xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/tx.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "tx.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "debug.h"
10 
11 static
12 void rtw_tx_stats(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
13 		  struct sk_buff *skb)
14 {
15 	struct ieee80211_hdr *hdr;
16 	struct rtw_vif *rtwvif;
17 
18 	hdr = (struct ieee80211_hdr *)skb->data;
19 
20 	if (!ieee80211_is_data(hdr->frame_control))
21 		return;
22 
23 	if (!is_broadcast_ether_addr(hdr->addr1) &&
24 	    !is_multicast_ether_addr(hdr->addr1)) {
25 		rtwdev->stats.tx_unicast += skb->len;
26 		rtwdev->stats.tx_cnt++;
27 		if (vif) {
28 			rtwvif = (struct rtw_vif *)vif->drv_priv;
29 			rtwvif->stats.tx_unicast += skb->len;
30 			rtwvif->stats.tx_cnt++;
31 		}
32 	}
33 }
34 
35 void rtw_tx_fill_tx_desc(struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb)
36 {
37 	struct rtw_tx_desc *tx_desc = (struct rtw_tx_desc *)skb->data;
38 	bool more_data = false;
39 
40 	if (pkt_info->qsel == TX_DESC_QSEL_HIGH)
41 		more_data = true;
42 
43 	tx_desc->w0 = le32_encode_bits(pkt_info->tx_pkt_size, RTW_TX_DESC_W0_TXPKTSIZE) |
44 		      le32_encode_bits(pkt_info->offset, RTW_TX_DESC_W0_OFFSET) |
45 		      le32_encode_bits(pkt_info->bmc, RTW_TX_DESC_W0_BMC) |
46 		      le32_encode_bits(pkt_info->ls, RTW_TX_DESC_W0_LS) |
47 		      le32_encode_bits(pkt_info->dis_qselseq, RTW_TX_DESC_W0_DISQSELSEQ);
48 
49 	tx_desc->w1 = le32_encode_bits(pkt_info->qsel, RTW_TX_DESC_W1_QSEL) |
50 		      le32_encode_bits(pkt_info->rate_id, RTW_TX_DESC_W1_RATE_ID) |
51 		      le32_encode_bits(pkt_info->sec_type, RTW_TX_DESC_W1_SEC_TYPE) |
52 		      le32_encode_bits(pkt_info->pkt_offset, RTW_TX_DESC_W1_PKT_OFFSET) |
53 		      le32_encode_bits(more_data, RTW_TX_DESC_W1_MORE_DATA);
54 
55 	tx_desc->w2 = le32_encode_bits(pkt_info->ampdu_en, RTW_TX_DESC_W2_AGG_EN) |
56 		      le32_encode_bits(pkt_info->report, RTW_TX_DESC_W2_SPE_RPT) |
57 		      le32_encode_bits(pkt_info->ampdu_density, RTW_TX_DESC_W2_AMPDU_DEN) |
58 		      le32_encode_bits(pkt_info->bt_null, RTW_TX_DESC_W2_BT_NULL);
59 
60 	tx_desc->w3 = le32_encode_bits(pkt_info->hw_ssn_sel, RTW_TX_DESC_W3_HW_SSN_SEL) |
61 		      le32_encode_bits(pkt_info->use_rate, RTW_TX_DESC_W3_USE_RATE) |
62 		      le32_encode_bits(pkt_info->dis_rate_fallback, RTW_TX_DESC_W3_DISDATAFB) |
63 		      le32_encode_bits(pkt_info->rts, RTW_TX_DESC_W3_USE_RTS) |
64 		      le32_encode_bits(pkt_info->nav_use_hdr, RTW_TX_DESC_W3_NAVUSEHDR) |
65 		      le32_encode_bits(pkt_info->ampdu_factor, RTW_TX_DESC_W3_MAX_AGG_NUM);
66 
67 	tx_desc->w4 = le32_encode_bits(pkt_info->rate, RTW_TX_DESC_W4_DATARATE);
68 
69 	tx_desc->w5 = le32_encode_bits(pkt_info->short_gi, RTW_TX_DESC_W5_DATA_SHORT) |
70 		      le32_encode_bits(pkt_info->bw, RTW_TX_DESC_W5_DATA_BW) |
71 		      le32_encode_bits(pkt_info->ldpc, RTW_TX_DESC_W5_DATA_LDPC) |
72 		      le32_encode_bits(pkt_info->stbc, RTW_TX_DESC_W5_DATA_STBC);
