1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20 
21 static struct bootup_params boot_params_20 = {
22 	.magic_number = cpu_to_le16(0x5aa5),
23 	.crystal_good_time = 0x0,
24 	.valid = cpu_to_le32(VALID_20),
25 	.reserved_for_valids = 0x0,
26 	.bootup_mode_info = 0x0,
27 	.digital_loop_back_params = 0x0,
28 	.rtls_timestamp_en = 0x0,
29 	.host_spi_intr_cfg = 0x0,
30 	.device_clk_info = {{
31 		.pll_config_g = {
32 			.tapll_info_g = {
33 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 					      (TA_PLL_M_VAL_20)),
35 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 			},
37 			.pll960_info_g = {
38 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 							 (PLL960_N_VAL_20)),
40 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 				.pll_reg_3 = 0x0,
42 			},
43 			.afepll_info_g = {
44 				.pll_reg = cpu_to_le16(0x9f0),
45 			}
46 		},
47 		.switch_clk_g = {
48 			.switch_clk_info = cpu_to_le16(BIT(3)),
49 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 			.umac_clock_reg_config = 0x0,
51 			.qspi_uart_clock_reg_config = 0x0
52 		}
53 	},
54 	{
55 		.pll_config_g = {
56 			.tapll_info_g = {
57 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 							 (TA_PLL_M_VAL_20)),
59 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 			},
61 			.pll960_info_g = {
62 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 							 (PLL960_N_VAL_20)),
64 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 				.pll_reg_3 = 0x0,
66 			},
67 			.afepll_info_g = {
68 				.pll_reg = cpu_to_le16(0x9f0),
69 			}
70 		},
71 		.switch_clk_g = {
72 			.switch_clk_info = 0x0,
73 			.bbp_lmac_clk_reg_val = 0x0,
74 			.umac_clock_reg_config = 0x0,
75 			.qspi_uart_clock_reg_config = 0x0
76 		}
77 	},
78 	{
79 		.pll_config_g = {
80 			.tapll_info_g = {
81 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 							 (TA_PLL_M_VAL_20)),
83 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 			},
85 			.pll960_info_g = {
86 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 							 (PLL960_N_VAL_20)),
88 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 				.pll_reg_3 = 0x0,
90 			},
91 			.afepll_info_g = {
92 				.pll_reg = cpu_to_le16(0x9f0),
93 			}
94 		},
95 		.switch_clk_g = {
96 			.switch_clk_info = 0x0,
97 			.bbp_lmac_clk_reg_val = 0x0,
98 			.umac_clock_reg_config = 0x0,
99 			.qspi_uart_clock_reg_config = 0x0
100 		}
101 	} },
102 	.buckboost_wakeup_cnt = 0x0,
103 	.pmu_wakeup_wait = 0x0,
104 	.shutdown_wait_time = 0x0,
105 	.pmu_slp_clkout_sel = 0x0,
106 	.wdt_prog_value = 0x0,
107 	.wdt_soc_rst_delay = 0x0,
108 	.dcdc_operation_mode = 0x0,
109 	.soc_reset_wait_cnt = 0x0
110 };
111 
112 static struct bootup_params boot_params_40 = {
113 	.magic_number = cpu_to_le16(0x5aa5),
114 	.crystal_good_time = 0x0,
115 	.valid = cpu_to_le32(VALID_40),
116 	.reserved_for_valids = 0x0,
117 	.bootup_mode_info = 0x0,
118 	.digital_loop_back_params = 0x0,
119 	.rtls_timestamp_en = 0x0,
120 	.host_spi_intr_cfg = 0x0,
121 	.device_clk_info = {{
122 		.pll_config_g = {
123 			.tapll_info_g = {
124 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 							 (TA_PLL_M_VAL_40)),
126 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 			},
128 			.pll960_info_g = {
129 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 							 (PLL960_N_VAL_40)),
131 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 				.pll_reg_3 = 0x0,
133 			},
134 			.afepll_info_g = {
135 				.pll_reg = cpu_to_le16(0x9f0),
136 			}
137 		},
138 		.switch_clk_g = {
139 			.switch_clk_info = cpu_to_le16(0x09),
140 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 			.umac_clock_reg_config = cpu_to_le16(0x48),
142 			.qspi_uart_clock_reg_config = 0x0
143 		}
144 	},
145 	{
146 		.pll_config_g = {
147 			.tapll_info_g = {
148 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 							 (TA_PLL_M_VAL_40)),
150 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 			},
152 			.pll960_info_g = {
153 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 							 (PLL960_N_VAL_40)),
155 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 				.pll_reg_3 = 0x0,
157 			},
158 			.afepll_info_g = {
159 				.pll_reg = cpu_to_le16(0x9f0),
160 			}
161 		},
162 		.switch_clk_g = {
163 			.switch_clk_info = 0x0,
164 			.bbp_lmac_clk_reg_val = 0x0,
165 			.umac_clock_reg_config = 0x0,
166 			.qspi_uart_clock_reg_config = 0x0
167 		}
168 	},
169 	{
170 		.pll_config_g = {
171 			.tapll_info_g = {
172 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 							 (TA_PLL_M_VAL_40)),
174 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 			},
176 			.pll960_info_g = {
177 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 							 (PLL960_N_VAL_40)),
179 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 				.pll_reg_3 = 0x0,
181 			},
182 			.afepll_info_g = {
183 				.pll_reg = cpu_to_le16(0x9f0),
184 			}
185 		},
186 		.switch_clk_g = {
187 			.switch_clk_info = 0x0,
188 			.bbp_lmac_clk_reg_val = 0x0,
189 			.umac_clock_reg_config = 0x0,
190 			.qspi_uart_clock_reg_config = 0x0
191 		}
192 	} },
193 	.buckboost_wakeup_cnt = 0x0,
194 	.pmu_wakeup_wait = 0x0,
195 	.shutdown_wait_time = 0x0,
196 	.pmu_slp_clkout_sel = 0x0,
197 	.wdt_prog_value = 0x0,
198 	.wdt_soc_rst_delay = 0x0,
199 	.dcdc_operation_mode = 0x0,
200 	.soc_reset_wait_cnt = 0x0
201 };
202 
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204 
205 /**
206  * rsi_set_default_parameters() - This function sets default parameters.
