1 /* 2 * Copyright (c) 2014 Redpine Signals Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/etherdevice.h> 18 #include <linux/timer.h> 19 #include "rsi_mgmt.h" 20 #include "rsi_common.h" 21 #include "rsi_ps.h" 22 #include "rsi_hal.h" 23 24 static struct bootup_params boot_params_20 = { 25 .magic_number = cpu_to_le16(0x5aa5), 26 .crystal_good_time = 0x0, 27 .valid = cpu_to_le32(VALID_20), 28 .reserved_for_valids = 0x0, 29 .bootup_mode_info = 0x0, 30 .digital_loop_back_params = 0x0, 31 .rtls_timestamp_en = 0x0, 32 .host_spi_intr_cfg = 0x0, 33 .device_clk_info = {{ 34 .pll_config_g = { 35 .tapll_info_g = { 36 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 37 (TA_PLL_M_VAL_20)), 38 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 39 }, 40 .pll960_info_g = { 41 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 42 (PLL960_N_VAL_20)), 43 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 44 .pll_reg_3 = 0x0, 45 }, 46 .afepll_info_g = { 47 .pll_reg = cpu_to_le16(0x9f0), 48 } 49 }, 50 .switch_clk_g = { 51 .switch_clk_info = cpu_to_le16(0xb), 52 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111), 53 .umac_clock_reg_config = cpu_to_le16(0x48), 54 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 55 } 56 }, 57 { 58 .pll_config_g = { 59 .tapll_info_g = { 60 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 61 (TA_PLL_M_VAL_20)), 62 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 63 }, 64 .pll960_info_g = { 65 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 66 (PLL960_N_VAL_20)), 67 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 68 .pll_reg_3 = 0x0, 69 }, 70 .afepll_info_g = { 71 .pll_reg = cpu_to_le16(0x9f0), 72 } 73 }, 74 .switch_clk_g = { 75 .switch_clk_info = 0x0, 76 .bbp_lmac_clk_reg_val = 0x0, 77 .umac_clock_reg_config = 0x0, 78 .qspi_uart_clock_reg_config = 0x0 79 } 80 }, 81 { 82 .pll_config_g = { 83 .tapll_info_g = { 84 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 85 (TA_PLL_M_VAL_20)), 86 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 87 }, 88 .pll960_info_g = { 89 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 90 (PLL960_N_VAL_20)), 91 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 92 .pll_reg_3 = 0x0, 93 }, 94 .afepll_info_g = { 95 .pll_reg = cpu_to_le16(0x9f0), 96 } 97 }, 98 .switch_clk_g = { 99 .switch_clk_info = 0x0, 100 .bbp_lmac_clk_reg_val = 0x0, 101 .umac_clock_reg_config = 0x0, 102 .qspi_uart_clock_reg_config = 0x0 103 } 104 } }, 105 .buckboost_wakeup_cnt = 0x0, 106 .pmu_wakeup_wait = 0x0, 107 .shutdown_wait_time = 0x0, 108 .pmu_slp_clkout_sel = 0x0, 109 .wdt_prog_value = 0x0, 110 .wdt_soc_rst_delay = 0x0, 111 .dcdc_operation_mode = 0x0, 112 .soc_reset_wait_cnt = 0x0, 113 .waiting_time_at_fresh_sleep = 0x0, 114 .max_threshold_to_avoid_sleep = 0x0, 115 .beacon_resedue_alg_en = 0, 116 }; 117 118 static struct bootup_params boot_params_40 = { 119 .magic_number = cpu_to_le16(0x5aa5), 120 .crystal_good_time = 0x0, 121 .valid = cpu_to_le32(VALID_40), 122 .reserved_for_valids = 0x0, 123 .bootup_mode_info = 0x0, 124 .digital_loop_back_params = 0x0, 125 .rtls_timestamp_en = 0x0, 126 .host_spi_intr_cfg = 0x0, 127 .device_clk_info = {{ 128 .pll_config_g = { 129 .tapll_info_g = { 130 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 131 (TA_PLL_M_VAL_40)), 132 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 133 }, 134 .pll960_info_g = { 135 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 136 (PLL960_N_VAL_40)), 137 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 138 .pll_reg_3 = 0x0, 139 }, 140 .afepll_info_g = { 141 .pll_reg = cpu_to_le16(0x9f0), 142 } 143 }, 144 .switch_clk_g = { 145 .switch_clk_info = cpu_to_le16(0x09), 146 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), 147 .umac_clock_reg_config = cpu_to_le16(0x48), 148 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 149 } 150 }, 151 { 152 .pll_config_g = { 153 .tapll_info_g = { 154 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 155 (TA_PLL_M_VAL_40)), 156 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 157 }, 158 .pll960_info_g = { 159 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 160 (PLL960_N_VAL_40)), 161 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 162 .pll_reg_3 = 0x0, 163 }, 164 .afepll_info_g = { 165 .pll_reg = cpu_to_le16(0x9f0), 166 } 167 }, 168 .switch_clk_g = { 169 .switch_clk_info = 0x0, 170 .bbp_lmac_clk_reg_val = 0x0, 171 .umac_clock_reg_config = 0x0, 172 .qspi_uart_clock_reg_config = 0x0 173 } 174 }, 175 { 176 .pll_config_g = { 177 .tapll_info_g = { 178 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 179 (TA_PLL_M_VAL_40)), 180 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 181 }, 182 .pll960_info_g = { 183 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 184 (PLL960_N_VAL_40)), 185 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 186 .pll_reg_3 = 0x0, 187 }, 188 .afepll_info_g = { 189 .pll_reg = cpu_to_le16(0x9f0), 190 } 191 }, 192 .switch_clk_g = { 193 .switch_clk_info = 0x0, 194 .bbp_lmac_clk_reg_val = 0x0, 195 .umac_clock_reg_config = 0x0, 196 .qspi_uart_clock_reg_config = 0x0 197 } 198 } }, 199 .buckboost_wakeup_cnt = 0x0, 200 .pmu_wakeup_wait = 0x0, 201 .shutdown_wait_time = 0x0, 202 .pmu_slp_clkout_sel = 0x0, 203 .wdt_prog_value = 0x0, 204 .wdt_soc_rst_delay = 0x0, 205 .dcdc_operation_mode = 0x0, 206 .soc_reset_wait_cnt = 0x0, 207 .waiting_time_at_fresh_sleep = 0x0, 208 .max_threshold_to_avoid_sleep = 0x0, 209 .beacon_resedue_alg_en = 0, 210 }; 211 212 static struct bootup_params_9116 boot_params_9116_20 = { 213 .magic_number = cpu_to_le16(LOADED_TOKEN), 214 .valid = cpu_to_le32(VALID_20), 215 .device_clk_info_9116 = {{ 216 .pll_config_9116_g = { 217 .pll_ctrl_set_reg = cpu_to_le16(0xd518), 218 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7), 219 .pll_modem_conig_reg = cpu_to_le16(0x2000), 220 .soc_clk_config_reg = cpu_to_le16(0x0c18), 221 .adc_dac_strm1_config_reg = cpu_to_le16(0x1100), 222 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600), 223 }, 224 .switch_clk_9116_g = { 225 .switch_clk_info = 226 cpu_to_le32((RSI_SWITCH_TASS_CLK | 227 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG | 228 RSI_SWITCH_BBP_LMAC_CLK_REG)), 229 .tass_clock_reg = cpu_to_le32(0x083C0503), 230 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001), 231 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001), 232 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b), 233 } 234 }, 235 }, 236 }; 237 238 static struct bootup_params_9116 boot_params_9116_40 = { 239 .magic_number = cpu_to_le16(LOADED_TOKEN), 240 .valid = cpu_to_le32(VALID_40), 241 .device_clk_info_9116 = {{ 242 .pll_config_9116_g = { 243 .pll_ctrl_set_reg = cpu_to_le16(0xd518), 244 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7), 245 .pll_modem_conig_reg = cpu_to_le16(0x3000), 246 .soc_clk_config_reg = cpu_to_le16(0x0c18), 247 .adc_dac_strm1_config_reg = cpu_to_le16(0x0000), 248 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600), 249 }, 250 .switch_clk_9116_g = { 251 .switch_clk_info = 252 cpu_to_le32((RSI_SWITCH_TASS_CLK | 253 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG | 254 RSI_SWITCH_BBP_LMAC_CLK_REG | 255 RSI_MODEM_CLK_160MHZ)), 256 .tass_clock_reg = cpu_to_le32(0x083C0503), 257 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002), 258 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002), 259 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b), 260 } 261 }, 262 }, 263 }; 264 265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; 266 267 /** 268 * rsi_set_default_parameters() - This function sets default parameters. 269 * @common: Pointer to the driver private structure. 270 * 271 * Return: none 272 */ 273 static void rsi_set_default_parameters(struct rsi_common *common) 274 { 275 common->band = NL80211_BAND_2GHZ; 276 common->channel_width = BW_20MHZ; 277 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; 278 common->channel = 1; 279 memset(&common->rate_config, 0, sizeof(common->rate_config)); 280 common->fsm_state = FSM_CARD_NOT_READY; 281 common->iface_down = true; 282 common->endpoint = EP_2GHZ_20MHZ; 283 common->driver_mode = 1; /* End to end mode */ 284 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/ 285 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/ 286 common->rf_power_val = 0; /* Default 1.9V */ 287 common->wlan_rf_power_mode = 0; 288 common->obm_ant_sel_val = 2; 289 common->beacon_interval = RSI_BEACON_INTERVAL; 290 common->dtim_cnt = RSI_DTIM_COUNT; 291 common->w9116_features.pll_mode = 0x0; 292 common->w9116_features.rf_type = 1; 293 common->w9116_features.wireless_mode = 0; 294 common->w9116_features.enable_ppe = 0; 295 common->w9116_features.afe_type = 1; 296 common->w9116_features.dpd = 0; 297 common->w9116_features.sifs_tx_enable = 0; 298 common->w9116_features.ps_options = 0; 299 } 300 301 void init_bgscan_params(struct rsi_common *common) 302 { 303 memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params)); 304 common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD; 305 common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD; 306 common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY; 307 common->bgscan.num_bgscan_channels = 0; 308 common->bgscan.two_probe = 1; 309 common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME; 310 common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME; 311 } 312 313 /** 314 * rsi_set_contention_vals() - This function sets the contention values for the 315 * backoff procedure. 