xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 EXPORT_SYMBOL(rtw_rate_section);
86 
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 	ARRAY_SIZE(rtw_cck_rates),
89 	ARRAY_SIZE(rtw_ofdm_rates),
90 	ARRAY_SIZE(rtw_ht_1s_rates),
91 	ARRAY_SIZE(rtw_ht_2s_rates),
92 	ARRAY_SIZE(rtw_vht_1s_rates),
93 	ARRAY_SIZE(rtw_vht_2s_rates)
94 };
95 EXPORT_SYMBOL(rtw_rate_size);
96 
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103 
104 enum rtw_phy_band_type {
105 	PHY_BAND_2G	= 0,
106 	PHY_BAND_5G	= 1,
107 };
108 
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110 {
111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 	u8 i, j;
113 
114 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 	}
118 
119 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120 }
121 
122 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
123 {
124 	struct rtw_chip_info *chip = rtwdev->chip;
125 
126 	if (chip->ops->cfo_init)
127 		chip->ops->cfo_init(rtwdev);
128 }
129 
130 void rtw_phy_init(struct rtw_dev *rtwdev)
131 {
132 	struct rtw_chip_info *chip = rtwdev->chip;
133 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
134 	u32 addr, mask;
135 
136 	dm_info->fa_history[3] = 0;
137 	dm_info->fa_history[2] = 0;
138 	dm_info->fa_history[1] = 0;
139 	dm_info->fa_history[0] = 0;
140 	dm_info->igi_bitmap = 0;
141 	dm_info->igi_history[3] = 0;
142 	dm_info->igi_history[2] = 0;
143 	dm_info->igi_history[1] = 0;
144 
145 	addr = chip->dig[0].addr;
146 	mask = chip->dig[0].mask;
147 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
148 	rtw_phy_cck_pd_init(rtwdev);
149 
150 	dm_info->iqk.done = false;
151 	rtw_phy_cfo_init(rtwdev);
152 }
153 EXPORT_SYMBOL(rtw_phy_init);
154 
155 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
156 {
157 	struct rtw_chip_info *chip = rtwdev->chip;
158 	struct rtw_hal *hal = &rtwdev->hal;
159 	u32 addr, mask;
160 	u8 path;
161 
162 	if (chip->dig_cck) {
163 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
164 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
165 	}
166 
167 	for (path = 0; path < hal->rf_path_num; path++) {
168 		addr = chip->dig[path].addr;
169 		mask = chip->dig[path].mask;
170 		rtw_write32_mask(rtwdev, addr, mask, igi);
171 	}
172 }
173 
174 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
175 {
176 	struct rtw_chip_info *chip = rtwdev->chip;
177 
178 	chip->ops->false_alarm_statistics(rtwdev);
179 }
180 
181 #define RA_FLOOR_TABLE_SIZE	7
182 #define RA_FLOOR_UP_GAP		3
183 
184 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
185 {
186 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
187 	u8 new_level = 0;
188 	int i;
189 
190 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
191 		if (i >= old_level)
192 			table[i] += RA_FLOOR_UP_GAP;
193 
194 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
195 		if (rssi < table[i]) {
196 			new_level = i;
197 			break;
198 		}
199 	}
200 
201 	return new_level;
202 }
203 
204 struct rtw_phy_stat_iter_data {
205 	struct rtw_dev *rtwdev;
206 	u8 min_rssi;
207 };
208 
209 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
210 {
211 	struct rtw_phy_stat_iter_data *iter_data = data;
212 	struct rtw_dev *rtwdev = iter_data->rtwdev;
213 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
214 	u8 rssi;
215 
216 	rssi = ewma_rssi_read(&si->avg_rssi);
217 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
218 
219 	rtw_fw_send_rssi_info(rtwdev, si);
220 
221 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
222 }
223 
224 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
225 {
226 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
227 	struct rtw_phy_stat_iter_data data = {};
228 
229 	data.rtwdev = rtwdev;
230 	data.min_rssi = U8_MAX;
231 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
232 
233 	dm_info->pre_min_rssi = dm_info->min_rssi;
234 	dm_info->min_rssi = data.min_rssi;
235 }
236 
237 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
238 {
239 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
240 
241 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
242 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
243 }
244 
245 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
246 {
247 	rtw_phy_stat_rssi(rtwdev);
248 	rtw_phy_stat_false_alarm(rtwdev);
249 	rtw_phy_stat_rate_cnt(rtwdev);
250 }
251 
252 #define DIG_PERF_FA_TH_LOW			250
253 #define DIG_PERF_FA_TH_HIGH			500
254 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
255 #define DIG_PERF_MAX				0x5a
256 #define DIG_PERF_MID				0x40
257 #define DIG_CVRG_FA_TH_LOW			2000
258 #define DIG_CVRG_FA_TH_HIGH			4000
259 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
260 #define DIG_CVRG_MAX				0x2a
261 #define DIG_CVRG_MID				0x26
262 #define DIG_CVRG_MIN				0x1c
263 #define DIG_RSSI_GAIN_OFFSET			15
264 
265 static bool
266 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
267 {
268 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
269 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
270 	u16 *fa_history;
271 	u8 *igi_history;
272 	u8 damping_rssi;
273 	u8 min_rssi;
274 	u8 diff;
275 	u8 igi_bitmap;
276 	bool damping = false;
277 
278 	min_rssi = dm_info->min_rssi;
279 	if (dm_info->damping) {
280 		damping_rssi = dm_info->damping_rssi;
281 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
282 						 damping_rssi - min_rssi;
283 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
284 			dm_info->damping = false;
285 			return false;
286 		}
287 
288 		return true;
289 	}
290 
291 	igi_history = dm_info->igi_history;
292 	fa_history = dm_info->fa_history;
293 	igi_bitmap = dm_info->igi_bitmap & 0xf;
294 	switch (igi_bitmap) {
295 	case 5:
296 		/* down -> up -> down -> up */
297 		if (igi_history[0] > igi_history[1] &&
298 		    igi_history[2] > igi_history[3] &&
299 		    igi_history[0] - igi_history[1] >= 2 &&
300 		    igi_history[2] - igi_history[3] >= 2 &&
301 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
302 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
303 			damping = true;
304 		break;
305 	case 9:
306 		/* up -> down -> down -> up */
307 		if (igi_history[0] > igi_history[1] &&
308 		    igi_history[3] > igi_history[2] &&
309 		    igi_history[0] - igi_history[1] >= 4 &&
310 		    igi_history[3] - igi_history[2] >= 2 &&
311 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
312 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
313 			damping = true;
314 		break;
315 	default:
316 		return false;
317 	}
318 
319 	if (damping) {
320 		dm_info->damping = true;