207  * @common: Pointer to the driver private structure.
208  *
209  * Return: none
210  */
211 static void rsi_set_default_parameters(struct rsi_common *common)
212 {
213 	common->band = IEEE80211_BAND_2GHZ;
214 	common->channel_width = BW_20MHZ;
215 	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 	common->channel = 1;
217 	common->min_rate = 0xffff;
218 	common->fsm_state = FSM_CARD_NOT_READY;
219 	common->iface_down = true;
220 }
221 
222 /**
223  * rsi_set_contention_vals() - This function sets the contention values for the
224  *			       backoff procedure.
225  * @common: Pointer to the driver private structure.
226  *
227  * Return: None.
228  */
229 static void rsi_set_contention_vals(struct rsi_common *common)
230 {
231 	u8 ii = 0;
232 
233 	for (; ii < NUM_EDCA_QUEUES; ii++) {
234 		common->tx_qinfo[ii].wme_params =
235 			(((common->edca_params[ii].cw_min / 2) +
236 			  (common->edca_params[ii].aifs)) *
237 			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
238 		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
239 		common->tx_qinfo[ii].pkt_contended = 0;
240 	}
241 }
242 
243 /**
244  * rsi_send_internal_mgmt_frame() - This function sends management frames to
245  *				    firmware.Also schedules packet to queue
246  *				    for transmission.
247  * @common: Pointer to the driver private structure.
248  * @skb: Pointer to the socket buffer structure.
249  *
250  * Return: 0 on success, -1 on failure.
251  */
252 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
253 					struct sk_buff *skb)
254 {
255 	struct skb_info *tx_params;
256 
257 	if (skb == NULL) {
258 		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
259 		return -ENOMEM;
260 	}
261 	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
262 	tx_params->flags |= INTERNAL_MGMT_PKT;
263 	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
264 	rsi_set_event(&common->tx_thread.event);
265 	return 0;
266 }
267 
268 /**
269  * rsi_load_radio_caps() - This function is used to send radio capabilities
270  *			   values to firmware.
271  * @common: Pointer to the driver private structure.
272  *
273  * Return: 0 on success, corresponding negative error code on failure.
274  */
275 static int rsi_load_radio_caps(struct rsi_common *common)
276 {
277 	struct rsi_radio_caps *radio_caps;
278 	struct rsi_hw *adapter = common->priv;
279 	struct ieee80211_hw *hw = adapter->hw;
280 	u16 inx = 0;
281 	u8 ii;
282 	u8 radio_id = 0;
283 	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 		      0xf0, 0xf0, 0xf0, 0xf0,
285 		      0xf0, 0xf0, 0xf0, 0xf0,
286 		      0xf0, 0xf0, 0xf0, 0xf0,
287 		      0xf0, 0xf0, 0xf0, 0xf0};
288 	struct ieee80211_conf *conf = &hw->conf;
289 	struct sk_buff *skb;
290 
291 	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
292 
293 	skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
294 
295 	if (!skb) {
296 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
297 			__func__);
298 		return -ENOMEM;
299 	}
300 
301 	memset(skb->data, 0, sizeof(struct rsi_radio_caps));
302 	radio_caps = (struct rsi_radio_caps *)skb->data;
303 
304 	radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
305 	radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
306 
307 	if (common->channel_width == BW_40MHZ) {
308 		radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
309 		radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
310 		if (common->channel_width) {
311 			radio_caps->desc_word[5] =
312 				cpu_to_le16(common->channel_width << 12);
313 			radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE);
314 		}
315 
316 		if (conf_is_ht40_minus(conf)) {
317 			radio_caps->desc_word[5] = 0;
318 			radio_caps->desc_word[5] |=
319 				cpu_to_le16(LOWER_20_ENABLE);
320 			radio_caps->desc_word[5] |=
321 				cpu_to_le16(LOWER_20_ENABLE >> 12);
322 		}
323 
324 		if (conf_is_ht40_plus(conf)) {
325 			radio_caps->desc_word[5] = 0;
326 			radio_caps->desc_word[5] |=
327 				cpu_to_le16(UPPER_20_ENABLE);
328 			radio_caps->desc_word[5] |=
329 				cpu_to_le16(UPPER_20_ENABLE >> 12);
330 		}
331 	}
332 
333 	radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
334 
335 	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
336 		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
337 		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
338 		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
339 		radio_caps->qos_params[ii].txop_q = 0;
340 	}
341 
342 	for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
343 		radio_caps->qos_params[ii].cont_win_min_q =
344 			cpu_to_le16(common->edca_params[ii].cw_min);
345 		radio_caps->qos_params[ii].cont_win_max_q =
346 			cpu_to_le16(common->edca_params[ii].cw_max);
347 		radio_caps->qos_params[ii].aifsn_val_q =
348 			cpu_to_le16((common->edca_params[ii].aifs) << 8);
349 		radio_caps->qos_params[ii].txop_q =
350 			cpu_to_le16(common->edca_params[ii].txop);
351 	}
352 
353 	memcpy(&common->rate_pwr[0], &gc[0], 40);
354 	for (ii = 0; ii < 20; ii++)
355 		radio_caps->gcpd_per_rate[inx++] =
356 			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
357 
358 	radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
359 						FRAME_DESC_SZ) |
360 					       (RSI_WIFI_MGMT_Q << 12));
361 
362 
363 	skb_put(skb, (sizeof(struct rsi_radio_caps)));
364 
365 	return rsi_send_internal_mgmt_frame(common, skb);
366 }
367 
368 /**
369  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
370  * @common: Pointer to the driver private structure.
