1 /** 2 * Copyright (c) 2014 Redpine Signals Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/etherdevice.h> 18 #include "rsi_mgmt.h" 19 #include "rsi_common.h" 20 #include "rsi_ps.h" 21 #include "rsi_hal.h" 22 23 static struct bootup_params boot_params_20 = { 24 .magic_number = cpu_to_le16(0x5aa5), 25 .crystal_good_time = 0x0, 26 .valid = cpu_to_le32(VALID_20), 27 .reserved_for_valids = 0x0, 28 .bootup_mode_info = 0x0, 29 .digital_loop_back_params = 0x0, 30 .rtls_timestamp_en = 0x0, 31 .host_spi_intr_cfg = 0x0, 32 .device_clk_info = {{ 33 .pll_config_g = { 34 .tapll_info_g = { 35 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 36 (TA_PLL_M_VAL_20)), 37 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 38 }, 39 .pll960_info_g = { 40 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 41 (PLL960_N_VAL_20)), 42 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 43 .pll_reg_3 = 0x0, 44 }, 45 .afepll_info_g = { 46 .pll_reg = cpu_to_le16(0x9f0), 47 } 48 }, 49 .switch_clk_g = { 50 .switch_clk_info = cpu_to_le16(0xb), 51 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111), 52 .umac_clock_reg_config = cpu_to_le16(0x48), 53 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 54 } 55 }, 56 { 57 .pll_config_g = { 58 .tapll_info_g = { 59 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 60 (TA_PLL_M_VAL_20)), 61 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 62 }, 63 .pll960_info_g = { 64 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 65 (PLL960_N_VAL_20)), 66 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 67 .pll_reg_3 = 0x0, 68 }, 69 .afepll_info_g = { 70 .pll_reg = cpu_to_le16(0x9f0), 71 } 72 }, 73 .switch_clk_g = { 74 .switch_clk_info = 0x0, 75 .bbp_lmac_clk_reg_val = 0x0, 76 .umac_clock_reg_config = 0x0, 77 .qspi_uart_clock_reg_config = 0x0 78 } 79 }, 80 { 81 .pll_config_g = { 82 .tapll_info_g = { 83 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 84 (TA_PLL_M_VAL_20)), 85 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 86 }, 87 .pll960_info_g = { 88 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 89 (PLL960_N_VAL_20)), 90 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 91 .pll_reg_3 = 0x0, 92 }, 93 .afepll_info_g = { 94 .pll_reg = cpu_to_le16(0x9f0), 95 } 96 }, 97 .switch_clk_g = { 98 .switch_clk_info = 0x0, 99 .bbp_lmac_clk_reg_val = 0x0, 100 .umac_clock_reg_config = 0x0, 101 .qspi_uart_clock_reg_config = 0x0 102 } 103 } }, 104 .buckboost_wakeup_cnt = 0x0, 105 .pmu_wakeup_wait = 0x0, 106 .shutdown_wait_time = 0x0, 107 .pmu_slp_clkout_sel = 0x0, 108 .wdt_prog_value = 0x0, 109 .wdt_soc_rst_delay = 0x0, 110 .dcdc_operation_mode = 0x0, 111 .soc_reset_wait_cnt = 0x0, 112 .waiting_time_at_fresh_sleep = 0x0, 113 .max_threshold_to_avoid_sleep = 0x0, 114 .beacon_resedue_alg_en = 0, 115 }; 116 117 static struct bootup_params boot_params_40 = { 118 .magic_number = cpu_to_le16(0x5aa5), 119 .crystal_good_time = 0x0, 120 .valid = cpu_to_le32(VALID_40), 121 .reserved_for_valids = 0x0, 122 .bootup_mode_info = 0x0, 123 .digital_loop_back_params = 0x0, 124 .rtls_timestamp_en = 0x0, 125 .host_spi_intr_cfg = 0x0, 126 .device_clk_info = {{ 127 .pll_config_g = { 128 .tapll_info_g = { 129 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 130 (TA_PLL_M_VAL_40)), 131 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 132 }, 133 .pll960_info_g = { 134 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 135 (PLL960_N_VAL_40)), 136 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 137 .pll_reg_3 = 0x0, 138 }, 139 .afepll_info_g = { 140 .pll_reg = cpu_to_le16(0x9f0), 141 } 142 }, 143 .switch_clk_g = { 144 .switch_clk_info = cpu_to_le16(0x09), 145 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), 146 .umac_clock_reg_config = cpu_to_le16(0x48), 147 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 148 } 149 }, 150 { 151 .pll_config_g = { 152 .tapll_info_g = { 153 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 154 (TA_PLL_M_VAL_40)), 155 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 156 }, 157 .pll960_info_g = { 158 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 159 (PLL960_N_VAL_40)), 160 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 161 .pll_reg_3 = 0x0, 162 }, 163 .afepll_info_g = { 164 .pll_reg = cpu_to_le16(0x9f0), 165 } 166 }, 167 .switch_clk_g = { 168 .switch_clk_info = 0x0, 169 .bbp_lmac_clk_reg_val = 0x0, 170 .umac_clock_reg_config = 0x0, 171 .qspi_uart_clock_reg_config = 0x0 172 } 173 }, 174 { 175 .pll_config_g = { 176 .tapll_info_g = { 177 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 178 (TA_PLL_M_VAL_40)), 179 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 180 }, 181 .pll960_info_g = { 182 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 183 (PLL960_N_VAL_40)), 184 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 185 .pll_reg_3 = 0x0, 186 }, 187 .afepll_info_g = { 188 .pll_reg = cpu_to_le16(0x9f0), 189 } 190 }, 191 .switch_clk_g = { 192 .switch_clk_info = 0x0, 193 .bbp_lmac_clk_reg_val = 0x0, 194 .umac_clock_reg_config = 0x0, 195 .qspi_uart_clock_reg_config = 0x0 196 } 197 } }, 198 .buckboost_wakeup_cnt = 0x0, 199 .pmu_wakeup_wait = 0x0, 200 .shutdown_wait_time = 0x0, 201 .pmu_slp_clkout_sel = 0x0, 202 .wdt_prog_value = 0x0, 203 .wdt_soc_rst_delay = 0x0, 204 .dcdc_operation_mode = 0x0, 205 .soc_reset_wait_cnt = 0x0, 206 .waiting_time_at_fresh_sleep = 0x0, 207 .max_threshold_to_avoid_sleep = 0x0, 208 .beacon_resedue_alg_en = 0, 209 }; 210 211 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; 212 213 /** 214 * rsi_set_default_parameters() - This function sets default parameters. 215 * @common: Pointer to the driver private structure. 216 * 217 * Return: none 218 */ 219 static void rsi_set_default_parameters(struct rsi_common *common) 220 { 221 common->band = NL80211_BAND_2GHZ; 222 common->channel_width = BW_20MHZ; 223 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; 224 common->channel = 1; 225 common->min_rate = 0xffff; 226 common->fsm_state = FSM_CARD_NOT_READY; 227 common->iface_down = true; 228 common->endpoint = EP_2GHZ_20MHZ; 229 common->driver_mode = 1; /* End to end mode */ 230 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/ 231 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/ 232 common->rf_power_val = 0; /* Default 1.9V */ 233 common->wlan_rf_power_mode = 0; 234 common->obm_ant_sel_val = 2; 235 common->beacon_interval = RSI_BEACON_INTERVAL; 236 common->dtim_cnt = RSI_DTIM_COUNT; 237 } 238 239 /** 240 * rsi_set_contention_vals() - This function sets the contention values for the 241 * backoff procedure. 242 * @common: Pointer to the driver private structure. 243 * 244 * Return: None. 245 */ 246 static void rsi_set_contention_vals(struct rsi_common *common) 247 { 248 u8 ii = 0; 249 250 for (; ii < NUM_EDCA_QUEUES; ii++) { 251 common->tx_qinfo[ii].wme_params = 252 (((common->edca_params[ii].cw_min / 2) + 253 (common->edca_params[ii].aifs)) * 254 WMM_SHORT_SLOT_TIME + SIFS_DURATION); 255 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; 256 common->tx_qinfo[ii].pkt_contended = 0; 257 } 258 } 259 260 /** 261 * rsi_send_internal_mgmt_frame() - This function sends management frames to 262 * firmware.Also schedules packet to queue 263 * for transmission. 