1 /** 2 * Copyright (c) 2014 Redpine Signals Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/etherdevice.h> 18 #include <linux/timer.h> 19 #include "rsi_mgmt.h" 20 #include "rsi_common.h" 21 #include "rsi_ps.h" 22 #include "rsi_hal.h" 23 24 static struct bootup_params boot_params_20 = { 25 .magic_number = cpu_to_le16(0x5aa5), 26 .crystal_good_time = 0x0, 27 .valid = cpu_to_le32(VALID_20), 28 .reserved_for_valids = 0x0, 29 .bootup_mode_info = 0x0, 30 .digital_loop_back_params = 0x0, 31 .rtls_timestamp_en = 0x0, 32 .host_spi_intr_cfg = 0x0, 33 .device_clk_info = {{ 34 .pll_config_g = { 35 .tapll_info_g = { 36 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 37 (TA_PLL_M_VAL_20)), 38 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 39 }, 40 .pll960_info_g = { 41 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 42 (PLL960_N_VAL_20)), 43 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 44 .pll_reg_3 = 0x0, 45 }, 46 .afepll_info_g = { 47 .pll_reg = cpu_to_le16(0x9f0), 48 } 49 }, 50 .switch_clk_g = { 51 .switch_clk_info = cpu_to_le16(0xb), 52 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111), 53 .umac_clock_reg_config = cpu_to_le16(0x48), 54 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 55 } 56 }, 57 { 58 .pll_config_g = { 59 .tapll_info_g = { 60 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 61 (TA_PLL_M_VAL_20)), 62 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 63 }, 64 .pll960_info_g = { 65 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 66 (PLL960_N_VAL_20)), 67 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 68 .pll_reg_3 = 0x0, 69 }, 70 .afepll_info_g = { 71 .pll_reg = cpu_to_le16(0x9f0), 72 } 73 }, 74 .switch_clk_g = { 75 .switch_clk_info = 0x0, 76 .bbp_lmac_clk_reg_val = 0x0, 77 .umac_clock_reg_config = 0x0, 78 .qspi_uart_clock_reg_config = 0x0 79 } 80 }, 81 { 82 .pll_config_g = { 83 .tapll_info_g = { 84 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 85 (TA_PLL_M_VAL_20)), 86 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 87 }, 88 .pll960_info_g = { 89 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 90 (PLL960_N_VAL_20)), 91 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 92 .pll_reg_3 = 0x0, 93 }, 94 .afepll_info_g = { 95 .pll_reg = cpu_to_le16(0x9f0), 96 } 97 }, 98 .switch_clk_g = { 99 .switch_clk_info = 0x0, 100 .bbp_lmac_clk_reg_val = 0x0, 101 .umac_clock_reg_config = 0x0, 102 .qspi_uart_clock_reg_config = 0x0 103 } 104 } }, 105 .buckboost_wakeup_cnt = 0x0, 106 .pmu_wakeup_wait = 0x0, 107 .shutdown_wait_time = 0x0, 108 .pmu_slp_clkout_sel = 0x0, 109 .wdt_prog_value = 0x0, 110 .wdt_soc_rst_delay = 0x0, 111 .dcdc_operation_mode = 0x0, 112 .soc_reset_wait_cnt = 0x0, 113 .waiting_time_at_fresh_sleep = 0x0, 114 .max_threshold_to_avoid_sleep = 0x0, 115 .beacon_resedue_alg_en = 0, 116 }; 117 118 static struct bootup_params boot_params_40 = { 119 .magic_number = cpu_to_le16(0x5aa5), 120 .crystal_good_time = 0x0, 121 .valid = cpu_to_le32(VALID_40), 122 .reserved_for_valids = 0x0, 123 .bootup_mode_info = 0x0, 124 .digital_loop_back_params = 0x0, 125 .rtls_timestamp_en = 0x0, 126 .host_spi_intr_cfg = 0x0, 127 .device_clk_info = {{ 128 .pll_config_g = { 129 .tapll_info_g = { 130 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 131 (TA_PLL_M_VAL_40)), 132 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 133 }, 134 .pll960_info_g = { 135 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 136 (PLL960_N_VAL_40)), 137 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 138 .pll_reg_3 = 0x0, 139 }, 140 .afepll_info_g = { 141 .pll_reg = cpu_to_le16(0x9f0), 142 } 143 }, 144 .switch_clk_g = { 145 .switch_clk_info = cpu_to_le16(0x09), 146 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), 147 .umac_clock_reg_config = cpu_to_le16(0x48), 148 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 149 } 150 }, 151 { 152 .pll_config_g = { 153 .tapll_info_g = { 154 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 155 (TA_PLL_M_VAL_40)), 156 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 157 }, 158 .pll960_info_g = { 159 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 160 (PLL960_N_VAL_40)), 161 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 162 .pll_reg_3 = 0x0, 163 }, 164 .afepll_info_g = { 165 .pll_reg = cpu_to_le16(0x9f0), 166 } 167 }, 168 .switch_clk_g = { 169 .switch_clk_info = 0x0, 170 .bbp_lmac_clk_reg_val = 0x0, 171 .umac_clock_reg_config = 0x0, 172 .qspi_uart_clock_reg_config = 0x0 173 } 174 }, 175 { 176 .pll_config_g = { 177 .tapll_info_g = { 178 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 179 (TA_PLL_M_VAL_40)), 180 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 181 }, 182 .pll960_info_g = { 183 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 184 (PLL960_N_VAL_40)), 185 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 186 .pll_reg_3 = 0x0, 187 }, 188 .afepll_info_g = { 189 .pll_reg = cpu_to_le16(0x9f0), 190 } 191 }, 192 .switch_clk_g = { 193 .switch_clk_info = 0x0, 194 .bbp_lmac_clk_reg_val = 0x0, 195 .umac_clock_reg_config = 0x0, 196 .qspi_uart_clock_reg_config = 0x0 197 } 198 } }, 199 .buckboost_wakeup_cnt = 0x0, 200 .pmu_wakeup_wait = 0x0, 201 .shutdown_wait_time = 0x0, 202 .pmu_slp_clkout_sel = 0x0, 203 .wdt_prog_value = 0x0, 204 .wdt_soc_rst_delay = 0x0, 205 .dcdc_operation_mode = 0x0, 206 .soc_reset_wait_cnt = 0x0, 207 .waiting_time_at_fresh_sleep = 0x0, 208 .max_threshold_to_avoid_sleep = 0x0, 209 .beacon_resedue_alg_en = 0, 210 }; 211 212 static struct bootup_params_9116 boot_params_9116_20 = { 213 .magic_number = cpu_to_le16(LOADED_TOKEN), 214 .valid = cpu_to_le32(VALID_20), 215 .device_clk_info_9116 = {{ 216 .pll_config_9116_g = { 217 .pll_ctrl_set_reg = cpu_to_le16(0xd518), 218 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7), 219 .pll_modem_conig_reg = cpu_to_le16(0x2000), 220 .soc_clk_config_reg = cpu_to_le16(0x0c18), 221 .adc_dac_strm1_config_reg = cpu_to_le16(0x1100), 222 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600), 223 }, 224 .switch_clk_9116_g = { 225 .switch_clk_info = 226 cpu_to_le32((RSI_SWITCH_TASS_CLK | 227 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG | 228 RSI_SWITCH_BBP_LMAC_CLK_REG)), 229 .tass_clock_reg = cpu_to_le32(0x083C0503), 230 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001), 231 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001), 232 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b), 233 } 234 }, 235 }, 236 }; 237 238 static struct bootup_params_9116 boot_params_9116_40 = { 239 .magic_number = cpu_to_le16(LOADED_TOKEN), 240 .valid = cpu_to_le32(VALID_40), 241 .device_clk_info_9116 = {{ 242 .pll_config_9116_g = { 243 .pll_ctrl_set_reg = cpu_to_le16(0xd518), 244 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7), 245 .pll_modem_conig_reg = cpu_to_le16(0x3000), 246 .soc_clk_config_reg = cpu_to_le16(0x0c18), 247 .adc_dac_strm1_config_reg = cpu_to_le16(0x0000), 248 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600), 249 }, 250 .switch_clk_9116_g = { 251 .switch_clk_info = 252 cpu_to_le32((RSI_SWITCH_TASS_CLK | 253 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG | 254 RSI_SWITCH_BBP_LMAC_CLK_REG | 255 RSI_MODEM_CLK_160MHZ)), 256 .tass_clock_reg = cpu_to_le32(0x083C0503), 257 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002), 258 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002), 259 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b), 260 } 261 }, 262 }, 263 }; 264 265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; 266 267 /** 268 * rsi_set_default_parameters() - This function sets default parameters. 269 * @common: Pointer to the driver private structure. 270 * 271 * Return: none 272 */ 273 static void rsi_set_default_parameters(struct rsi_common *common) 274 { 275 common->band = NL80211_BAND_2GHZ; 276 common->channel_width = BW_20MHZ; 277 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; 278 common->channel = 1; 279 common->min_rate = 0xffff; 280 common->fsm_state = FSM_CARD_NOT_READY; 281 common->iface_down = true; 282 common->endpoint = EP_2GHZ_20MHZ; 283 common->driver_mode = 1; /* End to end mode */ 284 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/ 285 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/ 286 common->rf_power_val = 0; /* Default 1.9V */ 287 common->wlan_rf_power_mode = 0; 288 common->obm_ant_sel_val = 2; 289 common->beacon_interval = RSI_BEACON_INTERVAL; 290 common->dtim_cnt = RSI_DTIM_COUNT; 291 common->w9116_features.pll_mode = 0x0; 292 common->w9116_features.rf_type = 1; 293 common->w9116_features.wireless_mode = 0; 294 common->w9116_features.enable_ppe = 0; 295 common->w9116_features.afe_type = 1; 296 common->w9116_features.dpd = 0; 297 common->w9116_features.sifs_tx_enable = 0; 298 common->w9116_features.ps_options = 0; 299 } 300 301 void init_bgscan_params(struct rsi_common *common) 302 { 303 memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params)); 304 common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD; 305 common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD; 306 common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY; 307 common->bgscan.num_bgscan_channels = 0; 308 common->bgscan.two_probe = 1; 309 common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME; 310 common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME; 311 } 312 313 /** 314 * rsi_set_contention_vals() - This function sets the contention values for the 315 * backoff procedure. 