1 /** 2 * Copyright (c) 2014 Redpine Signals Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/etherdevice.h> 18 #include "rsi_mgmt.h" 19 #include "rsi_common.h" 20 #include "rsi_ps.h" 21 #include "rsi_hal.h" 22 23 static struct bootup_params boot_params_20 = { 24 .magic_number = cpu_to_le16(0x5aa5), 25 .crystal_good_time = 0x0, 26 .valid = cpu_to_le32(VALID_20), 27 .reserved_for_valids = 0x0, 28 .bootup_mode_info = 0x0, 29 .digital_loop_back_params = 0x0, 30 .rtls_timestamp_en = 0x0, 31 .host_spi_intr_cfg = 0x0, 32 .device_clk_info = {{ 33 .pll_config_g = { 34 .tapll_info_g = { 35 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 36 (TA_PLL_M_VAL_20)), 37 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 38 }, 39 .pll960_info_g = { 40 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 41 (PLL960_N_VAL_20)), 42 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 43 .pll_reg_3 = 0x0, 44 }, 45 .afepll_info_g = { 46 .pll_reg = cpu_to_le16(0x9f0), 47 } 48 }, 49 .switch_clk_g = { 50 .switch_clk_info = cpu_to_le16(0xb), 51 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111), 52 .umac_clock_reg_config = cpu_to_le16(0x48), 53 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 54 } 55 }, 56 { 57 .pll_config_g = { 58 .tapll_info_g = { 59 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 60 (TA_PLL_M_VAL_20)), 61 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 62 }, 63 .pll960_info_g = { 64 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 65 (PLL960_N_VAL_20)), 66 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 67 .pll_reg_3 = 0x0, 68 }, 69 .afepll_info_g = { 70 .pll_reg = cpu_to_le16(0x9f0), 71 } 72 }, 73 .switch_clk_g = { 74 .switch_clk_info = 0x0, 75 .bbp_lmac_clk_reg_val = 0x0, 76 .umac_clock_reg_config = 0x0, 77 .qspi_uart_clock_reg_config = 0x0 78 } 79 }, 80 { 81 .pll_config_g = { 82 .tapll_info_g = { 83 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| 84 (TA_PLL_M_VAL_20)), 85 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), 86 }, 87 .pll960_info_g = { 88 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| 89 (PLL960_N_VAL_20)), 90 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), 91 .pll_reg_3 = 0x0, 92 }, 93 .afepll_info_g = { 94 .pll_reg = cpu_to_le16(0x9f0), 95 } 96 }, 97 .switch_clk_g = { 98 .switch_clk_info = 0x0, 99 .bbp_lmac_clk_reg_val = 0x0, 100 .umac_clock_reg_config = 0x0, 101 .qspi_uart_clock_reg_config = 0x0 102 } 103 } }, 104 .buckboost_wakeup_cnt = 0x0, 105 .pmu_wakeup_wait = 0x0, 106 .shutdown_wait_time = 0x0, 107 .pmu_slp_clkout_sel = 0x0, 108 .wdt_prog_value = 0x0, 109 .wdt_soc_rst_delay = 0x0, 110 .dcdc_operation_mode = 0x0, 111 .soc_reset_wait_cnt = 0x0, 112 .waiting_time_at_fresh_sleep = 0x0, 113 .max_threshold_to_avoid_sleep = 0x0, 114 .beacon_resedue_alg_en = 0, 115 }; 116 117 static struct bootup_params boot_params_40 = { 118 .magic_number = cpu_to_le16(0x5aa5), 119 .crystal_good_time = 0x0, 120 .valid = cpu_to_le32(VALID_40), 121 .reserved_for_valids = 0x0, 122 .bootup_mode_info = 0x0, 123 .digital_loop_back_params = 0x0, 124 .rtls_timestamp_en = 0x0, 125 .host_spi_intr_cfg = 0x0, 126 .device_clk_info = {{ 127 .pll_config_g = { 128 .tapll_info_g = { 129 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 130 (TA_PLL_M_VAL_40)), 131 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 132 }, 133 .pll960_info_g = { 134 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 135 (PLL960_N_VAL_40)), 136 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 137 .pll_reg_3 = 0x0, 138 }, 139 .afepll_info_g = { 140 .pll_reg = cpu_to_le16(0x9f0), 141 } 142 }, 143 .switch_clk_g = { 144 .switch_clk_info = cpu_to_le16(0x09), 145 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), 146 .umac_clock_reg_config = cpu_to_le16(0x48), 147 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) 148 } 149 }, 150 { 151 .pll_config_g = { 152 .tapll_info_g = { 153 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 154 (TA_PLL_M_VAL_40)), 155 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 156 }, 157 .pll960_info_g = { 158 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 159 (PLL960_N_VAL_40)), 160 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 161 .pll_reg_3 = 0x0, 162 }, 163 .afepll_info_g = { 164 .pll_reg = cpu_to_le16(0x9f0), 165 } 166 }, 167 .switch_clk_g = { 168 .switch_clk_info = 0x0, 169 .bbp_lmac_clk_reg_val = 0x0, 170 .umac_clock_reg_config = 0x0, 171 .qspi_uart_clock_reg_config = 0x0 172 } 173 }, 174 { 175 .pll_config_g = { 176 .tapll_info_g = { 177 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| 178 (TA_PLL_M_VAL_40)), 179 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), 180 }, 181 .pll960_info_g = { 182 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| 183 (PLL960_N_VAL_40)), 184 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), 185 .pll_reg_3 = 0x0, 186 }, 187 .afepll_info_g = { 188 .pll_reg = cpu_to_le16(0x9f0), 189 } 190 }, 191 .switch_clk_g = { 192 .switch_clk_info = 0x0, 193 .bbp_lmac_clk_reg_val = 0x0, 194 .umac_clock_reg_config = 0x0, 195 .qspi_uart_clock_reg_config = 0x0 196 } 197 } }, 198 .buckboost_wakeup_cnt = 0x0, 199 .pmu_wakeup_wait = 0x0, 200 .shutdown_wait_time = 0x0, 201 .pmu_slp_clkout_sel = 0x0, 202 .wdt_prog_value = 0x0, 203 .wdt_soc_rst_delay = 0x0, 204 .dcdc_operation_mode = 0x0, 205 .soc_reset_wait_cnt = 0x0, 206 .waiting_time_at_fresh_sleep = 0x0, 207 .max_threshold_to_avoid_sleep = 0x0, 208 .beacon_resedue_alg_en = 0, 209 }; 210 211 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; 212 213 /** 214 * rsi_set_default_parameters() - This function sets default parameters. 215 * @common: Pointer to the driver private structure. 216 * 217 * Return: none 218 */ 219 static void rsi_set_default_parameters(struct rsi_common *common) 220 { 221 common->band = NL80211_BAND_2GHZ; 222 common->channel_width = BW_20MHZ; 223 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; 224 common->channel = 1; 225 common->min_rate = 0xffff; 226 common->fsm_state = FSM_CARD_NOT_READY; 227 common->iface_down = true; 228 common->endpoint = EP_2GHZ_20MHZ; 229 common->driver_mode = 1; /* End to end mode */ 230 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/ 231 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/ 232 common->rf_power_val = 0; /* Default 1.9V */ 233 common->wlan_rf_power_mode = 0; 234 common->obm_ant_sel_val = 2; 235 common->beacon_interval = RSI_BEACON_INTERVAL; 236 common->dtim_cnt = RSI_DTIM_COUNT; 237 } 238 239 /** 240 * rsi_set_contention_vals() - This function sets the contention values for the 241 * backoff procedure. 242 * @common: Pointer to the driver private structure. 243 * 244 * Return: None. 245 */ 246 static void rsi_set_contention_vals(struct rsi_common *common) 247 { 248 u8 ii = 0; 249 250 for (; ii < NUM_EDCA_QUEUES; ii++) { 251 common->tx_qinfo[ii].wme_params = 252 (((common->edca_params[ii].cw_min / 2) + 253 (common->edca_params[ii].aifs)) * 254 WMM_SHORT_SLOT_TIME + SIFS_DURATION); 255 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; 256 common->tx_qinfo[ii].pkt_contended = 0; 257 } 258 } 259 260 /** 261 * rsi_send_internal_mgmt_frame() - This function sends management frames to 262 * firmware.Also schedules packet to queue 263 * for transmission. 