { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C }, 636 { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 }, 637 { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 }, 638 { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 }, 639 { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 }, 640 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 }, 641 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 }, 642 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 }, 643 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 }, 644 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f }, 645 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 }, 646 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C }, 647 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 }, 648 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 }, 649 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c }, 650 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 }, 651 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe }, 652 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa }, 653 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe }, 654 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba }, 655 { ZD_CR170, 0xba }, { ZD_CR171, 0xba }, 656 /* Note: ZD_CR204 must lead the ZD_CR203 */ 657 { ZD_CR204, 0x7d }, 658 { }, 659 { ZD_CR203, 0x30 }, 660 }; 661 662 int r, t; 663 664 dev_dbg_f(zd_chip_dev(chip), "\n"); 665 666 r = zd_chip_lock_phy_regs(chip); 667 if (r) 668 goto out; 669 670 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 671 if (r) 672 goto unlock; 673 674 r = patch_cr157(chip); 675 unlock: 676 t = zd_chip_unlock_phy_regs(chip); 677 if (t && !r) 678 r = t; 679 out: 680 return r; 681 } 682 683 static int zd1211b_hw_reset_phy(struct zd_chip *chip) 684 { 685 static const struct zd_ioreq16 ioreqs[] = { 686 { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 }, 687 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 }, 688 { ZD_CR10, 0x81 }, 689 /* power control { { ZD_CR11, 1 << 6 }, */ 690 { ZD_CR11, 0x00 }, 691 { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, 692 { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, 693 { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 }, 694 { ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */ 695 { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, 696 { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, 697 { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, 698 { ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */ 699 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 }, 700 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 }, 701 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c }, 702 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 }, 703 { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff }, 704 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b }, 705 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 }, 706 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 }, 707 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff }, 708 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 }, 709 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 }, 710 { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 }, 711 { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 }, 712 { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 }, 713 { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 }, 714 { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 }, 715 { ZD_CR94, 0x01 }, 716 { ZD_CR95, 0x20 }, /* ZD1211B */ 717 { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, 718 { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 }, 719 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 }, 720 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, 721 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 }, 722 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 }, 723 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 }, 724 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e }, 725 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 }, 726 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, 727 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 }, 728 