316 * @common: Pointer to the driver private structure. 317 * 318 * Return: None. 319 */ 320 static void rsi_set_contention_vals(struct rsi_common *common) 321 { 322 u8 ii = 0; 323 324 for (; ii < NUM_EDCA_QUEUES; ii++) { 325 common->tx_qinfo[ii].wme_params = 326 (((common->edca_params[ii].cw_min / 2) + 327 (common->edca_params[ii].aifs)) * 328 WMM_SHORT_SLOT_TIME + SIFS_DURATION); 329 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; 330 common->tx_qinfo[ii].pkt_contended = 0; 331 } 332 } 333 334 /** 335 * rsi_send_internal_mgmt_frame() - This function sends management frames to 336 * firmware.Also schedules packet to queue 337 * for transmission. 338 * @common: Pointer to the driver private structure. 339 * @skb: Pointer to the socket buffer structure. 340 * 341 * Return: 0 on success, -1 on failure. 342 */ 343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common, 344 struct sk_buff *skb) 345 { 346 struct skb_info *tx_params; 347 struct rsi_cmd_desc *desc; 348 349 if (skb == NULL) { 350 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 351 return -ENOMEM; 352 } 353 desc = (struct rsi_cmd_desc *)skb->data; 354 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP); 355 skb->priority = MGMT_SOFT_Q; 356 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; 357 tx_params->flags |= INTERNAL_MGMT_PKT; 358 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); 359 rsi_set_event(&common->tx_thread.event); 360 return 0; 361 } 362 363 /** 364 * rsi_load_radio_caps() - This function is used to send radio capabilities 365 * values to firmware. 366 * @common: Pointer to the driver private structure. 367 * 368 * Return: 0 on success, corresponding negative error code on failure. 369 */ 370 static int rsi_load_radio_caps(struct rsi_common *common) 371 { 372 struct rsi_radio_caps *radio_caps; 373 struct rsi_hw *adapter = common->priv; 374 u16 inx = 0; 375 u8 ii; 376 u8 radio_id = 0; 377 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 378 0xf0, 0xf0, 0xf0, 0xf0, 379 0xf0, 0xf0, 0xf0, 0xf0, 380 0xf0, 0xf0, 0xf0, 0xf0, 381 0xf0, 0xf0, 0xf0, 0xf0}; 382 struct sk_buff *skb; 383 u16 frame_len = sizeof(struct rsi_radio_caps); 384 385 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); 386 387 skb = dev_alloc_skb(frame_len); 388 389 if (!skb) { 390 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 391 __func__); 392 return -ENOMEM; 393 } 394 395 memset(skb->data, 0, frame_len); 396 radio_caps = (struct rsi_radio_caps *)skb->data; 397 398 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES; 399 radio_caps->channel_num = common->channel; 400 radio_caps->rf_model = RSI_RF_TYPE; 401 402 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ; 403 if (common->channel_width == BW_40MHZ) { 404 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ; 405 406 if (common->fsm_state == FSM_MAC_INIT_DONE) { 407 struct ieee80211_hw *hw = adapter->hw; 408 struct ieee80211_conf *conf = &hw->conf; 409 410 if (conf_is_ht40_plus(conf)) { 411 radio_caps->ppe_ack_rate = 412 cpu_to_le16(LOWER_20_ENABLE | 413 (LOWER_20_ENABLE >> 12)); 414 } else if (conf_is_ht40_minus(conf)) { 415 radio_caps->ppe_ack_rate = 416 cpu_to_le16(UPPER_20_ENABLE | 417 (UPPER_20_ENABLE >> 12)); 418 } else { 419 radio_caps->ppe_ack_rate = 420 cpu_to_le16((BW_40MHZ << 12) | 421 FULL40M_ENABLE); 422 } 423 } 424 } 425 radio_caps->radio_info |= radio_id; 426 427 if (adapter->device_model == RSI_DEV_9116 && 428 common->channel_width == BW_20MHZ) 429 radio_caps->radio_cfg_info &= ~0x3; 430 431 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE); 432 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE); 433 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE); 434 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE); 435 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE); 436 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE); 437 438 for (ii = 0; ii < MAX_HW_QUEUES; ii++) { 439 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); 440 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); 441 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); 442 radio_caps->qos_params[ii].txop_q = 0; 443 } 444 445 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) { 446 if (common->edca_params[ii].cw_max > 0) { 447 radio_caps->qos_params[ii].cont_win_min_q = 448 cpu_to_le16(common->edca_params[ii].cw_min); 449 radio_caps->qos_params[ii].cont_win_max_q = 450 cpu_to_le16(common->edca_params[ii].cw_max); 451 radio_caps->qos_params[ii].aifsn_val_q = 452 cpu_to_le16(common->edca_params[ii].aifs << 8); 453 radio_caps->qos_params[ii].txop_q = 454 cpu_to_le16(common->edca_params[ii].txop); 455 } 456 } 457 458 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff); 459 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0; 460 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff); 461 462 memcpy(&common->rate_pwr[0], &gc[0], 40); 463 for (ii = 0; ii < 20; ii++) 464 radio_caps->gcpd_per_rate[inx++] = 465 cpu_to_le16(common->rate_pwr[ii] & 0x00FF); 466 467 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno, 468 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 469 470 skb_put(skb, frame_len); 471 472 return rsi_send_internal_mgmt_frame(common, skb); 473 } 474 475 /** 476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. 477 * @common: Pointer to the driver private structure. 478 * @msg: Pointer to received packet. 479 * @msg_len: Length of the received packet. 480 * @type: Type of received packet. 481 * 482 * Return: 0 on success, -1 on failure. 483 */ 484 static int rsi_mgmt_pkt_to_core(struct rsi_common *common, 485 u8 *msg, 486 s32 msg_len) 487 { 488 struct rsi_hw *adapter = common->priv; 489 struct ieee80211_tx_info *info; 490 struct skb_info *rx_params; 491 u8 pad_bytes = msg[4]; 492 struct sk_buff *skb; 493 494 if (!adapter->sc_nvifs) 495 return -ENOLINK; 496 497 msg_len -= pad_bytes; 498 if (msg_len <= 0) { 499 rsi_dbg(MGMT_RX_ZONE, 500 "%s: Invalid rx msg of len = %d\n", 501 __func__, msg_len); 502 return -EINVAL; 503 } 504 505 skb = dev_alloc_skb(msg_len); 506 if (!skb) 507 return -ENOMEM; 508 509 skb_put_data(skb, 510 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), 511 msg_len); 512 513 info = IEEE80211_SKB_CB(skb); 514 rx_params = (struct skb_info *)info->driver_data; 515 rx_params->rssi = rsi_get_rssi(msg); 516 rx_params->channel = rsi_get_channel(msg); 517 rsi_indicate_pkt_to_os(common, skb); 518 519 return 0; 520 } 521 522 /** 523 * rsi_hal_send_sta_notify_frame() - This function sends the station notify 524 * frame to firmware. 525 * @common: Pointer to the driver private structure. 526 * @opmode: Operating mode of device. 527 * @notify_event: Notification about station connection. 528 * @bssid: bssid. 529 * @qos_enable: Qos is enabled. 530 * @aid: Aid (unique for all STA). 531 * 532 * Return: status: 0 on success, corresponding negative error code on failure. 533 */ 534 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode, 535 u8 notify_event, const unsigned char *bssid, 536 u8 qos_enable, u16 aid, u16 sta_id, 537 struct ieee80211_vif *vif) 538 { 539 struct sk_buff *skb = NULL; 540 struct rsi_peer_notify *peer_notify; 541 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id; 542 int status; 543 u16 frame_len = sizeof(struct rsi_peer_notify); 544 545 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); 546 547 skb = dev_alloc_skb(frame_len); 548 549 if (!skb) { 550 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 551 __func__); 552 return -ENOMEM; 553 } 554 555 memset(skb->data, 0, frame_len); 556 peer_notify = (struct rsi_peer_notify *)skb->data; 557 558 if (opmode == RSI_OPMODE_STA) 559 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1); 560 else if (opmode == RSI_OPMODE_AP) 561 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1); 562 563 switch (notify_event) { 564 case STA_CONNECTED: 565 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); 566 break; 567 case STA_DISCONNECTED: 568 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); 569 break; 570 default: 571 break; 572 } 573 574 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); 575 ether_addr_copy(peer_notify->mac_addr, bssid); 576 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY); 577 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); 578 579 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno, 580 (frame_len - FRAME_DESC_SZ), 581 RSI_WIFI_MGMT_Q); 582 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY; 583 peer_notify->desc.desc_dword3.qid_tid = sta_id; 584 peer_notify->desc.desc_dword3.sta_id = vap_id; 585 586 skb_put(skb, frame_len); 587 588 status = rsi_send_internal_mgmt_frame(common, skb); 589 590 if ((vif->type == NL80211_IFTYPE_STATION) && 591 (!status && qos_enable)) { 592 rsi_set_contention_vals(common); 593 status = rsi_load_radio_caps(common); 594 } 595 return status; 596 } 597 598 /** 599 * rsi_send_aggregation_params_frame() - This function sends the ampdu 600 * indication frame to firmware. 