264 * @common: Pointer to the driver private structure. 265 * @skb: Pointer to the socket buffer structure. 266 * 267 * Return: 0 on success, -1 on failure. 268 */ 269 static int rsi_send_internal_mgmt_frame(struct rsi_common *common, 270 struct sk_buff *skb) 271 { 272 struct skb_info *tx_params; 273 struct rsi_cmd_desc *desc; 274 275 if (skb == NULL) { 276 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 277 return -ENOMEM; 278 } 279 desc = (struct rsi_cmd_desc *)skb->data; 280 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP); 281 skb->priority = MGMT_SOFT_Q; 282 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; 283 tx_params->flags |= INTERNAL_MGMT_PKT; 284 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); 285 rsi_set_event(&common->tx_thread.event); 286 return 0; 287 } 288 289 /** 290 * rsi_load_radio_caps() - This function is used to send radio capabilities 291 * values to firmware. 292 * @common: Pointer to the driver private structure. 293 * 294 * Return: 0 on success, corresponding negative error code on failure. 295 */ 296 static int rsi_load_radio_caps(struct rsi_common *common) 297 { 298 struct rsi_radio_caps *radio_caps; 299 struct rsi_hw *adapter = common->priv; 300 u16 inx = 0; 301 u8 ii; 302 u8 radio_id = 0; 303 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 304 0xf0, 0xf0, 0xf0, 0xf0, 305 0xf0, 0xf0, 0xf0, 0xf0, 306 0xf0, 0xf0, 0xf0, 0xf0, 307 0xf0, 0xf0, 0xf0, 0xf0}; 308 struct sk_buff *skb; 309 u16 frame_len = sizeof(struct rsi_radio_caps); 310 311 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); 312 313 skb = dev_alloc_skb(frame_len); 314 315 if (!skb) { 316 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 317 __func__); 318 return -ENOMEM; 319 } 320 321 memset(skb->data, 0, frame_len); 322 radio_caps = (struct rsi_radio_caps *)skb->data; 323 324 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES; 325 radio_caps->channel_num = common->channel; 326 radio_caps->rf_model = RSI_RF_TYPE; 327 328 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ; 329 if (common->channel_width == BW_40MHZ) { 330 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ; 331 332 if (common->fsm_state == FSM_MAC_INIT_DONE) { 333 struct ieee80211_hw *hw = adapter->hw; 334 struct ieee80211_conf *conf = &hw->conf; 335 336 if (conf_is_ht40_plus(conf)) { 337 radio_caps->ppe_ack_rate = 338 cpu_to_le16(LOWER_20_ENABLE | 339 (LOWER_20_ENABLE >> 12)); 340 } else if (conf_is_ht40_minus(conf)) { 341 radio_caps->ppe_ack_rate = 342 cpu_to_le16(UPPER_20_ENABLE | 343 (UPPER_20_ENABLE >> 12)); 344 } else { 345 radio_caps->ppe_ack_rate = 346 cpu_to_le16((BW_40MHZ << 12) | 347 FULL40M_ENABLE); 348 } 349 } 350 } 351 radio_caps->radio_info |= radio_id; 352 353 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE); 354 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE); 355 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE); 356 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE); 357 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE); 358 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE); 359 360 for (ii = 0; ii < MAX_HW_QUEUES; ii++) { 361 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); 362 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); 363 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); 364 radio_caps->qos_params[ii].txop_q = 0; 365 } 366 367 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) { 368 radio_caps->qos_params[ii].cont_win_min_q = 369 cpu_to_le16(common->edca_params[ii].cw_min); 370 radio_caps->qos_params[ii].cont_win_max_q = 371 cpu_to_le16(common->edca_params[ii].cw_max); 372 radio_caps->qos_params[ii].aifsn_val_q = 373 cpu_to_le16((common->edca_params[ii].aifs) << 8); 374 radio_caps->qos_params[ii].txop_q = 375 cpu_to_le16(common->edca_params[ii].txop); 376 } 377 378 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff); 379 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0; 380 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff); 381 382 memcpy(&common->rate_pwr[0], &gc[0], 40); 383 for (ii = 0; ii < 20; ii++) 384 radio_caps->gcpd_per_rate[inx++] = 385 cpu_to_le16(common->rate_pwr[ii] & 0x00FF); 386 387 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno, 388 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 389 390 skb_put(skb, frame_len); 391 392 return rsi_send_internal_mgmt_frame(common, skb); 393 } 394 395 /** 396 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. 397 * @common: Pointer to the driver private structure. 398 * @msg: Pointer to received packet. 399 * @msg_len: Length of the recieved packet. 400 * @type: Type of recieved packet. 401 * 402 * Return: 0 on success, -1 on failure. 403 */ 404 static int rsi_mgmt_pkt_to_core(struct rsi_common *common, 405 u8 *msg, 406 s32 msg_len) 407 { 408 struct rsi_hw *adapter = common->priv; 409 struct ieee80211_tx_info *info; 410 struct skb_info *rx_params; 411 u8 pad_bytes = msg[4]; 412 struct sk_buff *skb; 413 414 if (!adapter->sc_nvifs) 415 return -ENOLINK; 416 417 msg_len -= pad_bytes; 418 if (msg_len <= 0) { 419 rsi_dbg(MGMT_RX_ZONE, 420 "%s: Invalid rx msg of len = %d\n", 421 __func__, msg_len); 422 return -EINVAL; 423 } 424 425 skb = dev_alloc_skb(msg_len); 426 if (!skb) 427 return -ENOMEM; 428 429 skb_put_data(skb, 430 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), 431 msg_len); 432 433 info = IEEE80211_SKB_CB(skb); 434 rx_params = (struct skb_info *)info->driver_data; 435 rx_params->rssi = rsi_get_rssi(msg); 436 rx_params->channel = rsi_get_channel(msg); 437 rsi_indicate_pkt_to_os(common, skb); 438 439 return 0; 440 } 441 442 /** 443 * rsi_hal_send_sta_notify_frame() - This function sends the station notify 444 * frame to firmware. 445 * @common: Pointer to the driver private structure. 446 * @opmode: Operating mode of device. 447 * @notify_event: Notification about station connection. 448 * @bssid: bssid. 449 * @qos_enable: Qos is enabled. 450 * @aid: Aid (unique for all STA). 451 * 452 * Return: status: 0 on success, corresponding negative error code on failure. 453 */ 454 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode, 455 u8 notify_event, const unsigned char *bssid, 456 u8 qos_enable, u16 aid, u16 sta_id, 457 struct ieee80211_vif *vif) 458 { 459 struct sk_buff *skb = NULL; 460 struct rsi_peer_notify *peer_notify; 461 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id; 462 int status; 463 u16 frame_len = sizeof(struct rsi_peer_notify); 464 465 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); 466 467 skb = dev_alloc_skb(frame_len); 468 469 if (!skb) { 470 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 471 __func__); 472 return -ENOMEM; 473 } 474 475 memset(skb->data, 0, frame_len); 476 peer_notify = (struct rsi_peer_notify *)skb->data; 477 478 if (opmode == RSI_OPMODE_STA) 479 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1); 480 else if (opmode == RSI_OPMODE_AP) 481 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1); 482 483 switch (notify_event) { 484 case STA_CONNECTED: 485 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); 486 break; 487 case STA_DISCONNECTED: 488 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); 489 break; 490 default: 491 break; 492 } 493 494 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); 495 ether_addr_copy(peer_notify->mac_addr, bssid); 496 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY); 497 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); 498 499 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno, 500 (frame_len - FRAME_DESC_SZ), 501 RSI_WIFI_MGMT_Q); 502 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY; 503 peer_notify->desc.desc_dword3.qid_tid = sta_id; 504 peer_notify->desc.desc_dword3.sta_id = vap_id; 505 506 skb_put(skb, frame_len); 507 508 status = rsi_send_internal_mgmt_frame(common, skb); 509 510 if ((vif->type == NL80211_IFTYPE_STATION) && 511 (!status && qos_enable)) { 512 rsi_set_contention_vals(common); 513 status = rsi_load_radio_caps(common); 514 } 515 return status; 516 } 517 518 /** 519 * rsi_send_aggregation_params_frame() - This function sends the ampdu 520 * indication frame to firmware. 