371  * @msg: Pointer to received packet.
372  * @msg_len: Length of the recieved packet.
373  * @type: Type of recieved packet.
374  *
375  * Return: 0 on success, -1 on failure.
376  */
377 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
378 				u8 *msg,
379 				s32 msg_len,
380 				u8 type)
381 {
382 	struct rsi_hw *adapter = common->priv;
383 	struct ieee80211_tx_info *info;
384 	struct skb_info *rx_params;
385 	u8 pad_bytes = msg[4];
386 	u8 pkt_recv;
387 	struct sk_buff *skb;
388 	char *buffer;
389 
390 	if (type == RX_DOT11_MGMT) {
391 		if (!adapter->sc_nvifs)
392 			return -ENOLINK;
393 
394 		msg_len -= pad_bytes;
395 		if ((msg_len <= 0) || (!msg)) {
396 			rsi_dbg(MGMT_RX_ZONE,
397 				"%s: Invalid rx msg of len = %d\n",
398 				__func__, msg_len);
399 			return -EINVAL;
400 		}
401 
402 		skb = dev_alloc_skb(msg_len);
403 		if (!skb) {
404 			rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
405 				__func__);
406 			return -ENOMEM;
407 		}
408 
409 		buffer = skb_put(skb, msg_len);
410 
411 		memcpy(buffer,
412 		       (u8 *)(msg +  FRAME_DESC_SZ + pad_bytes),
413 		       msg_len);
414 
415 		pkt_recv = buffer[0];
416 
417 		info = IEEE80211_SKB_CB(skb);
418 		rx_params = (struct skb_info *)info->driver_data;
419 		rx_params->rssi = rsi_get_rssi(msg);
420 		rx_params->channel = rsi_get_channel(msg);
421 		rsi_indicate_pkt_to_os(common, skb);
422 	} else {
423 		rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
424 	}
425 
426 	return 0;
427 }
428 
429 /**
430  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
431  *				     frame to firmware.
432  * @common: Pointer to the driver private structure.
433  * @opmode: Operating mode of device.
434  * @notify_event: Notification about station connection.
435  * @bssid: bssid.
436  * @qos_enable: Qos is enabled.
437  * @aid: Aid (unique for all STA).
438  *
439  * Return: status: 0 on success, corresponding negative error code on failure.
440  */
441 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
442 					 u8 opmode,
443 					 u8 notify_event,
444 					 const unsigned char *bssid,
445 					 u8 qos_enable,
446 					 u16 aid)
447 {
448 	struct sk_buff *skb = NULL;
449 	struct rsi_peer_notify *peer_notify;
450 	u16 vap_id = 0;
451 	int status;
452 
453 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
454 
455 	skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
456 
457 	if (!skb) {
458 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
459 			__func__);
460 		return -ENOMEM;
461 	}
462 
463 	memset(skb->data, 0, sizeof(struct rsi_peer_notify));
464 	peer_notify = (struct rsi_peer_notify *)skb->data;
465 
466 	peer_notify->command = cpu_to_le16(opmode << 1);
467 
468 	switch (notify_event) {
469 	case STA_CONNECTED:
470 		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
471 		break;
472 	case STA_DISCONNECTED:
473 		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
474 		break;
475 	default:
476 		break;
477 	}
478 
479 	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
480 	ether_addr_copy(peer_notify->mac_addr, bssid);
481 
482 	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
483 
484 	peer_notify->desc_word[0] =
485 		cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
486 			    (RSI_WIFI_MGMT_Q << 12));
487 	peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
488 	peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
489 
490 	skb_put(skb, sizeof(struct rsi_peer_notify));
491 
492 	status = rsi_send_internal_mgmt_frame(common, skb);
493 
494 	if (!status && qos_enable) {
495 		rsi_set_contention_vals(common);
496 		status = rsi_load_radio_caps(common);
497 	}
498 	return status;
499 }
500 
501 /**
502  * rsi_send_aggregation_params_frame() - This function sends the ampdu
503  *					 indication frame to firmware.