316 * @common: Pointer to the driver private structure. 317 * 318 * Return: None. 319 */ 320 static void rsi_set_contention_vals(struct rsi_common *common) 321 { 322 u8 ii = 0; 323 324 for (; ii < NUM_EDCA_QUEUES; ii++) { 325 common->tx_qinfo[ii].wme_params = 326 (((common->edca_params[ii].cw_min / 2) + 327 (common->edca_params[ii].aifs)) * 328 WMM_SHORT_SLOT_TIME + SIFS_DURATION); 329 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; 330 common->tx_qinfo[ii].pkt_contended = 0; 331 } 332 } 333 334 /** 335 * rsi_send_internal_mgmt_frame() - This function sends management frames to 336 * firmware.Also schedules packet to queue 337 * for transmission. 338 * @common: Pointer to the driver private structure. 339 * @skb: Pointer to the socket buffer structure. 340 * 341 * Return: 0 on success, -1 on failure. 342 */ 343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common, 344 struct sk_buff *skb) 345 { 346 struct skb_info *tx_params; 347 struct rsi_cmd_desc *desc; 348 349 if (skb == NULL) { 350 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 351 return -ENOMEM; 352 } 353 desc = (struct rsi_cmd_desc *)skb->data; 354 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP); 355 skb->priority = MGMT_SOFT_Q; 356 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; 357 tx_params->flags |= INTERNAL_MGMT_PKT; 358 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); 359 rsi_set_event(&common->tx_thread.event); 360 return 0; 361 } 362 363 /** 364 * rsi_load_radio_caps() - This function is used to send radio capabilities 365 * values to firmware. 366 * @common: Pointer to the driver private structure. 367 * 368 * Return: 0 on success, corresponding negative error code on failure. 369 */ 370 static int rsi_load_radio_caps(struct rsi_common *common) 371 { 372 struct rsi_radio_caps *radio_caps; 373 struct rsi_hw *adapter = common->priv; 374 u16 inx = 0; 375 u8 ii; 376 u8 radio_id = 0; 377 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 378 0xf0, 0xf0, 0xf0, 0xf0, 379 0xf0, 0xf0, 0xf0, 0xf0, 380 0xf0, 0xf0, 0xf0, 0xf0, 381 0xf0, 0xf0, 0xf0, 0xf0}; 382 struct sk_buff *skb; 383 u16 frame_len = sizeof(struct rsi_radio_caps); 384 385 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); 386 387 skb = dev_alloc_skb(frame_len); 388 389 if (!skb) { 390 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 391 __func__); 392 return -ENOMEM; 393 } 394 395 memset(skb->data, 0, frame_len); 396 radio_caps = (struct rsi_radio_caps *)skb->data; 397 398 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES; 399 radio_caps->channel_num = common->channel; 400 radio_caps->rf_model = RSI_RF_TYPE; 401 402 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ; 403 if (common->channel_width == BW_40MHZ) { 404 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ; 405 406 if (common->fsm_state == FSM_MAC_INIT_DONE) { 407 struct ieee80211_hw *hw = adapter->hw; 408 struct ieee80211_conf *conf = &hw->conf; 409 410 if (conf_is_ht40_plus(conf)) { 411 radio_caps->ppe_ack_rate = 412 cpu_to_le16(LOWER_20_ENABLE | 413 (LOWER_20_ENABLE >> 12)); 414 } else if (conf_is_ht40_minus(conf)) { 415 radio_caps->ppe_ack_rate = 416 cpu_to_le16(UPPER_20_ENABLE | 417 (UPPER_20_ENABLE >> 12)); 418 } else { 419 radio_caps->ppe_ack_rate = 420 cpu_to_le16((BW_40MHZ << 12) | 421 FULL40M_ENABLE); 422 } 423 } 424 } 425 radio_caps->radio_info |= radio_id; 426 427 if (adapter->device_model == RSI_DEV_9116 && 428 common->channel_width == BW_20MHZ) 429 radio_caps->radio_cfg_info &= ~0x3; 430 431 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE); 432 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE); 433 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE); 434 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE); 435 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE); 436 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE); 437 438 for (ii = 0; ii < MAX_HW_QUEUES; ii++) { 439 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); 440 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); 441 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); 442 radio_caps->qos_params[ii].txop_q = 0; 443 } 444 445 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) { 446 if (common->edca_params[ii].cw_max > 0) { 447 radio_caps->qos_params[ii].cont_win_min_q = 448 cpu_to_le16(common->edca_params[ii].cw_min); 449 radio_caps->qos_params[ii].cont_win_max_q = 450 cpu_to_le16(common->edca_params[ii].cw_max); 451 radio_caps->qos_params[ii].aifsn_val_q = 452 cpu_to_le16(common->edca_params[ii].aifs << 8); 453 radio_caps->qos_params[ii].txop_q = 454 cpu_to_le16(common->edca_params[ii].txop); 455 } 456 } 457 458 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff); 459 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0; 460 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff); 461 462 memcpy(&common->rate_pwr[0], &gc[0], 40); 463 for (ii = 0; ii < 20; ii++) 464 radio_caps->gcpd_per_rate[inx++] = 465 cpu_to_le16(common->rate_pwr[ii] & 0x00FF); 466 467 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno, 468 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 469 470 skb_put(skb, frame_len); 471 472 return rsi_send_internal_mgmt_frame(common, skb); 473 } 474 475 /** 476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. 477 * @common: Pointer to the driver private structure. 478 * @msg: Pointer to received packet. 479 * @msg_len: Length of the received packet. 480 * 481 * Return: 0 on success, -1 on failure. 482 */ 483 static int rsi_mgmt_pkt_to_core(struct rsi_common *common, 484 u8 *msg, 485 s32 msg_len) 486 { 487 struct rsi_hw *adapter = common->priv; 488 struct ieee80211_tx_info *info; 489 struct skb_info *rx_params; 490 u8 pad_bytes = msg[4]; 491 struct sk_buff *skb; 492 493 if (!adapter->sc_nvifs) 494 return -ENOLINK; 495 496 msg_len -= pad_bytes; 497 if (msg_len <= 0) { 498 rsi_dbg(MGMT_RX_ZONE, 499 "%s: Invalid rx msg of len = %d\n", 500 __func__, msg_len); 501 return -EINVAL; 502 } 503 504 skb = dev_alloc_skb(msg_len); 505 if (!skb) 506 return -ENOMEM; 507 508 skb_put_data(skb, 509 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), 510 msg_len); 511 512 info = IEEE80211_SKB_CB(skb); 513 rx_params = (struct skb_info *)info->driver_data; 514 rx_params->rssi = rsi_get_rssi(msg); 515 rx_params->channel = rsi_get_channel(msg); 516 rsi_indicate_pkt_to_os(common, skb); 517 518 return 0; 519 } 520 521 /** 522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify 523 * frame to firmware. 524 * @common: Pointer to the driver private structure. 525 * @opmode: Operating mode of device. 526 * @notify_event: Notification about station connection. 527 * @bssid: bssid. 528 * @qos_enable: Qos is enabled. 529 * @aid: Aid (unique for all STA). 530 * @sta_id: station id. 531 * @vif: Pointer to the ieee80211_vif structure. 532 * 533 * Return: status: 0 on success, corresponding negative error code on failure. 534 */ 535 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode, 536 u8 notify_event, const unsigned char *bssid, 537 u8 qos_enable, u16 aid, u16 sta_id, 538 struct ieee80211_vif *vif) 539 { 540 struct sk_buff *skb = NULL; 541 struct rsi_peer_notify *peer_notify; 542 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id; 543 int status; 544 u16 frame_len = sizeof(struct rsi_peer_notify); 545 546 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); 547 548 skb = dev_alloc_skb(frame_len); 549 550 if (!skb) { 551 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 552 __func__); 553 return -ENOMEM; 554 } 555 556 memset(skb->data, 0, frame_len); 557 peer_notify = (struct rsi_peer_notify *)skb->data; 558 559 if (opmode == RSI_OPMODE_STA) 560 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1); 561 else if (opmode == RSI_OPMODE_AP) 562 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1); 563 564 switch (notify_event) { 565 case STA_CONNECTED: 566 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); 567 break; 568 case STA_DISCONNECTED: 569 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); 570 break; 571 default: 572 break; 573 } 574 575 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); 576 ether_addr_copy(peer_notify->mac_addr, bssid); 577 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY); 578 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); 579 580 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno, 581 (frame_len - FRAME_DESC_SZ), 582 RSI_WIFI_MGMT_Q); 583 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY; 584 peer_notify->desc.desc_dword3.qid_tid = sta_id; 585 peer_notify->desc.desc_dword3.sta_id = vap_id; 586 587 skb_put(skb, frame_len); 588 589 status = rsi_send_internal_mgmt_frame(common, skb); 590 591 if ((vif->type == NL80211_IFTYPE_STATION) && 592 (!status && qos_enable)) { 593 rsi_set_contention_vals(common); 594 status = rsi_load_radio_caps(common); 595 } 596 return status; 597 } 598 599 /** 600 * rsi_send_aggregation_params_frame() - This function sends the ampdu 601 * indication frame to firmware. 