521 * @common: Pointer to the driver private structure. 522 * @tid: traffic identifier. 523 * @ssn: ssn. 524 * @buf_size: buffer size. 525 * @event: notification about station connection. 526 * 527 * Return: 0 on success, corresponding negative error code on failure. 528 */ 529 int rsi_send_aggregation_params_frame(struct rsi_common *common, 530 u16 tid, 531 u16 ssn, 532 u8 buf_size, 533 u8 event, 534 u8 sta_id) 535 { 536 struct sk_buff *skb = NULL; 537 struct rsi_aggr_params *aggr_params; 538 u16 frame_len = sizeof(struct rsi_aggr_params); 539 540 skb = dev_alloc_skb(frame_len); 541 542 if (!skb) { 543 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 544 __func__); 545 return -ENOMEM; 546 } 547 548 memset(skb->data, 0, frame_len); 549 aggr_params = (struct rsi_aggr_params *)skb->data; 550 551 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); 552 553 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 554 aggr_params->desc_dword0.frame_type = AMPDU_IND; 555 556 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK; 557 aggr_params->peer_id = sta_id; 558 if (event == STA_TX_ADDBA_DONE) { 559 aggr_params->seq_start = cpu_to_le16(ssn); 560 aggr_params->baw_size = cpu_to_le16(buf_size); 561 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START; 562 } else if (event == STA_RX_ADDBA_DONE) { 563 aggr_params->seq_start = cpu_to_le16(ssn); 564 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START | 565 RSI_AGGR_PARAMS_RX_AGGR); 566 } else if (event == STA_RX_DELBA) { 567 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR; 568 } 569 570 skb_put(skb, frame_len); 571 572 return rsi_send_internal_mgmt_frame(common, skb); 573 } 574 575 /** 576 * rsi_program_bb_rf() - This function starts base band and RF programming. 577 * This is called after initial configurations are done. 578 * @common: Pointer to the driver private structure. 579 * 580 * Return: 0 on success, corresponding negative error code on failure. 581 */ 582 static int rsi_program_bb_rf(struct rsi_common *common) 583 { 584 struct sk_buff *skb; 585 struct rsi_bb_rf_prog *bb_rf_prog; 586 u16 frame_len = sizeof(struct rsi_bb_rf_prog); 587 588 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); 589 590 skb = dev_alloc_skb(frame_len); 591 if (!skb) { 592 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 593 __func__); 594 return -ENOMEM; 595 } 596 597 memset(skb->data, 0, frame_len); 598 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data; 599 600 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 601 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA; 602 bb_rf_prog->endpoint = common->endpoint; 603 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode; 604 605 if (common->rf_reset) { 606 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE); 607 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", 608 __func__); 609 common->rf_reset = 0; 610 } 611 common->bb_rf_prog_count = 1; 612 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | 613 (RSI_RF_TYPE << 4)); 614 skb_put(skb, frame_len); 615 616 return rsi_send_internal_mgmt_frame(common, skb); 617 } 618 619 /** 620 * rsi_set_vap_capabilities() - This function send vap capability to firmware. 621 * @common: Pointer to the driver private structure. 622 * @opmode: Operating mode of device. 623 * 624 * Return: 0 on success, corresponding negative error code on failure. 625 */ 626 int rsi_set_vap_capabilities(struct rsi_common *common, 627 enum opmode mode, 628 u8 *mac_addr, 629 u8 vap_id, 630 u8 vap_status) 631 { 632 struct sk_buff *skb = NULL; 633 struct rsi_vap_caps *vap_caps; 634 struct rsi_hw *adapter = common->priv; 635 struct ieee80211_hw *hw = adapter->hw; 636 struct ieee80211_conf *conf = &hw->conf; 637 u16 frame_len = sizeof(struct rsi_vap_caps); 638 639 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); 640 641 skb = dev_alloc_skb(frame_len); 642 if (!skb) { 643 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 644 __func__); 645 return -ENOMEM; 646 } 647 648 memset(skb->data, 0, frame_len); 649 vap_caps = (struct rsi_vap_caps *)skb->data; 650 651 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno, 652 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 653 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES; 654 vap_caps->status = vap_status; 655 vap_caps->vif_type = mode; 656 vap_caps->channel_bw = common->channel_width; 657 vap_caps->vap_id = vap_id; 658 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) | 659 (common->radio_id & 0xf); 660 661 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN); 662 vap_caps->keep_alive_period = cpu_to_le16(90); 663 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); 664 665 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); 666 667 if (common->band == NL80211_BAND_5GHZ) { 668 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6); 669 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6); 670 } else { 671 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1); 672 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1); 673 } 674 if (conf_is_ht40(conf)) { 675 if (conf_is_ht40_minus(conf)) 676 vap_caps->ctrl_rate_flags = 677 cpu_to_le16(UPPER_20_ENABLE); 678 else if (conf_is_ht40_plus(conf)) 679 vap_caps->ctrl_rate_flags = 680 cpu_to_le16(LOWER_20_ENABLE); 681 else 682 vap_caps->ctrl_rate_flags = 683 cpu_to_le16(FULL40M_ENABLE); 684 } 685 686 vap_caps->default_data_rate = 0; 687 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval); 688 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt); 689 690 skb_put(skb, frame_len); 691 692 return rsi_send_internal_mgmt_frame(common, skb); 693 } 694 695 /** 696 * rsi_hal_load_key() - This function is used to load keys within the firmware. 697 * @common: Pointer to the driver private structure. 698 * @data: Pointer to the key data. 699 * @key_len: Key length to be loaded. 700 * @key_type: Type of key: GROUP/PAIRWISE. 701 * @key_id: Key index. 702 * @cipher: Type of cipher used. 703 * 704 * Return: 0 on success, -1 on failure. 