321 		dm_info->damping_cnt = 0;
322 		dm_info->damping_rssi = min_rssi;
323 	}
324 
325 	return damping;
326 }
327 
328 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
329 				     struct rtw_dm_info *dm_info,
330 				     u8 *upper, u8 *lower, bool linked)
331 {
332 	u8 dig_max, dig_min, dig_mid;
333 	u8 min_rssi;
334 
335 	if (linked) {
336 		dig_max = DIG_PERF_MAX;
337 		dig_mid = DIG_PERF_MID;
338 		dig_min = rtwdev->chip->dig_min;
339 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
340 	} else {
341 		dig_max = DIG_CVRG_MAX;
342 		dig_mid = DIG_CVRG_MID;
343 		dig_min = DIG_CVRG_MIN;
344 		min_rssi = dig_min;
345 	}
346 
347 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
348 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
349 
350 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
351 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
352 }
353 
354 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
355 				      u16 *fa_th, u8 *step, bool linked)
356 {
357 	u8 min_rssi, pre_min_rssi;
358 
359 	min_rssi = dm_info->min_rssi;
360 	pre_min_rssi = dm_info->pre_min_rssi;
361 	step[0] = 4;
362 	step[1] = 3;
363 	step[2] = 2;
364 
365 	if (linked) {
366 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
367 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
368 		fa_th[2] = DIG_PERF_FA_TH_LOW;
369 		if (pre_min_rssi > min_rssi) {
370 			step[0] = 6;
371 			step[1] = 4;
372 			step[2] = 2;
373 		}
374 	} else {
375 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
376 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
377 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
378 	}
379 }
380 
381 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
382 {
383 	u8 *igi_history;
384 	u16 *fa_history;
385 	u8 igi_bitmap;
386 	bool up;
387 
388 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
389 	igi_history = dm_info->igi_history;
390 	fa_history = dm_info->fa_history;
391 
392 	up = igi > igi_history[0];
393 	igi_bitmap |= up;
394 
395 	igi_history[3] = igi_history[2];
396 	igi_history[2] = igi_history[1];
397 	igi_history[1] = igi_history[0];
398 	igi_history[0] = igi;
399 
400 	fa_history[3] = fa_history[2];
401 	fa_history[2] = fa_history[1];
402 	fa_history[1] = fa_history[0];
403 	fa_history[0] = fa;
404 
405 	dm_info->igi_bitmap = igi_bitmap;
406 }
407 
408 static void rtw_phy_dig(struct rtw_dev *rtwdev)
409 {
410 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
411 	u8 upper_bound, lower_bound;
412 	u8 pre_igi, cur_igi;
413 	u16 fa_th[3], fa_cnt;
414 	u8 level;
415 	u8 step[3];
416 	bool linked;
417 
418 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
419 		return;
420 
421 	if (rtw_phy_dig_check_damping(dm_info))
422 		return;
423 
424 	linked = !!rtwdev->sta_cnt;
425 
426 	fa_cnt = dm_info->total_fa_cnt;
427 	pre_igi = dm_info->igi_history[0];
428 
429 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
430 
431 	/* test the false alarm count from the highest threshold level first,
432 	 * and increase it by corresponding step size
433 	 *
434 	 * note that the step size is offset by -2, compensate it afterall
435 	 */
436 	cur_igi = pre_igi;
437 	for (level = 0; level < 3; level++) {
438 		if (fa_cnt > fa_th[level]) {
439 			cur_igi += step[level];
440 			break;
441 		}
442 	}
443 	cur_igi -= 2;
444 
445 	/* calculate the upper/lower bound by the minimum rssi we have among
446 	 * the peers connected with us, meanwhile make sure the igi value does
447 	 * not beyond the hardware limitation
448 	 */
449 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
450 				 linked);
451 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
452 
453 	/* record current igi value and false alarm statistics for further
454 	 * damping checks, and record the trend of igi values
455 	 */
456 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
457 
458 	if (cur_igi != pre_igi)
459 		rtw_phy_dig_write(rtwdev, cur_igi);
460 }
461 
462 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
463 {
464 	struct rtw_dev *rtwdev = data;
465 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
466 
467 	rtw_update_sta_info(rtwdev, si);
468 }
469 
470 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
471 {
472 	if (rtwdev->watch_dog_cnt & 0x3)
473 		return;
474 
475 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
476 }
477 
478 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
479 {
480 	u8 rate_order;
481 
482 	rate_order = rate_idx;
483 
484 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
485 		rate_order -= DESC_RATEVHT4SS_MCS0;
486 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
487 		rate_order -= DESC_RATEVHT3SS_MCS0;
488 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
489 		rate_order -= DESC_RATEVHT2SS_MCS0;
490 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
491 		rate_order -= DESC_RATEVHT1SS_MCS0;
492 	else if (rate_idx >= DESC_RATEMCS24)
493 		rate_order -= DESC_RATEMCS24;
494 	else if (rate_idx >= DESC_RATEMCS16)
495 		rate_order -= DESC_RATEMCS16;
496 	else if (rate_idx >= DESC_RATEMCS8)
497 		rate_order -= DESC_RATEMCS8;
498 	else if (rate_idx >= DESC_RATEMCS0)
499 		rate_order -= DESC_RATEMCS0;
500 	else if (rate_idx >= DESC_RATE6M)
501 		rate_order -= DESC_RATE6M;
502 	else
503 		rate_order -= DESC_RATE1M;
504 
505 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
506 		rate_order++;
507 
508 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
509 }
510 
511 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
512 {
513 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
514 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
515 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
516 	u32 mask = 0;
517 
518 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
519 	if (mask < dm_info->rrsr_mask_min)
520 		dm_info->rrsr_mask_min = mask;
521 }
522 
523 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
524 {
525 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
526 
527 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
528 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
529 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
530 }
531 
532 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
533 {
534 	struct rtw_chip_info *chip = rtwdev->chip;
535 
536 	if (chip->ops->dpk_track)
537 		chip->ops->dpk_track(rtwdev);
538 }
539 
540 struct rtw_rx_addr_match_data {
541 	struct rtw_dev *rtwdev;
542 	struct ieee80211_hdr *hdr;
543 	struct rtw_rx_pkt_stat *pkt_stat;
544 	u8 *bssid;
545 };