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 }, 729 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c }, 730 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 }, 731 { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */ 732 { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */ 733 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe }, 734 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa }, 735 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe }, 736 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba }, 737 { ZD_CR170, 0xba }, { ZD_CR171, 0xba }, 738 /* Note: ZD_CR204 must lead the ZD_CR203 */ 739 { ZD_CR204, 0x7d }, 740 {}, 741 { ZD_CR203, 0x30 }, 742 }; 743 744 int r, t; 745 746 dev_dbg_f(zd_chip_dev(chip), "\n"); 747 748 r = zd_chip_lock_phy_regs(chip); 749 if (r) 750 goto out; 751 752 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 753 t = zd_chip_unlock_phy_regs(chip); 754 if (t && !r) 755 r = t; 756 out: 757 return r; 758 } 759 760 static int hw_reset_phy(struct zd_chip *chip) 761 { 762 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) : 763 zd1211_hw_reset_phy(chip); 764 } 765 766 static int zd1211_hw_init_hmac(struct zd_chip *chip) 767 { 768 static const struct zd_ioreq32 ioreqs[] = { 769 { CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT }, 770 { CR_RX_THRESHOLD, 0x000c0640 }, 771 }; 772 773 dev_dbg_f(zd_chip_dev(chip), "\n"); 774 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 775 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 776 } 777 778 static int zd1211b_hw_init_hmac(struct zd_chip *chip) 779 { 780 static const struct zd_ioreq32 ioreqs[] = { 781 { CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT }, 782 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f }, 783 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f }, 784 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f }, 785 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f }, 786 { CR_ZD1211B_AIFS_CTL1, 0x00280028 }, 787 { CR_ZD1211B_AIFS_CTL2, 0x008C003C }, 788 { CR_ZD1211B_TXOP, 0x01800824 }, 789 { CR_RX_THRESHOLD, 0x000c0eff, }, 790 }; 791 792 dev_dbg_f(zd_chip_dev(chip), "\n"); 793 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 794 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 795 } 796 797 static int hw_init_hmac(struct zd_chip *chip) 798 { 799 int r; 800 static const struct zd_ioreq32 ioreqs[] = { 801 { CR_ACK_TIMEOUT_EXT, 0x20 }, 802 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 }, 803 { CR_SNIFFER_ON, 0 }, 804 { CR_RX_FILTER, STA_RX_FILTER }, 805 { CR_GROUP_HASH_P1, 0x00 }, 806 { CR_GROUP_HASH_P2, 0x80000000 }, 807 { CR_REG1, 0xa4 }, 808 { CR_ADDA_PWR_DWN, 0x7f }, 809 { CR_BCN_PLCP_CFG, 0x00f00401 }, 810 { CR_PHY_DELAY, 0x00 }, 811 { CR_ACK_TIMEOUT_EXT, 0x80 }, 812 { CR_ADDA_PWR_DWN, 0x00 }, 813 { CR_ACK_TIME_80211, 0x100 }, 814 { CR_RX_PE_DELAY, 0x70 }, 815 { CR_PS_CTRL, 0x10000000 }, 816 { CR_RTS_CTS_RATE, 0x02030203 }, 817 { CR_AFTER_PNP, 0x1 }, 818 { CR_WEP_PROTECT, 0x114 }, 819 { CR_IFS_VALUE, IFS_VALUE_DEFAULT }, 820 { CR_CAM_MODE, MODE_AP_WDS}, 821 }; 822 823 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 824 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 825 if (r) 826 return r; 827 828 return zd_chip_is_zd1211b(chip) ? 829 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip); 830 } 831 832 struct aw_pt_bi { 833 u32 atim_wnd_period; 834 u32 pre_tbtt; 835 u32 beacon_interval; 836 }; 837 838 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) 839 { 840 int r; 841 static const zd_addr_t aw_pt_bi_addr[] = 842 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL }; 843 u32 values[3]; 844 845 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr, 846 ARRAY_SIZE(aw_pt_bi_addr)); 847 if (r) { 848 memset(s, 0, sizeof(*s)); 849 return r; 850 } 851 852 s->atim_wnd_period = values[0]; 853 s->pre_tbtt = values[1]; 854 s->beacon_interval = values[2]; 855 return 0; 856 } 857 858 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) 859 { 860 struct zd_ioreq32 reqs[3]; 861 u16 b_interval = s->beacon_interval & 0xffff; 862 863 if (b_interval <= 5) 864 b_interval = 5; 865 if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval) 866 s->pre_tbtt = b_interval - 1; 867 if (s->atim_wnd_period >= s->pre_tbtt) 868 s->atim_wnd_period = s->pre_tbtt - 1; 869 