601 * @common: Pointer to the driver private structure. 602 * @tid: traffic identifier. 603 * @ssn: ssn. 604 * @buf_size: buffer size. 605 * @event: notification about station connection. 606 * 607 * Return: 0 on success, corresponding negative error code on failure. 608 */ 609 int rsi_send_aggregation_params_frame(struct rsi_common *common, 610 u16 tid, 611 u16 ssn, 612 u8 buf_size, 613 u8 event, 614 u8 sta_id) 615 { 616 struct sk_buff *skb = NULL; 617 struct rsi_aggr_params *aggr_params; 618 u16 frame_len = sizeof(struct rsi_aggr_params); 619 620 skb = dev_alloc_skb(frame_len); 621 622 if (!skb) { 623 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 624 __func__); 625 return -ENOMEM; 626 } 627 628 memset(skb->data, 0, frame_len); 629 aggr_params = (struct rsi_aggr_params *)skb->data; 630 631 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); 632 633 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 634 aggr_params->desc_dword0.frame_type = AMPDU_IND; 635 636 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK; 637 aggr_params->peer_id = sta_id; 638 if (event == STA_TX_ADDBA_DONE) { 639 aggr_params->seq_start = cpu_to_le16(ssn); 640 aggr_params->baw_size = cpu_to_le16(buf_size); 641 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START; 642 } else if (event == STA_RX_ADDBA_DONE) { 643 aggr_params->seq_start = cpu_to_le16(ssn); 644 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START | 645 RSI_AGGR_PARAMS_RX_AGGR); 646 } else if (event == STA_RX_DELBA) { 647 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR; 648 } 649 650 skb_put(skb, frame_len); 651 652 return rsi_send_internal_mgmt_frame(common, skb); 653 } 654 655 /** 656 * rsi_program_bb_rf() - This function starts base band and RF programming. 657 * This is called after initial configurations are done. 658 * @common: Pointer to the driver private structure. 659 * 660 * Return: 0 on success, corresponding negative error code on failure. 661 */ 662 static int rsi_program_bb_rf(struct rsi_common *common) 663 { 664 struct sk_buff *skb; 665 struct rsi_bb_rf_prog *bb_rf_prog; 666 u16 frame_len = sizeof(struct rsi_bb_rf_prog); 667 668 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); 669 670 skb = dev_alloc_skb(frame_len); 671 if (!skb) { 672 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 673 __func__); 674 return -ENOMEM; 675 } 676 677 memset(skb->data, 0, frame_len); 678 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data; 679 680 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 681 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA; 682 bb_rf_prog->endpoint = common->endpoint; 683 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode; 684 685 if (common->rf_reset) { 686 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE); 687 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", 688 __func__); 689 common->rf_reset = 0; 690 } 691 common->bb_rf_prog_count = 1; 692 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | 693 (RSI_RF_TYPE << 4)); 694 skb_put(skb, frame_len); 695 696 return rsi_send_internal_mgmt_frame(common, skb); 697 } 698 699 /** 700 * rsi_set_vap_capabilities() - This function send vap capability to firmware. 701 * @common: Pointer to the driver private structure. 702 * @opmode: Operating mode of device. 703 * 704 * Return: 0 on success, corresponding negative error code on failure. 705 */ 706 int rsi_set_vap_capabilities(struct rsi_common *common, 707 enum opmode mode, 708 u8 *mac_addr, 709 u8 vap_id, 710 u8 vap_status) 711 { 712 struct sk_buff *skb = NULL; 713 struct rsi_vap_caps *vap_caps; 714 struct rsi_hw *adapter = common->priv; 715 struct ieee80211_hw *hw = adapter->hw; 716 struct ieee80211_conf *conf = &hw->conf; 717 u16 frame_len = sizeof(struct rsi_vap_caps); 718 719 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); 720 721 skb = dev_alloc_skb(frame_len); 722 if (!skb) { 723 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 724 __func__); 725 return -ENOMEM; 726 } 727 728 memset(skb->data, 0, frame_len); 729 vap_caps = (struct rsi_vap_caps *)skb->data; 730 731 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno, 732 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 733 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES; 734 vap_caps->status = vap_status; 735 vap_caps->vif_type = mode; 736 vap_caps->channel_bw = common->channel_width; 737 vap_caps->vap_id = vap_id; 738 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) | 739 (common->radio_id & 0xf); 740 741 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN); 742 vap_caps->keep_alive_period = cpu_to_le16(90); 743 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); 744 745 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); 746 747 if (common->band == NL80211_BAND_5GHZ) { 748 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6); 749 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6); 750 } else { 751 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1); 752 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1); 753 } 754 if (conf_is_ht40(conf)) { 755 if (conf_is_ht40_minus(conf)) 756 vap_caps->ctrl_rate_flags = 757 cpu_to_le16(UPPER_20_ENABLE); 758 else if (conf_is_ht40_plus(conf)) 759 vap_caps->ctrl_rate_flags = 760 cpu_to_le16(LOWER_20_ENABLE); 761 else 762 vap_caps->ctrl_rate_flags = 763 cpu_to_le16(FULL40M_ENABLE); 764 } 765 766 vap_caps->default_data_rate = 0; 767 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval); 768 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt); 769 770 skb_put(skb, frame_len); 771 772 return rsi_send_internal_mgmt_frame(common, skb); 773 } 774 775 /** 776 * rsi_hal_load_key() - This function is used to load keys within the firmware. 777 * @common: Pointer to the driver private structure. 778 * @data: Pointer to the key data. 779 * @key_len: Key length to be loaded. 780 * @key_type: Type of key: GROUP/PAIRWISE. 781 * @key_id: Key index. 782 * @cipher: Type of cipher used. 783 * 784 * Return: 0 on success, -1 on failure. 785 */ 786 int rsi_hal_load_key(struct rsi_common *common, 787 u8 *data, 788 u16 key_len, 789 u8 key_type, 790 u8 key_id, 791 u32 cipher, 792 s16 sta_id, 793 struct ieee80211_vif *vif) 794 { 795 struct sk_buff *skb = NULL; 796 struct rsi_set_key *set_key; 797 u16 key_descriptor = 0; 798 u16 frame_len = sizeof(struct rsi_set_key); 799 800 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); 801 802 skb = dev_alloc_skb(frame_len); 803 if (!skb) { 804 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 805 __func__); 806 return -ENOMEM; 807 } 808 809 memset(skb->data, 0, frame_len); 810 set_key = (struct rsi_set_key *)skb->data; 811 812 if (key_type == RSI_GROUP_KEY) { 813 key_descriptor = RSI_KEY_TYPE_BROADCAST; 814 if (vif->type == NL80211_IFTYPE_AP) 815 key_descriptor |= RSI_KEY_MODE_AP; 816 } 817 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 818 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 819 key_id = 0; 820 key_descriptor |= RSI_WEP_KEY; 821 if (key_len >= 13) 822 key_descriptor |= RSI_WEP_KEY_104; 823 } else if (cipher != KEY_TYPE_CLEAR) { 824 key_descriptor |= RSI_CIPHER_WPA; 825 if (cipher == WLAN_CIPHER_SUITE_TKIP) 826 key_descriptor |= RSI_CIPHER_TKIP; 827 } 828 key_descriptor |= RSI_PROTECT_DATA_FRAMES; 829 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET); 830 831 rsi_set_len_qno(&set_key->desc_dword0.len_qno, 832 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 833 set_key->desc_dword0.frame_type = SET_KEY_REQ; 834 set_key->key_desc = cpu_to_le16(key_descriptor); 835 set_key->sta_id = sta_id; 836 837 if (data) { 838 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 839 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 840 memcpy(&set_key->key[key_id][1], data, key_len * 2); 841 } else { 842 memcpy(&set_key->key[0][0], data, key_len); 843 } 844 memcpy(set_key->tx_mic_key, &data[16], 8); 845 memcpy(set_key->rx_mic_key, &data[24], 8); 846 } else { 847 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ); 848 } 849 850 skb_put(skb, frame_len); 851 852 return rsi_send_internal_mgmt_frame(common, skb); 853 } 854 855 /* 856 * This function sends the common device configuration parameters to device. 