264 * @common: Pointer to the driver private structure. 265 * @skb: Pointer to the socket buffer structure. 266 * 267 * Return: 0 on success, -1 on failure. 268 */ 269 static int rsi_send_internal_mgmt_frame(struct rsi_common *common, 270 struct sk_buff *skb) 271 { 272 struct skb_info *tx_params; 273 struct rsi_cmd_desc *desc; 274 275 if (skb == NULL) { 276 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 277 return -ENOMEM; 278 } 279 desc = (struct rsi_cmd_desc *)skb->data; 280 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP); 281 skb->priority = MGMT_SOFT_Q; 282 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; 283 tx_params->flags |= INTERNAL_MGMT_PKT; 284 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); 285 rsi_set_event(&common->tx_thread.event); 286 return 0; 287 } 288 289 /** 290 * rsi_load_radio_caps() - This function is used to send radio capabilities 291 * values to firmware. 292 * @common: Pointer to the driver private structure. 293 * 294 * Return: 0 on success, corresponding negative error code on failure. 295 */ 296 static int rsi_load_radio_caps(struct rsi_common *common) 297 { 298 struct rsi_radio_caps *radio_caps; 299 struct rsi_hw *adapter = common->priv; 300 u16 inx = 0; 301 u8 ii; 302 u8 radio_id = 0; 303 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 304 0xf0, 0xf0, 0xf0, 0xf0, 305 0xf0, 0xf0, 0xf0, 0xf0, 306 0xf0, 0xf0, 0xf0, 0xf0, 307 0xf0, 0xf0, 0xf0, 0xf0}; 308 struct sk_buff *skb; 309 u16 frame_len = sizeof(struct rsi_radio_caps); 310 311 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); 312 313 skb = dev_alloc_skb(frame_len); 314 315 if (!skb) { 316 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 317 __func__); 318 return -ENOMEM; 319 } 320 321 memset(skb->data, 0, frame_len); 322 radio_caps = (struct rsi_radio_caps *)skb->data; 323 324 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES; 325 radio_caps->channel_num = common->channel; 326 radio_caps->rf_model = RSI_RF_TYPE; 327 328 if (common->channel_width == BW_40MHZ) { 329 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ; 330 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ; 331 332 if (common->fsm_state == FSM_MAC_INIT_DONE) { 333 struct ieee80211_hw *hw = adapter->hw; 334 struct ieee80211_conf *conf = &hw->conf; 335 336 if (conf_is_ht40_plus(conf)) { 337 radio_caps->radio_cfg_info = 338 RSI_CMDDESC_LOWER_20_ENABLE; 339 radio_caps->radio_info = 340 RSI_CMDDESC_LOWER_20_ENABLE; 341 } else if (conf_is_ht40_minus(conf)) { 342 radio_caps->radio_cfg_info = 343 RSI_CMDDESC_UPPER_20_ENABLE; 344 radio_caps->radio_info = 345 RSI_CMDDESC_UPPER_20_ENABLE; 346 } else { 347 radio_caps->radio_cfg_info = 348 RSI_CMDDESC_40MHZ; 349 radio_caps->radio_info = 350 RSI_CMDDESC_FULL_40_ENABLE; 351 } 352 } 353 } 354 radio_caps->radio_info |= radio_id; 355 356 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE); 357 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE); 358 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE); 359 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE); 360 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE); 361 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE); 362 363 for (ii = 0; ii < MAX_HW_QUEUES; ii++) { 364 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); 365 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); 366 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); 367 radio_caps->qos_params[ii].txop_q = 0; 368 } 369 370 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) { 371 radio_caps->qos_params[ii].cont_win_min_q = 372 cpu_to_le16(common->edca_params[ii].cw_min); 373 radio_caps->qos_params[ii].cont_win_max_q = 374 cpu_to_le16(common->edca_params[ii].cw_max); 375 radio_caps->qos_params[ii].aifsn_val_q = 376 cpu_to_le16((common->edca_params[ii].aifs) << 8); 377 radio_caps->qos_params[ii].txop_q = 378 cpu_to_le16(common->edca_params[ii].txop); 379 } 380 381 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff); 382 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0; 383 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff); 384 385 memcpy(&common->rate_pwr[0], &gc[0], 40); 386 for (ii = 0; ii < 20; ii++) 387 radio_caps->gcpd_per_rate[inx++] = 388 cpu_to_le16(common->rate_pwr[ii] & 0x00FF); 389 390 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno, 391 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 392 393 skb_put(skb, frame_len); 394 395 return rsi_send_internal_mgmt_frame(common, skb); 396 } 397 398 /** 399 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. 400 * @common: Pointer to the driver private structure. 401 * @msg: Pointer to received packet. 402 * @msg_len: Length of the recieved packet. 403 * @type: Type of recieved packet. 404 * 405 * Return: 0 on success, -1 on failure. 406 */ 407 static int rsi_mgmt_pkt_to_core(struct rsi_common *common, 408 u8 *msg, 409 s32 msg_len) 410 { 411 struct rsi_hw *adapter = common->priv; 412 struct ieee80211_tx_info *info; 413 struct skb_info *rx_params; 414 u8 pad_bytes = msg[4]; 415 struct sk_buff *skb; 416 417 if (!adapter->sc_nvifs) 418 return -ENOLINK; 419 420 msg_len -= pad_bytes; 421 if (msg_len <= 0) { 422 rsi_dbg(MGMT_RX_ZONE, 423 "%s: Invalid rx msg of len = %d\n", 424 __func__, msg_len); 425 return -EINVAL; 426 } 427 428 skb = dev_alloc_skb(msg_len); 429 if (!skb) 430 return -ENOMEM; 431 432 skb_put_data(skb, 433 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), 434 msg_len); 435 436 info = IEEE80211_SKB_CB(skb); 437 rx_params = (struct skb_info *)info->driver_data; 438 rx_params->rssi = rsi_get_rssi(msg); 439 rx_params->channel = rsi_get_channel(msg); 440 rsi_indicate_pkt_to_os(common, skb); 441 442 return 0; 443 } 444 445 /** 446 * rsi_hal_send_sta_notify_frame() - This function sends the station notify 447 * frame to firmware. 448 * @common: Pointer to the driver private structure. 449 * @opmode: Operating mode of device. 450 * @notify_event: Notification about station connection. 451 * @bssid: bssid. 452 * @qos_enable: Qos is enabled. 453 * @aid: Aid (unique for all STA). 454 * 455 * Return: status: 0 on success, corresponding negative error code on failure. 