870 reqs[0].addr = CR_ATIM_WND_PERIOD; 871 reqs[0].value = s->atim_wnd_period; 872 reqs[1].addr = CR_PRE_TBTT; 873 reqs[1].value = s->pre_tbtt; 874 reqs[2].addr = CR_BCN_INTERVAL; 875 reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval; 876 877 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); 878 } 879 880 881 static int set_beacon_interval(struct zd_chip *chip, u16 interval, 882 u8 dtim_period, int type) 883 { 884 int r; 885 struct aw_pt_bi s; 886 u32 b_interval, mode_flag; 887 888 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 889 890 if (interval > 0) { 891 switch (type) { 892 case NL80211_IFTYPE_ADHOC: 893 case NL80211_IFTYPE_MESH_POINT: 894 mode_flag = BCN_MODE_IBSS; 895 break; 896 case NL80211_IFTYPE_AP: 897 mode_flag = BCN_MODE_AP; 898 break; 899 default: 900 mode_flag = 0; 901 break; 902 } 903 } else { 904 dtim_period = 0; 905 mode_flag = 0; 906 } 907 908 b_interval = mode_flag | (dtim_period << 16) | interval; 909 910 r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL); 911 if (r) 912 return r; 913 r = get_aw_pt_bi(chip, &s); 914 if (r) 915 return r; 916 return set_aw_pt_bi(chip, &s); 917 } 918 919 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period, 920 int type) 921 { 922 int r; 923 924 mutex_lock(&chip->mutex); 925 r = set_beacon_interval(chip, interval, dtim_period, type); 926 mutex_unlock(&chip->mutex); 927 return r; 928 } 929 930 static int hw_init(struct zd_chip *chip) 931 { 932 int r; 933 934 dev_dbg_f(zd_chip_dev(chip), "\n"); 935 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 936 r = hw_reset_phy(chip); 937 if (r) 938 return r; 939 940 r = hw_init_hmac(chip); 941 if (r) 942 return r; 943 944 return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED); 945 } 946 947 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset) 948 { 949 return (zd_addr_t)((u16)chip->fw_regs_base + offset); 950 } 951 952 #ifdef DEBUG 953 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr, 954 const char *addr_string) 955 { 956 int r; 957 u32 value; 958 959 r = zd_ioread32_locked(chip, &value, addr); 960 if (r) { 961 dev_dbg_f(zd_chip_dev(chip), 962 "error reading %s. Error number %d\n", addr_string, r); 963 return r; 964 } 965 966 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n", 967 addr_string, (unsigned int)value); 968 return 0; 969 } 970 971 static int test_init(struct zd_chip *chip) 972 { 973 int r; 974 975 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP"); 976 if (r) 977 return r; 978 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN"); 979 if (r) 980 return r; 981 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT"); 982 } 983 984 static void dump_fw_registers(struct zd_chip *chip) 985 { 986 const zd_addr_t addr[4] = { 987 fw_reg_addr(chip, FW_REG_FIRMWARE_VER), 988 fw_reg_addr(chip, FW_REG_USB_SPEED), 989 fw_reg_addr(chip, FW_REG_FIX_TX_RATE), 990 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS), 991 }; 992 993 int r; 994 u16 values[4]; 995 996 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr, 997 ARRAY_SIZE(addr)); 998 if (r) { 999 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n", 1000 r); 1001 return; 1002 } 1003 1004 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]); 1005 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]); 1006 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]); 1007 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]); 1008 } 1009 #endif /* DEBUG */ 1010 1011 static int print_fw_version(struct zd_chip *chip) 1012 { 1013 struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy; 1014 int r; 1015 u16 version; 1016 1017 r = zd_ioread16_locked(chip, &version, 1018 fw_reg_addr(chip, FW_REG_FIRMWARE_VER)); 1019 if (r) 1020 return r; 1021 1022 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version); 1023 1024 snprintf(wiphy->fw_version, sizeof(wiphy->fw_version), 1025 "%04hx", version); 1026 1027 return 0; 1028 } 1029 1030 static int set_mandatory_rates(struct zd_chip *chip, int gmode) 1031 { 1032 u32 rates; 1033 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 1034 /* This sets the mandatory rates, which only depend from the standard 1035 * that the device is supporting. Until further notice we should try 1036 * to support 802.11g also for full speed USB. 1037 */ 1038 if (!gmode) 1039 