73 
74 	tx_desc->w6 = le32_encode_bits(pkt_info->sn, RTW_TX_DESC_W6_SW_DEFINE);
75 
76 	tx_desc->w8 = le32_encode_bits(pkt_info->en_hwseq, RTW_TX_DESC_W8_EN_HWSEQ);
77 
78 	tx_desc->w9 = le32_encode_bits(pkt_info->seq, RTW_TX_DESC_W9_SW_SEQ);
79 
80 	if (pkt_info->rts) {
81 		tx_desc->w4 |= le32_encode_bits(DESC_RATE24M, RTW_TX_DESC_W4_RTSRATE);
82 		tx_desc->w5 |= le32_encode_bits(1, RTW_TX_DESC_W5_DATA_RTS_SHORT);
83 	}
84 
85 	if (pkt_info->tim_offset)
86 		tx_desc->w9 |= le32_encode_bits(1, RTW_TX_DESC_W9_TIM_EN) |
87 			       le32_encode_bits(pkt_info->tim_offset, RTW_TX_DESC_W9_TIM_OFFSET);
88 }
89 EXPORT_SYMBOL(rtw_tx_fill_tx_desc);
90 
91 static u8 get_tx_ampdu_factor(struct ieee80211_sta *sta)
92 {
93 	u8 exp = sta->deflink.ht_cap.ampdu_factor;
94 
95 	/* the least ampdu factor is 8K, and the value in the tx desc is the
96 	 * max aggregation num, which represents val * 2 packets can be
97 	 * aggregated in an AMPDU, so here we should use 8/2=4 as the base
98 	 */
99 	return (BIT(2) << exp) - 1;
100 }
101 
102 static u8 get_tx_ampdu_density(struct ieee80211_sta *sta)
103 {
104 	return sta->deflink.ht_cap.ampdu_density;
105 }
106 
107 static u8 get_highest_ht_tx_rate(struct rtw_dev *rtwdev,
108 				 struct ieee80211_sta *sta)
109 {
110 	u8 rate;
111 
112 	if (rtwdev->hal.rf_type == RF_2T2R && sta->deflink.ht_cap.mcs.rx_mask[1] != 0)
113 		rate = DESC_RATEMCS15;
114 	else
115 		rate = DESC_RATEMCS7;
116 
117 	return rate;
118 }
119 
120 static u8 get_highest_vht_tx_rate(struct rtw_dev *rtwdev,
121 				  struct ieee80211_sta *sta)
122 {
123 	struct rtw_efuse *efuse = &rtwdev->efuse;
124 	u8 rate;
125 	u16 tx_mcs_map;
126 
127 	tx_mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.tx_mcs_map);
128 	if (efuse->hw_cap.nss == 1) {
129 		switch (tx_mcs_map & 0x3) {
130 		case IEEE80211_VHT_MCS_SUPPORT_0_7:
131 			rate = DESC_RATEVHT1SS_MCS7;
132 			break;
133 		case IEEE80211_VHT_MCS_SUPPORT_0_8:
134 			rate = DESC_RATEVHT1SS_MCS8;
135 			break;
136 		default:
137 		case IEEE80211_VHT_MCS_SUPPORT_0_9:
138 			rate = DESC_RATEVHT1SS_MCS9;
139 			break;
140 		}
141 	} else if (efuse->hw_cap.nss >= 2) {
142 		switch ((tx_mcs_map & 0xc) >> 2) {
143 		case IEEE80211_VHT_MCS_SUPPORT_0_7:
144 			rate = DESC_RATEVHT2SS_MCS7;
145 			break;
146 		case IEEE80211_VHT_MCS_SUPPORT_0_8:
147 			rate = DESC_RATEVHT2SS_MCS8;
148 			break;
149 		default:
150 		case IEEE80211_VHT_MCS_SUPPORT_0_9:
151 			rate = DESC_RATEVHT2SS_MCS9;
152 			break;
153 		}
154 	} else {
155 		rate = DESC_RATEVHT1SS_MCS9;
156 	}
157 
158 	return rate;
159 }
160 
161 static void rtw_tx_report_enable(struct rtw_dev *rtwdev,
162 				 struct rtw_tx_pkt_info *pkt_info)
163 {
164 	struct rtw_tx_report *tx_report = &rtwdev->tx_report;
165 
166 	/* [11:8], reserved, fills with zero
167 	 * [7:2],  tx report sequence number
168 	 * [1:0],  firmware use, fills with zero
169 	 */