456 */ 457 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common, 458 enum opmode opmode, 459 u8 notify_event, 460 const unsigned char *bssid, 461 u8 qos_enable, 462 u16 aid, 463 u16 sta_id) 464 { 465 struct ieee80211_vif *vif = common->priv->vifs[0]; 466 struct sk_buff *skb = NULL; 467 struct rsi_peer_notify *peer_notify; 468 u16 vap_id = 0; 469 int status; 470 u16 frame_len = sizeof(struct rsi_peer_notify); 471 472 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); 473 474 skb = dev_alloc_skb(frame_len); 475 476 if (!skb) { 477 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 478 __func__); 479 return -ENOMEM; 480 } 481 482 memset(skb->data, 0, frame_len); 483 peer_notify = (struct rsi_peer_notify *)skb->data; 484 485 if (opmode == STA_OPMODE) 486 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1); 487 else if (opmode == AP_OPMODE) 488 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1); 489 490 switch (notify_event) { 491 case STA_CONNECTED: 492 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); 493 break; 494 case STA_DISCONNECTED: 495 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); 496 break; 497 default: 498 break; 499 } 500 501 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); 502 ether_addr_copy(peer_notify->mac_addr, bssid); 503 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY); 504 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); 505 506 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno, 507 (frame_len - FRAME_DESC_SZ), 508 RSI_WIFI_MGMT_Q); 509 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY; 510 peer_notify->desc.desc_dword3.qid_tid = sta_id; 511 peer_notify->desc.desc_dword3.sta_id = vap_id; 512 513 skb_put(skb, frame_len); 514 515 status = rsi_send_internal_mgmt_frame(common, skb); 516 517 if ((vif->type == NL80211_IFTYPE_STATION) && 518 (!status && qos_enable)) { 519 rsi_set_contention_vals(common); 520 status = rsi_load_radio_caps(common); 521 } 522 return status; 523 } 524 525 /** 526 * rsi_send_aggregation_params_frame() - This function sends the ampdu 527 * indication frame to firmware. 528 * @common: Pointer to the driver private structure. 529 * @tid: traffic identifier. 530 * @ssn: ssn. 531 * @buf_size: buffer size. 532 * @event: notification about station connection. 533 * 534 * Return: 0 on success, corresponding negative error code on failure. 535 */ 536 int rsi_send_aggregation_params_frame(struct rsi_common *common, 537 u16 tid, 538 u16 ssn, 539 u8 buf_size, 540 u8 event, 541 u8 sta_id) 542 { 543 struct sk_buff *skb = NULL; 544 struct rsi_aggr_params *aggr_params; 545 u16 frame_len = sizeof(struct rsi_aggr_params); 546 547 skb = dev_alloc_skb(frame_len); 548 549 if (!skb) { 550 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 551 __func__); 552 return -ENOMEM; 553 } 554 555 memset(skb->data, 0, frame_len); 556 aggr_params = (struct rsi_aggr_params *)skb->data; 557 558 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); 559 560 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 561 aggr_params->desc_dword0.frame_type = AMPDU_IND; 562 563 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK; 564 aggr_params->peer_id = sta_id; 565 if (event == STA_TX_ADDBA_DONE) { 566 aggr_params->seq_start = cpu_to_le16(ssn); 567 aggr_params->baw_size = cpu_to_le16(buf_size); 568 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START; 569 } else if (event == STA_RX_ADDBA_DONE) { 570 aggr_params->seq_start = cpu_to_le16(ssn); 571 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START | 572 RSI_AGGR_PARAMS_RX_AGGR); 573 } else if (event == STA_RX_DELBA) { 574 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR; 575 } 576 577 skb_put(skb, frame_len); 578 579 return rsi_send_internal_mgmt_frame(common, skb); 580 } 581 582 /** 583 * rsi_program_bb_rf() - This function starts base band and RF programming. 584 * This is called after initial configurations are done. 585 * @common: Pointer to the driver private structure. 586 * 587 * Return: 0 on success, corresponding negative error code on failure. 588 */ 589 static int rsi_program_bb_rf(struct rsi_common *common) 590 { 591 struct sk_buff *skb; 592 struct rsi_bb_rf_prog *bb_rf_prog; 593 u16 frame_len = sizeof(struct rsi_bb_rf_prog); 594 595 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); 596 597 skb = dev_alloc_skb(frame_len); 598 if (!skb) { 599 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 600 __func__); 601 return -ENOMEM; 602 } 603 604 memset(skb->data, 0, frame_len); 605 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data; 606 607 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 608 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA; 609 bb_rf_prog->endpoint = common->endpoint; 610 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode; 611 612 if (common->rf_reset) { 613 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE); 614 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", 615 __func__); 616 common->rf_reset = 0; 617 } 618 common->bb_rf_prog_count = 1; 619 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | 620 (RSI_RF_TYPE << 4)); 621 skb_put(skb, frame_len); 622 623 return rsi_send_internal_mgmt_frame(common, skb); 624 } 625 626 /** 627 * rsi_set_vap_capabilities() - This function send vap capability to firmware. 628 * @common: Pointer to the driver private structure. 629 * @opmode: Operating mode of device. 630 * 631 * Return: 0 on success, corresponding negative error code on failure. 632 */ 633 int rsi_set_vap_capabilities(struct rsi_common *common, 634 enum opmode mode, 635 u8 *mac_addr, 636 u8 vap_id, 637 u8 vap_status) 638 { 639 struct sk_buff *skb = NULL; 640 struct rsi_vap_caps *vap_caps; 641 struct rsi_hw *adapter = common->priv; 642 struct ieee80211_hw *hw = adapter->hw; 643 struct ieee80211_conf *conf = &hw->conf; 644 u16 frame_len = sizeof(struct rsi_vap_caps); 645 646 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); 647 648 skb = dev_alloc_skb(frame_len); 649 if (!skb) { 650 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 651 __func__); 652 return -ENOMEM; 653 } 654 655 memset(skb->data, 0, frame_len); 656 vap_caps = (struct rsi_vap_caps *)skb->data; 657 658 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno, 659 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 660 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES; 661 vap_caps->status = vap_status; 662 vap_caps->vif_type = mode; 663 vap_caps->channel_bw = common->channel_width; 664 vap_caps->vap_id = vap_id; 665 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) | 666 (common->radio_id & 0xf); 667 668 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN); 669 vap_caps->keep_alive_period = cpu_to_le16(90); 670 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); 671 672 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); 673 674 if (common->band == NL80211_BAND_5GHZ) { 675 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6); 676 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6); 677 } else { 678 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1); 679 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1); 680 } 681 if (conf_is_ht40(conf)) { 682 if (conf_is_ht40_minus(conf)) 683 vap_caps->ctrl_rate_flags = 684 cpu_to_le16(UPPER_20_ENABLE); 685 else if (conf_is_ht40_plus(conf)) 686 vap_caps->ctrl_rate_flags = 687 cpu_to_le16(LOWER_20_ENABLE); 688 else 689 vap_caps->ctrl_rate_flags = 690 cpu_to_le16(FULL40M_ENABLE); 691 } 692 693 vap_caps->default_data_rate = 0; 694 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval); 695 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt); 696 697 skb_put(skb, frame_len); 698 699 return rsi_send_internal_mgmt_frame(common, skb); 700 } 701 702 /** 703 * rsi_hal_load_key() - This function is used to load keys within the firmware. 