857 * This frame includes the useful information to make device works on 858 * specific operating mode. 859 */ 860 static int rsi_send_common_dev_params(struct rsi_common *common) 861 { 862 struct sk_buff *skb; 863 u16 frame_len; 864 struct rsi_config_vals *dev_cfgs; 865 866 frame_len = sizeof(struct rsi_config_vals); 867 868 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n"); 869 skb = dev_alloc_skb(frame_len); 870 if (!skb) { 871 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 872 return -ENOMEM; 873 } 874 875 memset(skb->data, 0, frame_len); 876 877 dev_cfgs = (struct rsi_config_vals *)skb->data; 878 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals))); 879 880 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ), 881 RSI_COEX_Q); 882 dev_cfgs->pkt_type = COMMON_DEV_CONFIG; 883 884 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode; 885 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode; 886 887 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP; 888 dev_cfgs->unused_soc_gpio_bitmap = 889 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP); 890 891 dev_cfgs->opermode = common->oper_mode; 892 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode; 893 dev_cfgs->driver_mode = common->driver_mode; 894 dev_cfgs->region_code = NL80211_DFS_FCC; 895 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val; 896 897 skb_put(skb, frame_len); 898 899 return rsi_send_internal_mgmt_frame(common, skb); 900 } 901 902 /* 903 * rsi_load_bootup_params() - This function send bootup params to the firmware. 904 * @common: Pointer to the driver private structure. 905 * 906 * Return: 0 on success, corresponding error code on failure. 907 */ 908 static int rsi_load_bootup_params(struct rsi_common *common) 909 { 910 struct sk_buff *skb; 911 struct rsi_boot_params *boot_params; 912 913 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 914 skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); 915 if (!skb) { 916 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 917 __func__); 918 return -ENOMEM; 919 } 920 921 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 922 boot_params = (struct rsi_boot_params *)skb->data; 923 924 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); 925 926 if (common->channel_width == BW_40MHZ) { 927 memcpy(&boot_params->bootup_params, 928 &boot_params_40, 929 sizeof(struct bootup_params)); 930 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 931 UMAC_CLK_40BW); 932 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); 933 } else { 934 memcpy(&boot_params->bootup_params, 935 &boot_params_20, 936 sizeof(struct bootup_params)); 937 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 938 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); 939 rsi_dbg(MGMT_TX_ZONE, 940 "%s: Packet 20MHZ <=== %d\n", __func__, 941 UMAC_CLK_20BW); 942 } else { 943 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); 944 rsi_dbg(MGMT_TX_ZONE, 945 "%s: Packet 20MHZ <=== %d\n", __func__, 946 UMAC_CLK_40MHZ); 947 } 948 } 949 950 /** 951 * Bit{0:11} indicates length of the Packet 952 * Bit{12:15} indicates host queue number 953 */ 954 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | 955 (RSI_WIFI_MGMT_Q << 12)); 956 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); 957 958 skb_put(skb, sizeof(struct rsi_boot_params)); 959 960 return rsi_send_internal_mgmt_frame(common, skb); 961 } 962 963 static int rsi_load_9116_bootup_params(struct rsi_common *common) 964 { 965 struct sk_buff *skb; 966 struct rsi_boot_params_9116 *boot_params; 967 968 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 969 970 skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116)); 971 if (!skb) 972 return -ENOMEM; 973 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 974 boot_params = (struct rsi_boot_params_9116 *)skb->data; 975 976 if (common->channel_width == BW_40MHZ) { 977 memcpy(&boot_params->bootup_params, 978 &boot_params_9116_40, 979 sizeof(struct bootup_params_9116)); 980 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 981 UMAC_CLK_40BW); 982 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW); 983 } else { 984 memcpy(&boot_params->bootup_params, 985 &boot_params_9116_20, 986 sizeof(struct bootup_params_9116)); 987 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 988 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW); 989 rsi_dbg(MGMT_TX_ZONE, 990 "%s: Packet 20MHZ <=== %d\n", __func__, 991 UMAC_CLK_20BW); 992 } else { 993 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ); 994 rsi_dbg(MGMT_TX_ZONE, 995 "%s: Packet 20MHZ <=== %d\n", __func__, 996 UMAC_CLK_40MHZ); 997 } 998 } 999 rsi_set_len_qno(&boot_params->desc_dword0.len_qno, 1000 sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q); 1001 boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST; 1002 skb_put(skb, sizeof(struct rsi_boot_params_9116)); 1003 1004 return rsi_send_internal_mgmt_frame(common, skb); 1005 } 1006 1007 /** 1008 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an 1009 * internal management frame to indicate it to firmware. 1010 * @common: Pointer to the driver private structure. 1011 * 1012 * Return: 0 on success, corresponding error code on failure. 1013 */ 1014 static int rsi_send_reset_mac(struct rsi_common *common) 1015 { 1016 struct sk_buff *skb; 1017 struct rsi_mac_frame *mgmt_frame; 1018 1019 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); 1020 1021 skb = dev_alloc_skb(FRAME_DESC_SZ); 1022 if (!skb) { 1023 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1024 __func__); 1025 return -ENOMEM; 1026 } 1027 1028 memset(skb->data, 0, FRAME_DESC_SZ); 1029 mgmt_frame = (struct rsi_mac_frame *)skb->data; 1030 1031 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1032 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); 1033 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); 1034 1035 #define RSI_9116_DEF_TA_AGGR 3 1036 if (common->priv->device_model == RSI_DEV_9116) 1037 mgmt_frame->desc_word[3] |= 1038 cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8); 1039 1040 skb_put(skb, FRAME_DESC_SZ); 1041 1042 return rsi_send_internal_mgmt_frame(common, skb); 1043 } 1044 1045 /** 1046 * rsi_band_check() - This function programs the band 1047 * @common: Pointer to the driver private structure. 1048 * 1049 * Return: 0 on success, corresponding error code on failure. 1050 */ 1051 int rsi_band_check(struct rsi_common *common, 1052 struct ieee80211_channel *curchan) 1053 { 1054 struct rsi_hw *adapter = common->priv; 1055 struct ieee80211_hw *hw = adapter->hw; 1056 u8 prev_bw = common->channel_width; 1057 u8 prev_ep = common->endpoint; 1058 int status = 0; 1059 1060 if (common->band != curchan->band) { 1061 common->rf_reset = 1; 1062 common->band = curchan->band; 1063 } 1064 1065 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) || 1066 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20)) 1067 common->channel_width = BW_20MHZ; 1068 else 1069 common->channel_width = BW_40MHZ; 1070 1071 if (common->band == NL80211_BAND_2GHZ) { 1072 if (common->channel_width) 1073 common->endpoint = EP_2GHZ_40MHZ; 1074 else 1075 common->endpoint = EP_2GHZ_20MHZ; 1076 } else { 1077 if (common->channel_width) 1078 common->endpoint = EP_5GHZ_40MHZ; 1079 else 1080 common->endpoint = EP_5GHZ_20MHZ; 1081 } 1082 1083 if (common->endpoint != prev_ep) { 1084 status = rsi_program_bb_rf(common); 1085 if (status) 1086 return status; 1087 } 1088 1089 if (common->channel_width != prev_bw) { 1090 if (adapter->device_model == RSI_DEV_9116) 1091 status = rsi_load_9116_bootup_params(common); 1092 else 1093 status = rsi_load_bootup_params(common); 1094 if (status) 1095 return status; 1096 1097 status = rsi_load_radio_caps(common); 1098 if (status) 1099 return status; 1100 } 1101 1102 return status; 1103 } 1104 1105 /** 1106 * rsi_set_channel() - This function programs the channel. 1107 * @common: Pointer to the driver private structure. 1108 * @channel: Channel value to be set. 1109 * 1110 * Return: 0 on success, corresponding error code on failure. 