170 	pkt_info->sn = (atomic_inc_return(&tx_report->sn) << 2) & 0xfc;
171 	pkt_info->report = true;
172 }
173 
174 void rtw_tx_report_purge_timer(struct timer_list *t)
175 {
176 	struct rtw_dev *rtwdev = from_timer(rtwdev, t, tx_report.purge_timer);
177 	struct rtw_tx_report *tx_report = &rtwdev->tx_report;
178 	unsigned long flags;
179 
180 	if (skb_queue_len(&tx_report->queue) == 0)
181 		return;
182 
183 	rtw_warn(rtwdev, "failed to get tx report from firmware\n");
184 
185 	spin_lock_irqsave(&tx_report->q_lock, flags);
186 	skb_queue_purge(&tx_report->queue);
187 	spin_unlock_irqrestore(&tx_report->q_lock, flags);
188 }
189 
190 void rtw_tx_report_enqueue(struct rtw_dev *rtwdev, struct sk_buff *skb, u8 sn)
191 {
192 	struct rtw_tx_report *tx_report = &rtwdev->tx_report;
193 	unsigned long flags;
194 	u8 *drv_data;
195 
196 	/* pass sn to tx report handler through driver data */
197 	drv_data = (u8 *)IEEE80211_SKB_CB(skb)->status.status_driver_data;
198 	*drv_data = sn;
199 
200 	spin_lock_irqsave(&tx_report->q_lock, flags);
201 	__skb_queue_tail(&tx_report->queue, skb);
202 	spin_unlock_irqrestore(&tx_report->q_lock, flags);
203 
204 	mod_timer(&tx_report->purge_timer, jiffies + RTW_TX_PROBE_TIMEOUT);
205 }
206 EXPORT_SYMBOL(rtw_tx_report_enqueue);
207 
208 static void rtw_tx_report_tx_status(struct rtw_dev *rtwdev,
209 				    struct sk_buff *skb, bool acked)
210 {
211 	struct ieee80211_tx_info *info;
212 
213 	info = IEEE80211_SKB_CB(skb);
214 	ieee80211_tx_info_clear_status(info);
215 	if (acked)
216 		info->flags |= IEEE80211_TX_STAT_ACK;
217 	else
218 		info->flags &= ~IEEE80211_TX_STAT_ACK;
219 
220 	ieee80211_tx_status_irqsafe(rtwdev->hw, skb);
221 }
222 
223 void rtw_tx_report_handle(struct rtw_dev *rtwdev, struct sk_buff *skb, int src)
224 {
225 	struct rtw_tx_report *tx_report = &rtwdev->tx_report;
226 	struct rtw_c2h_cmd *c2h;
227 	struct sk_buff *cur, *tmp;
228 	unsigned long flags;
229 	u8 sn, st;
230 	u8 *n;
231 
232 	c2h = get_c2h_from_skb(skb);
233 
234 	if (src == C2H_CCX_TX_RPT) {
235 		sn = GET_CCX_REPORT_SEQNUM_V0(c2h->payload);
236 		st = GET_CCX_REPORT_STATUS_V0(c2h->payload);
237 	} else {
238 		sn = GET_CCX_REPORT_SEQNUM_V1(c2h->payload);
239 		st = GET_CCX_REPORT_STATUS_V1(c2h->payload);
240 	}
241 
242 	spin_lock_irqsave(&tx_report->q_lock, flags);
243 	skb_queue_walk_safe(&tx_report->queue, cur, tmp) {
244 		n = (u8 *)IEEE80211_SKB_CB(cur)->status.status_driver_data;
245 		if (*n == sn) {
246 			__skb_unlink(cur, &tx_report->queue);
247 			rtw_tx_report_tx_status(rtwdev, cur, st == 0);
248 			break;
249 		}
250 	}
251 	spin_unlock_irqrestore(&tx_report->q_lock, flags);
252 }
253 
254 static u8 rtw_get_mgmt_rate(struct rtw_dev *rtwdev, struct sk_buff *skb,
255 			    u8 lowest_rate, bool ignore_rate)
256 {
257 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
258 	struct ieee80211_vif *vif = tx_info->control.vif;
259 	bool force_lowest = test_bit(RTW_FLAG_FORCE_LOWEST_RATE, rtwdev->flags);