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M; 1040 else 1041 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M| 1042 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M; 1043 1044 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL); 1045 } 1046 1047 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip, 1048 int preamble) 1049 { 1050 u32 value = 0; 1051 1052 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble); 1053 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE; 1054 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE; 1055 1056 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */ 1057 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE; 1058 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE; 1059 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE; 1060 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE; 1061 1062 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE); 1063 } 1064 1065 int zd_chip_enable_hwint(struct zd_chip *chip) 1066 { 1067 int r; 1068 1069 mutex_lock(&chip->mutex); 1070 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT); 1071 mutex_unlock(&chip->mutex); 1072 return r; 1073 } 1074 1075 static int disable_hwint(struct zd_chip *chip) 1076 { 1077 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT); 1078 } 1079 1080 int zd_chip_disable_hwint(struct zd_chip *chip) 1081 { 1082 int r; 1083 1084 mutex_lock(&chip->mutex); 1085 r = disable_hwint(chip); 1086 mutex_unlock(&chip->mutex); 1087 return r; 1088 } 1089 1090 static int read_fw_regs_offset(struct zd_chip *chip) 1091 { 1092 int r; 1093 1094 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 1095 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base, 1096 FWRAW_REGS_ADDR); 1097 if (r) 1098 return r; 1099 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n", 1100 (u16)chip->fw_regs_base); 1101 1102 return 0; 1103 } 1104 1105 /* Read mac address using pre-firmware interface */ 1106 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr) 1107 { 1108 dev_dbg_f(zd_chip_dev(chip), "\n"); 1109 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr, 1110 ETH_ALEN); 1111 } 1112 1113 int zd_chip_init_hw(struct zd_chip *chip) 1114 { 1115 int r; 1116 u8 rf_type; 1117 1118 dev_dbg_f(zd_chip_dev(chip), "\n"); 1119 1120 mutex_lock(&chip->mutex); 1121 1122 #ifdef DEBUG 1123 r = test_init(chip); 1124 if (r) 1125 goto out; 1126 #endif 1127 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP); 1128 if (r) 1129 goto out; 1130 1131 r = read_fw_regs_offset(chip); 1132 if (r) 1133 goto out; 1134 1135 /* GPI is always disabled, also in the other driver. 1136 */ 1137 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN); 1138 if (r) 1139 goto out; 1140 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX); 1141 if (r) 1142 goto out; 1143 /* Currently we support IEEE 802.11g for full and high speed USB. 1144 * It might be discussed, whether we should support pure b mode for 1145 * full speed USB. 1146 */ 1147 r = set_mandatory_rates(chip, 1); 1148 if (r) 1149 goto out; 1150 /* Disabling interrupts is certainly a smart thing here. 1151 */ 1152 r = disable_hwint(chip); 1153 if (r) 1154 goto out; 1155 r = read_pod(chip, &rf_type); 1156 if (r) 1157 goto out; 1158 r = hw_init(chip); 1159 if (r) 1160 goto out; 1161 r = zd_rf_init_hw(&chip->rf, rf_type); 1162 if (r) 1163 goto out; 1164 1165 r = print_fw_version(chip); 1166 if (r) 1167 goto out; 1168 1169 #ifdef DEBUG 1170 dump_fw_registers(chip); 1171 r = test_init(chip); 1172 if (r) 1173 goto out; 1174 #endif /* DEBUG */ 1175 1176 r = read_cal_int_tables(chip); 1177 if (r) 1178 goto out; 1179 1180 print_id(chip); 1181 out: 1182 mutex_unlock(&chip->mutex); 1183 return r; 1184 } 1185 1186 static int update_pwr_int(struct zd_chip *chip, u8 channel) 1187 { 1188 u8 value = chip->pwr_int_values[channel - 1]; 1189 return zd_iowrite16_locked(chip, value, ZD_CR31); 1190 } 1191 1192 static int update_pwr_cal(struct zd_chip *chip, u8 channel) 1193 { 1194 u8 value = chip->pwr_cal_values[channel-1]; 1195 return zd_iowrite16_locked(chip, value, ZD_CR68); 1196 } 1197 1198 static int update_ofdm_cal(struct zd_chip *chip, u8 channel) 1199 { 1200 struct zd_ioreq16 ioreqs[3]; 1201 1202 ioreqs[0].addr = ZD_CR67; 1203 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1]; 1204 