1111 */ 1112 int rsi_set_channel(struct rsi_common *common, 1113 struct ieee80211_channel *channel) 1114 { 1115 struct sk_buff *skb = NULL; 1116 struct rsi_chan_config *chan_cfg; 1117 u16 frame_len = sizeof(struct rsi_chan_config); 1118 1119 rsi_dbg(MGMT_TX_ZONE, 1120 "%s: Sending scan req frame\n", __func__); 1121 1122 skb = dev_alloc_skb(frame_len); 1123 if (!skb) { 1124 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1125 __func__); 1126 return -ENOMEM; 1127 } 1128 1129 if (!channel) { 1130 dev_kfree_skb(skb); 1131 return 0; 1132 } 1133 memset(skb->data, 0, frame_len); 1134 chan_cfg = (struct rsi_chan_config *)skb->data; 1135 1136 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1137 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST; 1138 chan_cfg->channel_number = channel->hw_value; 1139 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain; 1140 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain; 1141 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4; 1142 1143 if ((channel->flags & IEEE80211_CHAN_NO_IR) || 1144 (channel->flags & IEEE80211_CHAN_RADAR)) { 1145 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR; 1146 } else { 1147 if (common->tx_power < channel->max_power) 1148 chan_cfg->tx_power = cpu_to_le16(common->tx_power); 1149 else 1150 chan_cfg->tx_power = cpu_to_le16(channel->max_power); 1151 } 1152 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf); 1153 1154 if (common->channel_width == BW_40MHZ) 1155 chan_cfg->channel_width = 0x1; 1156 1157 common->channel = channel->hw_value; 1158 1159 skb_put(skb, frame_len); 1160 1161 return rsi_send_internal_mgmt_frame(common, skb); 1162 } 1163 1164 /** 1165 * rsi_send_radio_params_update() - This function sends the radio 1166 * parameters update to device 1167 * @common: Pointer to the driver private structure. 1168 * @channel: Channel value to be set. 1169 * 1170 * Return: 0 on success, corresponding error code on failure. 1171 */ 1172 int rsi_send_radio_params_update(struct rsi_common *common) 1173 { 1174 struct rsi_mac_frame *cmd_frame; 1175 struct sk_buff *skb = NULL; 1176 1177 rsi_dbg(MGMT_TX_ZONE, 1178 "%s: Sending Radio Params update frame\n", __func__); 1179 1180 skb = dev_alloc_skb(FRAME_DESC_SZ); 1181 if (!skb) { 1182 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1183 __func__); 1184 return -ENOMEM; 1185 } 1186 1187 memset(skb->data, 0, FRAME_DESC_SZ); 1188 cmd_frame = (struct rsi_mac_frame *)skb->data; 1189 1190 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1191 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE); 1192 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0)); 1193 1194 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8); 1195 1196 skb_put(skb, FRAME_DESC_SZ); 1197 1198 return rsi_send_internal_mgmt_frame(common, skb); 1199 } 1200 1201 /* This function programs the threshold. */ 1202 int rsi_send_vap_dynamic_update(struct rsi_common *common) 1203 { 1204 struct sk_buff *skb; 1205 struct rsi_dynamic_s *dynamic_frame; 1206 1207 rsi_dbg(MGMT_TX_ZONE, 1208 "%s: Sending vap update indication frame\n", __func__); 1209 1210 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s)); 1211 if (!skb) 1212 return -ENOMEM; 1213 1214 memset(skb->data, 0, sizeof(struct rsi_dynamic_s)); 1215 dynamic_frame = (struct rsi_dynamic_s *)skb->data; 1216 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno, 1217 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q); 1218 1219 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE; 1220 dynamic_frame->desc_dword2.pkt_info = 1221 cpu_to_le32(common->rts_threshold); 1222 1223 if (common->wow_flags & RSI_WOW_ENABLED) { 1224 /* Beacon miss threshold */ 1225 dynamic_frame->desc_dword3.token = 1226 cpu_to_le16(RSI_BCN_MISS_THRESHOLD); 1227 dynamic_frame->frame_body.keep_alive_period = 1228 cpu_to_le16(RSI_WOW_KEEPALIVE); 1229 } else { 1230 dynamic_frame->frame_body.keep_alive_period = 1231 cpu_to_le16(RSI_DEF_KEEPALIVE); 1232 } 1233 1234 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */ 1235 1236 skb_put(skb, sizeof(struct rsi_dynamic_s)); 1237 1238 return rsi_send_internal_mgmt_frame(common, skb); 1239 } 1240 1241 /** 1242 * rsi_compare() - This function is used to compare two integers 1243 * @a: pointer to the first integer 1244 * @b: pointer to the second integer 1245 * 1246 * Return: 0 if both are equal, -1 if the first is smaller, else 1 1247 */ 1248 static int rsi_compare(const void *a, const void *b) 1249 { 1250 u16 _a = *(const u16 *)(a); 1251 u16 _b = *(const u16 *)(b); 1252 1253 if (_a > _b) 1254 return -1; 1255 1256 if (_a < _b) 1257 return 1; 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * rsi_map_rates() - This function is used to map selected rates to hw rates. 1264 * @rate: The standard rate to be mapped. 1265 * @offset: Offset that will be returned. 1266 * 1267 * Return: 0 if it is a mcs rate, else 1 1268 */ 1269 static bool rsi_map_rates(u16 rate, int *offset) 1270 { 1271 int kk; 1272 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { 1273 if (rate == mcs[kk]) { 1274 *offset = kk; 1275 return false; 1276 } 1277 } 1278 1279 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { 1280 if (rate == rsi_rates[kk].bitrate / 5) { 1281 *offset = kk; 1282 break; 1283 } 1284 } 1285 return true; 1286 } 1287 1288 /** 1289 * rsi_send_auto_rate_request() - This function is to set rates for connection 1290 * and send autorate request to firmware. 1291 * @common: Pointer to the driver private structure. 1292 * 1293 * Return: 0 on success, corresponding error code on failure. 1294 */ 1295 static int rsi_send_auto_rate_request(struct rsi_common *common, 1296 struct ieee80211_sta *sta, 1297 u16 sta_id, 1298 struct ieee80211_vif *vif) 1299 { 1300 struct sk_buff *skb; 1301 struct rsi_auto_rate *auto_rate; 1302 int ii = 0, jj = 0, kk = 0; 1303 struct ieee80211_hw *hw = common->priv->hw; 1304 u8 band = hw->conf.chandef.chan->band; 1305 u8 num_supported_rates = 0; 1306 u8 rate_table_offset, rate_offset = 0; 1307 u32 rate_bitmap; 1308 u16 *selected_rates, min_rate; 1309 bool is_ht = false, is_sgi = false; 1310 u16 frame_len = sizeof(struct rsi_auto_rate); 1311 1312 rsi_dbg(MGMT_TX_ZONE, 1313 "%s: Sending auto rate request frame\n", __func__); 1314 1315 skb = dev_alloc_skb(frame_len); 1316 if (!skb) { 1317 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1318 __func__); 1319 return -ENOMEM; 1320 } 1321 1322 memset(skb->data, 0, frame_len); 1323 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL); 1324 if (!selected_rates) { 1325 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", 1326 __func__); 1327 dev_kfree_skb(skb); 1328 return -ENOMEM; 1329 } 1330 1331 auto_rate = (struct rsi_auto_rate *)skb->data; 1332 1333 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); 1334 auto_rate->collision_tolerance = cpu_to_le16(3); 1335 auto_rate->failure_limit = cpu_to_le16(3); 1336 auto_rate->initial_boundary = cpu_to_le16(3); 1337 auto_rate->max_threshold_limt = cpu_to_le16(27); 1338 1339 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND; 1340 1341 if (common->channel_width == BW_40MHZ) 1342 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ; 1343 auto_rate->desc.desc_dword3.sta_id = sta_id; 1344 1345 if (vif->type == NL80211_IFTYPE_STATION) { 1346 rate_bitmap = common->bitrate_mask[band]; 1347 is_ht = common->vif_info[0].is_ht; 1348 is_sgi = common->vif_info[0].sgi; 1349 } else { 1350 rate_bitmap = sta->supp_rates[band]; 1351 is_ht = sta->ht_cap.ht_supported; 1352 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) || 1353 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)) 1354 is_sgi = true; 1355 } 1356 1357 if (band == NL80211_BAND_2GHZ) { 1358 if ((rate_bitmap == 0) && (is_ht)) 1359 min_rate = RSI_RATE_MCS0; 1360 else 1361 min_rate = RSI_RATE_1; 1362 rate_table_offset = 0; 1363 } else { 1364 if ((rate_bitmap == 0) && (is_ht)) 1365 min_rate = RSI_RATE_MCS0; 1366 else 1367 min_rate = RSI_RATE_6; 1368 rate_table_offset = 4; 1369 } 1370 1371 for (ii = 0, jj = 0; 1372 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) { 1373 if (rate_bitmap & BIT(ii)) { 1374 selected_rates[jj++] = 1375 (rsi_rates[ii + rate_table_offset].bitrate / 5); 1376 rate_offset++; 1377 } 1378 } 1379 num_supported_rates = jj; 1380 1381 if (is_ht) { 1382 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) 1383 selected_rates[jj++] = mcs[ii]; 1384 num_supported_rates += ARRAY_SIZE(mcs); 1385 rate_offset += ARRAY_SIZE(mcs); 1386 } 1387 1388 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); 1389 1390 /* mapping the rates to RSI rates */ 1391 for (ii = 0; ii < jj; ii++) { 1392 if (rsi_map_rates(selected_rates[ii], &kk)) { 1393 auto_rate->supported_rates[ii] = 1394 cpu_to_le16(rsi_rates[kk].hw_value); 1395 } else { 1396 auto_rate->supported_rates[ii] = 1397 cpu_to_le16(rsi_mcsrates[kk]); 1398 } 1399 } 1400 1401 /* loading HT rates in the bottom half of the auto rate table */ 1402 if (is_ht) { 1403 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; 1404 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { 1405 if (is_sgi || conf_is_ht40(&common->priv->hw->conf)) 1406 auto_rate->supported_rates[ii++] = 1407 cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); 1408 else 1409 auto_rate->supported_rates[ii++] = 1410 cpu_to_le16(rsi_mcsrates[kk]); 1411 auto_rate->supported_rates[ii] = 1412 cpu_to_le16(rsi_mcsrates[kk--]); 1413 } 1414 1415 for (; ii < (RSI_TBL_SZ - 1); ii++) { 1416 auto_rate->supported_rates[ii] = 1417 cpu_to_le16(rsi_mcsrates[0]); 1418 } 1419 } 1420 1421 for (; ii < RSI_TBL_SZ; ii++) 1422 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate); 1423 1424 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); 1425 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); 1426 num_supported_rates *= 2; 1427 1428 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno, 1429 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1430 1431 skb_put(skb, frame_len); 1432 kfree(selected_rates); 1433 1434 return rsi_send_internal_mgmt_frame(common, skb); 1435 } 1436 1437 /** 1438 * rsi_inform_bss_status() - This function informs about bss status with the 1439 * help of sta notify params by sending an internal 1440 * management frame to firmware. 