260 
261 	if (!vif || !vif->bss_conf.basic_rates || ignore_rate || force_lowest)
262 		return lowest_rate;
263 
264 	return __ffs(vif->bss_conf.basic_rates) + lowest_rate;
265 }
266 
267 static void rtw_tx_pkt_info_update_rate(struct rtw_dev *rtwdev,
268 					struct rtw_tx_pkt_info *pkt_info,
269 					struct sk_buff *skb,
270 					bool ignore_rate)
271 {
272 	if (rtwdev->hal.current_band_type == RTW_BAND_2G) {
273 		pkt_info->rate_id = RTW_RATEID_B_20M;
274 		pkt_info->rate = rtw_get_mgmt_rate(rtwdev, skb, DESC_RATE1M,
275 						   ignore_rate);
276 	} else {
277 		pkt_info->rate_id = RTW_RATEID_G;
278 		pkt_info->rate = rtw_get_mgmt_rate(rtwdev, skb, DESC_RATE6M,
279 						   ignore_rate);
280 	}
281 
282 	pkt_info->use_rate = true;
283 	pkt_info->dis_rate_fallback = true;
284 }
285 
286 static void rtw_tx_pkt_info_update_sec(struct rtw_dev *rtwdev,
287 				       struct rtw_tx_pkt_info *pkt_info,
288 				       struct sk_buff *skb)
289 {
290 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
291 	u8 sec_type = 0;
292 
293 	if (info && info->control.hw_key) {
294 		struct ieee80211_key_conf *key = info->control.hw_key;
295 
296 		switch (key->cipher) {
297 		case WLAN_CIPHER_SUITE_WEP40:
298 		case WLAN_CIPHER_SUITE_WEP104:
299 		case WLAN_CIPHER_SUITE_TKIP:
300 			sec_type = 0x01;
301 			break;
302 		case WLAN_CIPHER_SUITE_CCMP:
303 			sec_type = 0x03;
304 			break;
305 		default:
306 			break;
307 		}
308 	}
309 
310 	pkt_info->sec_type = sec_type;
311 }
312 
313 static void rtw_tx_mgmt_pkt_info_update(struct rtw_dev *rtwdev,
314 					struct rtw_tx_pkt_info *pkt_info,
315 					struct ieee80211_sta *sta,
316 					struct sk_buff *skb)
317 {
318 	rtw_tx_pkt_info_update_rate(rtwdev, pkt_info, skb, false);
319 	pkt_info->dis_qselseq = true;
320 	pkt_info->en_hwseq = true;
321 	pkt_info->hw_ssn_sel = 0;
322 	/* TODO: need to change hw port and hw ssn sel for multiple vifs */
323 }
324 
325 static void rtw_tx_data_pkt_info_update(struct rtw_dev *rtwdev,
326 					struct rtw_tx_pkt_info *pkt_info,
327 					struct ieee80211_sta *sta,
328 					struct sk_buff *skb)
329 {
330 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
331 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
332 	struct ieee80211_hw *hw = rtwdev->hw;
333 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
334 	struct rtw_sta_info *si;
335 	u8 fix_rate;
336 	u16 seq;
337 	u8 ampdu_factor = 0;
338 	u8 ampdu_density = 0;
339 	bool ampdu_en = false;
340 	u8 rate = DESC_RATE6M;
341 	u8 rate_id = 6;
342 	u8 bw = RTW_CHANNEL_WIDTH_20;
343 	bool stbc = false;
344 	bool ldpc = false;
345 
346 	seq = (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4;
347 
348 	/* for broadcast/multicast, use default values */
349 	if (!sta)
350 		goto out;
351 
352 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
353 		ampdu_en = true;
354 		ampdu_factor = get_tx_ampdu_factor(sta);
355 		ampdu_density = get_tx_ampdu_density(sta);