504  * @common: Pointer to the driver private structure.
505  * @tid: traffic identifier.
506  * @ssn: ssn.
507  * @buf_size: buffer size.
508  * @event: notification about station connection.
509  *
510  * Return: 0 on success, corresponding negative error code on failure.
511  */
512 int rsi_send_aggregation_params_frame(struct rsi_common *common,
513 				      u16 tid,
514 				      u16 ssn,
515 				      u8 buf_size,
516 				      u8 event)
517 {
518 	struct sk_buff *skb = NULL;
519 	struct rsi_mac_frame *mgmt_frame;
520 	u8 peer_id = 0;
521 
522 	skb = dev_alloc_skb(FRAME_DESC_SZ);
523 
524 	if (!skb) {
525 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
526 			__func__);
527 		return -ENOMEM;
528 	}
529 
530 	memset(skb->data, 0, FRAME_DESC_SZ);
531 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
532 
533 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
534 
535 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
536 	mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
537 
538 	if (event == STA_TX_ADDBA_DONE) {
539 		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
540 		mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
541 		mgmt_frame->desc_word[7] =
542 		cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
543 	} else if (event == STA_RX_ADDBA_DONE) {
544 		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
545 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
546 						       (START_AMPDU_AGGR << 4) |
547 						       (RX_BA_INDICATION << 5) |
548 						       (peer_id << 8));
549 	} else if (event == STA_TX_DELBA) {
550 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
551 						       (STOP_AMPDU_AGGR << 4) |
552 						       (peer_id << 8));
553 	} else if (event == STA_RX_DELBA) {
554 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
555 						       (STOP_AMPDU_AGGR << 4) |
556 						       (RX_BA_INDICATION << 5) |
557 						       (peer_id << 8));
558 	}
559 
560 	skb_put(skb, FRAME_DESC_SZ);
561 
562 	return rsi_send_internal_mgmt_frame(common, skb);
563 }
564 
565 /**
566  * rsi_program_bb_rf() - This function starts base band and RF programming.
567  *			 This is called after initial configurations are done.
568  * @common: Pointer to the driver private structure.
569  *
570  * Return: 0 on success, corresponding negative error code on failure.
571  */
572 static int rsi_program_bb_rf(struct rsi_common *common)
573 {
574 	struct sk_buff *skb;
575 	struct rsi_mac_frame *mgmt_frame;
576 
577 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
578 
579 	skb = dev_alloc_skb(FRAME_DESC_SZ);
580 	if (!skb) {
581 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
582 			__func__);
583 		return -ENOMEM;
584 	}
585 
586 	memset(skb->data, 0, FRAME_DESC_SZ);
587 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
588 
589 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
590 	mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
591 	mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint << 8);
592 
593 	if (common->rf_reset) {
594 		mgmt_frame->desc_word[7] =  cpu_to_le16(RF_RESET_ENABLE);
595 		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
596 			__func__);
597 		common->rf_reset = 0;
598 	}
599 	common->bb_rf_prog_count = 1;
600 	mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
601 				     BBP_REG_WRITE | (RSI_RF_TYPE << 4));
602 	skb_put(skb, FRAME_DESC_SZ);
603 
604 	return rsi_send_internal_mgmt_frame(common, skb);
605 }
606 
607 /**
608  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
609  * @common: Pointer to the driver private structure.
610  * @opmode: Operating mode of device.
611  *
612  * Return: 0 on success, corresponding negative error code on failure.
613  */
614 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
615 {
616 	struct sk_buff *skb = NULL;
617 	struct rsi_vap_caps *vap_caps;
618 	u16 vap_id = 0;
619 
620 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
621 
622 	skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
623 	if (!skb) {
624 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
625 			__func__);
626 		return -ENOMEM;
627 	}
628 
629 	memset(skb->data, 0, sizeof(struct rsi_vap_caps));
630 	vap_caps = (struct rsi_vap_caps *)skb->data;
631 
632 	vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
633 					     FRAME_DESC_SZ) |
634 					     (RSI_WIFI_MGMT_Q << 12));
635 	vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
636 	vap_caps->desc_word[4] = cpu_to_le16(mode |
637 					     (common->channel_width << 8));
638 	vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
639 					     (common->mac_id << 4) |
640 					     common->radio_id);
641 
642 	memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
643 	vap_caps->keep_alive_period = cpu_to_le16(90);
644 	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
645 
646 	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
647 	vap_caps->default_mgmt_rate = 0;
648 	if (conf_is_ht40(&common->priv->hw->conf)) {
649 		vap_caps->default_ctrl_rate =
650 				cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16);
651 	} else {
652 		vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
653 	}
654 	vap_caps->default_data_rate = 0;
655 	vap_caps->beacon_interval = cpu_to_le16(200);
656 	vap_caps->dtim_period = cpu_to_le16(4);
657 
658 	skb_put(skb, sizeof(*vap_caps));
659 
660 	return rsi_send_internal_mgmt_frame(common, skb);
661 }
662 
663 /**
664  * rsi_hal_load_key() - This function is used to load keys within the firmware.
665  * @common: Pointer to the driver private structure.