602 * @common: Pointer to the driver private structure. 603 * @tid: traffic identifier. 604 * @ssn: ssn. 605 * @buf_size: buffer size. 606 * @event: notification about station connection. 607 * @sta_id: station id. 608 * 609 * Return: 0 on success, corresponding negative error code on failure. 610 */ 611 int rsi_send_aggregation_params_frame(struct rsi_common *common, 612 u16 tid, 613 u16 ssn, 614 u8 buf_size, 615 u8 event, 616 u8 sta_id) 617 { 618 struct sk_buff *skb = NULL; 619 struct rsi_aggr_params *aggr_params; 620 u16 frame_len = sizeof(struct rsi_aggr_params); 621 622 skb = dev_alloc_skb(frame_len); 623 624 if (!skb) { 625 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 626 __func__); 627 return -ENOMEM; 628 } 629 630 memset(skb->data, 0, frame_len); 631 aggr_params = (struct rsi_aggr_params *)skb->data; 632 633 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); 634 635 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 636 aggr_params->desc_dword0.frame_type = AMPDU_IND; 637 638 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK; 639 aggr_params->peer_id = sta_id; 640 if (event == STA_TX_ADDBA_DONE) { 641 aggr_params->seq_start = cpu_to_le16(ssn); 642 aggr_params->baw_size = cpu_to_le16(buf_size); 643 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START; 644 } else if (event == STA_RX_ADDBA_DONE) { 645 aggr_params->seq_start = cpu_to_le16(ssn); 646 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START | 647 RSI_AGGR_PARAMS_RX_AGGR); 648 } else if (event == STA_RX_DELBA) { 649 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR; 650 } 651 652 skb_put(skb, frame_len); 653 654 return rsi_send_internal_mgmt_frame(common, skb); 655 } 656 657 /** 658 * rsi_program_bb_rf() - This function starts base band and RF programming. 659 * This is called after initial configurations are done. 660 * @common: Pointer to the driver private structure. 661 * 662 * Return: 0 on success, corresponding negative error code on failure. 663 */ 664 static int rsi_program_bb_rf(struct rsi_common *common) 665 { 666 struct sk_buff *skb; 667 struct rsi_bb_rf_prog *bb_rf_prog; 668 u16 frame_len = sizeof(struct rsi_bb_rf_prog); 669 670 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); 671 672 skb = dev_alloc_skb(frame_len); 673 if (!skb) { 674 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 675 __func__); 676 return -ENOMEM; 677 } 678 679 memset(skb->data, 0, frame_len); 680 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data; 681 682 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 683 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA; 684 bb_rf_prog->endpoint = common->endpoint; 685 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode; 686 687 if (common->rf_reset) { 688 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE); 689 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", 690 __func__); 691 common->rf_reset = 0; 692 } 693 common->bb_rf_prog_count = 1; 694 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | 695 (RSI_RF_TYPE << 4)); 696 skb_put(skb, frame_len); 697 698 return rsi_send_internal_mgmt_frame(common, skb); 699 } 700 701 /** 702 * rsi_set_vap_capabilities() - This function send vap capability to firmware. 703 * @common: Pointer to the driver private structure. 704 * @mode: Operating mode of device. 705 * @mac_addr: MAC address 706 * @vap_id: Rate information - offset and mask 707 * @vap_status: VAP status - ADD, DELETE or UPDATE 708 * 709 * Return: 0 on success, corresponding negative error code on failure. 710 */ 711 int rsi_set_vap_capabilities(struct rsi_common *common, 712 enum opmode mode, 713 u8 *mac_addr, 714 u8 vap_id, 715 u8 vap_status) 716 { 717 struct sk_buff *skb = NULL; 718 struct rsi_vap_caps *vap_caps; 719 struct rsi_hw *adapter = common->priv; 720 struct ieee80211_hw *hw = adapter->hw; 721 struct ieee80211_conf *conf = &hw->conf; 722 u16 frame_len = sizeof(struct rsi_vap_caps); 723 724 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); 725 726 skb = dev_alloc_skb(frame_len); 727 if (!skb) { 728 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 729 __func__); 730 return -ENOMEM; 731 } 732 733 memset(skb->data, 0, frame_len); 734 vap_caps = (struct rsi_vap_caps *)skb->data; 735 736 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno, 737 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 738 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES; 739 vap_caps->status = vap_status; 740 vap_caps->vif_type = mode; 741 vap_caps->channel_bw = common->channel_width; 742 vap_caps->vap_id = vap_id; 743 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) | 744 (common->radio_id & 0xf); 745 746 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN); 747 vap_caps->keep_alive_period = cpu_to_le16(90); 748 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); 749 750 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); 751 752 if (common->band == NL80211_BAND_5GHZ) { 753 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6); 754 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6); 755 } else { 756 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1); 757 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1); 758 } 759 if (conf_is_ht40(conf)) { 760 if (conf_is_ht40_minus(conf)) 761 vap_caps->ctrl_rate_flags = 762 cpu_to_le16(UPPER_20_ENABLE); 763 else if (conf_is_ht40_plus(conf)) 764 vap_caps->ctrl_rate_flags = 765 cpu_to_le16(LOWER_20_ENABLE); 766 else 767 vap_caps->ctrl_rate_flags = 768 cpu_to_le16(FULL40M_ENABLE); 769 } 770 771 vap_caps->default_data_rate = 0; 772 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval); 773 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt); 774 775 skb_put(skb, frame_len); 776 777 return rsi_send_internal_mgmt_frame(common, skb); 778 } 779 780 /** 781 * rsi_hal_load_key() - This function is used to load keys within the firmware. 782 * @common: Pointer to the driver private structure. 783 * @data: Pointer to the key data. 784 * @key_len: Key length to be loaded. 785 * @key_type: Type of key: GROUP/PAIRWISE. 786 * @key_id: Key index. 787 * @cipher: Type of cipher used. 788 * @sta_id: Station id. 789 * @vif: Pointer to the ieee80211_vif structure. 790 * 791 * Return: 0 on success, -1 on failure. 792 */ 793 int rsi_hal_load_key(struct rsi_common *common, 794 u8 *data, 795 u16 key_len, 796 u8 key_type, 797 u8 key_id, 798 u32 cipher, 799 s16 sta_id, 800 struct ieee80211_vif *vif) 801 { 802 struct sk_buff *skb = NULL; 803 struct rsi_set_key *set_key; 804 u16 key_descriptor = 0; 805 u16 frame_len = sizeof(struct rsi_set_key); 806 807 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); 808 809 skb = dev_alloc_skb(frame_len); 810 if (!skb) { 811 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 812 __func__); 813 return -ENOMEM; 814 } 815 816 memset(skb->data, 0, frame_len); 817 set_key = (struct rsi_set_key *)skb->data; 818 819 if (key_type == RSI_GROUP_KEY) { 820 key_descriptor = RSI_KEY_TYPE_BROADCAST; 821 if (vif->type == NL80211_IFTYPE_AP) 822 key_descriptor |= RSI_KEY_MODE_AP; 823 } 824 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 825 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 826 key_id = 0; 827 key_descriptor |= RSI_WEP_KEY; 828 if (key_len >= 13) 829 key_descriptor |= RSI_WEP_KEY_104; 830 } else if (cipher != KEY_TYPE_CLEAR) { 831 key_descriptor |= RSI_CIPHER_WPA; 832 if (cipher == WLAN_CIPHER_SUITE_TKIP) 833 key_descriptor |= RSI_CIPHER_TKIP; 834 } 835 key_descriptor |= RSI_PROTECT_DATA_FRAMES; 836 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET); 837 838 rsi_set_len_qno(&set_key->desc_dword0.len_qno, 839 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 840 set_key->desc_dword0.frame_type = SET_KEY_REQ; 841 set_key->key_desc = cpu_to_le16(key_descriptor); 842 set_key->sta_id = sta_id; 843 844 if (data) { 845 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 846 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 847 memcpy(&set_key->key[key_id][1], data, key_len * 2); 848 } else { 849 memcpy(&set_key->key[0][0], data, key_len); 850 } 851 memcpy(set_key->tx_mic_key, &data[16], 8); 852 memcpy(set_key->rx_mic_key, &data[24], 8); 853 } else { 854 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ); 855 } 856 857 skb_put(skb, frame_len); 858 859 return rsi_send_internal_mgmt_frame(common, skb); 860 } 861 862 /* 863 * This function sends the common device configuration parameters to device. 