1441 * @common: Pointer to the driver private structure. 1442 * @status: Bss status type. 1443 * @bssid: Bssid. 1444 * @qos_enable: Qos is enabled. 1445 * @aid: Aid (unique for all STAs). 1446 * 1447 * Return: None. 1448 */ 1449 void rsi_inform_bss_status(struct rsi_common *common, 1450 enum opmode opmode, 1451 u8 status, 1452 const u8 *addr, 1453 u8 qos_enable, 1454 u16 aid, 1455 struct ieee80211_sta *sta, 1456 u16 sta_id, 1457 u16 assoc_cap, 1458 struct ieee80211_vif *vif) 1459 { 1460 if (status) { 1461 if (opmode == RSI_OPMODE_STA) 1462 common->hw_data_qs_blocked = true; 1463 rsi_hal_send_sta_notify_frame(common, 1464 opmode, 1465 STA_CONNECTED, 1466 addr, 1467 qos_enable, 1468 aid, sta_id, 1469 vif); 1470 if (common->min_rate == 0xffff) 1471 rsi_send_auto_rate_request(common, sta, sta_id, vif); 1472 if (opmode == RSI_OPMODE_STA && 1473 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) && 1474 !rsi_send_block_unblock_frame(common, false)) 1475 common->hw_data_qs_blocked = false; 1476 } else { 1477 if (opmode == RSI_OPMODE_STA) 1478 common->hw_data_qs_blocked = true; 1479 1480 if (!(common->wow_flags & RSI_WOW_ENABLED)) 1481 rsi_hal_send_sta_notify_frame(common, opmode, 1482 STA_DISCONNECTED, addr, 1483 qos_enable, aid, sta_id, 1484 vif); 1485 if (opmode == RSI_OPMODE_STA) 1486 rsi_send_block_unblock_frame(common, true); 1487 } 1488 } 1489 1490 /** 1491 * rsi_eeprom_read() - This function sends a frame to read the mac address 1492 * from the eeprom. 1493 * @common: Pointer to the driver private structure. 1494 * 1495 * Return: 0 on success, -1 on failure. 1496 */ 1497 static int rsi_eeprom_read(struct rsi_common *common) 1498 { 1499 struct rsi_eeprom_read_frame *mgmt_frame; 1500 struct rsi_hw *adapter = common->priv; 1501 struct sk_buff *skb; 1502 1503 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); 1504 1505 skb = dev_alloc_skb(FRAME_DESC_SZ); 1506 if (!skb) { 1507 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1508 __func__); 1509 return -ENOMEM; 1510 } 1511 1512 memset(skb->data, 0, FRAME_DESC_SZ); 1513 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data; 1514 1515 /* FrameType */ 1516 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q); 1517 mgmt_frame->pkt_type = EEPROM_READ; 1518 1519 /* Number of bytes to read */ 1520 mgmt_frame->pkt_info = 1521 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) & 1522 RSI_EEPROM_LEN_MASK); 1523 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) & 1524 RSI_EEPROM_HDR_SIZE_MASK); 1525 1526 /* Address to read */ 1527 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset); 1528 1529 skb_put(skb, FRAME_DESC_SZ); 1530 1531 return rsi_send_internal_mgmt_frame(common, skb); 1532 } 1533 1534 /** 1535 * This function sends a frame to block/unblock 1536 * data queues in the firmware 1537 * 1538 * @param common Pointer to the driver private structure. 1539 * @param block event - block if true, unblock if false 1540 * @return 0 on success, -1 on failure. 1541 */ 1542 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event) 1543 { 1544 struct rsi_block_unblock_data *mgmt_frame; 1545 struct sk_buff *skb; 1546 1547 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__); 1548 1549 skb = dev_alloc_skb(FRAME_DESC_SZ); 1550 if (!skb) { 1551 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1552 __func__); 1553 return -ENOMEM; 1554 } 1555 1556 memset(skb->data, 0, FRAME_DESC_SZ); 1557 mgmt_frame = (struct rsi_block_unblock_data *)skb->data; 1558 1559 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1560 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE; 1561 mgmt_frame->host_quiet_info = QUIET_INFO_VALID; 1562 1563 if (block_event) { 1564 rsi_dbg(INFO_ZONE, "blocking the data qs\n"); 1565 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf); 1566 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4); 1567 } else { 1568 rsi_dbg(INFO_ZONE, "unblocking the data qs\n"); 1569 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf); 1570 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4); 1571 } 1572 1573 skb_put(skb, FRAME_DESC_SZ); 1574 1575 return rsi_send_internal_mgmt_frame(common, skb); 1576 } 1577 1578 /** 1579 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets 1580 * 1581 * @common: Pointer to the driver private structure. 1582 * @rx_filter_word: Flags of filter packets 1583 * 1584 * @Return: 0 on success, -1 on failure. 1585 */ 1586 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word) 1587 { 1588 struct rsi_mac_frame *cmd_frame; 1589 struct sk_buff *skb; 1590 1591 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n"); 1592 1593 skb = dev_alloc_skb(FRAME_DESC_SZ); 1594 if (!skb) { 1595 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1596 __func__); 1597 return -ENOMEM; 1598 } 1599 1600 memset(skb->data, 0, FRAME_DESC_SZ); 1601 cmd_frame = (struct rsi_mac_frame *)skb->data; 1602 1603 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1604 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER); 1605 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word); 1606 1607 skb_put(skb, FRAME_DESC_SZ); 1608 1609 return rsi_send_internal_mgmt_frame(common, skb); 1610 } 1611 1612 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable, 1613 struct ieee80211_vif *vif) 1614 { 1615 struct rsi_common *common = adapter->priv; 1616 struct ieee80211_bss_conf *bss = &vif->bss_conf; 1617 struct rsi_request_ps *ps; 1618 struct rsi_ps_info *ps_info; 1619 struct sk_buff *skb; 1620 int frame_len = sizeof(*ps); 1621 1622 skb = dev_alloc_skb(frame_len); 1623 if (!skb) 1624 return -ENOMEM; 1625 memset(skb->data, 0, frame_len); 1626 1627 ps = (struct rsi_request_ps *)skb->data; 1628 ps_info = &adapter->ps_info; 1629 1630 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno, 1631 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1632 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST; 1633 if (enable) { 1634 ps->ps_sleep.enable = RSI_PS_ENABLE; 1635 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST); 1636 } else { 1637 ps->ps_sleep.enable = RSI_PS_DISABLE; 1638 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND); 1639 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST); 1640 } 1641 1642 ps->ps_uapsd_acs = common->uapsd_bitmap; 1643 1644 ps->ps_sleep.sleep_type = ps_info->sleep_type; 1645 ps->ps_sleep.num_bcns_per_lis_int = 1646 cpu_to_le16(ps_info->num_bcns_per_lis_int); 1647 ps->ps_sleep.sleep_duration = 1648 cpu_to_le32(ps_info->deep_sleep_wakeup_period); 1649 1650 if (bss->assoc) 1651 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP; 1652 else 1653 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP; 1654 1655 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval); 1656 ps->ps_dtim_interval_duration = 1657 cpu_to_le32(ps_info->dtim_interval_duration); 1658 1659 if (ps_info->listen_interval > ps_info->dtim_interval_duration) 1660 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE); 1661 1662 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep); 1663 skb_put(skb, frame_len); 1664 1665 return rsi_send_internal_mgmt_frame(common, skb); 1666 } 1667 1668 static int rsi_send_w9116_features(struct rsi_common *common) 1669 { 1670 struct rsi_wlan_9116_features *w9116_features; 1671 u16 frame_len = sizeof(struct rsi_wlan_9116_features); 1672 struct sk_buff *skb; 1673 1674 rsi_dbg(MGMT_TX_ZONE, 1675 "%s: Sending wlan 9116 features\n", __func__); 1676 1677 skb = dev_alloc_skb(frame_len); 1678 if (!skb) 1679 return -ENOMEM; 1680 memset(skb->data, 0, frame_len); 1681 1682 w9116_features = (struct