356 	}
357 
358 	if (info->control.use_rts || skb->len > hw->wiphy->rts_threshold)
359 		pkt_info->rts = true;
360 
361 	if (sta->deflink.vht_cap.vht_supported)
362 		rate = get_highest_vht_tx_rate(rtwdev, sta);
363 	else if (sta->deflink.ht_cap.ht_supported)
364 		rate = get_highest_ht_tx_rate(rtwdev, sta);
365 	else if (sta->deflink.supp_rates[0] <= 0xf)
366 		rate = DESC_RATE11M;
367 	else
368 		rate = DESC_RATE54M;
369 
370 	si = (struct rtw_sta_info *)sta->drv_priv;
371 
372 	bw = si->bw_mode;
373 	rate_id = si->rate_id;
374 	stbc = rtwdev->hal.txrx_1ss ? false : si->stbc_en;
375 	ldpc = si->ldpc_en;
376 
377 out:
378 	pkt_info->seq = seq;
379 	pkt_info->ampdu_factor = ampdu_factor;
380 	pkt_info->ampdu_density = ampdu_density;
381 	pkt_info->ampdu_en = ampdu_en;
382 	pkt_info->rate = rate;
383 	pkt_info->rate_id = rate_id;
384 	pkt_info->bw = bw;
385 	pkt_info->stbc = stbc;
386 	pkt_info->ldpc = ldpc;
387 
388 	fix_rate = dm_info->fix_rate;
389 	if (fix_rate < DESC_RATE_MAX) {
390 		pkt_info->rate = fix_rate;
391 		pkt_info->dis_rate_fallback = true;
392 		pkt_info->use_rate = true;
393 	}
394 }
395 
396 void rtw_tx_pkt_info_update(struct rtw_dev *rtwdev,
397 			    struct rtw_tx_pkt_info *pkt_info,
398 			    struct ieee80211_sta *sta,
399 			    struct sk_buff *skb)
400 {
401 	const struct rtw_chip_info *chip = rtwdev->chip;
402 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
403 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
404 	struct rtw_sta_info *si;
405 	struct ieee80211_vif *vif = NULL;
406 	__le16 fc = hdr->frame_control;
407 	bool bmc;
408 
409 	if (sta) {
410 		si = (struct rtw_sta_info *)sta->drv_priv;
411 		vif = si->vif;
412 	}
413 
414 	if (ieee80211_is_mgmt(fc) || ieee80211_is_nullfunc(fc))
415 		rtw_tx_mgmt_pkt_info_update(rtwdev, pkt_info, sta, skb);
416 	else if (ieee80211_is_data(fc))
417 		rtw_tx_data_pkt_info_update(rtwdev, pkt_info, sta, skb);
418 
419 	bmc = is_broadcast_ether_addr(hdr->addr1) ||
420 	      is_multicast_ether_addr(hdr->addr1);
421 
422 	if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
423 		rtw_tx_report_enable(rtwdev, pkt_info);
424 
425 	pkt_info->bmc = bmc;
426 	rtw_tx_pkt_info_update_sec(rtwdev, pkt_info, skb);
427 	pkt_info->tx_pkt_size = skb->len;
428 	pkt_info->offset = chip->tx_pkt_desc_sz;
429 	pkt_info->qsel = skb->priority;
430 	pkt_info->ls = true;
431 
432 	/* maybe merge with tx status ? */
433 	rtw_tx_stats(rtwdev, vif, skb);
434 }
435 
436 void rtw_tx_rsvd_page_pkt_info_update(struct rtw_dev *rtwdev,
437 				      struct rtw_tx_pkt_info *pkt_info,
438 				      struct sk_buff *skb,
439 				      enum rtw_rsvd_packet_type type)
440 {
441 	const struct rtw_chip_info *chip = rtwdev->chip;
442 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
443 	bool bmc;
444 
445 	/* A beacon or dummy reserved page packet indicates that it is the first
446 	 * reserved page, and the qsel of it will be set in each hci.