546 
547 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
548 				     struct ieee80211_vif *vif)
549 {
550 	struct rtw_rx_addr_match_data *iter_data = data;
551 	struct rtw_dev *rtwdev = iter_data->rtwdev;
552 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
553 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
554 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
555 	u8 *bssid = iter_data->bssid;
556 	u8 i;
557 
558 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
559 		return;
560 
561 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
562 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
563 		cfo->cfo_cnt[i]++;
564 	}
565 
566 	cfo->packet_count++;
567 }
568 
569 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
570 			 struct rtw_rx_pkt_stat *pkt_stat)
571 {
572 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
573 	struct rtw_rx_addr_match_data data = {};
574 
575 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
576 	    ieee80211_is_ctl(hdr->frame_control))
577 		return;
578 
579 	data.rtwdev = rtwdev;
580 	data.hdr = hdr;
581 	data.pkt_stat = pkt_stat;
582 	data.bssid = get_hdr_bssid(hdr);
583 
584 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
585 }
586 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
587 
588 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
589 {
590 	struct rtw_chip_info *chip = rtwdev->chip;
591 
592 	if (chip->ops->cfo_track)
593 		chip->ops->cfo_track(rtwdev);
594 }
595 
596 #define CCK_PD_FA_LV1_MIN	1000
597 #define CCK_PD_FA_LV0_MAX	500
598 
599 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
600 {
601 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
602 	u32 cck_fa_avg = dm_info->cck_fa_avg;
603 
604 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
605 		return CCK_PD_LV1;
606 
607 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
608 		return CCK_PD_LV0;
609 
610 	return CCK_PD_LV_MAX;
611 }
612 
613 #define CCK_PD_IGI_LV4_VAL 0x38
614 #define CCK_PD_IGI_LV3_VAL 0x2a
615 #define CCK_PD_IGI_LV2_VAL 0x24
616 #define CCK_PD_RSSI_LV4_VAL 32
617 #define CCK_PD_RSSI_LV3_VAL 32
618 #define CCK_PD_RSSI_LV2_VAL 24
619 
620 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
621 {
622 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
623 	u8 igi = dm_info->igi_history[0];
624 	u8 rssi = dm_info->min_rssi;
625 	u32 cck_fa_avg = dm_info->cck_fa_avg;
626 
627 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
628 		return CCK_PD_LV4;
629 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
630 		return CCK_PD_LV3;
631 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
632 		return CCK_PD_LV2;
633 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
634 		return CCK_PD_LV1;
635 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
636 		return CCK_PD_LV0;
637 
638 	return CCK_PD_LV_MAX;
639 }
640 
641 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
642 {
643 	if (!rtw_is_assoc(rtwdev))
644 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
645 	else
646 		return rtw_phy_cck_pd_lv_link(rtwdev);
647 }
648 
649 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
650 {
651 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
652 	struct rtw_chip_info *chip = rtwdev->chip;
653 	u32 cck_fa = dm_info->cck_fa_cnt;
654 	u8 level;
655 
656 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
657 		return;
658 
659 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
660 		dm_info->cck_fa_avg = cck_fa;
661 	else
662 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
663 
664 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
665 		dm_info->igi_history[0], dm_info->min_rssi,
666 		dm_info->fa_history[0]);
667 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
668 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
669 
670 	level = rtw_phy_cck_pd_lv(rtwdev);
671 
672 	if (level >= CCK_PD_LV_MAX)
673 		return;
674 
675 	if (chip->ops->cck_pd_set)
676 		chip->ops->cck_pd_set(rtwdev, level);
677 }
678 
679 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
680 {
681 	rtwdev->chip->ops->pwr_track(rtwdev);
682 }
683 
684 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
685 {
686 	rtw_fw_update_wl_phy_info(rtwdev);
687 	rtw_phy_ra_info_update(rtwdev);
688 	rtw_phy_rrsr_update(rtwdev);
689 }
690 
691 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
692 {
693 	/* for further calculation */
694 	rtw_phy_statistics(rtwdev);
695 	rtw_phy_dig(rtwdev);
696 	rtw_phy_cck_pd(rtwdev);
697 	rtw_phy_ra_track(rtwdev);
698 	rtw_phy_cfo_track(rtwdev);
699 	rtw_phy_dpk_track(rtwdev);
700 	rtw_phy_pwr_track(rtwdev);
701 }
702 
703 #define FRAC_BITS 3
704 
705 static u8 rtw_phy_power_2_db(s8 power)
706 {
707 	if (power <= -100 || power >= 20)
708 		return 0;
709 	else if (power >= 0)
710 		return 100;
711 	else
712 		return 100 + power;
713 }
714 
715 static u64 rtw_phy_db_2_linear(u8 power_db)
716 {
717 	u8 i, j;
718 	u64 linear;
719 
720 	if (power_db > 96)
721 		power_db = 96;
722 	else if (power_db < 1)
723 		return 1;
724 
725 	/* 1dB ~ 96dB */
726 	i = (power_db - 1) >> 3;
727 	j = (power_db - 1) - (i << 3);
728 
729 	linear = db_invert_table[i][j];
730 	linear = i > 2 ? linear << FRAC_BITS : linear;
731 
732 	return linear;
733 }
734 
735 static u8 rtw_phy_linear_2_db(u64 linear)
736 {
737 	u8 i;
738 	u8 j;
739 	u32 dB;
740 
741 	if (linear >= db_invert_table[11][7])
742 		return 96; /* maximum 96 dB */
743 
744 	for (i = 0; i < 12; i++) {
745 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
746 			break;
747 		else if (i > 2 && linear <= db_invert_table[i][7])
748 			break;
749 	}
750 
751 	for (j = 0; j < 8; j++) {
752 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
753 			break;
754 		else if (i > 2 && linear <= db_invert_table[i][j])
755 			break;
756 	}
757 
758 	if (j == 0 && i == 0)
759 		goto end;
760 
761 	if (j == 0) {
762 		if (i != 3) {
763 			if (db_invert_table[i][0] - linear >
764 			    linear - db_invert_table[i - 1][7]) {
765 				i = i - 1;
766 				j = 7;
767 			}
768 		} else {
769 			if (db_invert_table[3][0] - linear >
770 			    linear - db_invert_table[2][7]) {
771 				i = 2;
772 				j = 7;
773 			}
774 		}
775 	} else {
776 		if (db_invert_table[i][j] - linear >
777 		    linear - db_invert_table[i][j - 1]) {
778 			j = j - 1;
779 		}
780 	}
781 end:
782 	dB = (i << 3) + j + 1;
783 
784 	return dB;
785 }
786 
787 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
788 {
789 	s8 power;
790 	u8 power_db;
791 	u64 linear;
792 	u64 sum = 0;
793 	u8 path;
794 