864 * This frame includes the useful information to make device works on 865 * specific operating mode. 866 */ 867 static int rsi_send_common_dev_params(struct rsi_common *common) 868 { 869 struct sk_buff *skb; 870 u16 frame_len; 871 struct rsi_config_vals *dev_cfgs; 872 873 frame_len = sizeof(struct rsi_config_vals); 874 875 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n"); 876 skb = dev_alloc_skb(frame_len); 877 if (!skb) { 878 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 879 return -ENOMEM; 880 } 881 882 memset(skb->data, 0, frame_len); 883 884 dev_cfgs = (struct rsi_config_vals *)skb->data; 885 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals))); 886 887 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ), 888 RSI_COEX_Q); 889 dev_cfgs->pkt_type = COMMON_DEV_CONFIG; 890 891 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode; 892 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode; 893 894 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP; 895 dev_cfgs->unused_soc_gpio_bitmap = 896 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP); 897 898 dev_cfgs->opermode = common->oper_mode; 899 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode; 900 dev_cfgs->driver_mode = common->driver_mode; 901 dev_cfgs->region_code = NL80211_DFS_FCC; 902 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val; 903 904 skb_put(skb, frame_len); 905 906 return rsi_send_internal_mgmt_frame(common, skb); 907 } 908 909 /* 910 * rsi_load_bootup_params() - This function send bootup params to the firmware. 911 * @common: Pointer to the driver private structure. 912 * 913 * Return: 0 on success, corresponding error code on failure. 914 */ 915 static int rsi_load_bootup_params(struct rsi_common *common) 916 { 917 struct sk_buff *skb; 918 struct rsi_boot_params *boot_params; 919 920 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 921 skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); 922 if (!skb) { 923 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 924 __func__); 925 return -ENOMEM; 926 } 927 928 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 929 boot_params = (struct rsi_boot_params *)skb->data; 930 931 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); 932 933 if (common->channel_width == BW_40MHZ) { 934 memcpy(&boot_params->bootup_params, 935 &boot_params_40, 936 sizeof(struct bootup_params)); 937 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 938 UMAC_CLK_40BW); 939 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); 940 } else { 941 memcpy(&boot_params->bootup_params, 942 &boot_params_20, 943 sizeof(struct bootup_params)); 944 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 945 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); 946 rsi_dbg(MGMT_TX_ZONE, 947 "%s: Packet 20MHZ <=== %d\n", __func__, 948 UMAC_CLK_20BW); 949 } else { 950 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); 951 rsi_dbg(MGMT_TX_ZONE, 952 "%s: Packet 20MHZ <=== %d\n", __func__, 953 UMAC_CLK_40MHZ); 954 } 955 } 956 957 /** 958 * Bit{0:11} indicates length of the Packet 959 * Bit{12:15} indicates host queue number 960 */ 961 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | 962 (RSI_WIFI_MGMT_Q << 12)); 963 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); 964 965 skb_put(skb, sizeof(struct rsi_boot_params)); 966 967 return rsi_send_internal_mgmt_frame(common, skb); 968 } 969 970 static int rsi_load_9116_bootup_params(struct rsi_common *common) 971 { 972 struct sk_buff *skb; 973 struct rsi_boot_params_9116 *boot_params; 974 975 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 976 977 skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116)); 978 if (!skb) 979 return -ENOMEM; 980 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 981 boot_params = (struct rsi_boot_params_9116 *)skb->data; 982 983 if (common->channel_width == BW_40MHZ) { 984 memcpy(&boot_params->bootup_params, 985 &boot_params_9116_40, 986 sizeof(struct bootup_params_9116)); 987 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 988 UMAC_CLK_40BW); 989 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW); 990 } else { 991 memcpy(&boot_params->bootup_params, 992 &boot_params_9116_20, 993 sizeof(struct bootup_params_9116)); 994 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 995 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW); 996 rsi_dbg(MGMT_TX_ZONE, 997 "%s: Packet 20MHZ <=== %d\n", __func__, 998 UMAC_CLK_20BW); 999 } else { 1000 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ); 1001 rsi_dbg(MGMT_TX_ZONE, 1002 "%s: Packet 20MHZ <=== %d\n", __func__, 1003 UMAC_CLK_40MHZ); 1004 } 1005 } 1006 rsi_set_len_qno(&boot_params->desc_dword0.len_qno, 1007 sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q); 1008 boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST; 1009 skb_put(skb, sizeof(struct rsi_boot_params_9116)); 1010 1011 return rsi_send_internal_mgmt_frame(common, skb); 1012 } 1013 1014 /** 1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an 1016 * internal management frame to indicate it to firmware. 1017 * @common: Pointer to the driver private structure. 1018 * 1019 * Return: 0 on success, corresponding error code on failure. 1020 */ 1021 static int rsi_send_reset_mac(struct rsi_common *common) 1022 { 1023 struct sk_buff *skb; 1024 struct rsi_mac_frame *mgmt_frame; 1025 1026 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); 1027 1028 skb = dev_alloc_skb(FRAME_DESC_SZ); 1029 if (!skb) { 1030 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1031 __func__); 1032 return -ENOMEM; 1033 } 1034 1035 memset(skb->data, 0, FRAME_DESC_SZ); 1036 mgmt_frame = (struct rsi_mac_frame *)skb->data; 1037 1038 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1039 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); 1040 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); 1041 1042 #define RSI_9116_DEF_TA_AGGR 3 1043 if (common->priv->device_model == RSI_DEV_9116) 1044 mgmt_frame->desc_word[3] |= 1045 cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8); 1046 1047 skb_put(skb, FRAME_DESC_SZ); 1048 1049 return rsi_send_internal_mgmt_frame(common, skb); 1050 } 1051 1052 /** 1053 * rsi_band_check() - This function programs the band 1054 * @common: Pointer to the driver private structure. 1055 * @curchan: Pointer to the current channel structure. 1056 * 1057 * Return: 0 on success, corresponding error code on failure. 1058 */ 1059 int rsi_band_check(struct rsi_common *common, 1060 struct ieee80211_channel *curchan) 1061 { 1062 struct rsi_hw *adapter = common->priv; 1063 struct ieee80211_hw *hw = adapter->hw; 1064 u8 prev_bw = common->channel_width; 1065 u8 prev_ep = common->endpoint; 1066 int status = 0; 1067 1068 if (common->band != curchan->band) { 1069 common->rf_reset = 1; 1070 common->band = curchan->band; 1071 } 1072 1073 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) || 1074 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20)) 1075 common->channel_width = BW_20MHZ; 1076 else 1077 common->channel_width = BW_40MHZ; 1078 1079 if (common->band == NL80211_BAND_2GHZ) { 1080 if (common->channel_width) 1081 common->endpoint = EP_2GHZ_40MHZ; 1082 else 1083 common->endpoint = EP_2GHZ_20MHZ; 1084 } else { 1085 if (common->channel_width) 1086 common->endpoint = EP_5GHZ_40MHZ; 1087 else 1088 common->endpoint = EP_5GHZ_20MHZ; 1089 } 1090 1091 if (common->endpoint != prev_ep) { 1092 status = rsi_program_bb_rf(common); 1093 if (status) 1094 return status; 1095 } 1096 1097 if (common->channel_width != prev_bw) { 1098 if (adapter->device_model == RSI_DEV_9116) 1099 status = rsi_load_9116_bootup_params(common); 1100 else 1101 status = rsi_load_bootup_params(common); 1102 if (status) 1103 return status; 1104 1105 status = rsi_load_radio_caps(common); 1106 if (status) 1107 return status; 1108 } 1109 1110 return status; 1111 } 1112 1113 /** 1114 * rsi_set_channel() - This function programs the channel. 1115 * @common: Pointer to the driver private structure. 1116 * @channel: Channel value to be set. 1117 * 1118 * Return: 0 on success, corresponding error code on failure. 