447 	 */
448 	if (type != RSVD_BEACON && type != RSVD_DUMMY)
449 		pkt_info->qsel = TX_DESC_QSEL_MGMT;
450 
451 	rtw_tx_pkt_info_update_rate(rtwdev, pkt_info, skb, true);
452 
453 	bmc = is_broadcast_ether_addr(hdr->addr1) ||
454 	      is_multicast_ether_addr(hdr->addr1);
455 	pkt_info->bmc = bmc;
456 	pkt_info->tx_pkt_size = skb->len;
457 	pkt_info->offset = chip->tx_pkt_desc_sz;
458 	pkt_info->ls = true;
459 	if (type == RSVD_PS_POLL) {
460 		pkt_info->nav_use_hdr = true;
461 	} else {
462 		pkt_info->dis_qselseq = true;
463 		pkt_info->en_hwseq = true;
464 		pkt_info->hw_ssn_sel = 0;
465 	}
466 	if (type == RSVD_QOS_NULL)
467 		pkt_info->bt_null = true;
468 
469 	if (type == RSVD_BEACON) {
470 		struct rtw_rsvd_page *rsvd_pkt;
471 		int hdr_len;
472 
473 		rsvd_pkt = list_first_entry_or_null(&rtwdev->rsvd_page_list,
474 						    struct rtw_rsvd_page,
475 						    build_list);
476 		if (rsvd_pkt && rsvd_pkt->tim_offset != 0) {
477 			hdr_len = sizeof(struct ieee80211_hdr_3addr);
478 			pkt_info->tim_offset = rsvd_pkt->tim_offset - hdr_len;
479 		}
480 	}
481 
482 	rtw_tx_pkt_info_update_sec(rtwdev, pkt_info, skb);
483 
484 	/* TODO: need to change hw port and hw ssn sel for multiple vifs */
485 }
486 
487 struct sk_buff *
488 rtw_tx_write_data_rsvd_page_get(struct rtw_dev *rtwdev,
489 				struct rtw_tx_pkt_info *pkt_info,
490 				u8 *buf, u32 size)
491 {
492 	const struct rtw_chip_info *chip = rtwdev->chip;
493 	struct sk_buff *skb;
494 	u32 tx_pkt_desc_sz;
495 	u32 length;
496 
497 	tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
498 	length = size + tx_pkt_desc_sz;
499 	skb = dev_alloc_skb(length);
500 	if (!skb) {
501 		rtw_err(rtwdev, "failed to alloc write data rsvd page skb\n");
502 		return NULL;
503 	}
504 
505 	skb_reserve(skb, tx_pkt_desc_sz);
506 	skb_put_data(skb, buf, size);
507 	rtw_tx_rsvd_page_pkt_info_update(rtwdev, pkt_info, skb, RSVD_BEACON);
508 
509 	return skb;
510 }
511 EXPORT_SYMBOL(rtw_tx_write_data_rsvd_page_get);
512 
513 struct sk_buff *
514 rtw_tx_write_data_h2c_get(struct rtw_dev *rtwdev,
515 			  struct rtw_tx_pkt_info *pkt_info,
516 			  u8 *buf, u32 size)
517 {
518 	const struct rtw_chip_info *chip = rtwdev->chip;
519 	struct sk_buff *skb;
520 	u32 tx_pkt_desc_sz;
521 	u32 length;
522 
523 	tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
524 	length = size + tx_pkt_desc_sz;
525 	skb = dev_alloc_skb(length);
526 	if (!skb) {
527 		rtw_err(rtwdev, "failed to alloc write data h2c skb\n");
528 		return NULL;
529 	}
530 
531 	skb_reserve(skb, tx_pkt_desc_sz);
532 	skb_put_data(skb, buf, size);
533 	pkt_info->tx_pkt_size = size;
534 
535 	return skb;
536 }
537 EXPORT_SYMBOL(rtw_tx_write_data_h2c_get);
538 
539 void rtw_tx(struct rtw_dev *rtwdev,