795 	for (path = 0; path < path_num; path++) {
796 		power = rf_power[path];
797 		power_db = rtw_phy_power_2_db(power);
798 		linear = rtw_phy_db_2_linear(power_db);
799 		sum += linear;
800 	}
801 
802 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
803 	switch (path_num) {
804 	case 2:
805 		sum >>= 1;
806 		break;
807 	case 3:
808 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
809 		break;
810 	case 4:
811 		sum >>= 2;
812 		break;
813 	default:
814 		break;
815 	}
816 
817 	return rtw_phy_linear_2_db(sum);
818 }
819 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
820 
821 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
822 		    u32 addr, u32 mask)
823 {
824 	struct rtw_hal *hal = &rtwdev->hal;
825 	struct rtw_chip_info *chip = rtwdev->chip;
826 	const u32 *base_addr = chip->rf_base_addr;
827 	u32 val, direct_addr;
828 
829 	if (rf_path >= hal->rf_phy_num) {
830 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
831 		return INV_RF_DATA;
832 	}
833 
834 	addr &= 0xff;
835 	direct_addr = base_addr[rf_path] + (addr << 2);
836 	mask &= RFREG_MASK;
837 
838 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
839 
840 	return val;
841 }
842 EXPORT_SYMBOL(rtw_phy_read_rf);
843 
844 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
845 			 u32 addr, u32 mask)
846 {
847 	struct rtw_hal *hal = &rtwdev->hal;
848 	struct rtw_chip_info *chip = rtwdev->chip;
849 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
850 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
851 	u32 val32;
852 	u32 en_pi;
853 	u32 r_addr;
854 	u32 shift;
855 
856 	if (rf_path >= hal->rf_phy_num) {
857 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
858 		return INV_RF_DATA;
859 	}
860 
861 	if (!chip->rf_sipi_read_addr) {
862 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
863 		return INV_RF_DATA;
864 	}
865 
866 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
867 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
868 
869 	addr &= 0xff;
870 
871 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
872 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
873 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
874 
875 	/* toggle read edge of path A */
876 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
877 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
878 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
879 
880 	udelay(120);
881 
882 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
883 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
884 
885 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
886 
887 	shift = __ffs(mask);
888 
889 	return (val32 & mask) >> shift;
890 }
891 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
892 
893 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
894 			       u32 addr, u32 mask, u32 data)
895 {
896 	struct rtw_hal *hal = &rtwdev->hal;
897 	struct rtw_chip_info *chip = rtwdev->chip;
898 	u32 *sipi_addr = chip->rf_sipi_addr;
899 	u32 data_and_addr;
900 	u32 old_data = 0;
901 	u32 shift;
902 
903 	if (rf_path >= hal->rf_phy_num) {
904 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
905 		return false;
906 	}
907 
908 	addr &= 0xff;
909 	mask &= RFREG_MASK;
910 
911 	if (mask != RFREG_MASK) {
912 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
913 
914 		if (old_data == INV_RF_DATA) {
915 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
916 			return false;
917 		}
918 
919 		shift = __ffs(mask);
920 		data = ((old_data) & (~mask)) | (data << shift);
921 	}
922 
923 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
924 
925 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
926 
927 	udelay(13);
928 
929 	return true;
930 }
931 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
932 
933 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
934 			  u32 addr, u32 mask, u32 data)
935 {
936 	struct rtw_hal *hal = &rtwdev->hal;
937 	struct rtw_chip_info *chip = rtwdev->chip;
938 	const u32 *base_addr = chip->rf_base_addr;
939 	u32 direct_addr;
940 
941 	if (rf_path >= hal->rf_phy_num) {
942 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
943 		return false;
944 	}
945 
946 	addr &= 0xff;
947 	direct_addr = base_addr[rf_path] + (addr << 2);
948 	mask &= RFREG_MASK;
949 
950 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
951 
952 	udelay(1);
953 
954 	return true;
955 }
956 
957 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
958 			      u32 addr, u32 mask, u32 data)
959 {
960 	if (addr != 0x00)
961 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
962 
963 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
964 }
965 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
966 
967 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
968 {
969 	struct rtw_hal *hal = &rtwdev->hal;
970 	struct rtw_efuse *efuse = &rtwdev->efuse;
971 	struct rtw_phy_cond cond = {0};
972 
973 	cond.cut = hal->cut_version ? hal->cut_version : 15;
974 	cond.pkg = pkg ? pkg : 15;
975 	cond.plat = 0x04;
976 	cond.rfe = efuse->rfe_option;
977 
978 	switch (rtw_hci_type(rtwdev)) {
979 	case RTW_HCI_TYPE_USB:
980 		cond.intf = INTF_USB;
981 		break;
982 	case RTW_HCI_TYPE_SDIO:
983 		cond.intf = INTF_SDIO;
984 		break;
985 	case RTW_HCI_TYPE_PCIE:
986 	default:
987 		cond.intf = INTF_PCIE;
988 		break;
989 	}
990 
991 	hal->phy_cond = cond;
992 
993 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
994 }
995 
996 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
997 {
998 	struct rtw_hal *hal = &rtwdev->hal;
999 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1000 
1001 	if (cond.cut && cond.cut != drv_cond.cut)
1002 		return false;
1003 
1004 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1005 		return false;
1006 
1007 	if (cond.intf && cond.intf != drv_cond.intf)
1008 		return false;
1009 
1010 	if (cond.rfe != drv_cond.rfe)
1011 		return false;
1012 
1013 	return true;
1014 }
1015 
1016 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1017 {
1018 	const union phy_table_tile *p = tbl->data;
1019 	const union phy_table_tile *end = p + tbl->size / 2;
1020 	struct rtw_phy_cond pos_cond = {0};
1021 	bool is_matched = true, is_skipped = false;
1022 
1023 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1024 
1025 	for (; p < end; p++) {
1026 		if (p->cond.pos) {
1027 			switch (p->cond.branch) {
1028 			case BRANCH_ENDIF:
1029 				is_matched = true;
1030 				is_skipped = false;
1031 				break;
1032 			case BRANCH_ELSE:
1033 				is_matched = is_skipped ? false : true;
1034 				break;