704 * @common: Pointer to the driver private structure. 705 * @data: Pointer to the key data. 706 * @key_len: Key length to be loaded. 707 * @key_type: Type of key: GROUP/PAIRWISE. 708 * @key_id: Key index. 709 * @cipher: Type of cipher used. 710 * 711 * Return: 0 on success, -1 on failure. 712 */ 713 int rsi_hal_load_key(struct rsi_common *common, 714 u8 *data, 715 u16 key_len, 716 u8 key_type, 717 u8 key_id, 718 u32 cipher, 719 s16 sta_id) 720 { 721 struct ieee80211_vif *vif = common->priv->vifs[0]; 722 struct sk_buff *skb = NULL; 723 struct rsi_set_key *set_key; 724 u16 key_descriptor = 0; 725 u16 frame_len = sizeof(struct rsi_set_key); 726 727 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); 728 729 skb = dev_alloc_skb(frame_len); 730 if (!skb) { 731 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 732 __func__); 733 return -ENOMEM; 734 } 735 736 memset(skb->data, 0, frame_len); 737 set_key = (struct rsi_set_key *)skb->data; 738 739 if (key_type == RSI_GROUP_KEY) { 740 key_descriptor = RSI_KEY_TYPE_BROADCAST; 741 if (vif->type == NL80211_IFTYPE_AP) 742 key_descriptor |= RSI_KEY_MODE_AP; 743 } 744 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 745 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 746 key_id = 0; 747 key_descriptor |= RSI_WEP_KEY; 748 if (key_len >= 13) 749 key_descriptor |= RSI_WEP_KEY_104; 750 } else if (cipher != KEY_TYPE_CLEAR) { 751 key_descriptor |= RSI_CIPHER_WPA; 752 if (cipher == WLAN_CIPHER_SUITE_TKIP) 753 key_descriptor |= RSI_CIPHER_TKIP; 754 } 755 key_descriptor |= RSI_PROTECT_DATA_FRAMES; 756 key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK); 757 758 rsi_set_len_qno(&set_key->desc_dword0.len_qno, 759 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 760 set_key->desc_dword0.frame_type = SET_KEY_REQ; 761 set_key->key_desc = cpu_to_le16(key_descriptor); 762 set_key->sta_id = sta_id; 763 764 if (data) { 765 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 766 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 767 memcpy(&set_key->key[key_id][1], data, key_len * 2); 768 } else { 769 memcpy(&set_key->key[0][0], data, key_len); 770 } 771 memcpy(set_key->tx_mic_key, &data[16], 8); 772 memcpy(set_key->rx_mic_key, &data[24], 8); 773 } else { 774 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ); 775 } 776 777 skb_put(skb, frame_len); 778 779 return rsi_send_internal_mgmt_frame(common, skb); 780 } 781 782 /* 783 * This function sends the common device configuration parameters to device. 784 * This frame includes the useful information to make device works on 785 * specific operating mode. 786 */ 787 static int rsi_send_common_dev_params(struct rsi_common *common) 788 { 789 struct sk_buff *skb; 790 u16 frame_len; 791 struct rsi_config_vals *dev_cfgs; 792 793 frame_len = sizeof(struct rsi_config_vals); 794 795 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n"); 796 skb = dev_alloc_skb(frame_len); 797 if (!skb) { 798 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 799 return -ENOMEM; 800 } 801 802 memset(skb->data, 0, frame_len); 803 804 dev_cfgs = (struct rsi_config_vals *)skb->data; 805 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals))); 806 807 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ), 808 RSI_COEX_Q); 809 dev_cfgs->pkt_type = COMMON_DEV_CONFIG; 810 811 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode; 812 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode; 813 814 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP; 815 dev_cfgs->unused_soc_gpio_bitmap = 816 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP); 817 818 dev_cfgs->opermode = common->oper_mode; 819 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode; 820 dev_cfgs->driver_mode = common->driver_mode; 821 dev_cfgs->region_code = NL80211_DFS_FCC; 822 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val; 823 824 skb_put(skb, frame_len); 825 826 return rsi_send_internal_mgmt_frame(common, skb); 827 } 828 829 /* 830 * rsi_load_bootup_params() - This function send bootup params to the firmware. 831 * @common: Pointer to the driver private structure. 832 * 833 * Return: 0 on success, corresponding error code on failure. 834 */ 835 static int rsi_load_bootup_params(struct rsi_common *common) 836 { 837 struct sk_buff *skb; 838 struct rsi_boot_params *boot_params; 839 840 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 841 skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); 842 if (!skb) { 843 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 844 __func__); 845 return -ENOMEM; 846 } 847 848 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 849 boot_params = (struct rsi_boot_params *)skb->data; 850 851 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); 852 853 if (common->channel_width == BW_40MHZ) { 854 memcpy(&boot_params->bootup_params, 855 &boot_params_40, 856 sizeof(struct bootup_params)); 857 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 858 UMAC_CLK_40BW); 859 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); 860 } else { 861 memcpy(&boot_params->bootup_params, 862 &boot_params_20, 863 sizeof(struct bootup_params)); 864 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 865 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); 866 rsi_dbg(MGMT_TX_ZONE, 867 "%s: Packet 20MHZ <=== %d\n", __func__, 868 UMAC_CLK_20BW); 869 } else { 870 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); 871 rsi_dbg(MGMT_TX_ZONE, 872 "%s: Packet 20MHZ <=== %d\n", __func__, 873 UMAC_CLK_40MHZ); 874 } 875 } 876 877 /** 878 * Bit{0:11} indicates length of the Packet 879 * Bit{12:15} indicates host queue number 880 */ 881 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | 882 (RSI_WIFI_MGMT_Q << 12)); 883 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); 884 885 skb_put(skb, sizeof(struct rsi_boot_params)); 886 887 return rsi_send_internal_mgmt_frame(common, skb); 888 } 889 890 /** 891 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an 892 * internal management frame to indicate it to firmware. 893 * @common: Pointer to the driver private structure. 894 * 895 * Return: 0 on success, corresponding error code on failure. 896 */ 897 static int rsi_send_reset_mac(struct rsi_common *common) 898 { 899 struct sk_buff *skb; 900 struct rsi_mac_frame *mgmt_frame; 901 902 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); 903 904 skb = dev_alloc_skb(FRAME_DESC_SZ); 905 if (!skb) { 906 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 907 __func__); 908 return -ENOMEM; 909 } 910 911 memset(skb->data, 0, FRAME_DESC_SZ); 912 mgmt_frame = (struct rsi_mac_frame *)skb->data; 913 914 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 915 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); 916 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); 917 918 skb_put(skb, FRAME_DESC_SZ); 919 920 return rsi_send_internal_mgmt_frame(common, skb); 921 } 922 923 /** 924 * rsi_band_check() - This function programs the band 925 * @common: Pointer to the driver private structure. 