540 	    struct ieee80211_tx_control *control,
541 	    struct sk_buff *skb)
542 {
543 	struct rtw_tx_pkt_info pkt_info = {0};
544 	int ret;
545 
546 	rtw_tx_pkt_info_update(rtwdev, &pkt_info, control->sta, skb);
547 	ret = rtw_hci_tx_write(rtwdev, &pkt_info, skb);
548 	if (ret) {
549 		rtw_err(rtwdev, "failed to write TX skb to HCI\n");
550 		goto out;
551 	}
552 
553 	rtw_hci_tx_kick_off(rtwdev);
554 
555 	return;
556 
557 out:
558 	ieee80211_free_txskb(rtwdev->hw, skb);
559 }
560 
561 static void rtw_txq_check_agg(struct rtw_dev *rtwdev,
562 			      struct rtw_txq *rtwtxq,
563 			      struct sk_buff *skb)
564 {
565 	struct ieee80211_txq *txq = rtwtxq_to_txq(rtwtxq);
566 	struct ieee80211_tx_info *info;
567 	struct rtw_sta_info *si;
568 
569 	if (test_bit(RTW_TXQ_AMPDU, &rtwtxq->flags)) {
570 		info = IEEE80211_SKB_CB(skb);
571 		info->flags |= IEEE80211_TX_CTL_AMPDU;
572 		return;
573 	}
574 
575 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
576 		return;
577 
578 	if (test_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags))
579 		return;
580 
581 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
582 		return;
583 
584 	if (!txq->sta)
585 		return;
586 
587 	si = (struct rtw_sta_info *)txq->sta->drv_priv;
588 	set_bit(txq->tid, si->tid_ba);
589 
590 	ieee80211_queue_work(rtwdev->hw, &rtwdev->ba_work);
591 }
592 
593 static int rtw_txq_push_skb(struct rtw_dev *rtwdev,
594 			    struct rtw_txq *rtwtxq,
595 			    struct sk_buff *skb)
596 {
597 	struct ieee80211_txq *txq = rtwtxq_to_txq(rtwtxq);
598 	struct rtw_tx_pkt_info pkt_info = {0};
599 	int ret;
600 
601 	rtw_txq_check_agg(rtwdev, rtwtxq, skb);
602 
603 	rtw_tx_pkt_info_update(rtwdev, &pkt_info, txq->sta, skb);
604 	ret = rtw_hci_tx_write(rtwdev, &pkt_info, skb);
605 	if (ret) {
606 		rtw_err(rtwdev, "failed to write TX skb to HCI\n");
607 		return ret;
608 	}
609 	return 0;
610 }
611 
612 static struct sk_buff *rtw_txq_dequeue(struct rtw_dev *rtwdev,
613 				       struct rtw_txq *rtwtxq)
614 {
615 	struct ieee80211_txq *txq = rtwtxq_to_txq(rtwtxq);
616 	struct sk_buff *skb;
617 
618 	skb = ieee80211_tx_dequeue(rtwdev->hw, txq);
619 	if (!skb)
620 		return NULL;
621 
622 	return skb;
623 }
624 
625 static void rtw_txq_push(struct rtw_dev *rtwdev,
626 			 struct rtw_txq *rtwtxq,
627 			 unsigned long frames)
628 {
629 	struct sk_buff *skb;
630 	int ret;
631 	int i;
632 
633 	rcu_read_lock();
634 
635 	for (i = 0; i < frames; i++) {
636 		skb = rtw_txq_dequeue(rtwdev, rtwtxq);
637 		if (!skb)
638 			break;
639 
640 		ret = rtw_txq_push_skb(rtwdev, rtwtxq, skb);
641 		if (ret) {
642 			rtw_err(rtwdev, "failed to pusk skb, ret %d\n", ret);
643 			break;
644 		}
645 	}
646 
647 	rcu_read_unlock();