1035 			case BRANCH_IF:
1036 			case BRANCH_ELIF:
1037 			default:
1038 				pos_cond = p->cond;
1039 				break;
1040 			}
1041 		} else if (p->cond.neg) {
1042 			if (!is_skipped) {
1043 				if (check_positive(rtwdev, pos_cond)) {
1044 					is_matched = true;
1045 					is_skipped = true;
1046 				} else {
1047 					is_matched = false;
1048 					is_skipped = false;
1049 				}
1050 			} else {
1051 				is_matched = false;
1052 			}
1053 		} else if (is_matched) {
1054 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1055 		}
1056 	}
1057 }
1058 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1059 
1060 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1061 
1062 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1063 {
1064 	if (rtwdev->chip->is_pwr_by_rate_dec)
1065 		return bcd_to_dec_pwr_by_rate(hex, i);
1066 
1067 	return (hex >> (i * 8)) & 0xFF;
1068 }
1069 
1070 static void
1071 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1072 					 u32 addr, u32 mask, u32 val, u8 *rate,
1073 					 u8 *pwr_by_rate, u8 *rate_num)
1074 {
1075 	int i;
1076 
1077 	switch (addr) {
1078 	case 0xE00:
1079 	case 0x830:
1080 		rate[0] = DESC_RATE6M;
1081 		rate[1] = DESC_RATE9M;
1082 		rate[2] = DESC_RATE12M;
1083 		rate[3] = DESC_RATE18M;
1084 		for (i = 0; i < 4; ++i)
1085 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1086 		*rate_num = 4;
1087 		break;
1088 	case 0xE04:
1089 	case 0x834:
1090 		rate[0] = DESC_RATE24M;
1091 		rate[1] = DESC_RATE36M;
1092 		rate[2] = DESC_RATE48M;
1093 		rate[3] = DESC_RATE54M;
1094 		for (i = 0; i < 4; ++i)
1095 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1096 		*rate_num = 4;
1097 		break;
1098 	case 0xE08:
1099 		rate[0] = DESC_RATE1M;
1100 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1101 		*rate_num = 1;
1102 		break;
1103 	case 0x86C:
1104 		if (mask == 0xffffff00) {
1105 			rate[0] = DESC_RATE2M;
1106 			rate[1] = DESC_RATE5_5M;
1107 			rate[2] = DESC_RATE11M;
1108 			for (i = 1; i < 4; ++i)
1109 				pwr_by_rate[i - 1] =
1110 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1111 			*rate_num = 3;
1112 		} else if (mask == 0x000000ff) {
1113 			rate[0] = DESC_RATE11M;
1114 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1115 			*rate_num = 1;
1116 		}
1117 		break;
1118 	case 0xE10:
1119 	case 0x83C:
1120 		rate[0] = DESC_RATEMCS0;
1121 		rate[1] = DESC_RATEMCS1;
1122 		rate[2] = DESC_RATEMCS2;
1123 		rate[3] = DESC_RATEMCS3;
1124 		for (i = 0; i < 4; ++i)
1125 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1126 		*rate_num = 4;
1127 		break;
1128 	case 0xE14:
1129 	case 0x848:
1130 		rate[0] = DESC_RATEMCS4;
1131 		rate[1] = DESC_RATEMCS5;
1132 		rate[2] = DESC_RATEMCS6;
1133 		rate[3] = DESC_RATEMCS7;
1134 		for (i = 0; i < 4; ++i)
1135 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1136 		*rate_num = 4;
1137 		break;
1138 	case 0xE18:
1139 	case 0x84C:
1140 		rate[0] = DESC_RATEMCS8;
1141 		rate[1] = DESC_RATEMCS9;
1142 		rate[2] = DESC_RATEMCS10;
1143 		rate[3] = DESC_RATEMCS11;
1144 		for (i = 0; i < 4; ++i)
1145 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1146 		*rate_num = 4;
1147 		break;
1148 	case 0xE1C:
1149 	case 0x868:
1150 		rate[0] = DESC_RATEMCS12;
1151 		rate[1] = DESC_RATEMCS13;
1152 		rate[2] = DESC_RATEMCS14;
1153 		rate[3] = DESC_RATEMCS15;
1154 		for (i = 0; i < 4; ++i)
1155 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1156 		*rate_num = 4;
1157 		break;
1158 	case 0x838:
1159 		rate[0] = DESC_RATE1M;
1160 		rate[1] = DESC_RATE2M;
1161 		rate[2] = DESC_RATE5_5M;
1162 		for (i = 1; i < 4; ++i)
1163 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1164 								    val, i);
1165 		*rate_num = 3;
1166 		break;
1167 	case 0xC20:
1168 	case 0xE20:
1169 	case 0x1820:
1170 	case 0x1A20:
1171 		rate[0] = DESC_RATE1M;
1172 		rate[1] = DESC_RATE2M;
1173 		rate[2] = DESC_RATE5_5M;
1174 		rate[3] = DESC_RATE11M;
1175 		for (i = 0; i < 4; ++i)
1176 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1177 		*rate_num = 4;
1178 		break;
1179 	case 0xC24:
1180 	case 0xE24:
1181 	case 0x1824:
1182 	case 0x1A24:
1183 		rate[0] = DESC_RATE6M;
1184 		rate[1] = DESC_RATE9M;
1185 		rate[2] = DESC_RATE12M;
1186 		rate[3] = DESC_RATE18M;
1187 		for (i = 0; i < 4; ++i)
1188 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1189 		*rate_num = 4;
1190 		break;
1191 	case 0xC28:
1192 	case 0xE28:
1193 	case 0x1828:
1194 	case 0x1A28:
1195 		rate[0] = DESC_RATE24M;
1196 		rate[1] = DESC_RATE36M;
1197 		rate[2] = DESC_RATE48M;
1198 		rate[3] = DESC_RATE54M;
1199 		for (i = 0; i < 4; ++i)
1200 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1201 		*rate_num = 4;
1202 		break;
1203 	case 0xC2C:
1204 	case 0xE2C:
1205 	case 0x182C:
1206 	case 0x1A2C:
1207 		rate[0] = DESC_RATEMCS0;
1208 		rate[1] = DESC_RATEMCS1;
1209 		rate[2] = DESC_RATEMCS2;
1210 		rate[3] = DESC_RATEMCS3;
1211 		for (i = 0; i < 4; ++i)
1212 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1213 		*rate_num = 4;
1214 		break;
1215 	case 0xC30:
1216 	case 0xE30:
1217 	case 0x1830:
1218 	case 0x1A30:
1219 		rate[0] = DESC_RATEMCS4;
1220 		rate[1] = DESC_RATEMCS5;
1221 		rate[2] = DESC_RATEMCS6;
1222 		rate[3] = DESC_RATEMCS7;
1223 		for (i = 0; i < 4; ++i)
1224 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1225 		*rate_num = 4;
1226 		break;
1227 	case 0xC34:
1228 	case 0xE34:
1229 	case 0x1834:
1230 	case 0x1A34:
1231 		rate[0] = DESC_RATEMCS8;
1232 		rate[1] = DESC_RATEMCS9;
1233 		rate[2] = DESC_RATEMCS10;
1234 		rate[3] = DESC_RATEMCS11;
1235 		for (i = 0; i < 4; ++i)
1236 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1237 		*rate_num = 4;
1238 		break;
1239 	case 0xC38:
1240 	case 0xE38:
1241 	case 0x1838:
1242 	case 0x1A38:
1243 		rate[0] = DESC_RATEMCS12;
1244 		rate[1] = DESC_RATEMCS13;
1245 		rate[2] = DESC_RATEMCS14;
1246 		rate[3] = DESC_RATEMCS15;
1247 		for (i = 0; i < 4; ++i)
1248 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1249 		*rate_num = 4;
1250 		break;
1251 	case 0xC3C:
1252 	case 0xE3C:
1253 	case 0x183C:
1254 	case 0x1A3C:
1255 		rate[0] = DESC_RATEVHT1SS_MCS0;
1256 		rate[1] = DESC_RATEVHT1SS_MCS1;
1257 		rate[2] = DESC_RATEVHT1SS_MCS2;
1258 		rate[3] = DESC_RATEVHT1SS_MCS3;
1259 		for (i = 0; i < 4; ++i)
1260 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1261 		*rate_num = 4;
1262 		break;
1263 	case 0xC40:
1264 	case 0xE40:
1265 	case 0x1840:
1266 	case 0x1A40:
1267 		rate[0] = DESC_RATEVHT1SS_MCS4;
1268 		rate[1] = DESC_RATEVHT1SS_MCS5;
1269 		rate[2] = DESC_RATEVHT1SS_MCS6;