666  * @data: Pointer to the key data.
667  * @key_len: Key length to be loaded.
668  * @key_type: Type of key: GROUP/PAIRWISE.
669  * @key_id: Key index.
670  * @cipher: Type of cipher used.
671  *
672  * Return: 0 on success, -1 on failure.
673  */
674 int rsi_hal_load_key(struct rsi_common *common,
675 		     u8 *data,
676 		     u16 key_len,
677 		     u8 key_type,
678 		     u8 key_id,
679 		     u32 cipher)
680 {
681 	struct sk_buff *skb = NULL;
682 	struct rsi_set_key *set_key;
683 	u16 key_descriptor = 0;
684 
685 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
686 
687 	skb = dev_alloc_skb(sizeof(struct rsi_set_key));
688 	if (!skb) {
689 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
690 			__func__);
691 		return -ENOMEM;
692 	}
693 
694 	memset(skb->data, 0, sizeof(struct rsi_set_key));
695 	set_key = (struct rsi_set_key *)skb->data;
696 
697 	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
698 	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
699 		key_len += 1;
700 		key_descriptor |= BIT(2);
701 		if (key_len >= 13)
702 			key_descriptor |= BIT(3);
703 	} else if (cipher != KEY_TYPE_CLEAR) {
704 		key_descriptor |= BIT(4);
705 		if (key_type == RSI_PAIRWISE_KEY)
706 			key_id = 0;
707 		if (cipher == WLAN_CIPHER_SUITE_TKIP)
708 			key_descriptor |= BIT(5);
709 	}
710 	key_descriptor |= (key_type | BIT(13) | (key_id << 14));
711 
712 	set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
713 					    FRAME_DESC_SZ) |
714 					    (RSI_WIFI_MGMT_Q << 12));
715 	set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
716 	set_key->desc_word[4] = cpu_to_le16(key_descriptor);
717 
718 	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
719 	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
720 		memcpy(&set_key->key[key_id][1],
721 		       data,
722 		       key_len * 2);
723 	} else {
724 		memcpy(&set_key->key[0][0], data, key_len);
725 	}
726 
727 	memcpy(set_key->tx_mic_key, &data[16], 8);
728 	memcpy(set_key->rx_mic_key, &data[24], 8);
729 
730 	skb_put(skb, sizeof(struct rsi_set_key));
731 
732 	return rsi_send_internal_mgmt_frame(common, skb);
733 }
734 
735 /*
736  * rsi_load_bootup_params() - This function send bootup params to the firmware.
737  * @common: Pointer to the driver private structure.
738  *
739  * Return: 0 on success, corresponding error code on failure.
740  */
741 static int rsi_load_bootup_params(struct rsi_common *common)
742 {
743 	struct sk_buff *skb;
744 	struct rsi_boot_params *boot_params;
745 
746 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
747 	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
748 	if (!skb) {
749 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
750 			__func__);
751 		return -ENOMEM;
752 	}
753 
754 	memset(skb->data, 0, sizeof(struct rsi_boot_params));
755 	boot_params = (struct rsi_boot_params *)skb->data;
756 
757 	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
758 
759 	if (common->channel_width == BW_40MHZ) {
760 		memcpy(&boot_params->bootup_params,
761 		       &boot_params_40,
762 		       sizeof(struct bootup_params));
763 		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
764 			UMAC_CLK_40BW);
765 		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
766 	} else {
767 		memcpy(&boot_params->bootup_params,
768 		       &boot_params_20,
769 		       sizeof(struct bootup_params));
770 		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
771 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
772 			rsi_dbg(MGMT_TX_ZONE,
773 				"%s: Packet 20MHZ <=== %d\n", __func__,
774 				UMAC_CLK_20BW);
775 		} else {
776 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
777 			rsi_dbg(MGMT_TX_ZONE,
778 				"%s: Packet 20MHZ <=== %d\n", __func__,
779 				UMAC_CLK_40MHZ);
780 		}
781 	}
782 
783 	/**
784 	 * Bit{0:11} indicates length of the Packet
785 	 * Bit{12:15} indicates host queue number
786 	 */
787 	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
788 				    (RSI_WIFI_MGMT_Q << 12));
789 	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
790 
791 	skb_put(skb, sizeof(struct rsi_boot_params));
792 
793 	return rsi_send_internal_mgmt_frame(common, skb);
794 }
795 
796 /**
797  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
798  *			  internal management frame to indicate it to firmware.
799  * @common: Pointer to the driver private structure.
800  *
801  * Return: 0 on success, corresponding error code on failure.
802  */
803 static int rsi_send_reset_mac(struct rsi_common *common)
804 {
805 	struct sk_buff *skb;
806 	struct rsi_mac_frame *mgmt_frame;
807 
808 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
809 
810 	skb = dev_alloc_skb(FRAME_DESC_SZ);
811 	if (!skb) {
812 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
813 			__func__);
814 		return -ENOMEM;
815 	}
816 
817 	memset(skb->data, 0, FRAME_DESC_SZ);
818 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
819 
820 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
821 	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
822 	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
823 
824 	skb_put(skb, FRAME_DESC_SZ);
825 
826 	return rsi_send_internal_mgmt_frame(common, skb);
827 }
828 
829 /**
830  * rsi_set_channel() - This function programs the channel.