ioreqs[1].addr = ZD_CR66; 1205 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1]; 1206 ioreqs[2].addr = ZD_CR65; 1207 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1]; 1208 1209 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 1210 } 1211 1212 static int update_channel_integration_and_calibration(struct zd_chip *chip, 1213 u8 channel) 1214 { 1215 int r; 1216 1217 if (!zd_rf_should_update_pwr_int(&chip->rf)) 1218 return 0; 1219 1220 r = update_pwr_int(chip, channel); 1221 if (r) 1222 return r; 1223 if (zd_chip_is_zd1211b(chip)) { 1224 static const struct zd_ioreq16 ioreqs[] = { 1225 { ZD_CR69, 0x28 }, 1226 {}, 1227 { ZD_CR69, 0x2a }, 1228 }; 1229 1230 r = update_ofdm_cal(chip, channel); 1231 if (r) 1232 return r; 1233 r = update_pwr_cal(chip, channel); 1234 if (r) 1235 return r; 1236 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 1237 if (r) 1238 return r; 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* The CCK baseband gain can be optionally patched by the EEPROM */ 1245 static int patch_cck_gain(struct zd_chip *chip) 1246 { 1247 int r; 1248 u32 value; 1249 1250 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf)) 1251 return 0; 1252 1253 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 1254 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG); 1255 if (r) 1256 return r; 1257 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff); 1258 return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47); 1259 } 1260 1261 int zd_chip_set_channel(struct zd_chip *chip, u8 channel) 1262 { 1263 int r, t; 1264 1265 mutex_lock(&chip->mutex); 1266 r = zd_chip_lock_phy_regs(chip); 1267 if (r) 1268 goto out; 1269 r = zd_rf_set_channel(&chip->rf, channel); 1270 if (r) 1271 goto unlock; 1272 r = update_channel_integration_and_calibration(chip, channel); 1273 if (r) 1274 goto unlock; 1275 r = patch_cck_gain(chip); 1276 if (r) 1277 goto unlock; 1278 r = patch_6m_band_edge(chip, channel); 1279 if (r) 1280 goto unlock; 1281 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS); 1282 unlock: 1283 t = zd_chip_unlock_phy_regs(chip); 1284 if (t && !r) 1285 r = t; 1286 out: 1287 mutex_unlock(&chip->mutex); 1288 return r; 1289 } 1290 1291 u8 zd_chip_get_channel(struct zd_chip *chip) 1292 { 1293 u8 channel; 1294 1295 mutex_lock(&chip->mutex); 1296 channel = chip->rf.channel; 1297 mutex_unlock(&chip->mutex); 1298 return channel; 1299 } 1300 1301 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status) 1302 { 1303 const zd_addr_t a[] = { 1304 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS), 1305 CR_LED, 1306 }; 1307 1308 int r; 1309 u16 v[ARRAY_SIZE(a)]; 1310 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = { 1311 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) }, 1312 [1] = { CR_LED }, 1313 }; 1314 u16 other_led; 1315 1316 mutex_lock(&chip->mutex); 1317 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a)); 1318 if (r) 1319 goto out; 1320 1321 other_led = chip->link_led == LED1 ? LED2 : LED1; 1322 1323 switch (status) { 1324 case ZD_LED_OFF: 1325 ioreqs[0].value = FW_LINK_OFF; 1326 ioreqs[1].value = v[1] & ~(LED1|LED2); 1327 break; 1328 case ZD_LED_SCANNING: 1329 ioreqs[0].value = FW_LINK_OFF; 1330 ioreqs[1].value = v[1] & ~other_led; 1331 if ((u32)ktime_get_seconds() % 3 == 0) { 1332 ioreqs[1].value &= ~chip->link_led; 1333 } else { 1334 ioreqs[1].value |= chip->link_led; 1335 } 1336 break; 1337 case ZD_LED_ASSOCIATED: 1338 ioreqs[0].value = FW_LINK_TX; 1339 ioreqs[1].value = v[1] & ~other_led; 1340 ioreqs[1].value |= chip->link_led; 1341 break; 1342 default: 1343 r = -EINVAL; 1344 goto out; 1345 } 1346 1347 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) { 1348 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 1349 if (r) 1350 goto out; 1351 } 1352 r = 0; 1353 out: 1354 mutex_unlock(&chip->mutex); 1355 return r; 1356 } 1357 1358 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates) 1359 { 1360 int r; 1361 1362 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G)) 1363 return -EINVAL; 1364 1365 mutex_lock(&chip->mutex); 1366 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL); 1367 mutex_unlock(&chip->mutex); 1368 return r; 1369 } 1370 1371 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame) 1372 { 1373 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame); 1374 } 1375 1376 /** 1377 * zd_rx_rate - report zd-rate 1378 * @rx_frame: received frame 1379 * @rx_status: rx_status as given by the device 1380 * 1381 * This function converts the rate as encoded in the received packet to the 1382 * zd-rate, we are using on other places in the driver. 