926 * 927 * Return: 0 on success, corresponding error code on failure. 928 */ 929 int rsi_band_check(struct rsi_common *common) 930 { 931 struct rsi_hw *adapter = common->priv; 932 struct ieee80211_hw *hw = adapter->hw; 933 u8 prev_bw = common->channel_width; 934 u8 prev_ep = common->endpoint; 935 struct ieee80211_channel *curchan = hw->conf.chandef.chan; 936 int status = 0; 937 938 if (common->band != curchan->band) { 939 common->rf_reset = 1; 940 common->band = curchan->band; 941 } 942 943 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) || 944 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20)) 945 common->channel_width = BW_20MHZ; 946 else 947 common->channel_width = BW_40MHZ; 948 949 if (common->band == NL80211_BAND_2GHZ) { 950 if (common->channel_width) 951 common->endpoint = EP_2GHZ_40MHZ; 952 else 953 common->endpoint = EP_2GHZ_20MHZ; 954 } else { 955 if (common->channel_width) 956 common->endpoint = EP_5GHZ_40MHZ; 957 else 958 common->endpoint = EP_5GHZ_20MHZ; 959 } 960 961 if (common->endpoint != prev_ep) { 962 status = rsi_program_bb_rf(common); 963 if (status) 964 return status; 965 } 966 967 if (common->channel_width != prev_bw) { 968 status = rsi_load_bootup_params(common); 969 if (status) 970 return status; 971 972 status = rsi_load_radio_caps(common); 973 if (status) 974 return status; 975 } 976 977 return status; 978 } 979 980 /** 981 * rsi_set_channel() - This function programs the channel. 982 * @common: Pointer to the driver private structure. 983 * @channel: Channel value to be set. 984 * 985 * Return: 0 on success, corresponding error code on failure. 986 */ 987 int rsi_set_channel(struct rsi_common *common, 988 struct ieee80211_channel *channel) 989 { 990 struct sk_buff *skb = NULL; 991 struct rsi_chan_config *chan_cfg; 992 u16 frame_len = sizeof(struct rsi_chan_config); 993 994 rsi_dbg(MGMT_TX_ZONE, 995 "%s: Sending scan req frame\n", __func__); 996 997 skb = dev_alloc_skb(frame_len); 998 if (!skb) { 999 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1000 __func__); 1001 return -ENOMEM; 1002 } 1003 1004 if (!channel) { 1005 dev_kfree_skb(skb); 1006 return 0; 1007 } 1008 memset(skb->data, 0, frame_len); 1009 chan_cfg = (struct rsi_chan_config *)skb->data; 1010 1011 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1012 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST; 1013 chan_cfg->channel_number = channel->hw_value; 1014 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain; 1015 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain; 1016 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4; 1017 1018 if ((channel->flags & IEEE80211_CHAN_NO_IR) || 1019 (channel->flags & IEEE80211_CHAN_RADAR)) { 1020 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR; 1021 } else { 1022 if (common->tx_power < channel->max_power) 1023 chan_cfg->tx_power = cpu_to_le16(common->tx_power); 1024 else 1025 chan_cfg->tx_power = cpu_to_le16(channel->max_power); 1026 } 1027 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf); 1028 1029 if (common->channel_width == BW_40MHZ) 1030 chan_cfg->channel_width = 0x1; 1031 1032 common->channel = channel->hw_value; 1033 1034 skb_put(skb, frame_len); 1035 1036 return rsi_send_internal_mgmt_frame(common, skb); 1037 } 1038 1039 /** 1040 * rsi_send_radio_params_update() - This function sends the radio 1041 * parameters update to device 1042 * @common: Pointer to the driver private structure. 1043 * @channel: Channel value to be set. 1044 * 1045 * Return: 0 on success, corresponding error code on failure. 1046 */ 1047 int rsi_send_radio_params_update(struct rsi_common *common) 1048 { 1049 struct rsi_mac_frame *cmd_frame; 1050 struct sk_buff *skb = NULL; 1051 1052 rsi_dbg(MGMT_TX_ZONE, 1053 "%s: Sending Radio Params update frame\n", __func__); 1054 1055 skb = dev_alloc_skb(FRAME_DESC_SZ); 1056 if (!skb) { 1057 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1058 __func__); 1059 return -ENOMEM; 1060 } 1061 1062 memset(skb->data, 0, FRAME_DESC_SZ); 1063 cmd_frame = (struct rsi_mac_frame *)skb->data; 1064 1065 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1066 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE); 1067 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0)); 1068 1069 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8); 1070 1071 skb_put(skb, FRAME_DESC_SZ); 1072 1073 return rsi_send_internal_mgmt_frame(common, skb); 1074 } 1075 1076 /* This function programs the threshold. */ 1077 int rsi_send_vap_dynamic_update(struct rsi_common *common) 1078 { 1079 struct sk_buff *skb; 1080 struct rsi_dynamic_s *dynamic_frame; 1081 1082 rsi_dbg(MGMT_TX_ZONE, 1083 "%s: Sending vap update indication frame\n", __func__); 1084 1085 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s)); 1086 if (!skb) 1087 return -ENOMEM; 1088 1089 memset(skb->data, 0, sizeof(struct rsi_dynamic_s)); 1090 dynamic_frame = (struct rsi_dynamic_s *)skb->data; 1091 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno, 1092 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q); 1093 1094 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE; 1095 dynamic_frame->desc_dword2.pkt_info = 1096 cpu_to_le32(common->rts_threshold); 1097 /* Beacon miss threshold */ 1098 dynamic_frame->frame_body.keep_alive_period = 1099 cpu_to_le16(RSI_DEF_KEEPALIVE); 1100 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */ 1101 1102 skb_put(skb, sizeof(struct rsi_dynamic_s)); 1103 1104 return rsi_send_internal_mgmt_frame(common, skb); 1105 } 1106 1107 /** 1108 * rsi_compare() - This function is used to compare two integers 1109 * @a: pointer to the first integer 1110 * @b: pointer to the second integer 1111 * 1112 * Return: 0 if both are equal, -1 if the first is smaller, else 1 1113 */ 1114 static int rsi_compare(const void *a, const void *b) 1115 { 1116 u16 _a = *(const u16 *)(a); 1117 u16 _b = *(const u16 *)(b); 1118 1119 if (_a > _b) 1120 return -1; 1121 1122 if (_a < _b) 1123 return 1; 1124 1125 return 0; 1126 } 1127 1128 /** 1129 * rsi_map_rates() - This function is used to map selected rates to hw rates. 1130 * @rate: The standard rate to be mapped. 1131 * @offset: Offset that will be returned. 1132 * 1133 * Return: 0 if it is a mcs rate, else 1 1134 */ 1135 static bool rsi_map_rates(u16 rate, int *offset) 1136 { 1137 int kk; 1138 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { 1139 if (rate == mcs[kk]) { 1140 *offset = kk; 1141 return false; 1142 } 1143 } 1144 1145 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { 1146 if (rate == rsi_rates[kk].bitrate / 5) { 1147 *offset = kk; 1148 break; 1149 } 1150 } 1151 return true; 1152 } 1153 1154 /** 1155 * rsi_send_auto_rate_request() - This function is to set rates for connection 1156 * and send autorate request to firmware. 