705 */ 706 int rsi_hal_load_key(struct rsi_common *common, 707 u8 *data, 708 u16 key_len, 709 u8 key_type, 710 u8 key_id, 711 u32 cipher, 712 s16 sta_id, 713 struct ieee80211_vif *vif) 714 { 715 struct sk_buff *skb = NULL; 716 struct rsi_set_key *set_key; 717 u16 key_descriptor = 0; 718 u16 frame_len = sizeof(struct rsi_set_key); 719 720 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); 721 722 skb = dev_alloc_skb(frame_len); 723 if (!skb) { 724 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 725 __func__); 726 return -ENOMEM; 727 } 728 729 memset(skb->data, 0, frame_len); 730 set_key = (struct rsi_set_key *)skb->data; 731 732 if (key_type == RSI_GROUP_KEY) { 733 key_descriptor = RSI_KEY_TYPE_BROADCAST; 734 if (vif->type == NL80211_IFTYPE_AP) 735 key_descriptor |= RSI_KEY_MODE_AP; 736 } 737 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 738 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 739 key_id = 0; 740 key_descriptor |= RSI_WEP_KEY; 741 if (key_len >= 13) 742 key_descriptor |= RSI_WEP_KEY_104; 743 } else if (cipher != KEY_TYPE_CLEAR) { 744 key_descriptor |= RSI_CIPHER_WPA; 745 if (cipher == WLAN_CIPHER_SUITE_TKIP) 746 key_descriptor |= RSI_CIPHER_TKIP; 747 } 748 key_descriptor |= RSI_PROTECT_DATA_FRAMES; 749 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET); 750 751 rsi_set_len_qno(&set_key->desc_dword0.len_qno, 752 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 753 set_key->desc_dword0.frame_type = SET_KEY_REQ; 754 set_key->key_desc = cpu_to_le16(key_descriptor); 755 set_key->sta_id = sta_id; 756 757 if (data) { 758 if ((cipher == WLAN_CIPHER_SUITE_WEP40) || 759 (cipher == WLAN_CIPHER_SUITE_WEP104)) { 760 memcpy(&set_key->key[key_id][1], data, key_len * 2); 761 } else { 762 memcpy(&set_key->key[0][0], data, key_len); 763 } 764 memcpy(set_key->tx_mic_key, &data[16], 8); 765 memcpy(set_key->rx_mic_key, &data[24], 8); 766 } else { 767 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ); 768 } 769 770 skb_put(skb, frame_len); 771 772 return rsi_send_internal_mgmt_frame(common, skb); 773 } 774 775 /* 776 * This function sends the common device configuration parameters to device. 777 * This frame includes the useful information to make device works on 778 * specific operating mode. 779 */ 780 static int rsi_send_common_dev_params(struct rsi_common *common) 781 { 782 struct sk_buff *skb; 783 u16 frame_len; 784 struct rsi_config_vals *dev_cfgs; 785 786 frame_len = sizeof(struct rsi_config_vals); 787 788 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n"); 789 skb = dev_alloc_skb(frame_len); 790 if (!skb) { 791 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); 792 return -ENOMEM; 793 } 794 795 memset(skb->data, 0, frame_len); 796 797 dev_cfgs = (struct rsi_config_vals *)skb->data; 798 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals))); 799 800 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ), 801 RSI_COEX_Q); 802 dev_cfgs->pkt_type = COMMON_DEV_CONFIG; 803 804 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode; 805 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode; 806 807 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP; 808 dev_cfgs->unused_soc_gpio_bitmap = 809 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP); 810 811 dev_cfgs->opermode = common->oper_mode; 812 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode; 813 dev_cfgs->driver_mode = common->driver_mode; 814 dev_cfgs->region_code = NL80211_DFS_FCC; 815 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val; 816 817 skb_put(skb, frame_len); 818 819 return rsi_send_internal_mgmt_frame(common, skb); 820 } 821 822 /* 823 * rsi_load_bootup_params() - This function send bootup params to the firmware. 824 * @common: Pointer to the driver private structure. 825 * 826 * Return: 0 on success, corresponding error code on failure. 827 */ 828 static int rsi_load_bootup_params(struct rsi_common *common) 829 { 830 struct sk_buff *skb; 831 struct rsi_boot_params *boot_params; 832 833 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); 834 skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); 835 if (!skb) { 836 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 837 __func__); 838 return -ENOMEM; 839 } 840 841 memset(skb->data, 0, sizeof(struct rsi_boot_params)); 842 boot_params = (struct rsi_boot_params *)skb->data; 843 844 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); 845 846 if (common->channel_width == BW_40MHZ) { 847 memcpy(&boot_params->bootup_params, 848 &boot_params_40, 849 sizeof(struct bootup_params)); 850 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, 851 UMAC_CLK_40BW); 852 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); 853 } else { 854 memcpy(&boot_params->bootup_params, 855 &boot_params_20, 856 sizeof(struct bootup_params)); 857 if (boot_params_20.valid != cpu_to_le32(VALID_20)) { 858 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); 859 rsi_dbg(MGMT_TX_ZONE, 860 "%s: Packet 20MHZ <=== %d\n", __func__, 861 UMAC_CLK_20BW); 862 } else { 863 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); 864 rsi_dbg(MGMT_TX_ZONE, 865 "%s: Packet 20MHZ <=== %d\n", __func__, 866 UMAC_CLK_40MHZ); 867 } 868 } 869 870 /** 871 * Bit{0:11} indicates length of the Packet 872 * Bit{12:15} indicates host queue number 873 */ 874 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | 875 (RSI_WIFI_MGMT_Q << 12)); 876 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); 877 878 skb_put(skb, sizeof(struct rsi_boot_params)); 879 880 return rsi_send_internal_mgmt_frame(common, skb); 881 } 882 883 /** 884 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an 885 * internal management frame to indicate it to firmware. 886 * @common: Pointer to the driver private structure. 887 * 888 * Return: 0 on success, corresponding error code on failure. 889 */ 890 static int rsi_send_reset_mac(struct rsi_common *common) 891 { 892 struct sk_buff *skb; 893 struct rsi_mac_frame *mgmt_frame; 894 895 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); 896 897 skb = dev_alloc_skb(FRAME_DESC_SZ); 898 if (!skb) { 899 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 900 __func__); 901 return -ENOMEM; 902 } 903 904 memset(skb->data, 0, FRAME_DESC_SZ); 905 mgmt_frame = (struct rsi_mac_frame *)skb->data; 906 907 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 908 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); 909 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); 910 911 skb_put(skb, FRAME_DESC_SZ); 912 913 return rsi_send_internal_mgmt_frame(common, skb); 914 } 915 916 /** 917 * rsi_band_check() - This function programs the band 918 * @common: Pointer to the driver private structure. 919 * 920 * Return: 0 on success, corresponding error code on failure. 