1270 		rate[3] = DESC_RATEVHT1SS_MCS7;
1271 		for (i = 0; i < 4; ++i)
1272 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1273 		*rate_num = 4;
1274 		break;
1275 	case 0xC44:
1276 	case 0xE44:
1277 	case 0x1844:
1278 	case 0x1A44:
1279 		rate[0] = DESC_RATEVHT1SS_MCS8;
1280 		rate[1] = DESC_RATEVHT1SS_MCS9;
1281 		rate[2] = DESC_RATEVHT2SS_MCS0;
1282 		rate[3] = DESC_RATEVHT2SS_MCS1;
1283 		for (i = 0; i < 4; ++i)
1284 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1285 		*rate_num = 4;
1286 		break;
1287 	case 0xC48:
1288 	case 0xE48:
1289 	case 0x1848:
1290 	case 0x1A48:
1291 		rate[0] = DESC_RATEVHT2SS_MCS2;
1292 		rate[1] = DESC_RATEVHT2SS_MCS3;
1293 		rate[2] = DESC_RATEVHT2SS_MCS4;
1294 		rate[3] = DESC_RATEVHT2SS_MCS5;
1295 		for (i = 0; i < 4; ++i)
1296 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1297 		*rate_num = 4;
1298 		break;
1299 	case 0xC4C:
1300 	case 0xE4C:
1301 	case 0x184C:
1302 	case 0x1A4C:
1303 		rate[0] = DESC_RATEVHT2SS_MCS6;
1304 		rate[1] = DESC_RATEVHT2SS_MCS7;
1305 		rate[2] = DESC_RATEVHT2SS_MCS8;
1306 		rate[3] = DESC_RATEVHT2SS_MCS9;
1307 		for (i = 0; i < 4; ++i)
1308 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1309 		*rate_num = 4;
1310 		break;
1311 	case 0xCD8:
1312 	case 0xED8:
1313 	case 0x18D8:
1314 	case 0x1AD8:
1315 		rate[0] = DESC_RATEMCS16;
1316 		rate[1] = DESC_RATEMCS17;
1317 		rate[2] = DESC_RATEMCS18;
1318 		rate[3] = DESC_RATEMCS19;
1319 		for (i = 0; i < 4; ++i)
1320 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1321 		*rate_num = 4;
1322 		break;
1323 	case 0xCDC:
1324 	case 0xEDC:
1325 	case 0x18DC:
1326 	case 0x1ADC:
1327 		rate[0] = DESC_RATEMCS20;
1328 		rate[1] = DESC_RATEMCS21;
1329 		rate[2] = DESC_RATEMCS22;
1330 		rate[3] = DESC_RATEMCS23;
1331 		for (i = 0; i < 4; ++i)
1332 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1333 		*rate_num = 4;
1334 		break;
1335 	case 0xCE0:
1336 	case 0xEE0:
1337 	case 0x18E0:
1338 	case 0x1AE0:
1339 		rate[0] = DESC_RATEVHT3SS_MCS0;
1340 		rate[1] = DESC_RATEVHT3SS_MCS1;
1341 		rate[2] = DESC_RATEVHT3SS_MCS2;
1342 		rate[3] = DESC_RATEVHT3SS_MCS3;
1343 		for (i = 0; i < 4; ++i)
1344 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1345 		*rate_num = 4;
1346 		break;
1347 	case 0xCE4:
1348 	case 0xEE4:
1349 	case 0x18E4:
1350 	case 0x1AE4:
1351 		rate[0] = DESC_RATEVHT3SS_MCS4;
1352 		rate[1] = DESC_RATEVHT3SS_MCS5;
1353 		rate[2] = DESC_RATEVHT3SS_MCS6;
1354 		rate[3] = DESC_RATEVHT3SS_MCS7;
1355 		for (i = 0; i < 4; ++i)
1356 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1357 		*rate_num = 4;
1358 		break;
1359 	case 0xCE8:
1360 	case 0xEE8:
1361 	case 0x18E8:
1362 	case 0x1AE8:
1363 		rate[0] = DESC_RATEVHT3SS_MCS8;
1364 		rate[1] = DESC_RATEVHT3SS_MCS9;
1365 		for (i = 0; i < 2; ++i)
1366 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1367 		*rate_num = 2;
1368 		break;
1369 	default:
1370 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1371 		break;
1372 	}
1373 }
1374 
1375 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1376 					   u32 band, u32 rfpath, u32 txnum,
1377 					   u32 regaddr, u32 bitmask, u32 data)
1378 {
1379 	struct rtw_hal *hal = &rtwdev->hal;
1380 	u8 rate_num = 0;
1381 	u8 rate;
1382 	u8 rates[RTW_RF_PATH_MAX] = {0};
1383 	s8 offset;
1384 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1385 	int i;
1386 
1387 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1388 						 rates, pwr_by_rate, &rate_num);
1389 
1390 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1391 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1392 		    rate_num > RTW_RF_PATH_MAX))
1393 		return;
1394 
1395 	for (i = 0; i < rate_num; i++) {
1396 		offset = pwr_by_rate[i];
1397 		rate = rates[i];
1398 		if (band == PHY_BAND_2G)
1399 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1400 		else if (band == PHY_BAND_5G)
1401 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1402 		else
1403 			continue;
1404 	}
1405 }
1406 
1407 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1408 {
1409 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1410 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1411 
1412 	for (; p < end; p++) {
1413 		if (p->addr == 0xfe || p->addr == 0xffe) {
1414 			msleep(50);
1415 			continue;
1416 		}
1417 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1418 					       p->tx_num, p->addr, p->bitmask,
1419 					       p->data);
1420 	}
1421 }
1422 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1423 
1424 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1425 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1426 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1427 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1428 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1429 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1430 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1431 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1432 
1433 static int rtw_channel_to_idx(u8 band, u8 channel)
1434 {
1435 	int ch_idx;
1436 	u8 n_channel;
1437 
1438 	if (band == PHY_BAND_2G) {
1439 		ch_idx = channel - 1;
1440 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1441 	} else if (band == PHY_BAND_5G) {
1442 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1443 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1444 			if (rtw_channel_idx_5g[ch_idx] == channel)
1445 				break;
1446 	} else {
1447 		return -1;
1448 	}
1449 
1450 	if (ch_idx >= n_channel)
1451 		return -1;
1452 
1453 	return ch_idx;
1454 }
1455 
1456 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1457 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1458 {
1459 	struct rtw_hal *hal = &rtwdev->hal;
1460 	u8 max_power_index = rtwdev->chip->max_power_index;
1461 	s8 ww;
1462 	int ch_idx;
1463 
1464 	pwr_limit = clamp_t(s8, pwr_limit,
1465 			    -max_power_index, max_power_index);
1466 	ch_idx = rtw_channel_to_idx(band, ch);
1467 
1468 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1469 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1470 		WARN(1,
1471 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1472 		     regd, band, bw, rs, ch_idx, pwr_limit);
1473 		return;
1474 	}
1475 
1476 	if (band == PHY_BAND_2G) {
1477 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1478 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1479 		ww = min_t(s8, ww, pwr_limit);
1480 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1481 	} else if (band == PHY_BAND_5G) {