1157 * @common: Pointer to the driver private structure. 1158 * 1159 * Return: 0 on success, corresponding error code on failure. 1160 */ 1161 static int rsi_send_auto_rate_request(struct rsi_common *common, 1162 struct ieee80211_sta *sta, 1163 u16 sta_id) 1164 { 1165 struct ieee80211_vif *vif = common->priv->vifs[0]; 1166 struct sk_buff *skb; 1167 struct rsi_auto_rate *auto_rate; 1168 int ii = 0, jj = 0, kk = 0; 1169 struct ieee80211_hw *hw = common->priv->hw; 1170 u8 band = hw->conf.chandef.chan->band; 1171 u8 num_supported_rates = 0; 1172 u8 rate_table_offset, rate_offset = 0; 1173 u32 rate_bitmap; 1174 u16 *selected_rates, min_rate; 1175 bool is_ht = false, is_sgi = false; 1176 u16 frame_len = sizeof(struct rsi_auto_rate); 1177 1178 rsi_dbg(MGMT_TX_ZONE, 1179 "%s: Sending auto rate request frame\n", __func__); 1180 1181 skb = dev_alloc_skb(frame_len); 1182 if (!skb) { 1183 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1184 __func__); 1185 return -ENOMEM; 1186 } 1187 1188 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL); 1189 if (!selected_rates) { 1190 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", 1191 __func__); 1192 dev_kfree_skb(skb); 1193 return -ENOMEM; 1194 } 1195 1196 auto_rate = (struct rsi_auto_rate *)skb->data; 1197 1198 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); 1199 auto_rate->collision_tolerance = cpu_to_le16(3); 1200 auto_rate->failure_limit = cpu_to_le16(3); 1201 auto_rate->initial_boundary = cpu_to_le16(3); 1202 auto_rate->max_threshold_limt = cpu_to_le16(27); 1203 1204 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND; 1205 1206 if (common->channel_width == BW_40MHZ) 1207 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ; 1208 auto_rate->desc.desc_dword3.sta_id = sta_id; 1209 1210 if (vif->type == NL80211_IFTYPE_STATION) { 1211 rate_bitmap = common->bitrate_mask[band]; 1212 is_ht = common->vif_info[0].is_ht; 1213 is_sgi = common->vif_info[0].sgi; 1214 } else { 1215 rate_bitmap = sta->supp_rates[band]; 1216 is_ht = sta->ht_cap.ht_supported; 1217 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) || 1218 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)) 1219 is_sgi = true; 1220 } 1221 1222 if (band == NL80211_BAND_2GHZ) { 1223 if ((rate_bitmap == 0) && (is_ht)) 1224 min_rate = RSI_RATE_MCS0; 1225 else 1226 min_rate = RSI_RATE_1; 1227 rate_table_offset = 0; 1228 } else { 1229 if ((rate_bitmap == 0) && (is_ht)) 1230 min_rate = RSI_RATE_MCS0; 1231 else 1232 min_rate = RSI_RATE_6; 1233 rate_table_offset = 4; 1234 } 1235 1236 for (ii = 0, jj = 0; 1237 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) { 1238 if (rate_bitmap & BIT(ii)) { 1239 selected_rates[jj++] = 1240 (rsi_rates[ii + rate_table_offset].bitrate / 5); 1241 rate_offset++; 1242 } 1243 } 1244 num_supported_rates = jj; 1245 1246 if (is_ht) { 1247 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) 1248 selected_rates[jj++] = mcs[ii]; 1249 num_supported_rates += ARRAY_SIZE(mcs); 1250 rate_offset += ARRAY_SIZE(mcs); 1251 } 1252 1253 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); 1254 1255 /* mapping the rates to RSI rates */ 1256 for (ii = 0; ii < jj; ii++) { 1257 if (rsi_map_rates(selected_rates[ii], &kk)) { 1258 auto_rate->supported_rates[ii] = 1259 cpu_to_le16(rsi_rates[kk].hw_value); 1260 } else { 1261 auto_rate->supported_rates[ii] = 1262 cpu_to_le16(rsi_mcsrates[kk]); 1263 } 1264 } 1265 1266 /* loading HT rates in the bottom half of the auto rate table */ 1267 if (is_ht) { 1268 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; 1269 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { 1270 if (is_sgi || conf_is_ht40(&common->priv->hw->conf)) 1271 auto_rate->supported_rates[ii++] = 1272 cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); 1273 else 1274 auto_rate->supported_rates[ii++] = 1275 cpu_to_le16(rsi_mcsrates[kk]); 1276 auto_rate->supported_rates[ii] = 1277 cpu_to_le16(rsi_mcsrates[kk--]); 1278 } 1279 1280 for (; ii < (RSI_TBL_SZ - 1); ii++) { 1281 auto_rate->supported_rates[ii] = 1282 cpu_to_le16(rsi_mcsrates[0]); 1283 } 1284 } 1285 1286 for (; ii < RSI_TBL_SZ; ii++) 1287 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate); 1288 1289 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); 1290 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); 1291 num_supported_rates *= 2; 1292 1293 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno, 1294 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1295 1296 skb_put(skb, frame_len); 1297 kfree(selected_rates); 1298 1299 return rsi_send_internal_mgmt_frame(common, skb); 1300 } 1301 1302 /** 1303 * rsi_inform_bss_status() - This function informs about bss status with the 1304 * help of sta notify params by sending an internal 1305 * management frame to firmware. 1306 * @common: Pointer to the driver private structure. 1307 * @status: Bss status type. 1308 * @bssid: Bssid. 1309 * @qos_enable: Qos is enabled. 1310 * @aid: Aid (unique for all STAs). 1311 * 1312 * Return: None. 1313 */ 1314 void rsi_inform_bss_status(struct rsi_common *common, 1315 enum opmode opmode, 1316 u8 status, 1317 const u8 *addr, 1318 u8 qos_enable, 1319 u16 aid, 1320 struct ieee80211_sta *sta, 1321 u16 sta_id) 1322 { 1323 if (status) { 1324 if (opmode == STA_OPMODE) 1325 common->hw_data_qs_blocked = true; 1326 rsi_hal_send_sta_notify_frame(common, 1327 opmode, 1328 STA_CONNECTED, 1329 addr, 1330 qos_enable, 1331 aid, sta_id); 1332 if (common->min_rate == 0xffff) 1333 rsi_send_auto_rate_request(common, sta, sta_id); 1334 if (opmode == STA_OPMODE) { 1335 if (!rsi_send_block_unblock_frame(common, false)) 1336 common->hw_data_qs_blocked = false; 1337 } 1338 } else { 1339 if (opmode == STA_OPMODE) 1340 common->hw_data_qs_blocked = true; 1341 rsi_hal_send_sta_notify_frame(common, 1342 opmode, 1343 STA_DISCONNECTED, 1344 addr, 1345 qos_enable, 1346 aid, sta_id); 1347 if (opmode == STA_OPMODE) 1348 rsi_send_block_unblock_frame(common, true); 1349 } 1350 } 1351 1352 /** 1353 * rsi_eeprom_read() - This function sends a frame to read the mac address 1354 * from the eeprom. 1355 * @common: Pointer to the driver private structure. 1356 * 1357 * Return: 0 on success, -1 on failure. 