921 */ 922 int rsi_band_check(struct rsi_common *common, 923 struct ieee80211_channel *curchan) 924 { 925 struct rsi_hw *adapter = common->priv; 926 struct ieee80211_hw *hw = adapter->hw; 927 u8 prev_bw = common->channel_width; 928 u8 prev_ep = common->endpoint; 929 int status = 0; 930 931 if (common->band != curchan->band) { 932 common->rf_reset = 1; 933 common->band = curchan->band; 934 } 935 936 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) || 937 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20)) 938 common->channel_width = BW_20MHZ; 939 else 940 common->channel_width = BW_40MHZ; 941 942 if (common->band == NL80211_BAND_2GHZ) { 943 if (common->channel_width) 944 common->endpoint = EP_2GHZ_40MHZ; 945 else 946 common->endpoint = EP_2GHZ_20MHZ; 947 } else { 948 if (common->channel_width) 949 common->endpoint = EP_5GHZ_40MHZ; 950 else 951 common->endpoint = EP_5GHZ_20MHZ; 952 } 953 954 if (common->endpoint != prev_ep) { 955 status = rsi_program_bb_rf(common); 956 if (status) 957 return status; 958 } 959 960 if (common->channel_width != prev_bw) { 961 status = rsi_load_bootup_params(common); 962 if (status) 963 return status; 964 965 status = rsi_load_radio_caps(common); 966 if (status) 967 return status; 968 } 969 970 return status; 971 } 972 973 /** 974 * rsi_set_channel() - This function programs the channel. 975 * @common: Pointer to the driver private structure. 976 * @channel: Channel value to be set. 977 * 978 * Return: 0 on success, corresponding error code on failure. 979 */ 980 int rsi_set_channel(struct rsi_common *common, 981 struct ieee80211_channel *channel) 982 { 983 struct sk_buff *skb = NULL; 984 struct rsi_chan_config *chan_cfg; 985 u16 frame_len = sizeof(struct rsi_chan_config); 986 987 rsi_dbg(MGMT_TX_ZONE, 988 "%s: Sending scan req frame\n", __func__); 989 990 skb = dev_alloc_skb(frame_len); 991 if (!skb) { 992 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 993 __func__); 994 return -ENOMEM; 995 } 996 997 if (!channel) { 998 dev_kfree_skb(skb); 999 return 0; 1000 } 1001 memset(skb->data, 0, frame_len); 1002 chan_cfg = (struct rsi_chan_config *)skb->data; 1003 1004 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1005 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST; 1006 chan_cfg->channel_number = channel->hw_value; 1007 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain; 1008 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain; 1009 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4; 1010 1011 if ((channel->flags & IEEE80211_CHAN_NO_IR) || 1012 (channel->flags & IEEE80211_CHAN_RADAR)) { 1013 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR; 1014 } else { 1015 if (common->tx_power < channel->max_power) 1016 chan_cfg->tx_power = cpu_to_le16(common->tx_power); 1017 else 1018 chan_cfg->tx_power = cpu_to_le16(channel->max_power); 1019 } 1020 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf); 1021 1022 if (common->channel_width == BW_40MHZ) 1023 chan_cfg->channel_width = 0x1; 1024 1025 common->channel = channel->hw_value; 1026 1027 skb_put(skb, frame_len); 1028 1029 return rsi_send_internal_mgmt_frame(common, skb); 1030 } 1031 1032 /** 1033 * rsi_send_radio_params_update() - This function sends the radio 1034 * parameters update to device 1035 * @common: Pointer to the driver private structure. 1036 * @channel: Channel value to be set. 1037 * 1038 * Return: 0 on success, corresponding error code on failure. 1039 */ 1040 int rsi_send_radio_params_update(struct rsi_common *common) 1041 { 1042 struct rsi_mac_frame *cmd_frame; 1043 struct sk_buff *skb = NULL; 1044 1045 rsi_dbg(MGMT_TX_ZONE, 1046 "%s: Sending Radio Params update frame\n", __func__); 1047 1048 skb = dev_alloc_skb(FRAME_DESC_SZ); 1049 if (!skb) { 1050 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1051 __func__); 1052 return -ENOMEM; 1053 } 1054 1055 memset(skb->data, 0, FRAME_DESC_SZ); 1056 cmd_frame = (struct rsi_mac_frame *)skb->data; 1057 1058 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1059 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE); 1060 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0)); 1061 1062 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8); 1063 1064 skb_put(skb, FRAME_DESC_SZ); 1065 1066 return rsi_send_internal_mgmt_frame(common, skb); 1067 } 1068 1069 /* This function programs the threshold. */ 1070 int rsi_send_vap_dynamic_update(struct rsi_common *common) 1071 { 1072 struct sk_buff *skb; 1073 struct rsi_dynamic_s *dynamic_frame; 1074 1075 rsi_dbg(MGMT_TX_ZONE, 1076 "%s: Sending vap update indication frame\n", __func__); 1077 1078 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s)); 1079 if (!skb) 1080 return -ENOMEM; 1081 1082 memset(skb->data, 0, sizeof(struct rsi_dynamic_s)); 1083 dynamic_frame = (struct rsi_dynamic_s *)skb->data; 1084 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno, 1085 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q); 1086 1087 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE; 1088 dynamic_frame->desc_dword2.pkt_info = 1089 cpu_to_le32(common->rts_threshold); 1090 1091 if (common->wow_flags & RSI_WOW_ENABLED) { 1092 /* Beacon miss threshold */ 1093 dynamic_frame->desc_dword3.token = 1094 cpu_to_le16(RSI_BCN_MISS_THRESHOLD); 1095 dynamic_frame->frame_body.keep_alive_period = 1096 cpu_to_le16(RSI_WOW_KEEPALIVE); 1097 } else { 1098 dynamic_frame->frame_body.keep_alive_period = 1099 cpu_to_le16(RSI_DEF_KEEPALIVE); 1100 } 1101 1102 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */ 1103 1104 skb_put(skb, sizeof(struct rsi_dynamic_s)); 1105 1106 return rsi_send_internal_mgmt_frame(common, skb); 1107 } 1108 1109 /** 1110 * rsi_compare() - This function is used to compare two integers 1111 * @a: pointer to the first integer 1112 * @b: pointer to the second integer 1113 * 1114 * Return: 0 if both are equal, -1 if the first is smaller, else 1 1115 */ 1116 static int rsi_compare(const void *a, const void *b) 1117 { 1118 u16 _a = *(const u16 *)(a); 1119 u16 _b = *(const u16 *)(b); 1120 1121 if (_a > _b) 1122 return -1; 1123 1124 if (_a < _b) 1125 return 1; 1126 1127 return 0; 1128 } 1129 1130 /** 1131 * rsi_map_rates() - This function is used to map selected rates to hw rates. 1132 * @rate: The standard rate to be mapped. 1133 * @offset: Offset that will be returned. 1134 * 1135 * Return: 0 if it is a mcs rate, else 1 1136 */ 1137 static bool rsi_map_rates(u16 rate, int *offset) 1138 { 1139 int kk; 1140 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { 1141 if (rate == mcs[kk]) { 1142 *offset = kk; 1143 return false; 1144 } 1145 } 1146 1147 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { 1148 if (rate == rsi_rates[kk].bitrate / 5) { 1149 *offset = kk; 1150 break; 1151 } 1152 } 1153 return true; 1154 } 1155 1156 /** 1157 * rsi_send_auto_rate_request() - This function is to set rates for connection 1158 * and send autorate request to firmware. 1159 * @common: Pointer to the driver private structure. 1160 * 1161 * Return: 0 on success, corresponding error code on failure. 