831  * @common: Pointer to the driver private structure.
832  * @channel: Channel value to be set.
833  *
834  * Return: 0 on success, corresponding error code on failure.
835  */
836 int rsi_set_channel(struct rsi_common *common, u16 channel)
837 {
838 	struct sk_buff *skb = NULL;
839 	struct rsi_mac_frame *mgmt_frame;
840 
841 	rsi_dbg(MGMT_TX_ZONE,
842 		"%s: Sending scan req frame\n", __func__);
843 
844 	if (common->band == IEEE80211_BAND_5GHZ) {
845 		if ((channel >= 36) && (channel <= 64))
846 			channel = ((channel - 32) / 4);
847 		else if ((channel > 64) && (channel <= 140))
848 			channel = ((channel - 102) / 4) + 8;
849 		else if (channel >= 149)
850 			channel = ((channel - 151) / 4) + 18;
851 		else
852 			return -EINVAL;
853 	} else {
854 		if (channel > 14) {
855 			rsi_dbg(ERR_ZONE, "%s: Invalid chno %d, band = %d\n",
856 				__func__, channel, common->band);
857 			return -EINVAL;
858 		}
859 	}
860 
861 	skb = dev_alloc_skb(FRAME_DESC_SZ);
862 	if (!skb) {
863 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
864 			__func__);
865 		return -ENOMEM;
866 	}
867 
868 	memset(skb->data, 0, FRAME_DESC_SZ);
869 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
870 
871 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
872 	mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
873 	mgmt_frame->desc_word[4] = cpu_to_le16(channel);
874 
875 	mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
876 					       BBP_REG_WRITE |
877 					       (RSI_RF_TYPE << 4));
878 
879 	mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
880 
881 	if (common->channel_width == BW_40MHZ)
882 		mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
883 
884 	common->channel = channel;
885 
886 	skb_put(skb, FRAME_DESC_SZ);
887 
888 	return rsi_send_internal_mgmt_frame(common, skb);
889 }
890 
891 /**
892  * rsi_compare() - This function is used to compare two integers
893  * @a: pointer to the first integer
894  * @b: pointer to the second integer
895  *
896  * Return: 0 if both are equal, -1 if the first is smaller, else 1
897  */
898 static int rsi_compare(const void *a, const void *b)
899 {
900 	u16 _a = *(const u16 *)(a);
901 	u16 _b = *(const u16 *)(b);
902 
903 	if (_a > _b)
904 		return -1;
905 
906 	if (_a < _b)
907 		return 1;
908 
909 	return 0;
910 }
911 
912 /**
913  * rsi_map_rates() - This function is used to map selected rates to hw rates.
914  * @rate: The standard rate to be mapped.
915  * @offset: Offset that will be returned.
916  *
917  * Return: 0 if it is a mcs rate, else 1
918  */
919 static bool rsi_map_rates(u16 rate, int *offset)
920 {
921 	int kk;
922 	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
923 		if (rate == mcs[kk]) {
924 			*offset = kk;
925 			return false;
926 		}
927 	}
928 
929 	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
930 		if (rate == rsi_rates[kk].bitrate / 5) {
931 			*offset = kk;
932 			break;
933 		}
934 	}
935 	return true;
936 }
937 
938 /**
939  * rsi_send_auto_rate_request() - This function is to set rates for connection
940  *				  and send autorate request to firmware.
941  * @common: Pointer to the driver private structure.
942  *
943  * Return: 0 on success, corresponding error code on failure.
944  */
945 static int rsi_send_auto_rate_request(struct rsi_common *common)
946 {
947 	struct sk_buff *skb;
948 	struct rsi_auto_rate *auto_rate;
949 	int ii = 0, jj = 0, kk = 0;
950 	struct ieee80211_hw *hw = common->priv->hw;
951 	u8 band = hw->conf.chandef.chan->band;
952 	u8 num_supported_rates = 0;
953 	u8 rate_offset = 0;
954 	u32 rate_bitmap = common->bitrate_mask[band];
955 
956 	u16 *selected_rates, min_rate;
957 
958 	skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
959 	if (!skb) {
960 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
961 			__func__);
962 		return -ENOMEM;
963 	}
964 
965 	selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
966 	if (!selected_rates) {
967 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
968 			__func__);
969 		dev_kfree_skb(skb);
970 		return -ENOMEM;
971 	}
972 
973 	memset(skb->data, 0, sizeof(struct rsi_auto_rate));
974 	memset(selected_rates, 0, 2 * RSI_TBL_SZ);
975 
976 	auto_rate = (struct rsi_auto_rate *)skb->data;
977 
978 	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
979 	auto_rate->collision_tolerance = cpu_to_le16(3);
980 	auto_rate->failure_limit = cpu_to_le16(3);
981 	auto_rate->initial_boundary = cpu_to_le16(3);
982 	auto_rate->max_threshold_limt = cpu_to_le16(27);
983 
984 	auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
985 
986 	if (common->channel_width == BW_40MHZ)
987 		auto_rate->desc_word[7] |= cpu_to_le16(1);
988 
989 	if (band == IEEE80211_BAND_2GHZ)
990 		min_rate = STD_RATE_01;
991 	else
992 		min_rate = STD_RATE_06;
993 
994 	for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) {