rsi_wlan_9116_features *)skb->data; 1683 1684 w9116_features->pll_mode = common->w9116_features.pll_mode; 1685 w9116_features->rf_type = common->w9116_features.rf_type; 1686 w9116_features->wireless_mode = common->w9116_features.wireless_mode; 1687 w9116_features->enable_ppe = common->w9116_features.enable_ppe; 1688 w9116_features->afe_type = common->w9116_features.afe_type; 1689 if (common->w9116_features.dpd) 1690 w9116_features->feature_enable |= cpu_to_le32(RSI_DPD); 1691 if (common->w9116_features.sifs_tx_enable) 1692 w9116_features->feature_enable |= 1693 cpu_to_le32(RSI_SIFS_TX_ENABLE); 1694 if (common->w9116_features.ps_options & RSI_DUTY_CYCLING) 1695 w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING); 1696 if (common->w9116_features.ps_options & RSI_END_OF_FRAME) 1697 w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME); 1698 w9116_features->feature_enable |= 1699 cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2); 1700 1701 rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno, 1702 frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q); 1703 w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE; 1704 skb_put(skb, frame_len); 1705 1706 return rsi_send_internal_mgmt_frame(common, skb); 1707 } 1708 1709 /** 1710 * rsi_set_antenna() - This function send antenna configuration request 1711 * to device 1712 * 1713 * @common: Pointer to the driver private structure. 1714 * @antenna: bitmap for tx antenna selection 1715 * 1716 * Return: 0 on Success, negative error code on failure 1717 */ 1718 int rsi_set_antenna(struct rsi_common *common, u8 antenna) 1719 { 1720 struct rsi_ant_sel_frame *ant_sel_frame; 1721 struct sk_buff *skb; 1722 1723 skb = dev_alloc_skb(FRAME_DESC_SZ); 1724 if (!skb) { 1725 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1726 __func__); 1727 return -ENOMEM; 1728 } 1729 1730 memset(skb->data, 0, FRAME_DESC_SZ); 1731 1732 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data; 1733 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME; 1734 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE; 1735 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE); 1736 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno, 1737 0, RSI_WIFI_MGMT_Q); 1738 skb_put(skb, FRAME_DESC_SZ); 1739 1740 return rsi_send_internal_mgmt_frame(common, skb); 1741 } 1742 1743 static int rsi_send_beacon(struct rsi_common *common) 1744 { 1745 struct sk_buff *skb = NULL; 1746 u8 dword_align_bytes = 0; 1747 1748 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE); 1749 if (!skb) 1750 return -ENOMEM; 1751 1752 memset(skb->data, 0, MAX_MGMT_PKT_SIZE); 1753 1754 dword_align_bytes = ((unsigned long)skb->data & 0x3f); 1755 if (dword_align_bytes) 1756 skb_pull(skb, (64 - dword_align_bytes)); 1757 if (rsi_prepare_beacon(common, skb)) { 1758 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n"); 1759 dev_kfree_skb(skb); 1760 return -EINVAL; 1761 } 1762 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb); 1763 rsi_set_event(&common->tx_thread.event); 1764 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__); 1765 1766 return 0; 1767 } 1768 1769 #ifdef CONFIG_PM 1770 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags, 1771 u16 sleep_status) 1772 { 1773 struct rsi_wowlan_req *cmd_frame; 1774 struct sk_buff *skb; 1775 u8 length; 1776 1777 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__); 1778 1779 length = sizeof(*cmd_frame); 1780 skb = dev_alloc_skb(length); 1781 if (!skb) 1782 return -ENOMEM; 1783 memset(skb->data, 0, length); 1784 cmd_frame = (struct rsi_wowlan_req *)skb->data; 1785 1786 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno, 1787 (length - FRAME_DESC_SZ), 1788 RSI_WIFI_MGMT_Q); 1789 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS; 1790 cmd_frame->host_sleep_status = sleep_status; 1791 if (common->secinfo.security_enable && 1792 common->secinfo.gtk_cipher) 1793 flags |= RSI_WOW_GTK_REKEY; 1794 if (sleep_status) 1795 cmd_frame->wow_flags = flags; 1796 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n", 1797 cmd_frame->host_sleep_status, cmd_frame->wow_flags); 1798 1799 skb_put(skb, length); 1800 1801 return rsi_send_internal_mgmt_frame(common, skb); 1802 } 1803 #endif 1804 1805 int rsi_send_bgscan_params(struct rsi_common *common, int enable) 1806 { 1807 struct rsi_bgscan_params *params = &common->bgscan; 1808 struct cfg80211_scan_request *scan_req = common->hwscan; 1809 struct rsi_bgscan_config *bgscan; 1810 struct sk_buff *skb; 1811 u16 frame_len = sizeof(*bgscan); 1812 u8 i; 1813 1814 rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__); 1815 1816 skb = dev_alloc_skb(frame_len); 1817 if (!skb) 1818 return -ENOMEM; 1819 memset(skb->data, 0, frame_len); 1820 1821 bgscan = (struct rsi_bgscan_config *)skb->data; 1822 rsi_set_len_qno(&bgscan->desc_dword0.len_qno, 1823 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1824 bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS; 1825 bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold); 1826 bgscan->roam_threshold = cpu_to_le16(params->roam_threshold); 1827 if (enable) 1828 bgscan->bgscan_periodicity = 1829 cpu_to_le16(params->bgscan_periodicity); 1830 bgscan->active_scan_duration = 1831 cpu_to_le16(params->active_scan_duration); 1832 bgscan->passive_scan_duration = 1833 cpu_to_le16(params->passive_scan_duration); 1834 bgscan->two_probe = params->two_probe; 1835 1836 bgscan->num_bgscan_channels = scan_req->n_channels; 1837 for (i = 0; i < bgscan->num_bgscan_channels; i++) 1838 bgscan->channels2scan[i] = 1839 cpu_to_le16(scan_req->channels[i]->hw_value); 1840 1841 skb_put(skb, frame_len); 1842 1843 return rsi_send_internal_mgmt_frame(common, skb); 1844 } 1845 1846 /* This function sends the probe request to be used by firmware in 1847 * background scan 1848 */ 1849 int rsi_send_bgscan_probe_req(struct rsi_common *common, 1850 struct ieee80211_vif *vif) 1851 { 1852 struct cfg80211_scan_request *scan_req = common->hwscan; 1853 struct rsi_bgscan_probe *bgscan; 1854 struct sk_buff *skb; 1855 struct sk_buff *probereq_skb; 1856 u16 frame_len = sizeof(*bgscan); 1857 size_t ssid_len = 0; 1858 u8 *ssid = NULL; 1859 1860 rsi_dbg(MGMT_TX_ZONE, 1861 "%s: Sending bgscan probe req frame\n", __func__); 1862 1863 if (common->priv->sc_nvifs <= 0) 1864 return -ENODEV; 1865 1866 if (scan_req->n_ssids) { 1867 ssid = scan_req->ssids[0].ssid; 1868 ssid_len = scan_req->ssids[0].ssid_len; 1869 } 1870 1871 skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN); 1872 if (!skb) 1873 return -ENOMEM; 1874 memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN); 1875 1876 bgscan = (struct rsi_bgscan_probe *)skb->data; 1877 bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ; 1878 bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG); 1879 if (common->band == NL80211_BAND_5GHZ) { 1880 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6); 1881 bgscan->def_chan = cpu_to_le16(40); 1882 } else { 1883 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1); 1884 bgscan->def_chan = cpu_to_le16(11); 1885 } 1886 bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME); 1887 1888 probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid, 1889 ssid_len, scan_req->ie_len); 1890 if (!probereq_skb) { 1891 dev_kfree_skb(skb); 1892 return -ENOMEM; 1893 } 1894 1895 memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len); 1896 1897 bgscan->probe_req_length = cpu_to_le16(probereq_skb->len); 1898 1899 rsi_set_len_qno(&bgscan->desc_dword0.len_qno, 1900 (frame_len - FRAME_DESC_SZ + probereq_skb->len), 1901 RSI_WIFI_MGMT_Q); 1902 1903 skb_put(skb, frame_len + probereq_skb->len); 1904 1905 dev_kfree_skb(probereq_skb); 1906 1907 return rsi_send_internal_mgmt_frame(common, skb); 1908 } 1909 1910 /** 1911 * rsi_handle_ta_confirm_type() - This function handles the confirm frames. 1912 * @common: Pointer to the driver private structure. 1913 * @msg: Pointer to received packet. 1914 * 1915 * Return: 0 on success, -1 on failure. 