1162 */ 1163 static int rsi_send_auto_rate_request(struct rsi_common *common, 1164 struct ieee80211_sta *sta, 1165 u16 sta_id, 1166 struct ieee80211_vif *vif) 1167 { 1168 struct sk_buff *skb; 1169 struct rsi_auto_rate *auto_rate; 1170 int ii = 0, jj = 0, kk = 0; 1171 struct ieee80211_hw *hw = common->priv->hw; 1172 u8 band = hw->conf.chandef.chan->band; 1173 u8 num_supported_rates = 0; 1174 u8 rate_table_offset, rate_offset = 0; 1175 u32 rate_bitmap; 1176 u16 *selected_rates, min_rate; 1177 bool is_ht = false, is_sgi = false; 1178 u16 frame_len = sizeof(struct rsi_auto_rate); 1179 1180 rsi_dbg(MGMT_TX_ZONE, 1181 "%s: Sending auto rate request frame\n", __func__); 1182 1183 skb = dev_alloc_skb(frame_len); 1184 if (!skb) { 1185 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1186 __func__); 1187 return -ENOMEM; 1188 } 1189 1190 memset(skb->data, 0, frame_len); 1191 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL); 1192 if (!selected_rates) { 1193 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", 1194 __func__); 1195 dev_kfree_skb(skb); 1196 return -ENOMEM; 1197 } 1198 1199 auto_rate = (struct rsi_auto_rate *)skb->data; 1200 1201 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); 1202 auto_rate->collision_tolerance = cpu_to_le16(3); 1203 auto_rate->failure_limit = cpu_to_le16(3); 1204 auto_rate->initial_boundary = cpu_to_le16(3); 1205 auto_rate->max_threshold_limt = cpu_to_le16(27); 1206 1207 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND; 1208 1209 if (common->channel_width == BW_40MHZ) 1210 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ; 1211 auto_rate->desc.desc_dword3.sta_id = sta_id; 1212 1213 if (vif->type == NL80211_IFTYPE_STATION) { 1214 rate_bitmap = common->bitrate_mask[band]; 1215 is_ht = common->vif_info[0].is_ht; 1216 is_sgi = common->vif_info[0].sgi; 1217 } else { 1218 rate_bitmap = sta->supp_rates[band]; 1219 is_ht = sta->ht_cap.ht_supported; 1220 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) || 1221 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)) 1222 is_sgi = true; 1223 } 1224 1225 if (band == NL80211_BAND_2GHZ) { 1226 if ((rate_bitmap == 0) && (is_ht)) 1227 min_rate = RSI_RATE_MCS0; 1228 else 1229 min_rate = RSI_RATE_1; 1230 rate_table_offset = 0; 1231 } else { 1232 if ((rate_bitmap == 0) && (is_ht)) 1233 min_rate = RSI_RATE_MCS0; 1234 else 1235 min_rate = RSI_RATE_6; 1236 rate_table_offset = 4; 1237 } 1238 1239 for (ii = 0, jj = 0; 1240 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) { 1241 if (rate_bitmap & BIT(ii)) { 1242 selected_rates[jj++] = 1243 (rsi_rates[ii + rate_table_offset].bitrate / 5); 1244 rate_offset++; 1245 } 1246 } 1247 num_supported_rates = jj; 1248 1249 if (is_ht) { 1250 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) 1251 selected_rates[jj++] = mcs[ii]; 1252 num_supported_rates += ARRAY_SIZE(mcs); 1253 rate_offset += ARRAY_SIZE(mcs); 1254 } 1255 1256 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); 1257 1258 /* mapping the rates to RSI rates */ 1259 for (ii = 0; ii < jj; ii++) { 1260 if (rsi_map_rates(selected_rates[ii], &kk)) { 1261 auto_rate->supported_rates[ii] = 1262 cpu_to_le16(rsi_rates[kk].hw_value); 1263 } else { 1264 auto_rate->supported_rates[ii] = 1265 cpu_to_le16(rsi_mcsrates[kk]); 1266 } 1267 } 1268 1269 /* loading HT rates in the bottom half of the auto rate table */ 1270 if (is_ht) { 1271 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; 1272 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { 1273 if (is_sgi || conf_is_ht40(&common->priv->hw->conf)) 1274 auto_rate->supported_rates[ii++] = 1275 cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); 1276 else 1277 auto_rate->supported_rates[ii++] = 1278 cpu_to_le16(rsi_mcsrates[kk]); 1279 auto_rate->supported_rates[ii] = 1280 cpu_to_le16(rsi_mcsrates[kk--]); 1281 } 1282 1283 for (; ii < (RSI_TBL_SZ - 1); ii++) { 1284 auto_rate->supported_rates[ii] = 1285 cpu_to_le16(rsi_mcsrates[0]); 1286 } 1287 } 1288 1289 for (; ii < RSI_TBL_SZ; ii++) 1290 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate); 1291 1292 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); 1293 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); 1294 num_supported_rates *= 2; 1295 1296 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno, 1297 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1298 1299 skb_put(skb, frame_len); 1300 kfree(selected_rates); 1301 1302 return rsi_send_internal_mgmt_frame(common, skb); 1303 } 1304 1305 /** 1306 * rsi_inform_bss_status() - This function informs about bss status with the 1307 * help of sta notify params by sending an internal 1308 * management frame to firmware. 1309 * @common: Pointer to the driver private structure. 1310 * @status: Bss status type. 1311 * @bssid: Bssid. 1312 * @qos_enable: Qos is enabled. 1313 * @aid: Aid (unique for all STAs). 1314 * 1315 * Return: None. 1316 */ 1317 void rsi_inform_bss_status(struct rsi_common *common, 1318 enum opmode opmode, 1319 u8 status, 1320 const u8 *addr, 1321 u8 qos_enable, 1322 u16 aid, 1323 struct ieee80211_sta *sta, 1324 u16 sta_id, 1325 u16 assoc_cap, 1326 struct ieee80211_vif *vif) 1327 { 1328 if (status) { 1329 if (opmode == RSI_OPMODE_STA) 1330 common->hw_data_qs_blocked = true; 1331 rsi_hal_send_sta_notify_frame(common, 1332 opmode, 1333 STA_CONNECTED, 1334 addr, 1335 qos_enable, 1336 aid, sta_id, 1337 vif); 1338 if (common->min_rate == 0xffff) 1339 rsi_send_auto_rate_request(common, sta, sta_id, vif); 1340 if (opmode == RSI_OPMODE_STA && 1341 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) && 1342 !rsi_send_block_unblock_frame(common, false)) 1343 common->hw_data_qs_blocked = false; 1344 } else { 1345 if (opmode == RSI_OPMODE_STA) 1346 common->hw_data_qs_blocked = true; 1347 1348 if (!(common->wow_flags & RSI_WOW_ENABLED)) 1349 rsi_hal_send_sta_notify_frame(common, opmode, 1350 STA_DISCONNECTED, addr, 1351 qos_enable, aid, sta_id, 1352 vif); 1353 if (opmode == RSI_OPMODE_STA) 1354 rsi_send_block_unblock_frame(common, true); 1355 } 1356 } 1357 1358 /** 1359 * rsi_eeprom_read() - This function sends a frame to read the mac address 1360 * from the eeprom. 1361 * @common: Pointer to the driver private structure. 1362 * 1363 * Return: 0 on success, -1 on failure. 1364 */ 1365 static int rsi_eeprom_read(struct rsi_common *common) 1366 { 1367 struct rsi_eeprom_read_frame *mgmt_frame; 1368 struct rsi_hw *adapter = common->priv; 1369 struct sk_buff *skb; 1370 1371 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); 1372 1373 skb = dev_alloc_skb(FRAME_DESC_SZ); 1374 if (!skb) { 1375 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1376 __func__); 1377 return -ENOMEM; 1378 } 1379 1380 memset(skb->data, 0, FRAME_DESC_SZ); 1381 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data; 1382 1383 /* FrameType */ 1384 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q); 1385 mgmt_frame->pkt_type = EEPROM_READ; 1386 1387 /* Number of bytes to read */ 1388 mgmt_frame->pkt_info = 1389 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) & 1390 RSI_EEPROM_LEN_MASK); 1391 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) & 1392 RSI_EEPROM_HDR_SIZE_MASK); 1393 1394 /* Address to read */ 1395 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset); 1396 1397 skb_put(skb, FRAME_DESC_SZ); 1398 1399 return rsi_send_internal_mgmt_frame(common, skb); 1400 } 1401 1402 /** 1403 * This function sends a frame to block/unblock 1404 * data queues in the firmware 1405 * 1406 * @param common Pointer to the driver private structure. 1407 * @param block event - block if true, unblock if false 1408 * @return 0 on success, -1 on failure. 