648 }
649 
650 void __rtw_tx_work(struct rtw_dev *rtwdev)
651 {
652 	struct rtw_txq *rtwtxq, *tmp;
653 
654 	spin_lock_bh(&rtwdev->txq_lock);
655 
656 	list_for_each_entry_safe(rtwtxq, tmp, &rtwdev->txqs, list) {
657 		struct ieee80211_txq *txq = rtwtxq_to_txq(rtwtxq);
658 		unsigned long frame_cnt;
659 		unsigned long byte_cnt;
660 
661 		ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
662 		rtw_txq_push(rtwdev, rtwtxq, frame_cnt);
663 
664 		list_del_init(&rtwtxq->list);
665 	}
666 
667 	rtw_hci_tx_kick_off(rtwdev);
668 
669 	spin_unlock_bh(&rtwdev->txq_lock);
670 }
671 
672 void rtw_tx_work(struct work_struct *w)
673 {
674 	struct rtw_dev *rtwdev = container_of(w, struct rtw_dev, tx_work);
675 
676 	__rtw_tx_work(rtwdev);
677 }
678 
679 void rtw_txq_init(struct rtw_dev *rtwdev, struct ieee80211_txq *txq)
680 {
681 	struct rtw_txq *rtwtxq;
682 
683 	if (!txq)
684 		return;
685 
686 	rtwtxq = (struct rtw_txq *)txq->drv_priv;
687 	INIT_LIST_HEAD(&rtwtxq->list);
688 }
689 
690 void rtw_txq_cleanup(struct rtw_dev *rtwdev, struct ieee80211_txq *txq)
691 {
692 	struct rtw_txq *rtwtxq;
693 
694 	if (!txq)
695 		return;
696 
697 	rtwtxq = (struct rtw_txq *)txq->drv_priv;
698 	spin_lock_bh(&rtwdev->txq_lock);
699 	if (!list_empty(&rtwtxq->list))
700 		list_del_init(&rtwtxq->list);
701 	spin_unlock_bh(&rtwdev->txq_lock);
702 }
703 
704 static const enum rtw_tx_queue_type ac_to_hwq[] = {
705 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
706 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
707 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
708 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
709 };
710 
711 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
712 
713 enum rtw_tx_queue_type rtw_tx_ac_to_hwq(enum ieee80211_ac_numbers ac)
714 {
715 	if (WARN_ON(unlikely(ac >= IEEE80211_NUM_ACS)))
716 		return RTW_TX_QUEUE_BE;
717 
718 	return ac_to_hwq[ac];
719 }
720 EXPORT_SYMBOL(rtw_tx_ac_to_hwq);
721 
722 enum rtw_tx_queue_type rtw_tx_queue_mapping(struct sk_buff *skb)
723 {
724 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
725 	__le16 fc = hdr->frame_control;
726 	u8 q_mapping = skb_get_queue_mapping(skb);
727 	enum rtw_tx_queue_type queue;
728 
729 	if (unlikely(ieee80211_is_beacon(fc)))
730 		queue = RTW_TX_QUEUE_BCN;
731 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
732 		queue = RTW_TX_QUEUE_MGMT;
733 	else if (is_broadcast_ether_addr(hdr->addr1) ||
734 		 is_multicast_ether_addr(hdr->addr1))
735 		queue = RTW_TX_QUEUE_HI0;
736 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
737 		queue = ac_to_hwq[IEEE80211_AC_BE];
738 	else
739 		queue = ac_to_hwq[q_mapping];
740 
741 	return queue;
742 }
743 EXPORT_SYMBOL(rtw_tx_queue_mapping);
744