1119 */ 1120 int rsi_set_channel(struct rsi_common *common, 1121 struct ieee80211_channel *channel) 1122 { 1123 struct sk_buff *skb = NULL; 1124 struct rsi_chan_config *chan_cfg; 1125 u16 frame_len = sizeof(struct rsi_chan_config); 1126 1127 rsi_dbg(MGMT_TX_ZONE, 1128 "%s: Sending scan req frame\n", __func__); 1129 1130 skb = dev_alloc_skb(frame_len); 1131 if (!skb) { 1132 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1133 __func__); 1134 return -ENOMEM; 1135 } 1136 1137 if (!channel) { 1138 dev_kfree_skb(skb); 1139 return 0; 1140 } 1141 memset(skb->data, 0, frame_len); 1142 chan_cfg = (struct rsi_chan_config *)skb->data; 1143 1144 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1145 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST; 1146 chan_cfg->channel_number = channel->hw_value; 1147 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain; 1148 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain; 1149 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4; 1150 1151 if ((channel->flags & IEEE80211_CHAN_NO_IR) || 1152 (channel->flags & IEEE80211_CHAN_RADAR)) { 1153 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR; 1154 } else { 1155 if (common->tx_power < channel->max_power) 1156 chan_cfg->tx_power = cpu_to_le16(common->tx_power); 1157 else 1158 chan_cfg->tx_power = cpu_to_le16(channel->max_power); 1159 } 1160 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf); 1161 1162 if (common->channel_width == BW_40MHZ) 1163 chan_cfg->channel_width = 0x1; 1164 1165 common->channel = channel->hw_value; 1166 1167 skb_put(skb, frame_len); 1168 1169 return rsi_send_internal_mgmt_frame(common, skb); 1170 } 1171 1172 /** 1173 * rsi_send_radio_params_update() - This function sends the radio 1174 * parameters update to device 1175 * @common: Pointer to the driver private structure. 1176 * 1177 * Return: 0 on success, corresponding error code on failure. 1178 */ 1179 int rsi_send_radio_params_update(struct rsi_common *common) 1180 { 1181 struct rsi_mac_frame *cmd_frame; 1182 struct sk_buff *skb = NULL; 1183 1184 rsi_dbg(MGMT_TX_ZONE, 1185 "%s: Sending Radio Params update frame\n", __func__); 1186 1187 skb = dev_alloc_skb(FRAME_DESC_SZ); 1188 if (!skb) { 1189 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1190 __func__); 1191 return -ENOMEM; 1192 } 1193 1194 memset(skb->data, 0, FRAME_DESC_SZ); 1195 cmd_frame = (struct rsi_mac_frame *)skb->data; 1196 1197 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1198 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE); 1199 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0)); 1200 1201 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8); 1202 1203 skb_put(skb, FRAME_DESC_SZ); 1204 1205 return rsi_send_internal_mgmt_frame(common, skb); 1206 } 1207 1208 /* This function programs the threshold. */ 1209 int rsi_send_vap_dynamic_update(struct rsi_common *common) 1210 { 1211 struct sk_buff *skb; 1212 struct rsi_dynamic_s *dynamic_frame; 1213 1214 rsi_dbg(MGMT_TX_ZONE, 1215 "%s: Sending vap update indication frame\n", __func__); 1216 1217 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s)); 1218 if (!skb) 1219 return -ENOMEM; 1220 1221 memset(skb->data, 0, sizeof(struct rsi_dynamic_s)); 1222 dynamic_frame = (struct rsi_dynamic_s *)skb->data; 1223 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno, 1224 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q); 1225 1226 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE; 1227 dynamic_frame->desc_dword2.pkt_info = 1228 cpu_to_le32(common->rts_threshold); 1229 1230 if (common->wow_flags & RSI_WOW_ENABLED) { 1231 /* Beacon miss threshold */ 1232 dynamic_frame->desc_dword3.token = 1233 cpu_to_le16(RSI_BCN_MISS_THRESHOLD); 1234 dynamic_frame->frame_body.keep_alive_period = 1235 cpu_to_le16(RSI_WOW_KEEPALIVE); 1236 } else { 1237 dynamic_frame->frame_body.keep_alive_period = 1238 cpu_to_le16(RSI_DEF_KEEPALIVE); 1239 } 1240 1241 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */ 1242 1243 skb_put(skb, sizeof(struct rsi_dynamic_s)); 1244 1245 return rsi_send_internal_mgmt_frame(common, skb); 1246 } 1247 1248 /** 1249 * rsi_compare() - This function is used to compare two integers 1250 * @a: pointer to the first integer 1251 * @b: pointer to the second integer 1252 * 1253 * Return: 0 if both are equal, -1 if the first is smaller, else 1 1254 */ 1255 static int rsi_compare(const void *a, const void *b) 1256 { 1257 u16 _a = *(const u16 *)(a); 1258 u16 _b = *(const u16 *)(b); 1259 1260 if (_a > _b) 1261 return -1; 1262 1263 if (_a < _b) 1264 return 1; 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * rsi_map_rates() - This function is used to map selected rates to hw rates. 1271 * @rate: The standard rate to be mapped. 1272 * @offset: Offset that will be returned. 1273 * 1274 * Return: 0 if it is a mcs rate, else 1 1275 */ 1276 static bool rsi_map_rates(u16 rate, int *offset) 1277 { 1278 int kk; 1279 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { 1280 if (rate == mcs[kk]) { 1281 *offset = kk; 1282 return false; 1283 } 1284 } 1285 1286 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { 1287 if (rate == rsi_rates[kk].bitrate / 5) { 1288 *offset = kk; 1289 break; 1290 } 1291 } 1292 return true; 1293 } 1294 1295 /** 1296 * rsi_send_auto_rate_request() - This function is to set rates for connection 1297 * and send autorate request to firmware. 1298 * @common: Pointer to the driver private structure. 1299 * @sta: mac80211 station. 1300 * @sta_id: station id. 1301 * @vif: Pointer to the ieee80211_vif structure. 1302 * 1303 * Return: 0 on success, corresponding error code on failure. 1304 */ 1305 static int rsi_send_auto_rate_request(struct rsi_common *common, 1306 struct ieee80211_sta *sta, 1307 u16 sta_id, 1308 struct ieee80211_vif *vif) 1309 { 1310 struct sk_buff *skb; 1311 struct rsi_auto_rate *auto_rate; 1312 int ii = 0, jj = 0, kk = 0; 1313 struct ieee80211_hw *hw = common->priv->hw; 1314 u8 band = hw->conf.chandef.chan->band; 1315 u8 num_supported_rates = 0; 1316 u8 rate_table_offset, rate_offset = 0; 1317 u32 rate_bitmap, configured_rates; 1318 u16 *selected_rates, min_rate; 1319 bool is_ht = false, is_sgi = false; 1320 u16 frame_len = sizeof(struct rsi_auto_rate); 1321 1322 rsi_dbg(MGMT_TX_ZONE, 1323 "%s: Sending auto rate request frame\n", __func__); 1324 1325 skb = dev_alloc_skb(frame_len); 1326 if (!skb) { 1327 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1328 __func__); 1329 return -ENOMEM; 1330 } 1331 1332 memset(skb->data, 0, frame_len); 1333 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL); 1334 if (!selected_rates) { 1335 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", 1336 __func__); 1337 dev_kfree_skb(skb); 1338 return -ENOMEM; 1339 } 1340 1341 auto_rate = (struct rsi_auto_rate *)skb->data; 1342 1343 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); 1344 auto_rate->collision_tolerance = cpu_to_le16(3); 1345 auto_rate->failure_limit = cpu_to_le16(3); 1346 auto_rate->initial_boundary = cpu_to_le16(3); 1347 auto_rate->max_threshold_limt = cpu_to_le16(27); 1348 1349 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND; 1350 1351 if (common->channel_width == BW_40MHZ) 1352 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ; 1353 auto_rate->desc.desc_dword3.sta_id = sta_id; 1354 1355 if (vif->type == NL80211_IFTYPE_STATION) { 1356 rate_bitmap = common->bitrate_mask[band]; 1357 is_ht = common->vif_info[0].is_ht; 1358 is_sgi = common->vif_info[0].sgi; 1359 } else { 1360 rate_bitmap = sta->supp_rates[band]; 1361 is_ht = sta->ht_cap.ht_supported; 1362 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) || 1363 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)) 1364 is_sgi = true; 1365 } 1366 1367 /* Limit to any rates administratively configured by cfg80211 */ 1368 configured_rates = common->rate_config[band].configured_mask ?: 0xffffffff; 1369 rate_bitmap &= configured_rates; 1370 1371 if (band == NL80211_BAND_2GHZ) { 1372 if ((rate_bitmap == 0) && (is_ht)) 1373 min_rate = RSI_RATE_MCS0; 1374 else 1375 min_rate = RSI_RATE_1; 1376 rate_table_offset = 0; 1377 } else { 1378 if ((rate_bitmap == 0) && (is_ht)) 1379 min_rate = RSI_RATE_MCS0; 1380 else 1381 min_rate = RSI_RATE_6; 1382 rate_table_offset = 4; 1383 } 1384 1385 for (ii = 0, jj = 0; 1386 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) { 1387 if (rate_bitmap & BIT(ii)) { 1388 selected_rates[jj++] = 1389 (rsi_rates[ii + rate_table_offset].bitrate / 5); 1390 rate_offset++; 1391 } 1392 } 1393 num_supported_rates = jj; 1394 1395 if (is_ht) { 1396 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) { 1397 if (configured_rates & BIT(ii + ARRAY_SIZE(rsi_rates))) { 1398 selected_rates[jj++] = mcs[ii]; 1399 num_supported_rates++; 1400 rate_offset++; 1401 } 1402 } 1403 } 1404 1405 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); 1406 1407 /* mapping the rates to RSI rates */ 1408 for (ii = 0; ii < jj; ii++) { 1409 if (rsi_map_rates(selected_rates[ii], &kk)) { 1410 auto_rate->supported_rates[ii] = 1411 cpu_to_le16(rsi_rates[kk].hw_value); 1412 } else { 1413 auto_rate->supported_rates[ii] = 1414 cpu_to_le16(rsi_mcsrates[kk]); 1415 } 1416 } 1417 1418 /* loading HT rates in the bottom half of the auto rate table */ 1419 if (is_ht) { 1420 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; 1421 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { 1422 if (is_sgi || conf_is_ht40(&common->priv->hw->conf)) 1423 auto_rate->supported_rates[ii++] = 1424 cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); 1425 else 1426 auto_rate->supported_rates[ii++] = 1427 cpu_to_le16(rsi_mcsrates[kk]); 1428 auto_rate->supported_rates[ii] = 1429 cpu_to_le16(rsi_mcsrates[kk--]); 1430 } 1431 1432 for (; ii < (RSI_TBL_SZ - 1); ii++) { 1433 auto_rate->supported_rates[ii] = 1434 cpu_to_le16(rsi_mcsrates[0]); 1435 } 1436 } 1437 1438 for (; ii < RSI_TBL_SZ; ii++) 1439 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate); 1440 1441 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); 1442 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); 1443 num_supported_rates *= 2; 1444 1445 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno, 1446 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1447 1448 skb_put(skb, frame_len); 1449 kfree(selected_rates); 1450 1451 return rsi_send_internal_mgmt_frame(common, skb); 1452 } 1453 1454 /** 1455 * rsi_inform_bss_status() - This function informs about bss status with the 1456 * help of sta notify params by sending an internal 1457 * management frame to firmware. 