1409 */ 1410 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event) 1411 { 1412 struct rsi_block_unblock_data *mgmt_frame; 1413 struct sk_buff *skb; 1414 1415 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__); 1416 1417 skb = dev_alloc_skb(FRAME_DESC_SZ); 1418 if (!skb) { 1419 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1420 __func__); 1421 return -ENOMEM; 1422 } 1423 1424 memset(skb->data, 0, FRAME_DESC_SZ); 1425 mgmt_frame = (struct rsi_block_unblock_data *)skb->data; 1426 1427 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); 1428 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE; 1429 mgmt_frame->host_quiet_info = QUIET_INFO_VALID; 1430 1431 if (block_event) { 1432 rsi_dbg(INFO_ZONE, "blocking the data qs\n"); 1433 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf); 1434 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4); 1435 } else { 1436 rsi_dbg(INFO_ZONE, "unblocking the data qs\n"); 1437 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf); 1438 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4); 1439 } 1440 1441 skb_put(skb, FRAME_DESC_SZ); 1442 1443 return rsi_send_internal_mgmt_frame(common, skb); 1444 } 1445 1446 /** 1447 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets 1448 * 1449 * @common: Pointer to the driver private structure. 1450 * @rx_filter_word: Flags of filter packets 1451 * 1452 * @Return: 0 on success, -1 on failure. 1453 */ 1454 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word) 1455 { 1456 struct rsi_mac_frame *cmd_frame; 1457 struct sk_buff *skb; 1458 1459 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n"); 1460 1461 skb = dev_alloc_skb(FRAME_DESC_SZ); 1462 if (!skb) { 1463 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1464 __func__); 1465 return -ENOMEM; 1466 } 1467 1468 memset(skb->data, 0, FRAME_DESC_SZ); 1469 cmd_frame = (struct rsi_mac_frame *)skb->data; 1470 1471 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); 1472 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER); 1473 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word); 1474 1475 skb_put(skb, FRAME_DESC_SZ); 1476 1477 return rsi_send_internal_mgmt_frame(common, skb); 1478 } 1479 1480 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable, 1481 struct ieee80211_vif *vif) 1482 { 1483 struct rsi_common *common = adapter->priv; 1484 struct ieee80211_bss_conf *bss = &vif->bss_conf; 1485 struct rsi_request_ps *ps; 1486 struct rsi_ps_info *ps_info; 1487 struct sk_buff *skb; 1488 int frame_len = sizeof(*ps); 1489 1490 skb = dev_alloc_skb(frame_len); 1491 if (!skb) 1492 return -ENOMEM; 1493 memset(skb->data, 0, frame_len); 1494 1495 ps = (struct rsi_request_ps *)skb->data; 1496 ps_info = &adapter->ps_info; 1497 1498 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno, 1499 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); 1500 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST; 1501 if (enable) { 1502 ps->ps_sleep.enable = RSI_PS_ENABLE; 1503 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST); 1504 } else { 1505 ps->ps_sleep.enable = RSI_PS_DISABLE; 1506 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND); 1507 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST); 1508 } 1509 1510 ps->ps_uapsd_acs = common->uapsd_bitmap; 1511 1512 ps->ps_sleep.sleep_type = ps_info->sleep_type; 1513 ps->ps_sleep.num_bcns_per_lis_int = 1514 cpu_to_le16(ps_info->num_bcns_per_lis_int); 1515 ps->ps_sleep.sleep_duration = 1516 cpu_to_le32(ps_info->deep_sleep_wakeup_period); 1517 1518 if (bss->assoc) 1519 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP; 1520 else 1521 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP; 1522 1523 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval); 1524 ps->ps_dtim_interval_duration = 1525 cpu_to_le32(ps_info->dtim_interval_duration); 1526 1527 if (ps_info->listen_interval > ps_info->dtim_interval_duration) 1528 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE); 1529 1530 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep); 1531 skb_put(skb, frame_len); 1532 1533 return rsi_send_internal_mgmt_frame(common, skb); 1534 } 1535 1536 /** 1537 * rsi_set_antenna() - This fuction send antenna configuration request 1538 * to device 1539 * 1540 * @common: Pointer to the driver private structure. 1541 * @antenna: bitmap for tx antenna selection 1542 * 1543 * Return: 0 on Success, negative error code on failure 1544 */ 1545 int rsi_set_antenna(struct rsi_common *common, u8 antenna) 1546 { 1547 struct rsi_ant_sel_frame *ant_sel_frame; 1548 struct sk_buff *skb; 1549 1550 skb = dev_alloc_skb(FRAME_DESC_SZ); 1551 if (!skb) { 1552 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", 1553 __func__); 1554 return -ENOMEM; 1555 } 1556 1557 memset(skb->data, 0, FRAME_DESC_SZ); 1558 1559 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data; 1560 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME; 1561 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE; 1562 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE); 1563 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno, 1564 0, RSI_WIFI_MGMT_Q); 1565 skb_put(skb, FRAME_DESC_SZ); 1566 1567 return rsi_send_internal_mgmt_frame(common, skb); 1568 } 1569 1570 static int rsi_send_beacon(struct rsi_common *common) 1571 { 1572 struct sk_buff *skb = NULL; 1573 u8 dword_align_bytes = 0; 1574 1575 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE); 1576 if (!skb) 1577 return -ENOMEM; 1578 1579 memset(skb->data, 0, MAX_MGMT_PKT_SIZE); 1580 1581 dword_align_bytes = ((unsigned long)skb->data & 0x3f); 1582 if (dword_align_bytes) 1583 skb_pull(skb, (64 - dword_align_bytes)); 1584 if (rsi_prepare_beacon(common, skb)) { 1585 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n"); 1586 return -EINVAL; 1587 } 1588 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb); 1589 rsi_set_event(&common->tx_thread.event); 1590 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__); 1591 1592 return 0; 1593 } 1594 1595 #ifdef CONFIG_PM 1596 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags, 1597 u16 sleep_status) 1598 { 1599 struct rsi_wowlan_req *cmd_frame; 1600 struct sk_buff *skb; 1601 u8 length; 1602 1603 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__); 1604 1605 length = sizeof(*cmd_frame); 1606 skb = dev_alloc_skb(length); 1607 if (!skb) 1608 return -ENOMEM; 1609 memset(skb->data, 0, length); 1610 cmd_frame = (struct rsi_wowlan_req *)skb->data; 1611 1612 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno, 1613 (length - FRAME_DESC_SZ), 1614 RSI_WIFI_MGMT_Q); 1615 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS; 1616 cmd_frame->host_sleep_status = sleep_status; 1617 if (common->secinfo.security_enable && 1618 common->secinfo.gtk_cipher) 1619 flags |= RSI_WOW_GTK_REKEY; 1620 if (sleep_status) 1621 cmd_frame->wow_flags = flags; 1622 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n", 1623 cmd_frame->host_sleep_status, cmd_frame->wow_flags); 1624 1625 skb_put(skb, length); 1626 1627 return rsi_send_internal_mgmt_frame(common, skb); 1628 } 1629 #endif 1630 1631 /** 1632 * rsi_handle_ta_confirm_type() - This function handles the confirm frames. 1633 * @common: Pointer to the driver private structure. 1634 * @msg: Pointer to received packet. 1635 * 1636 * Return: 0 on success, -1 on failure. 