1916 */ 1917 static int rsi_handle_ta_confirm_type(struct rsi_common *common, 1918 u8 *msg) 1919 { 1920 struct rsi_hw *adapter = common->priv; 1921 u8 sub_type = (msg[15] & 0xff); 1922 u16 msg_len = ((u16 *)msg)[0] & 0xfff; 1923 u8 offset; 1924 1925 switch (sub_type) { 1926 case BOOTUP_PARAMS_REQUEST: 1927 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", 1928 __func__); 1929 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { 1930 if (adapter->device_model == RSI_DEV_9116) { 1931 common->band = NL80211_BAND_5GHZ; 1932 common->num_supp_bands = 2; 1933 1934 if (rsi_send_reset_mac(common)) 1935 goto out; 1936 else 1937 common->fsm_state = FSM_RESET_MAC_SENT; 1938 } else { 1939 adapter->eeprom.length = 1940 (IEEE80211_ADDR_LEN + 1941 WLAN_MAC_MAGIC_WORD_LEN + 1942 WLAN_HOST_MODE_LEN); 1943 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR; 1944 if (rsi_eeprom_read(common)) { 1945 common->fsm_state = FSM_CARD_NOT_READY; 1946 goto out; 1947 } 1948 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; 1949 } 1950 } else { 1951 rsi_dbg(INFO_ZONE, 1952 "%s: Received bootup params cfm in %d state\n", 1953 __func__, common->fsm_state); 1954 return 0; 1955 } 1956 break; 1957 1958 case EEPROM_READ: 1959 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n"); 1960 if (msg_len <= 0) { 1961 rsi_dbg(FSM_ZONE, 1962 "%s: [EEPROM_READ] Invalid len %d\n", 1963 __func__, msg_len); 1964 goto out; 1965 } 1966 if (msg[16] != MAGIC_WORD) { 1967 rsi_dbg(FSM_ZONE, 1968 "%s: [EEPROM_READ] Invalid token\n", __func__); 1969 common->fsm_state = FSM_CARD_NOT_READY; 1970 goto out; 1971 } 1972 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { 1973 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + 1974 WLAN_MAC_MAGIC_WORD_LEN); 1975 memcpy(common->mac_addr, &msg[offset], ETH_ALEN); 1976 adapter->eeprom.length = 1977 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3)); 1978 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR; 1979 if (rsi_eeprom_read(common)) { 1980 rsi_dbg(ERR_ZONE, 1981 "%s: Failed reading RF band\n", 1982 __func__); 1983 common->fsm_state = FSM_CARD_NOT_READY; 1984 goto out; 1985 } 1986 common->fsm_state = FSM_EEPROM_READ_RF_TYPE; 1987 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) { 1988 if ((msg[17] & 0x3) == 0x3) { 1989 rsi_dbg(INIT_ZONE, "Dual band supported\n"); 1990 common->band = NL80211_BAND_5GHZ; 1991 common->num_supp_bands = 2; 1992 } else if ((msg[17] & 0x3) == 0x1) { 1993 rsi_dbg(INIT_ZONE, 1994 "Only 2.4Ghz band supported\n"); 1995 common->band = NL80211_BAND_2GHZ; 1996 common->num_supp_bands = 1; 1997 } 1998 if (rsi_send_reset_mac(common)) 1999 goto out; 2000 common->fsm_state = FSM_RESET_MAC_SENT; 2001 } else { 2002 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n", 2003 __func__); 2004 return 0; 2005 } 2006 break; 2007 2008 case RESET_MAC_REQ: 2009 if (common->fsm_state == FSM_RESET_MAC_SENT) { 2010 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", 2011 __func__); 2012 2013 if (rsi_load_radio_caps(common)) 2014 goto out; 2015 else 2016 common->fsm_state = FSM_RADIO_CAPS_SENT; 2017 } else { 2018 rsi_dbg(ERR_ZONE, 2019 "%s: Received reset mac cfm in %d state\n", 2020 __func__, common->fsm_state); 2021 return 0; 2022 } 2023 break; 2024 2025 case RADIO_CAPABILITIES: 2026 if (common->fsm_state == FSM_RADIO_CAPS_SENT) { 2027 common->rf_reset = 1; 2028 if (adapter->device_model == RSI_DEV_9116 && 2029 rsi_send_w9116_features(common)) { 2030 rsi_dbg(ERR_ZONE, 2031 "Failed to send 9116 features\n"); 2032 goto out; 2033 } 2034 if (rsi_program_bb_rf(common)) { 2035 goto out; 2036 } else { 2037 common->fsm_state = FSM_BB_RF_PROG_SENT; 2038 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", 2039 __func__); 2040 } 2041 } else { 2042 rsi_dbg(INFO_ZONE, 2043 "%s: Received radio caps cfm in %d state\n", 2044 __func__, common->fsm_state); 2045 return 0; 2046 } 2047 break; 2048 2049 case BB_PROG_VALUES_REQUEST: 2050 case RF_PROG_VALUES_REQUEST: 2051 case BBP_PROG_IN_TA: 2052 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); 2053 if (common->fsm_state == FSM_BB_RF_PROG_SENT) { 2054 common->bb_rf_prog_count--; 2055 if (!common->bb_rf_prog_count) { 2056 common->fsm_state = FSM_MAC_INIT_DONE; 2057 if (common->reinit_hw) { 2058 complete(&common->wlan_init_completion); 2059 } else { 2060 return rsi_mac80211_attach(common); 2061 } 2062 } 2063 } else { 2064 rsi_dbg(INFO_ZONE, 2065 "%s: Received bbb_rf cfm in %d state\n", 2066 __func__, common->fsm_state); 2067 return 0; 2068 } 2069 break; 2070 2071 case SCAN_REQUEST: 2072 rsi_dbg(INFO_ZONE, "Set channel confirm\n"); 2073 break; 2074 2075 case WAKEUP_SLEEP_REQUEST: 2076 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n"); 2077 return rsi_handle_ps_confirm(adapter, msg); 2078 2079 case BG_SCAN_PROBE_REQ: 2080 rsi_dbg(INFO_ZONE, "BG scan complete event\n"); 2081 if (common->bgscan_en) { 2082 struct cfg80211_scan_info info; 2083 2084 if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN)) 2085 common->bgscan_en = 0; 2086 info.aborted = false; 2087 ieee80211_scan_completed(adapter->hw, &info); 2088 } 2089 rsi_dbg(INFO_ZONE, "Background scan completed\n"); 2090 break; 2091 2092 default: 2093 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", 2094 __func__); 2095 break; 2096 } 2097 return 0; 2098 out: 2099 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", 2100 __func__); 2101 return -EINVAL; 2102 } 2103 2104 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg) 2105 { 2106 int status; 2107 2108 switch (common->fsm_state) { 2109 case FSM_CARD_NOT_READY: 2110 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n"); 2111 rsi_set_default_parameters(common); 2112 if (rsi_send_common_dev_params(common) < 0) 2113 return -EINVAL; 2114 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT; 2115 break; 2116 case FSM_COMMON_DEV_PARAMS_SENT: 2117 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n"); 2118 2119 if (common->priv->device_model == RSI_DEV_9116) { 2120 if (msg[16] != MAGIC_WORD) { 2121 rsi_dbg(FSM_ZONE, 2122 "%s: [EEPROM_READ] Invalid token\n", 2123 __func__); 2124 common->fsm_state = FSM_CARD_NOT_READY; 2125 return -EINVAL; 2126 } 2127 memcpy(common->mac_addr, &msg[20], ETH_ALEN); 2128 rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr); 2129 } 2130 /* Get usb buffer status register address */ 2131 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8]; 2132 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n", 2133 common->priv->usb_buffer_status_reg); 2134 2135 if (common->priv->device_model == RSI_DEV_9116) 2136 status = rsi_load_9116_bootup_params(common); 2137 else 2138 status = rsi_load_bootup_params(common); 2139 if (status < 0) { 2140 common->fsm_state = FSM_CARD_NOT_READY; 2141 return status; 2142 } 2143 common->fsm_state = FSM_BOOT_PARAMS_SENT; 2144 break; 2145 default: 2146 rsi_dbg(ERR_ZONE, 2147 "%s: card ready indication in invalid state %d.\n", 2148 __func__, common->fsm_state); 2149 return -EINVAL; 2150 } 2151 2152 return 0; 2153 } 2154 2155 /** 2156 * rsi_mgmt_pkt_recv() - This function processes the management packets 2157 * received from the hardware. 2158 * @common: Pointer to the driver private structure. 2159 * @msg: Pointer to the received packet. 2160 * 2161 * Return: 0 on success, -1 on failure. 2162 */ 2163 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) 2164 { 2165 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); 2166 u16 msg_type = (msg[2]); 2167 2168 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", 2169 __func__, msg_len, msg_type); 2170 2171 switch (msg_type) { 2172 case TA_CONFIRM_TYPE: 2173 return rsi_handle_ta_confirm_type(common, msg); 2174 case CARD_READY_IND: 2175 common->hibernate_resume = false; 2176 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", 2177 __func__); 2178 return rsi_handle_card_ready(common, msg); 2179 case TX_STATUS_IND: 2180 switch (msg[RSI_TX_STATUS_TYPE]) { 2181 case PROBEREQ_CONFIRM: 2182 common->mgmt_q_block = false; 2183 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", 2184 __func__); 2185 break; 2186 case EAPOL4_CONFIRM: 2187 if (msg[RSI_TX_STATUS]) { 2188 common->eapol4_confirm = true; 2189 if (!rsi_send_block_unblock_frame(common, 2190 false)) 2191 common->hw_data_qs_blocked = false; 2192 } 2193 } 2194 break; 2195 case BEACON_EVENT_IND: 2196 rsi_dbg(INFO_ZONE, "Beacon event\n"); 2197 if (common->fsm_state != FSM_MAC_INIT_DONE) 2198 return -1; 2199 if (common->iface_down) 2200 return -1; 2201 if (!common->beacon_enabled) 2202 return -1; 2203 rsi_send_beacon(common); 2204 break; 2205 case WOWLAN_WAKEUP_REASON: 2206 rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]); 2207 switch (msg[15]) { 2208 case RSI_UNICAST_MAGIC_PKT: 2209 rsi_dbg(ERR_ZONE, 2210 "*** Wakeup for Unicast magic packet ***\n"); 2211 break; 2212 case RSI_BROADCAST_MAGICPKT: 2213 rsi_dbg(ERR_ZONE, 2214 "*** Wakeup for Broadcast magic packet ***\n"); 2215 break; 2216 case RSI_EAPOL_PKT: 2217 rsi_dbg(ERR_ZONE, 2218 "*** Wakeup for GTK renewal ***\n"); 2219 break; 2220 case RSI_DISCONNECT_PKT: 2221 rsi_dbg(ERR_ZONE, 2222 "*** Wakeup for Disconnect ***\n"); 2223 break; 2224 case RSI_HW_BMISS_PKT: 2225 rsi_dbg(ERR_ZONE, 2226 "*** Wakeup for HW Beacon miss ***\n"); 2227 break; 2228 default: 2229 rsi_dbg(ERR_ZONE, 2230 "##### Un-intentional Wakeup #####\n"); 2231 break; 2232 } 2233 break; 2234 case RX_DOT11_MGMT: 2235 return rsi_mgmt_pkt_to_core(common, msg, msg_len); 2236 default: 2237 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type); 2238 } 2239 return 0; 2240 } 2241