1358 */ 1359 static int rsi_eeprom_read(struct rsi_common *common) 1360 { 1361 struct rsi_eeprom_read_frame *mgmt_frame; 1362 struct rsi_hw *adapter = common->priv; 1363 struct sk_buff *skb; 1364 1365 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); 1366 1367 skb = dev_alloc_skb(FRAME_DESC_SZ); 1368 if (!skb) { 1369 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1370 __func__); 1371 return -ENOMEM; 1372 } 1373 1374 memset(skb->data, 0, FRAME_DESC_SZ); 1375 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data; 1376 1377 /* FrameType */ 1378 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q); 1379 mgmt_frame->pkt_type = EEPROM_READ; 1380 1381 /* Number of bytes to read */ 1382 mgmt_frame->pkt_info = 1383 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) & 1384 RSI_EEPROM_LEN_MASK); 1385 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) & 1386 RSI_EEPROM_HDR_SIZE_MASK); 1387 1388 /* Address to read */ 1389 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset); 1390 1391 skb_put(skb, FRAME_DESC_SZ); 1392 1393 return rsi_send_internal_mgmt_frame(common, skb); 1394 } 1395 1396 /** 1397 * This function sends a frame to block/unblock 1398 * data queues in the firmware 1399 * 1400 * @param common Pointer to the driver private structure. 1401 * @param block event - block if true, unblock if false 1402 * @return 0 on success, -1 on failure. 1403 */ 1404 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event) 1405 { 1406 struct rsi_block_unblock_data *mgmt_frame; 1407 struct sk_buff *skb; 1408 1409 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__); 1410 1411 skb = dev_alloc_skb(FRAME_DESC_SZ); 1412 if (!skb) { 1413 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1414 __func__); 1415 return -ENOMEM; 1416 } 1417 1418 memset(skb->data, 0, FRAME_DESC_SZ); 1419 mgmt_frame = (struct rsi_block_unblock_data *)skb->data; 1420 1421 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1422 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE; 1423 mgmt_frame->host_quiet_info = QUIET_INFO_VALID; 1424 1425 if (block_event) { 1426 rsi_dbg(INFO_ZONE, "blocking the data qs\n"); 1427 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf); 1428 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4); 1429 } else { 1430 rsi_dbg(INFO_ZONE, "unblocking the data qs\n"); 1431 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf); 1432 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4); 1433 } 1434 1435 skb_put(skb, FRAME_DESC_SZ); 1436 1437 return rsi_send_internal_mgmt_frame(common, skb); 1438 } 1439 1440 /** 1441 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets 1442 * 1443 * @common: Pointer to the driver private structure. 1444 * @rx_filter_word: Flags of filter packets 1445 * 1446 * @Return: 0 on success, -1 on failure. 1447 */ 1448 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word) 1449 { 1450 struct rsi_mac_frame *cmd_frame; 1451 struct sk_buff *skb; 1452 1453 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n"); 1454 1455 skb = dev_alloc_skb(FRAME_DESC_SZ); 1456 if (!skb) { 1457 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1458 __func__); 1459 return -ENOMEM; 1460 } 1461 1462 memset(skb->data, 0, FRAME_DESC_SZ); 1463 cmd_frame = (struct rsi_mac_frame *)skb->data; 1464 1465 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1466 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER); 1467 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word); 1468 1469 skb_put(skb, FRAME_DESC_SZ); 1470 1471 return rsi_send_internal_mgmt_frame(common, skb); 1472 } 1473 1474 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable) 1475 { 1476 struct rsi_common *common = adapter->priv; 1477 struct ieee80211_bss_conf *bss = &adapter->vifs[0]->bss_conf; 1478 struct rsi_request_ps *ps; 1479 struct rsi_ps_info *ps_info; 1480 struct sk_buff *skb; 1481 int frame_len = sizeof(*ps); 1482 1483 skb = dev_alloc_skb(frame_len); 1484 if (!skb) 1485 return -ENOMEM; 1486 memset(skb->data, 0, frame_len); 1487 1488 ps = (struct rsi_request_ps *)skb->data; 1489 ps_info = &adapter->ps_info; 1490 1491 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno, 1492 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1493 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST; 1494 if (enable) { 1495 ps->ps_sleep.enable = RSI_PS_ENABLE; 1496 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST); 1497 } else { 1498 ps->ps_sleep.enable = RSI_PS_DISABLE; 1499 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND); 1500 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST); 1501 } 1502 1503 ps->ps_uapsd_acs = common->uapsd_bitmap; 1504 1505 ps->ps_sleep.sleep_type = ps_info->sleep_type; 1506 ps->ps_sleep.num_bcns_per_lis_int = 1507 cpu_to_le16(ps_info->num_bcns_per_lis_int); 1508 ps->ps_sleep.sleep_duration = 1509 cpu_to_le32(ps_info->deep_sleep_wakeup_period); 1510 1511 if (bss->assoc) 1512 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP; 1513 else 1514 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP; 1515 1516 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval); 1517 ps->ps_dtim_interval_duration = 1518 cpu_to_le32(ps_info->dtim_interval_duration); 1519 1520 if (ps_info->listen_interval > ps_info->dtim_interval_duration) 1521 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE); 1522 1523 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep); 1524 skb_put(skb, frame_len); 1525 1526 return rsi_send_internal_mgmt_frame(common, skb); 1527 } 1528 1529 /** 1530 * rsi_set_antenna() - This fuction send antenna configuration request 1531 * to device 1532 * 1533 * @common: Pointer to the driver private structure. 1534 * @antenna: bitmap for tx antenna selection 1535 * 1536 * Return: 0 on Success, negative error code on failure 1537 */ 1538 int rsi_set_antenna(struct rsi_common *common, u8 antenna) 1539 { 1540 struct rsi_ant_sel_frame *ant_sel_frame; 1541 struct sk_buff *skb; 1542 1543 skb = dev_alloc_skb(FRAME_DESC_SZ); 1544 if (!skb) { 1545 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1546 __func__); 1547 return -ENOMEM; 1548 } 1549 1550 memset(skb->data, 0, FRAME_DESC_SZ); 1551 1552 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data; 1553 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME; 1554 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE; 1555 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE); 1556 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno, 1557 0, RSI_WIFI_MGMT_Q); 1558 skb_put(skb, FRAME_DESC_SZ); 1559 1560 return rsi_send_internal_mgmt_frame(common, skb); 1561 } 1562 1563 static int rsi_send_beacon(struct rsi_common *common) 1564 { 1565 struct sk_buff *skb = NULL; 1566 u8 dword_align_bytes = 0; 1567 1568 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE); 1569 if (!skb) 1570 return -ENOMEM; 1571 1572 memset(skb->data, 0, MAX_MGMT_PKT_SIZE); 1573 1574 dword_align_bytes = ((unsigned long)skb->data & 0x3f); 1575 if (dword_align_bytes) 1576 skb_pull(skb, (64 - dword_align_bytes)); 1577 if (rsi_prepare_beacon(common, skb)) { 1578 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n"); 1579 return -EINVAL; 1580 } 1581 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb); 1582 rsi_set_event(&common->tx_thread.event); 1583 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__); 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * rsi_handle_ta_confirm_type() - This function handles the confirm frames. 1590 * @common: Pointer to the driver private structure. 1591 * @msg: Pointer to received packet. 