995 		if (rate_bitmap & BIT(ii)) {
996 			selected_rates[jj++] = (rsi_rates[ii].bitrate / 5);
997 			rate_offset++;
998 		}
999 	}
1000 	num_supported_rates = jj;
1001 
1002 	if (common->vif_info[0].is_ht) {
1003 		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1004 			selected_rates[jj++] = mcs[ii];
1005 		num_supported_rates += ARRAY_SIZE(mcs);
1006 		rate_offset += ARRAY_SIZE(mcs);
1007 	}
1008 
1009 	if (rate_offset < (RSI_TBL_SZ / 2) - 1) {
1010 		for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) {
1011 			selected_rates[jj++] = min_rate;
1012 			rate_offset++;
1013 		}
1014 	}
1015 
1016 	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1017 
1018 	/* mapping the rates to RSI rates */
1019 	for (ii = 0; ii < jj; ii++) {
1020 		if (rsi_map_rates(selected_rates[ii], &kk)) {
1021 			auto_rate->supported_rates[ii] =
1022 				cpu_to_le16(rsi_rates[kk].hw_value);
1023 		} else {
1024 			auto_rate->supported_rates[ii] =
1025 				cpu_to_le16(rsi_mcsrates[kk]);
1026 		}
1027 	}
1028 
1029 	/* loading HT rates in the bottom half of the auto rate table */
1030 	if (common->vif_info[0].is_ht) {
1031 		if (common->vif_info[0].sgi)
1032 			auto_rate->supported_rates[rate_offset++] =
1033 				cpu_to_le16(RSI_RATE_MCS7_SG);
1034 
1035 		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1036 		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1037 			if (common->vif_info[0].sgi)
1038 				auto_rate->supported_rates[ii++] =
1039 					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1040 			auto_rate->supported_rates[ii] =
1041 				cpu_to_le16(rsi_mcsrates[kk--]);
1042 		}
1043 
1044 		for (; ii < RSI_TBL_SZ; ii++) {
1045 			auto_rate->supported_rates[ii] =
1046 				cpu_to_le16(rsi_mcsrates[0]);
1047 		}
1048 	}
1049 
1050 	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1051 	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1052 	auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1053 	num_supported_rates *= 2;
1054 
1055 	auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1056 					       FRAME_DESC_SZ) |
1057 					       (RSI_WIFI_MGMT_Q << 12));
1058 
1059 	skb_put(skb,
1060 		sizeof(struct rsi_auto_rate));
1061 	kfree(selected_rates);
1062 
1063 	return rsi_send_internal_mgmt_frame(common, skb);
1064 }
1065 
1066 /**
1067  * rsi_inform_bss_status() - This function informs about bss status with the
1068  *			     help of sta notify params by sending an internal
1069  *			     management frame to firmware.
1070  * @common: Pointer to the driver private structure.
1071  * @status: Bss status type.
1072  * @bssid: Bssid.
1073  * @qos_enable: Qos is enabled.
1074  * @aid: Aid (unique for all STAs).
1075  *
1076  * Return: None.
1077  */
1078 void rsi_inform_bss_status(struct rsi_common *common,
1079 			   u8 status,
1080 			   const unsigned char *bssid,
1081 			   u8 qos_enable,
1082 			   u16 aid)
1083 {
1084 	if (status) {
1085 		rsi_hal_send_sta_notify_frame(common,
1086 					      RSI_IFTYPE_STATION,
1087 					      STA_CONNECTED,
1088 					      bssid,
1089 					      qos_enable,
1090 					      aid);
1091 		if (common->min_rate == 0xffff)
1092 			rsi_send_auto_rate_request(common);
1093 	} else {
1094 		rsi_hal_send_sta_notify_frame(common,
1095 					      RSI_IFTYPE_STATION,
1096 					      STA_DISCONNECTED,
1097 					      bssid,
1098 					      qos_enable,
1099 					      aid);
1100 	}
1101 }
1102 
1103 /**
1104  * rsi_eeprom_read() - This function sends a frame to read the mac address
1105  *		       from the eeprom.
1106  * @common: Pointer to the driver private structure.
1107  *
1108  * Return: 0 on success, -1 on failure.
1109  */
1110 static int rsi_eeprom_read(struct rsi_common *common)
1111 {
1112 	struct rsi_mac_frame *mgmt_frame;
1113 	struct sk_buff *skb;
1114 
1115 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1116 
1117 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1118 	if (!skb) {
1119 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1120 			__func__);
1121 		return -ENOMEM;
1122 	}
1123 
1124 	memset(skb->data, 0, FRAME_DESC_SZ);
1125 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1126 
1127 	/* FrameType */
1128 	mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1129 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1130 	/* Number of bytes to read */
1131 	mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1132 					       WLAN_MAC_MAGIC_WORD_LEN +
1133 					       WLAN_HOST_MODE_LEN +
1134 					       WLAN_FW_VERSION_LEN);
1135 	/* Address to read */
1136 	mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1137 
1138 	skb_put(skb, FRAME_DESC_SZ);
1139 
1140 	return rsi_send_internal_mgmt_frame(common, skb);
1141 }
1142 
1143 /**
1144  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1145  * @common: Pointer to the driver private structure.