1383 */ 1384 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status) 1385 { 1386 u8 zd_rate; 1387 if (status->frame_status & ZD_RX_OFDM) { 1388 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame); 1389 } else { 1390 switch (zd_cck_plcp_header_signal(rx_frame)) { 1391 case ZD_CCK_PLCP_SIGNAL_1M: 1392 zd_rate = ZD_CCK_RATE_1M; 1393 break; 1394 case ZD_CCK_PLCP_SIGNAL_2M: 1395 zd_rate = ZD_CCK_RATE_2M; 1396 break; 1397 case ZD_CCK_PLCP_SIGNAL_5M5: 1398 zd_rate = ZD_CCK_RATE_5_5M; 1399 break; 1400 case ZD_CCK_PLCP_SIGNAL_11M: 1401 zd_rate = ZD_CCK_RATE_11M; 1402 break; 1403 default: 1404 zd_rate = 0; 1405 } 1406 } 1407 1408 return zd_rate; 1409 } 1410 1411 int zd_chip_switch_radio_on(struct zd_chip *chip) 1412 { 1413 int r; 1414 1415 mutex_lock(&chip->mutex); 1416 r = zd_switch_radio_on(&chip->rf); 1417 mutex_unlock(&chip->mutex); 1418 return r; 1419 } 1420 1421 int zd_chip_switch_radio_off(struct zd_chip *chip) 1422 { 1423 int r; 1424 1425 mutex_lock(&chip->mutex); 1426 r = zd_switch_radio_off(&chip->rf); 1427 mutex_unlock(&chip->mutex); 1428 return r; 1429 } 1430 1431 int zd_chip_enable_int(struct zd_chip *chip) 1432 { 1433 int r; 1434 1435 mutex_lock(&chip->mutex); 1436 r = zd_usb_enable_int(&chip->usb); 1437 mutex_unlock(&chip->mutex); 1438 return r; 1439 } 1440 1441 void zd_chip_disable_int(struct zd_chip *chip) 1442 { 1443 mutex_lock(&chip->mutex); 1444 zd_usb_disable_int(&chip->usb); 1445 mutex_unlock(&chip->mutex); 1446 1447 /* cancel pending interrupt work */ 1448 cancel_work_sync(&zd_chip_to_mac(chip)->process_intr); 1449 } 1450 1451 int zd_chip_enable_rxtx(struct zd_chip *chip) 1452 { 1453 int r; 1454 1455 mutex_lock(&chip->mutex); 1456 zd_usb_enable_tx(&chip->usb); 1457 r = zd_usb_enable_rx(&chip->usb); 1458 zd_tx_watchdog_enable(&chip->usb); 1459 mutex_unlock(&chip->mutex); 1460 return r; 1461 } 1462 1463 void zd_chip_disable_rxtx(struct zd_chip *chip) 1464 { 1465 mutex_lock(&chip->mutex); 1466 zd_tx_watchdog_disable(&chip->usb); 1467 zd_usb_disable_rx(&chip->usb); 1468 zd_usb_disable_tx(&chip->usb); 1469 mutex_unlock(&chip->mutex); 1470 } 1471 1472 int zd_rfwritev_locked(struct zd_chip *chip, 1473 const u32* values, unsigned int count, u8 bits) 1474 { 1475 int r; 1476 unsigned int i; 1477 1478 for (i = 0; i < count; i++) { 1479 r = zd_rfwrite_locked(chip, values[i], bits); 1480 if (r) 1481 return r; 1482 } 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * We can optionally program the RF directly through CR regs, if supported by 1489 * the hardware. This is much faster than the older method. 1490 */ 1491 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value) 1492 { 1493 const struct zd_ioreq16 ioreqs[] = { 1494 { ZD_CR244, (value >> 16) & 0xff }, 1495 { ZD_CR243, (value >> 8) & 0xff }, 1496 { ZD_CR242, value & 0xff }, 1497 }; 1498 ZD_ASSERT(mutex_is_locked(&chip->mutex)); 1499 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 1500 } 1501 1502 int zd_rfwritev_cr_locked(struct zd_chip *chip, 1503 const u32 *values, unsigned int count) 1504 { 1505 int r; 1506 unsigned int i; 1507 1508 for (i = 0; i < count; i++) { 1509 r = zd_rfwrite_cr_locked(chip, values[i]); 1510 if (r) 1511 return r; 1512 } 1513 1514 return 0; 1515 } 1516 1517 int zd_chip_set_multicast_hash(struct zd_chip *chip, 1518 struct zd_mc_hash *hash) 1519 { 1520 const struct zd_ioreq32 ioreqs[] = { 1521 { CR_GROUP_HASH_P1, hash->low }, 1522 { CR_GROUP_HASH_P2, hash->high }, 1523 }; 1524 1525 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs)); 1526 } 1527 1528 u64 zd_chip_get_tsf(struct zd_chip *chip) 1529 { 1530 int r; 1531 static const zd_addr_t aw_pt_bi_addr[] = 1532 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART }; 1533 u32 values[2]; 1534 u64 tsf; 1535 1536 mutex_lock(&chip->mutex); 1537 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr, 1538 ARRAY_SIZE(aw_pt_bi_addr)); 1539 mutex_unlock(&chip->mutex); 1540 if (r) 1541 return 0; 1542 1543 tsf = values[1]; 1544 tsf = (tsf << 32) | values[0]; 1545 1546 return tsf; 1547 } 1548