1458 * @common: Pointer to the driver private structure. 1459 * @opmode: Operating mode of device. 1460 * @status: Bss status type. 1461 * @addr: Address of the register. 1462 * @qos_enable: Qos is enabled. 1463 * @aid: Aid (unique for all STAs). 1464 * @sta: mac80211 station. 1465 * @sta_id: station id. 1466 * @assoc_cap: capabilities. 1467 * @vif: Pointer to the ieee80211_vif structure. 1468 * 1469 * Return: None. 1470 */ 1471 void rsi_inform_bss_status(struct rsi_common *common, 1472 enum opmode opmode, 1473 u8 status, 1474 const u8 *addr, 1475 u8 qos_enable, 1476 u16 aid, 1477 struct ieee80211_sta *sta, 1478 u16 sta_id, 1479 u16 assoc_cap, 1480 struct ieee80211_vif *vif) 1481 { 1482 if (status) { 1483 if (opmode == RSI_OPMODE_STA) 1484 common->hw_data_qs_blocked = true; 1485 rsi_hal_send_sta_notify_frame(common, 1486 opmode, 1487 STA_CONNECTED, 1488 addr, 1489 qos_enable, 1490 aid, sta_id, 1491 vif); 1492 if (!common->rate_config[common->band].fixed_enabled) 1493 rsi_send_auto_rate_request(common, sta, sta_id, vif); 1494 if (opmode == RSI_OPMODE_STA && 1495 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) && 1496 !rsi_send_block_unblock_frame(common, false)) 1497 common->hw_data_qs_blocked = false; 1498 } else { 1499 if (opmode == RSI_OPMODE_STA) 1500 common->hw_data_qs_blocked = true; 1501 1502 if (!(common->wow_flags & RSI_WOW_ENABLED)) 1503 rsi_hal_send_sta_notify_frame(common, opmode, 1504 STA_DISCONNECTED, addr, 1505 qos_enable, aid, sta_id, 1506 vif); 1507 if (opmode == RSI_OPMODE_STA) 1508 rsi_send_block_unblock_frame(common, true); 1509 } 1510 } 1511 1512 /** 1513 * rsi_eeprom_read() - This function sends a frame to read the mac address 1514 * from the eeprom. 1515 * @common: Pointer to the driver private structure. 1516 * 1517 * Return: 0 on success, -1 on failure. 1518 */ 1519 static int rsi_eeprom_read(struct rsi_common *common) 1520 { 1521 struct rsi_eeprom_read_frame *mgmt_frame; 1522 struct rsi_hw *adapter = common->priv; 1523 struct sk_buff *skb; 1524 1525 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); 1526 1527 skb = dev_alloc_skb(FRAME_DESC_SZ); 1528 if (!skb) { 1529 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1530 __func__); 1531 return -ENOMEM; 1532 } 1533 1534 memset(skb->data, 0, FRAME_DESC_SZ); 1535 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data; 1536 1537 /* FrameType */ 1538 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q); 1539 mgmt_frame->pkt_type = EEPROM_READ; 1540 1541 /* Number of bytes to read */ 1542 mgmt_frame->pkt_info = 1543 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) & 1544 RSI_EEPROM_LEN_MASK); 1545 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) & 1546 RSI_EEPROM_HDR_SIZE_MASK); 1547 1548 /* Address to read */ 1549 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset); 1550 1551 skb_put(skb, FRAME_DESC_SZ); 1552 1553 return rsi_send_internal_mgmt_frame(common, skb); 1554 } 1555 1556 /** 1557 * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock 1558 * data queues in the firmware 1559 * 1560 * @common: Pointer to the driver private structure. 1561 * @block_event: Event block if true, unblock if false 1562 * returns 0 on success, -1 on failure. 1563 */ 1564 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event) 1565 { 1566 struct rsi_block_unblock_data *mgmt_frame; 1567 struct sk_buff *skb; 1568 1569 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__); 1570 1571 skb = dev_alloc_skb(FRAME_DESC_SZ); 1572 if (!skb) { 1573 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1574 __func__); 1575 return -ENOMEM; 1576 } 1577 1578 memset(skb->data, 0, FRAME_DESC_SZ); 1579 mgmt_frame = (struct rsi_block_unblock_data *)skb->data; 1580 1581 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1582 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE; 1583 mgmt_frame->host_quiet_info = QUIET_INFO_VALID; 1584 1585 if (block_event) { 1586 rsi_dbg(INFO_ZONE, "blocking the data qs\n"); 1587 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf); 1588 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4); 1589 } else { 1590 rsi_dbg(INFO_ZONE, "unblocking the data qs\n"); 1591 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf); 1592 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4); 1593 } 1594 1595 skb_put(skb, FRAME_DESC_SZ); 1596 1597 return rsi_send_internal_mgmt_frame(common, skb); 1598 } 1599 1600 /** 1601 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets 1602 * 1603 * @common: Pointer to the driver private structure. 1604 * @rx_filter_word: Flags of filter packets 1605 * 1606 * Returns 0 on success, -1 on failure. 1607 */ 1608 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word) 1609 { 1610 struct rsi_mac_frame *cmd_frame; 1611 struct sk_buff *skb; 1612 1613 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n"); 1614 1615 skb = dev_alloc_skb(FRAME_DESC_SZ); 1616 if (!skb) { 1617 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1618 __func__); 1619 return -ENOMEM; 1620 } 1621 1622 memset(skb->data, 0, FRAME_DESC_SZ); 1623 cmd_frame = (struct rsi_mac_frame *)skb->data; 1624 1625 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1626 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER); 1627 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word); 1628 1629 skb_put(skb, FRAME_DESC_SZ); 1630 1631 return rsi_send_internal_mgmt_frame(common, skb); 1632 } 1633 1634 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable, 1635 struct ieee80211_vif *vif) 1636 { 1637 struct rsi_common *common = adapter->priv; 1638 struct ieee80211_bss_conf *bss = &vif->bss_conf; 1639 struct rsi_request_ps *ps; 1640 struct rsi_ps_info *ps_info; 1641 struct sk_buff *skb; 1642 int frame_len = sizeof(*ps); 1643 1644 skb = dev_alloc_skb(frame_len); 1645 if (!skb) 1646 return -ENOMEM; 1647 memset(skb->data, 0, frame_len); 1648 1649 ps = (struct rsi_request_ps *)skb->data; 1650 ps_info = &adapter->ps_info; 1651 1652 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno, 1653 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1654 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST; 1655 if (enable) { 1656 ps->ps_sleep.enable = RSI_PS_ENABLE; 1657 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST); 1658 } else { 1659 ps->ps_sleep.enable = RSI_PS_DISABLE; 1660 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND); 1661 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST); 1662 } 1663 1664 ps->ps_uapsd_acs = common->uapsd_bitmap; 1665 1666 ps->ps_sleep.sleep_type = ps_info->sleep_type; 1667 ps->ps_sleep.num_bcns_per_lis_int = 1668 cpu_to_le16(ps_info->num_bcns_per_lis_int); 1669 ps->ps_sleep.sleep_duration = 1670 cpu_to_le32(ps_info->deep_sleep_wakeup_period); 1671 1672 if (bss->assoc) 1673 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP; 1674 else 1675 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP; 1676 1677 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval); 1678 ps->ps_dtim_interval_duration = 1679 cpu_to_le32(ps_info->dtim_interval_duration); 1680 1681 if (ps_info->listen_interval > ps_info->dtim_interval_duration) 1682 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE); 1683 1684 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep); 1685 skb_put(skb, frame_len); 1686 1687 return rsi_send_internal_mgmt_frame(common, skb); 1688 } 1689 1690 static int rsi_send_w9116_features(struct rsi_common *common) 1691 { 1692 struct rsi_wlan_9116_features *w9116_features; 1693 u16 frame_len = sizeof(struct rsi_wlan_9116_features); 1694 struct sk_buff *skb; 1695 1696 rsi_dbg(MGMT_TX_ZONE, 1697 "%s: Sending wlan 9116 features\n", __func__); 1698 1699 skb = dev_alloc_skb(frame_len); 1700 if (!skb) 1701 return -ENOMEM; 1702 memset(skb->data, 0, frame_len); 1703 1704 w9116_features = (struct rsi_wlan_9116_features *)skb->data; 1705 1706 w9116_features->pll_mode = common->w9116_features.pll_mode; 1707 w9116_features->rf_type = common->w9116_features.rf_type; 1708 w9116_features->wireless_mode = common->w9116_features.wireless_mode; 1709 w9116_features->enable_ppe = common->w9116_features.enable_ppe; 1710 w9116_features->afe_type = common->w9116_features.afe_type; 1711 if (common->w9116_features.dpd) 1712 w9116_features->feature_enable |= cpu_to_le32(RSI_DPD); 1713 if (common->w9116_features.sifs_tx_enable) 1714 w9116_features->feature_enable |= 1715 cpu_to_le32(RSI_SIFS_TX_ENABLE); 1716 if (common->w9116_features.ps_options & RSI_DUTY_CYCLING) 1717 w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING); 1718 if (common->w9116_features.ps_options & RSI_END_OF_FRAME) 1719 w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME); 1720 w9116_features->feature_enable |= 1721 cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2); 1722 1723 rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno, 1724 frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q); 1725 w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE; 1726 skb_put(skb, frame_len); 1727 1728 return rsi_send_internal_mgmt_frame(common, skb); 1729 } 1730 1731 /** 1732 * rsi_set_antenna() - This function send antenna configuration request 1733 * to device 1734 * 1735 * @common: Pointer to the driver private structure. 1736 * @antenna: bitmap for tx antenna selection 1737 * 1738 * Return: 0 on Success, negative error code on failure 1739 */ 1740 int rsi_set_antenna(struct rsi_common *common, u8 antenna) 1741 { 1742 struct rsi_ant_sel_frame *ant_sel_frame; 1743 struct sk_buff *skb; 1744 1745 skb = dev_alloc_skb(FRAME_DESC_SZ); 1746 if (!skb) { 1747 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1748 __func__); 1749 return -ENOMEM; 1750 } 1751 1752 memset(skb->data, 0, FRAME_DESC_SZ); 1753 1754 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data; 1755 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME; 1756 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE; 1757 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE); 1758 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno, 1759 0, RSI_WIFI_MGMT_Q); 1760 skb_put(skb, FRAME_DESC_SZ); 1761 1762 return rsi_send_internal_mgmt_frame(common, skb); 1763 } 1764 1765 static int rsi_send_beacon(struct rsi_common *common) 1766 { 1767 struct sk_buff *skb = NULL; 1768 u8 dword_align_bytes = 0; 1769 1770 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE); 1771 if (!skb) 1772 return -ENOMEM; 1773 1774 memset(skb->data, 0, MAX_MGMT_PKT_SIZE); 1775 1776 dword_align_bytes = ((unsigned long)skb->data & 0x3f); 1777 if (dword_align_bytes) 1778 skb_pull(skb, (64 - dword_align_bytes)); 1779 if (rsi_prepare_beacon(common, skb)) { 1780 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n"); 1781 dev_kfree_skb(skb); 1782 return -EINVAL; 1783 } 1784 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb); 1785 rsi_set_event(&common->tx_thread.event); 1786 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__); 1787 1788 return 0; 1789 } 1790 1791 #ifdef CONFIG_PM 1792 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags, 1793 u16 sleep_status) 1794 { 1795 struct rsi_wowlan_req *cmd_frame; 1796 struct sk_buff *skb; 1797 u8 length; 1798 1799 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__); 1800 1801 length = sizeof(*cmd_frame); 1802 skb = dev_alloc_skb(length); 1803 if (!skb) 1804 return -ENOMEM; 1805 memset(skb->data, 0, length); 1806 cmd_frame = (struct rsi_wowlan_req *)skb->data; 1807 1808 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno, 1809 (length - FRAME_DESC_SZ), 1810 RSI_WIFI_MGMT_Q); 1811 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS; 1812 cmd_frame->host_sleep_status = sleep_status; 1813 if (common->secinfo.gtk_cipher) 1814 flags |= RSI_WOW_GTK_REKEY; 1815 if (sleep_status) 1816 cmd_frame->wow_flags = flags; 1817 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n", 1818 cmd_frame->host_sleep_status, cmd_frame->wow_flags); 1819 1820 skb_put(skb, length); 1821 1822 return rsi_send_internal_mgmt_frame(common, skb); 1823 } 1824 #endif 1825 1826 int rsi_send_bgscan_params(struct rsi_common *common, int enable) 1827 { 1828 struct rsi_bgscan_params *params = &common->bgscan; 1829 struct cfg80211_scan_request *scan_req = common->hwscan; 1830 struct rsi_bgscan_config *bgscan; 1831 struct sk_buff *skb; 1832 u16 frame_len = sizeof(*bgscan); 1833 u8 i; 1834 1835 rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__); 1836 1837 skb = dev_alloc_skb(frame_len); 1838 if (!skb) 1839 return -ENOMEM; 1840 memset(skb->data, 0, frame_len); 1841 1842 bgscan = (struct rsi_bgscan_config *)skb->data; 1843 rsi_set_len_qno(&bgscan->desc_dword0.len_qno, 1844 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1845 bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS; 1846 bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold); 1847 bgscan->roam_threshold = cpu_to_le16(params->roam_threshold); 1848 if (enable) 1849 bgscan->bgscan_periodicity = 1850 cpu_to_le16(params->bgscan_periodicity); 1851 bgscan->active_scan_duration = 1852 cpu_to_le16(params->active_scan_duration); 1853 bgscan->passive_scan_duration = 1854 cpu_to_le16(params->passive_scan_duration); 1855 bgscan->two_probe = params->two_probe; 1856 1857 bgscan->num_bgscan_channels = scan_req->n_channels; 1858 for (i = 0; i < bgscan->num_bgscan_channels; i++) 1859 bgscan->channels2scan[i] = 1860 cpu_to_le16(scan_req->channels[i]->hw_value); 1861 1862 skb_put(skb, frame_len); 1863 1864 return rsi_send_internal_mgmt_frame(common, skb); 1865 } 1866 1867 /* This function sends the probe request to be used by firmware in 1868 * background scan 1869 */ 1870 int rsi_send_bgscan_probe_req(struct rsi_common *common, 1871 struct ieee80211_vif *vif) 1872 { 1873 struct cfg80211_scan_request *scan_req = common->hwscan; 1874 struct rsi_bgscan_probe *bgscan; 1875 struct sk_buff *skb; 1876 struct sk_buff *probereq_skb; 1877 u16 frame_len = sizeof(*bgscan); 1878 size_t ssid_len = 0; 1879 u8 *ssid = NULL; 1880 1881 rsi_dbg(MGMT_TX_ZONE, 1882 "%s: Sending bgscan probe req frame\n", __func__); 1883 1884 if (common->priv->sc_nvifs <= 0) 1885 return -ENODEV; 1886 1887 if (scan_req->n_ssids) { 1888 ssid = scan_req->ssids[0].ssid; 1889 ssid_len = scan_req->ssids[0].ssid_len; 1890 } 1891 1892 skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN); 1893 if (!skb) 1894 return -ENOMEM; 1895 memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN); 1896 1897 bgscan = (struct rsi_bgscan_probe *)skb->data; 1898 bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ; 1899 bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG); 1900 if (common->band == NL80211_BAND_5GHZ) { 1901 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6); 1902 bgscan->def_chan = cpu_to_le16(40); 1903 } else { 1904 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1); 1905 bgscan->def_chan = cpu_to_le16(11); 1906 } 1907 bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME); 1908 1909 probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid, 1910 ssid_len, scan_req->ie_len); 1911 if (!probereq_skb) { 1912 dev_kfree_skb(skb); 1913 return -ENOMEM; 1914 } 1915 1916 memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len); 1917 1918 bgscan->probe_req_length = cpu_to_le16(probereq_skb->len); 1919 1920 rsi_set_len_qno(&bgscan->desc_dword0.len_qno, 1921 (frame_len - FRAME_DESC_SZ + probereq_skb->len), 1922 RSI_WIFI_MGMT_Q); 1923 1924 skb_put(skb, frame_len + probereq_skb->len); 1925 1926 dev_kfree_skb(probereq_skb); 1927 1928 return rsi_send_internal_mgmt_frame(common, skb); 1929 } 1930 1931 /** 1932 * rsi_handle_ta_confirm_type() - This function handles the confirm frames. 1933 * @common: Pointer to the driver private structure. 1934 * @msg: Pointer to received packet. 1935 * 1936 * Return: 0 on success, -1 on failure. 