1146  * @msg: Pointer to received packet.
1147  *
1148  * Return: 0 on success, -1 on failure.
1149  */
1150 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1151 				      u8 *msg)
1152 {
1153 	u8 sub_type = (msg[15] & 0xff);
1154 
1155 	switch (sub_type) {
1156 	case BOOTUP_PARAMS_REQUEST:
1157 		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1158 			__func__);
1159 		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1160 			if (rsi_eeprom_read(common)) {
1161 				common->fsm_state = FSM_CARD_NOT_READY;
1162 				goto out;
1163 			} else {
1164 				common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1165 			}
1166 		} else {
1167 			rsi_dbg(ERR_ZONE,
1168 				"%s: Received bootup params cfm in %d state\n",
1169 				 __func__, common->fsm_state);
1170 			return 0;
1171 		}
1172 		break;
1173 
1174 	case EEPROM_READ_TYPE:
1175 		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1176 			if (msg[16] == MAGIC_WORD) {
1177 				u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1178 					     + WLAN_MAC_MAGIC_WORD_LEN);
1179 				memcpy(common->mac_addr,
1180 				       &msg[offset],
1181 				       ETH_ALEN);
1182 				memcpy(&common->fw_ver,
1183 				       &msg[offset + ETH_ALEN],
1184 				       sizeof(struct version_info));
1185 
1186 			} else {
1187 				common->fsm_state = FSM_CARD_NOT_READY;
1188 				break;
1189 			}
1190 			if (rsi_send_reset_mac(common))
1191 				goto out;
1192 			else
1193 				common->fsm_state = FSM_RESET_MAC_SENT;
1194 		} else {
1195 			rsi_dbg(ERR_ZONE,
1196 				"%s: Received eeprom mac addr in %d state\n",
1197 				__func__, common->fsm_state);
1198 			return 0;
1199 		}
1200 		break;
1201 
1202 	case RESET_MAC_REQ:
1203 		if (common->fsm_state == FSM_RESET_MAC_SENT) {
1204 			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1205 				__func__);
1206 
1207 			if (rsi_load_radio_caps(common))
1208 				goto out;
1209 			else
1210 				common->fsm_state = FSM_RADIO_CAPS_SENT;
1211 		} else {
1212 			rsi_dbg(ERR_ZONE,
1213 				"%s: Received reset mac cfm in %d state\n",
1214 				 __func__, common->fsm_state);
1215 			return 0;
1216 		}
1217 		break;
1218 
1219 	case RADIO_CAPABILITIES:
1220 		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1221 			common->rf_reset = 1;
1222 			if (rsi_program_bb_rf(common)) {
1223 				goto out;
1224 			} else {
1225 				common->fsm_state = FSM_BB_RF_PROG_SENT;
1226 				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1227 					__func__);
1228 			}
1229 		} else {
1230 			rsi_dbg(ERR_ZONE,
1231 				"%s: Received radio caps cfm in %d state\n",
1232 				 __func__, common->fsm_state);
1233 			return 0;
1234 		}
1235 		break;
1236 
1237 	case BB_PROG_VALUES_REQUEST:
1238 	case RF_PROG_VALUES_REQUEST:
1239 	case BBP_PROG_IN_TA:
1240 		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1241 		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1242 			common->bb_rf_prog_count--;
1243 			if (!common->bb_rf_prog_count) {
1244 				common->fsm_state = FSM_MAC_INIT_DONE;
1245 				return rsi_mac80211_attach(common);
1246 			}
1247 		} else {
1248 			goto out;
1249 		}
1250 		break;
1251 
1252 	default:
1253 		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1254 			__func__);
1255 		break;
1256 	}
1257 	return 0;
1258 out:
1259 	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1260 		__func__);
1261 	return -EINVAL;
1262 }
1263 
1264 /**
1265  * rsi_mgmt_pkt_recv() - This function processes the management packets
1266  *			 recieved from the hardware.
1267  * @common: Pointer to the driver private structure.
1268  * @msg: Pointer to the received packet.
1269  *
1270  * Return: 0 on success, -1 on failure.
1271  */
1272 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1273 {
1274 	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1275 	u16 msg_type = (msg[2]);
1276 	int ret;
1277 
1278 	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1279 		__func__, msg_len, msg_type);
1280 
1281 	if (msg_type == TA_CONFIRM_TYPE) {
1282 		return rsi_handle_ta_confirm_type(common, msg);
1283 	} else if (msg_type == CARD_READY_IND) {
1284 		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1285 			__func__);
1286 		if (common->fsm_state == FSM_CARD_NOT_READY) {
1287 			rsi_set_default_parameters(common);
1288 
1289 			ret = rsi_load_bootup_params(common);
1290 			if (ret)
1291 				return ret;
1292 			else
1293 				common->fsm_state = FSM_BOOT_PARAMS_SENT;
1294 		} else {
1295 			return -EINVAL;
1296 		}
1297 	} else if (msg_type == TX_STATUS_IND) {
1298 		if (msg[15] == PROBEREQ_CONFIRM) {
1299 			common->mgmt_q_block = false;
1300 			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1301 				__func__);
1302 		}
1303 	} else {
1304 		return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1305 	}
1306 	return 0;
1307 }
1308