1592 * 1593 * Return: 0 on success, -1 on failure. 1594 */ 1595 static int rsi_handle_ta_confirm_type(struct rsi_common *common, 1596 u8 *msg) 1597 { 1598 struct rsi_hw *adapter = common->priv; 1599 u8 sub_type = (msg[15] & 0xff); 1600 u16 msg_len = ((u16 *)msg)[0] & 0xfff; 1601 u8 offset; 1602 1603 switch (sub_type) { 1604 case BOOTUP_PARAMS_REQUEST: 1605 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", 1606 __func__); 1607 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { 1608 adapter->eeprom.length = (IEEE80211_ADDR_LEN + 1609 WLAN_MAC_MAGIC_WORD_LEN + 1610 WLAN_HOST_MODE_LEN); 1611 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR; 1612 if (rsi_eeprom_read(common)) { 1613 common->fsm_state = FSM_CARD_NOT_READY; 1614 goto out; 1615 } 1616 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; 1617 } else { 1618 rsi_dbg(INFO_ZONE, 1619 "%s: Received bootup params cfm in %d state\n", 1620 __func__, common->fsm_state); 1621 return 0; 1622 } 1623 break; 1624 1625 case EEPROM_READ: 1626 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n"); 1627 if (msg_len <= 0) { 1628 rsi_dbg(FSM_ZONE, 1629 "%s: [EEPROM_READ] Invalid len %d\n", 1630 __func__, msg_len); 1631 goto out; 1632 } 1633 if (msg[16] != MAGIC_WORD) { 1634 rsi_dbg(FSM_ZONE, 1635 "%s: [EEPROM_READ] Invalid token\n", __func__); 1636 common->fsm_state = FSM_CARD_NOT_READY; 1637 goto out; 1638 } 1639 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { 1640 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + 1641 WLAN_MAC_MAGIC_WORD_LEN); 1642 memcpy(common->mac_addr, &msg[offset], ETH_ALEN); 1643 adapter->eeprom.length = 1644 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3)); 1645 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR; 1646 if (rsi_eeprom_read(common)) { 1647 rsi_dbg(ERR_ZONE, 1648 "%s: Failed reading RF band\n", 1649 __func__); 1650 common->fsm_state = FSM_CARD_NOT_READY; 1651 goto out; 1652 } 1653 common->fsm_state = FSM_EEPROM_READ_RF_TYPE; 1654 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) { 1655 if ((msg[17] & 0x3) == 0x3) { 1656 rsi_dbg(INIT_ZONE, "Dual band supported\n"); 1657 common->band = NL80211_BAND_5GHZ; 1658 common->num_supp_bands = 2; 1659 } else if ((msg[17] & 0x3) == 0x1) { 1660 rsi_dbg(INIT_ZONE, 1661 "Only 2.4Ghz band supported\n"); 1662 common->band = NL80211_BAND_2GHZ; 1663 common->num_supp_bands = 1; 1664 } 1665 if (rsi_send_reset_mac(common)) 1666 goto out; 1667 common->fsm_state = FSM_RESET_MAC_SENT; 1668 } else { 1669 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n", 1670 __func__); 1671 return 0; 1672 } 1673 break; 1674 1675 case RESET_MAC_REQ: 1676 if (common->fsm_state == FSM_RESET_MAC_SENT) { 1677 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", 1678 __func__); 1679 1680 if (rsi_load_radio_caps(common)) 1681 goto out; 1682 else 1683 common->fsm_state = FSM_RADIO_CAPS_SENT; 1684 } else { 1685 rsi_dbg(ERR_ZONE, 1686 "%s: Received reset mac cfm in %d state\n", 1687 __func__, common->fsm_state); 1688 return 0; 1689 } 1690 break; 1691 1692 case RADIO_CAPABILITIES: 1693 if (common->fsm_state == FSM_RADIO_CAPS_SENT) { 1694 common->rf_reset = 1; 1695 if (rsi_program_bb_rf(common)) { 1696 goto out; 1697 } else { 1698 common->fsm_state = FSM_BB_RF_PROG_SENT; 1699 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", 1700 __func__); 1701 } 1702 } else { 1703 rsi_dbg(INFO_ZONE, 1704 "%s: Received radio caps cfm in %d state\n", 1705 __func__, common->fsm_state); 1706 return 0; 1707 } 1708 break; 1709 1710 case BB_PROG_VALUES_REQUEST: 1711 case RF_PROG_VALUES_REQUEST: 1712 case BBP_PROG_IN_TA: 1713 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); 1714 if (common->fsm_state == FSM_BB_RF_PROG_SENT) { 1715 common->bb_rf_prog_count--; 1716 if (!common->bb_rf_prog_count) { 1717 common->fsm_state = FSM_MAC_INIT_DONE; 1718 return rsi_mac80211_attach(common); 1719 } 1720 } else { 1721 rsi_dbg(INFO_ZONE, 1722 "%s: Received bbb_rf cfm in %d state\n", 1723 __func__, common->fsm_state); 1724 return 0; 1725 } 1726 break; 1727 case WAKEUP_SLEEP_REQUEST: 1728 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n"); 1729 return rsi_handle_ps_confirm(adapter, msg); 1730 default: 1731 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", 1732 __func__); 1733 break; 1734 } 1735 return 0; 1736 out: 1737 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", 1738 __func__); 1739 return -EINVAL; 1740 } 1741 1742 static int rsi_handle_card_ready(struct rsi_common *common, u8 *msg) 1743 { 1744 switch (common->fsm_state) { 1745 case FSM_CARD_NOT_READY: 1746 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n"); 1747 rsi_set_default_parameters(common); 1748 if (rsi_send_common_dev_params(common) < 0) 1749 return -EINVAL; 1750 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT; 1751 break; 1752 case FSM_COMMON_DEV_PARAMS_SENT: 1753 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n"); 1754 1755 /* Get usb buffer status register address */ 1756 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8]; 1757 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n", 1758 common->priv->usb_buffer_status_reg); 1759 1760 if (rsi_load_bootup_params(common)) { 1761 common->fsm_state = FSM_CARD_NOT_READY; 1762 return -EINVAL; 1763 } 1764 common->fsm_state = FSM_BOOT_PARAMS_SENT; 1765 break; 1766 default: 1767 rsi_dbg(ERR_ZONE, 1768 "%s: card ready indication in invalid state %d.\n", 1769 __func__, common->fsm_state); 1770 return -EINVAL; 1771 } 1772 1773 return 0; 1774 } 1775 1776 /** 1777 * rsi_mgmt_pkt_recv() - This function processes the management packets 1778 * recieved from the hardware. 1779 * @common: Pointer to the driver private structure. 1780 * @msg: Pointer to the received packet. 1781 * 1782 * Return: 0 on success, -1 on failure. 1783 */ 1784 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) 1785 { 1786 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); 1787 u16 msg_type = (msg[2]); 1788 1789 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", 1790 __func__, msg_len, msg_type); 1791 1792 switch (msg_type) { 1793 case TA_CONFIRM_TYPE: 1794 return rsi_handle_ta_confirm_type(common, msg); 1795 case CARD_READY_IND: 1796 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", 1797 __func__); 1798 return rsi_handle_card_ready(common, msg); 1799 case TX_STATUS_IND: 1800 if (msg[15] == PROBEREQ_CONFIRM) { 1801 common->mgmt_q_block = false; 1802 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", 1803 __func__); 1804 } 1805 break; 1806 case BEACON_EVENT_IND: 1807 rsi_dbg(INFO_ZONE, "Beacon event\n"); 1808 if (common->fsm_state != FSM_MAC_INIT_DONE) 1809 return -1; 1810 if (common->iface_down) 1811 return -1; 1812 if (!common->beacon_enabled) 1813 return -1; 1814 rsi_send_beacon(common); 1815 break; 1816 case RX_DOT11_MGMT: 1817 return rsi_mgmt_pkt_to_core(common, msg, msg_len); 1818 default: 1819 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type); 1820 } 1821 return 0; 1822 } 1823