1937 */ 1938 static int rsi_handle_ta_confirm_type(struct rsi_common *common, 1939 u8 *msg) 1940 { 1941 struct rsi_hw *adapter = common->priv; 1942 u8 sub_type = (msg[15] & 0xff); 1943 u16 msg_len = ((u16 *)msg)[0] & 0xfff; 1944 u8 offset; 1945 1946 switch (sub_type) { 1947 case BOOTUP_PARAMS_REQUEST: 1948 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", 1949 __func__); 1950 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { 1951 if (adapter->device_model == RSI_DEV_9116) { 1952 common->band = NL80211_BAND_5GHZ; 1953 common->num_supp_bands = 2; 1954 1955 if (rsi_send_reset_mac(common)) 1956 goto out; 1957 else 1958 common->fsm_state = FSM_RESET_MAC_SENT; 1959 } else { 1960 adapter->eeprom.length = 1961 (IEEE80211_ADDR_LEN + 1962 WLAN_MAC_MAGIC_WORD_LEN + 1963 WLAN_HOST_MODE_LEN); 1964 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR; 1965 if (rsi_eeprom_read(common)) { 1966 common->fsm_state = FSM_CARD_NOT_READY; 1967 goto out; 1968 } 1969 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; 1970 } 1971 } else { 1972 rsi_dbg(INFO_ZONE, 1973 "%s: Received bootup params cfm in %d state\n", 1974 __func__, common->fsm_state); 1975 return 0; 1976 } 1977 break; 1978 1979 case EEPROM_READ: 1980 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n"); 1981 if (msg_len <= 0) { 1982 rsi_dbg(FSM_ZONE, 1983 "%s: [EEPROM_READ] Invalid len %d\n", 1984 __func__, msg_len); 1985 goto out; 1986 } 1987 if (msg[16] != MAGIC_WORD) { 1988 rsi_dbg(FSM_ZONE, 1989 "%s: [EEPROM_READ] Invalid token\n", __func__); 1990 common->fsm_state = FSM_CARD_NOT_READY; 1991 goto out; 1992 } 1993 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { 1994 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + 1995 WLAN_MAC_MAGIC_WORD_LEN); 1996 memcpy(common->mac_addr, &msg[offset], ETH_ALEN); 1997 adapter->eeprom.length = 1998 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3)); 1999 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR; 2000 if (rsi_eeprom_read(common)) { 2001 rsi_dbg(ERR_ZONE, 2002 "%s: Failed reading RF band\n", 2003 __func__); 2004 common->fsm_state = FSM_CARD_NOT_READY; 2005 goto out; 2006 } 2007 common->fsm_state = FSM_EEPROM_READ_RF_TYPE; 2008 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) { 2009 if ((msg[17] & 0x3) == 0x3) { 2010 rsi_dbg(INIT_ZONE, "Dual band supported\n"); 2011 common->band = NL80211_BAND_5GHZ; 2012 common->num_supp_bands = 2; 2013 } else if ((msg[17] & 0x3) == 0x1) { 2014 rsi_dbg(INIT_ZONE, 2015 "Only 2.4Ghz band supported\n"); 2016 common->band = NL80211_BAND_2GHZ; 2017 common->num_supp_bands = 1; 2018 } 2019 if (rsi_send_reset_mac(common)) 2020 goto out; 2021 common->fsm_state = FSM_RESET_MAC_SENT; 2022 } else { 2023 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n", 2024 __func__); 2025 return 0; 2026 } 2027 break; 2028 2029 case RESET_MAC_REQ: 2030 if (common->fsm_state == FSM_RESET_MAC_SENT) { 2031 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", 2032 __func__); 2033 2034 if (rsi_load_radio_caps(common)) 2035 goto out; 2036 else 2037 common->fsm_state = FSM_RADIO_CAPS_SENT; 2038 } else { 2039 rsi_dbg(ERR_ZONE, 2040 "%s: Received reset mac cfm in %d state\n", 2041 __func__, common->fsm_state); 2042 return 0; 2043 } 2044 break; 2045 2046 case RADIO_CAPABILITIES: 2047 if (common->fsm_state == FSM_RADIO_CAPS_SENT) { 2048 common->rf_reset = 1; 2049 if (adapter->device_model == RSI_DEV_9116 && 2050 rsi_send_w9116_features(common)) { 2051 rsi_dbg(ERR_ZONE, 2052 "Failed to send 9116 features\n"); 2053 goto out; 2054 } 2055 if (rsi_program_bb_rf(common)) { 2056 goto out; 2057 } else { 2058 common->fsm_state = FSM_BB_RF_PROG_SENT; 2059 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", 2060 __func__); 2061 } 2062 } else { 2063 rsi_dbg(INFO_ZONE, 2064 "%s: Received radio caps cfm in %d state\n", 2065 __func__, common->fsm_state); 2066 return 0; 2067 } 2068 break; 2069 2070 case BB_PROG_VALUES_REQUEST: 2071 case RF_PROG_VALUES_REQUEST: 2072 case BBP_PROG_IN_TA: 2073 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); 2074 if (common->fsm_state == FSM_BB_RF_PROG_SENT) { 2075 common->bb_rf_prog_count--; 2076 if (!common->bb_rf_prog_count) { 2077 common->fsm_state = FSM_MAC_INIT_DONE; 2078 if (common->reinit_hw) { 2079 complete(&common->wlan_init_completion); 2080 } else { 2081 if (common->bt_defer_attach) 2082 rsi_attach_bt(common); 2083 2084 return rsi_mac80211_attach(common); 2085 } 2086 } 2087 } else { 2088 rsi_dbg(INFO_ZONE, 2089 "%s: Received bbb_rf cfm in %d state\n", 2090 __func__, common->fsm_state); 2091 return 0; 2092 } 2093 break; 2094 2095 case SCAN_REQUEST: 2096 rsi_dbg(INFO_ZONE, "Set channel confirm\n"); 2097 break; 2098 2099 case WAKEUP_SLEEP_REQUEST: 2100 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n"); 2101 return rsi_handle_ps_confirm(adapter, msg); 2102 2103 case BG_SCAN_PROBE_REQ: 2104 rsi_dbg(INFO_ZONE, "BG scan complete event\n"); 2105 if (common->bgscan_en) { 2106 struct cfg80211_scan_info info; 2107 2108 if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN)) 2109 common->bgscan_en = 0; 2110 info.aborted = false; 2111 ieee80211_scan_completed(adapter->hw, &info); 2112 } 2113 rsi_dbg(INFO_ZONE, "Background scan completed\n"); 2114 break; 2115 2116 default: 2117 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", 2118 __func__); 2119 break; 2120 } 2121 return 0; 2122 out: 2123 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", 2124 __func__); 2125 return -EINVAL; 2126 } 2127 2128 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg) 2129 { 2130 int status; 2131 2132 switch (common->fsm_state) { 2133 case FSM_CARD_NOT_READY: 2134 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n"); 2135 rsi_set_default_parameters(common); 2136 if (rsi_send_common_dev_params(common) < 0) 2137 return -EINVAL; 2138 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT; 2139 break; 2140 case FSM_COMMON_DEV_PARAMS_SENT: 2141 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n"); 2142 2143 if (common->priv->device_model == RSI_DEV_9116) { 2144 if (msg[16] != MAGIC_WORD) { 2145 rsi_dbg(FSM_ZONE, 2146 "%s: [EEPROM_READ] Invalid token\n", 2147 __func__); 2148 common->fsm_state = FSM_CARD_NOT_READY; 2149 return -EINVAL; 2150 } 2151 memcpy(common->mac_addr, &msg[20], ETH_ALEN); 2152 rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr); 2153 } 2154 /* Get usb buffer status register address */ 2155 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8]; 2156 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n", 2157 common->priv->usb_buffer_status_reg); 2158 2159 if (common->priv->device_model == RSI_DEV_9116) 2160 status = rsi_load_9116_bootup_params(common); 2161 else 2162 status = rsi_load_bootup_params(common); 2163 if (status < 0) { 2164 common->fsm_state = FSM_CARD_NOT_READY; 2165 return status; 2166 } 2167 common->fsm_state = FSM_BOOT_PARAMS_SENT; 2168 break; 2169 default: 2170 rsi_dbg(ERR_ZONE, 2171 "%s: card ready indication in invalid state %d.\n", 2172 __func__, common->fsm_state); 2173 return -EINVAL; 2174 } 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * rsi_mgmt_pkt_recv() - This function processes the management packets 2181 * received from the hardware. 2182 * @common: Pointer to the driver private structure. 2183 * @msg: Pointer to the received packet. 2184 * 2185 * Return: 0 on success, -1 on failure. 2186 */ 2187 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) 2188 { 2189 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); 2190 u16 msg_type = (msg[2]); 2191 2192 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", 2193 __func__, msg_len, msg_type); 2194 2195 switch (msg_type) { 2196 case TA_CONFIRM_TYPE: 2197 return rsi_handle_ta_confirm_type(common, msg); 2198 case CARD_READY_IND: 2199 common->hibernate_resume = false; 2200 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", 2201 __func__); 2202 return rsi_handle_card_ready(common, msg); 2203 case TX_STATUS_IND: 2204 switch (msg[RSI_TX_STATUS_TYPE]) { 2205 case PROBEREQ_CONFIRM: 2206 common->mgmt_q_block = false; 2207 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", 2208 __func__); 2209 break; 2210 case EAPOL4_CONFIRM: 2211 if (msg[RSI_TX_STATUS]) { 2212 common->eapol4_confirm = true; 2213 if (!rsi_send_block_unblock_frame(common, 2214 false)) 2215 common->hw_data_qs_blocked = false; 2216 } 2217 } 2218 break; 2219 case BEACON_EVENT_IND: 2220 rsi_dbg(INFO_ZONE, "Beacon event\n"); 2221 if (common->fsm_state != FSM_MAC_INIT_DONE) 2222 return -1; 2223 if (common->iface_down) 2224 return -1; 2225 if (!common->beacon_enabled) 2226 return -1; 2227 rsi_send_beacon(common); 2228 break; 2229 case WOWLAN_WAKEUP_REASON: 2230 rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]); 2231 switch (msg[15]) { 2232 case RSI_UNICAST_MAGIC_PKT: 2233 rsi_dbg(ERR_ZONE, 2234 "*** Wakeup for Unicast magic packet ***\n"); 2235 break; 2236 case RSI_BROADCAST_MAGICPKT: 2237 rsi_dbg(ERR_ZONE, 2238 "*** Wakeup for Broadcast magic packet ***\n"); 2239 break; 2240 case RSI_EAPOL_PKT: 2241 rsi_dbg(ERR_ZONE, 2242 "*** Wakeup for GTK renewal ***\n"); 2243 break; 2244 case RSI_DISCONNECT_PKT: 2245 rsi_dbg(ERR_ZONE, 2246 "*** Wakeup for Disconnect ***\n"); 2247 break; 2248 case RSI_HW_BMISS_PKT: 2249 rsi_dbg(ERR_ZONE, 2250 "*** Wakeup for HW Beacon miss ***\n"); 2251 break; 2252 default: 2253 rsi_dbg(ERR_ZONE, 2254 "##### Un-intentional Wakeup #####\n"); 2255 break; 2256 } 2257 break; 2258 case RX_DOT11_MGMT: 2259 return rsi_mgmt_pkt_to_core(common, msg, msg_len); 2260 default: 2261 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type); 2262 } 2263 return 0; 2264 } 2265