1637 */ 1638 static int rsi_handle_ta_confirm_type(struct rsi_common *common, 1639 u8 *msg) 1640 { 1641 struct rsi_hw *adapter = common->priv; 1642 u8 sub_type = (msg[15] & 0xff); 1643 u16 msg_len = ((u16 *)msg)[0] & 0xfff; 1644 u8 offset; 1645 1646 switch (sub_type) { 1647 case BOOTUP_PARAMS_REQUEST: 1648 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", 1649 __func__); 1650 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { 1651 adapter->eeprom.length = (IEEE80211_ADDR_LEN + 1652 WLAN_MAC_MAGIC_WORD_LEN + 1653 WLAN_HOST_MODE_LEN); 1654 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR; 1655 if (rsi_eeprom_read(common)) { 1656 common->fsm_state = FSM_CARD_NOT_READY; 1657 goto out; 1658 } 1659 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; 1660 } else { 1661 rsi_dbg(INFO_ZONE, 1662 "%s: Received bootup params cfm in %d state\n", 1663 __func__, common->fsm_state); 1664 return 0; 1665 } 1666 break; 1667 1668 case EEPROM_READ: 1669 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n"); 1670 if (msg_len <= 0) { 1671 rsi_dbg(FSM_ZONE, 1672 "%s: [EEPROM_READ] Invalid len %d\n", 1673 __func__, msg_len); 1674 goto out; 1675 } 1676 if (msg[16] != MAGIC_WORD) { 1677 rsi_dbg(FSM_ZONE, 1678 "%s: [EEPROM_READ] Invalid token\n", __func__); 1679 common->fsm_state = FSM_CARD_NOT_READY; 1680 goto out; 1681 } 1682 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { 1683 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + 1684 WLAN_MAC_MAGIC_WORD_LEN); 1685 memcpy(common->mac_addr, &msg[offset], ETH_ALEN); 1686 adapter->eeprom.length = 1687 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3)); 1688 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR; 1689 if (rsi_eeprom_read(common)) { 1690 rsi_dbg(ERR_ZONE, 1691 "%s: Failed reading RF band\n", 1692 __func__); 1693 common->fsm_state = FSM_CARD_NOT_READY; 1694 goto out; 1695 } 1696 common->fsm_state = FSM_EEPROM_READ_RF_TYPE; 1697 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) { 1698 if ((msg[17] & 0x3) == 0x3) { 1699 rsi_dbg(INIT_ZONE, "Dual band supported\n"); 1700 common->band = NL80211_BAND_5GHZ; 1701 common->num_supp_bands = 2; 1702 } else if ((msg[17] & 0x3) == 0x1) { 1703 rsi_dbg(INIT_ZONE, 1704 "Only 2.4Ghz band supported\n"); 1705 common->band = NL80211_BAND_2GHZ; 1706 common->num_supp_bands = 1; 1707 } 1708 if (rsi_send_reset_mac(common)) 1709 goto out; 1710 common->fsm_state = FSM_RESET_MAC_SENT; 1711 } else { 1712 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n", 1713 __func__); 1714 return 0; 1715 } 1716 break; 1717 1718 case RESET_MAC_REQ: 1719 if (common->fsm_state == FSM_RESET_MAC_SENT) { 1720 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", 1721 __func__); 1722 1723 if (rsi_load_radio_caps(common)) 1724 goto out; 1725 else 1726 common->fsm_state = FSM_RADIO_CAPS_SENT; 1727 } else { 1728 rsi_dbg(ERR_ZONE, 1729 "%s: Received reset mac cfm in %d state\n", 1730 __func__, common->fsm_state); 1731 return 0; 1732 } 1733 break; 1734 1735 case RADIO_CAPABILITIES: 1736 if (common->fsm_state == FSM_RADIO_CAPS_SENT) { 1737 common->rf_reset = 1; 1738 if (rsi_program_bb_rf(common)) { 1739 goto out; 1740 } else { 1741 common->fsm_state = FSM_BB_RF_PROG_SENT; 1742 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", 1743 __func__); 1744 } 1745 } else { 1746 rsi_dbg(INFO_ZONE, 1747 "%s: Received radio caps cfm in %d state\n", 1748 __func__, common->fsm_state); 1749 return 0; 1750 } 1751 break; 1752 1753 case BB_PROG_VALUES_REQUEST: 1754 case RF_PROG_VALUES_REQUEST: 1755 case BBP_PROG_IN_TA: 1756 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); 1757 if (common->fsm_state == FSM_BB_RF_PROG_SENT) { 1758 common->bb_rf_prog_count--; 1759 if (!common->bb_rf_prog_count) { 1760 common->fsm_state = FSM_MAC_INIT_DONE; 1761 if (common->reinit_hw) { 1762 complete(&common->wlan_init_completion); 1763 } else { 1764 return rsi_mac80211_attach(common); 1765 } 1766 } 1767 } else { 1768 rsi_dbg(INFO_ZONE, 1769 "%s: Received bbb_rf cfm in %d state\n", 1770 __func__, common->fsm_state); 1771 return 0; 1772 } 1773 break; 1774 case WAKEUP_SLEEP_REQUEST: 1775 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n"); 1776 return rsi_handle_ps_confirm(adapter, msg); 1777 default: 1778 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", 1779 __func__); 1780 break; 1781 } 1782 return 0; 1783 out: 1784 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", 1785 __func__); 1786 return -EINVAL; 1787 } 1788 1789 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg) 1790 { 1791 switch (common->fsm_state) { 1792 case FSM_CARD_NOT_READY: 1793 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n"); 1794 rsi_set_default_parameters(common); 1795 if (rsi_send_common_dev_params(common) < 0) 1796 return -EINVAL; 1797 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT; 1798 break; 1799 case FSM_COMMON_DEV_PARAMS_SENT: 1800 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n"); 1801 1802 /* Get usb buffer status register address */ 1803 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8]; 1804 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n", 1805 common->priv->usb_buffer_status_reg); 1806 1807 if (rsi_load_bootup_params(common)) { 1808 common->fsm_state = FSM_CARD_NOT_READY; 1809 return -EINVAL; 1810 } 1811 common->fsm_state = FSM_BOOT_PARAMS_SENT; 1812 break; 1813 default: 1814 rsi_dbg(ERR_ZONE, 1815 "%s: card ready indication in invalid state %d.\n", 1816 __func__, common->fsm_state); 1817 return -EINVAL; 1818 } 1819 1820 return 0; 1821 } 1822 1823 /** 1824 * rsi_mgmt_pkt_recv() - This function processes the management packets 1825 * recieved from the hardware. 1826 * @common: Pointer to the driver private structure. 1827 * @msg: Pointer to the received packet. 1828 * 1829 * Return: 0 on success, -1 on failure. 1830 */ 1831 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) 1832 { 1833 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); 1834 u16 msg_type = (msg[2]); 1835 1836 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", 1837 __func__, msg_len, msg_type); 1838 1839 switch (msg_type) { 1840 case TA_CONFIRM_TYPE: 1841 return rsi_handle_ta_confirm_type(common, msg); 1842 case CARD_READY_IND: 1843 common->hibernate_resume = false; 1844 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", 1845 __func__); 1846 return rsi_handle_card_ready(common, msg); 1847 case TX_STATUS_IND: 1848 switch (msg[RSI_TX_STATUS_TYPE]) { 1849 case PROBEREQ_CONFIRM: 1850 common->mgmt_q_block = false; 1851 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", 1852 __func__); 1853 break; 1854 case EAPOL4_CONFIRM: 1855 if (msg[RSI_TX_STATUS]) { 1856 common->eapol4_confirm = true; 1857 if (!rsi_send_block_unblock_frame(common, 1858 false)) 1859 common->hw_data_qs_blocked = false; 1860 } 1861 } 1862 break; 1863 case BEACON_EVENT_IND: 1864 rsi_dbg(INFO_ZONE, "Beacon event\n"); 1865 if (common->fsm_state != FSM_MAC_INIT_DONE) 1866 return -1; 1867 if (common->iface_down) 1868 return -1; 1869 if (!common->beacon_enabled) 1870 return -1; 1871 rsi_send_beacon(common); 1872 break; 1873 case RX_DOT11_MGMT: 1874 return rsi_mgmt_pkt_to_core(common, msg, msg_len); 1875 default: 1876 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type); 1877 } 1878 return 0; 1879 } 1880