1482 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1483 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1484 		ww = min_t(s8, ww, pwr_limit);
1485 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1486 	}
1487 }
1488 
1489 /* cross-reference 5G power limits if values are not assigned */
1490 static void
1491 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1492 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1493 {
1494 	struct rtw_hal *hal = &rtwdev->hal;
1495 	u8 max_power_index = rtwdev->chip->max_power_index;
1496 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1497 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1498 
1499 	if (lmt_ht == lmt_vht)
1500 		return;
1501 
1502 	if (lmt_ht == max_power_index)
1503 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1504 
1505 	else if (lmt_vht == max_power_index)
1506 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1507 }
1508 
1509 /* cross-reference power limits for ht and vht */
1510 static void
1511 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1512 {
1513 	u8 rs_idx, rs_ht, rs_vht;
1514 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1515 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1516 
1517 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1518 		rs_ht = rs_cmp[rs_idx][0];
1519 		rs_vht = rs_cmp[rs_idx][1];
1520 
1521 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1522 	}
1523 }
1524 
1525 /* cross-reference power limits for 5G channels */
1526 static void
1527 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1528 {
1529 	u8 ch_idx;
1530 
1531 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1532 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1533 }
1534 
1535 /* cross-reference power limits for 20/40M bandwidth */
1536 static void
1537 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1538 {
1539 	u8 bw;
1540 
1541 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1542 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1543 }
1544 
1545 /* cross-reference power limits */
1546 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1547 {
1548 	u8 regd;
1549 
1550 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1551 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1552 }
1553 
1554 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1555 			     const struct rtw_table *tbl)
1556 {
1557 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1558 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1559 
1560 	for (; p < end; p++) {
1561 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1562 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1563 	}
1564 
1565 	rtw_xref_txpwr_lmt(rtwdev);
1566 }
1567 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1568 
1569 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1570 		     u32 addr, u32 data)
1571 {
1572 	rtw_write8(rtwdev, addr, data);
1573 }
1574 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1575 
1576 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1577 		     u32 addr, u32 data)
1578 {
1579 	rtw_write32(rtwdev, addr, data);
1580 }
1581 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1582 
1583 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1584 		    u32 addr, u32 data)
1585 {
1586 	if (addr == 0xfe)
1587 		msleep(50);
1588 	else if (addr == 0xfd)
1589 		mdelay(5);
1590 	else if (addr == 0xfc)
1591 		mdelay(1);
1592 	else if (addr == 0xfb)
1593 		usleep_range(50, 60);
1594 	else if (addr == 0xfa)
1595 		udelay(5);
1596 	else if (addr == 0xf9)
1597 		udelay(1);
1598 	else
1599 		rtw_write32(rtwdev, addr, data);
1600 }
1601 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1602 
1603 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1604 		    u32 addr, u32 data)
1605 {
1606 	if (addr == 0xffe) {
1607 		msleep(50);
1608 	} else if (addr == 0xfe) {
1609 		usleep_range(100, 110);
1610 	} else {
1611 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1612 		udelay(1);
1613 	}
1614 }
1615 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1616 
1617 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1618 {
1619 	struct rtw_chip_info *chip = rtwdev->chip;
1620 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1621 
1622 	if (!chip->rfk_init_tbl)
1623 		return;
1624 
1625 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1626 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1627 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1628 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1629 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1630 
1631 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1632 
1633 	dpk_info->is_dpk_pwr_on = true;
1634 }
1635 
1636 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1637 {
1638 	struct rtw_chip_info *chip = rtwdev->chip;
1639 	u8 rf_path;
1640 
1641 	rtw_load_table(rtwdev, chip->mac_tbl);
1642 	rtw_load_table(rtwdev, chip->bb_tbl);
1643 	rtw_load_table(rtwdev, chip->agc_tbl);
1644 	rtw_load_rfk_table(rtwdev);
1645 
1646 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1647 		const struct rtw_table *tbl;
1648 
1649 		tbl = chip->rf_tbl[rf_path];
1650 		rtw_load_table(rtwdev, tbl);
1651 	}
1652 }
1653 EXPORT_SYMBOL(rtw_phy_load_tables);
1654 
1655 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1656 {
1657 	switch (channel) {
1658 	default:
1659 		WARN_ON(1);
1660 		fallthrough;
1661 	case 1:
1662 	case 2:
1663 	case 36:
1664 	case 38:
1665 	case 40:
1666 	case 42:
1667 		return 0;
1668 	case 3:
1669 	case 4:
1670 	case 5:
1671 	case 44:
1672 	case 46:
1673 	case 48:
1674 	case 50:
1675 		return 1;
1676 	case 6:
1677 	case 7:
1678 	case 8:
1679 	case 52:
1680 	case 54:
1681 	case 56:
1682 	case 58:
1683 		return 2;
1684 	case 9:
1685 	case 10:
1686 	case 11:
1687 	case 60:
1688 	case 62:
1689 	case 64:
1690 		return 3;
1691 	case 12:
1692 	case 13:
1693 	case 100:
1694 	case 102:
1695 	case 104:
1696 	case 106:
1697 		return 4;
1698 	case 14:
1699 		return rate <= DESC_RATE11M ? 5 : 4;
1700 	case 108:
1701 	case 110:
1702 	case 112:
1703 	case 114:
1704 		return 5;
1705 	case 116:
1706 	case 118:
1707 	case 120:
1708 	case 122:
1709 		return 6;
1710 	case 124:
1711 	case 126:
1712 	case 128:
1713 	case 130:
1714 		return 7;
1715 	case 132:
1716 	case 134:
1717 	case 136:
1718 	case 138:
1719 		return 8;
1720 	case 140:
1721 	case 142:
1722 	case 144:
1723 		return 9;
1724 	case 149:
1725 	case 151:
1726 	case 153:
1727 	case 155:
1728 		return 10;
1729 	case 157:
1730 	case 159:
1731 	case 161:
1732 		return 11;
1733 	case 165:
1734 	case 167:
1735 	case 169:
1736 	case 171:
1737 		return 12;
1738 	case 173:
1739 	case 175:
1740 	case 177:
1741 		return 13;
1742 	}
1743 }
1744 
1745 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1746 {
1747 	struct rtw_chip_info *chip = rtwdev->chip;
1748 	s8 dpd_diff = 0;
1749 
1750 	if (!chip->en_dis_dpd)
1751 		return 0;
1752 
1753 #define RTW_DPD_RATE_CHECK(_rate)					\
1754 	case DESC_RATE ## _rate:					\
1755 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1756 		dpd_diff = -6 * chip->txgi_factor;			\
1757 	break
1758 
1759 	switch (rate) {
1760 	RTW_DPD_RATE_CHECK(6M);
1761 	RTW_DPD_RATE_CHECK(9M);
1762 	RTW_DPD_RATE_CHECK(MCS0);
1763 	RTW_DPD_RATE_CHECK(MCS1);
1764 	RTW_DPD_RATE_CHECK(MCS8);
1765 	RTW_DPD_RATE_CHECK(MCS9);
1766 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1767 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1768 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1769 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1770 	}
1771 #undef RTW_DPD_RATE_CHECK
1772 
1773 	return dpd_diff;
1774 }
1775 
1776 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1777 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1778 					enum rtw_bandwidth bandwidth,
1779 					u8 rate, u8 group)
1780 {
1781 	struct rtw_chip_info *chip = rtwdev->chip;
1782 	u8 tx_power;
1783 	bool mcs_rate;
1784 	bool above_2ss;
1785 	u8 factor = chip->txgi_factor;
1786 
1787 	if (rate <= DESC_RATE11M)
1788 		tx_power = pwr_idx_2g->cck_base[group];
1789 	else
1790 		tx_power = pwr_idx_2g->bw40_base[group];
1791 
1792 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1793 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1794 
1795 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1796 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1797 		    rate <= DESC_RATEVHT2SS_MCS9);
1798 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1799 		    (rate >= DESC_RATEVHT2SS_MCS0);
1800 
1801 	if (!mcs_rate)
1802 		return tx_power;
1803 
1804 	switch (bandwidth) {
1805 	default:
1806 		WARN_ON(1);
1807 		fallthrough;
1808 	case RTW_CHANNEL_WIDTH_20:
1809 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1810 		if (above_2ss)
1811 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1812 		break;
1813 	case RTW_CHANNEL_WIDTH_40:
1814 		/* bw40 is the base power */
1815 		if (above_2ss)
1816 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1817 		break;
1818 	}
1819 
1820 	return tx_power;
1821 }
1822 
1823 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1824 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1825 					enum rtw_bandwidth bandwidth,
1826 					u8 rate, u8 group)
1827 {
1828 	struct rtw_chip_info *chip = rtwdev->chip;
1829 	u8 tx_power;
1830 	u8 upper, lower;
1831 	bool mcs_rate;
1832 	bool above_2ss;
1833 	u8 factor = chip->txgi_factor;
1834 
1835 	tx_power = pwr_idx_5g->bw40_base[group];
1836 
1837 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1838 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1839 		    rate <= DESC_RATEVHT2SS_MCS9);
1840 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1841 		    (rate >= DESC_RATEVHT2SS_MCS0);
1842 
1843 	if (!mcs_rate) {
1844 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1845 		return tx_power;
1846 	}
1847 
1848 	switch (bandwidth) {
1849 	default:
1850 		WARN_ON(1);
1851 		fallthrough;
1852 	case RTW_CHANNEL_WIDTH_20:
1853 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1854 		if (above_2ss)
1855 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1856 		break;
1857 	case RTW_CHANNEL_WIDTH_40:
1858 		/* bw40 is the base power */
1859 		if (above_2ss)
1860 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1861 		break;
1862 	case RTW_CHANNEL_WIDTH_80:
1863 		/* the base idx of bw80 is the average of bw40+/bw40- */
1864 		lower = pwr_idx_5g->bw40_base[group];
1865 		upper = pwr_idx_5g->bw40_base[group + 1];
1866 
1867 		tx_power = (lower + upper) / 2;
1868 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1869 		if (above_2ss)
1870 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1871 		break;
1872 	}
1873 
1874 	return tx_power;
1875 }
1876 
1877 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1878 				     enum rtw_bandwidth bw, u8 rf_path,
1879 				     u8 rate, u8 channel, u8 regd)
1880 {
1881 	struct rtw_hal *hal = &rtwdev->hal;
1882 	u8 *cch_by_bw = hal->cch_by_bw;
1883 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1884 	u8 rs;
1885 	int ch_idx;
1886 	u8 cur_bw, cur_ch;
1887 	s8 cur_lmt;
1888 
1889 	if (regd > RTW_REGD_WW)
1890 		return power_limit;
1891 
1892 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1893 		rs = RTW_RATE_SECTION_CCK;
1894 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1895 		rs = RTW_RATE_SECTION_OFDM;
1896 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1897 		rs = RTW_RATE_SECTION_HT_1S;
1898 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1899 		rs = RTW_RATE_SECTION_HT_2S;
1900 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1901 		rs = RTW_RATE_SECTION_VHT_1S;
1902 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1903 		rs = RTW_RATE_SECTION_VHT_2S;
1904 	else
1905 		goto err;
1906 
1907 	/* only 20M BW with cck and ofdm */
1908 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1909 		bw = RTW_CHANNEL_WIDTH_20;
1910 
1911 	/* only 20/40M BW with ht */
1912 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1913 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1914 
1915 	/* select min power limit among [20M BW ~ current BW] */
1916 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1917 		cur_ch = cch_by_bw[cur_bw];
1918 
1919 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1920 		if (ch_idx < 0)
1921 			goto err;
1922 
1923 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1924 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1925 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1926 
1927 		power_limit = min_t(s8, cur_lmt, power_limit);
1928 	}
1929 
1930 	return power_limit;
1931 
1932 err:
1933 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1934 	     band, bw, rf_path, rate, channel);
1935 	return (s8)rtwdev->chip->max_power_index;
1936 }
1937 
1938 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1939 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1940 {
1941 	struct rtw_hal *hal = &rtwdev->hal;
1942 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1943 	struct rtw_txpwr_idx *pwr_idx;
1944 	u8 group, band;
1945 	u8 *base = &pwr_param->pwr_base;
1946 	s8 *offset = &pwr_param->pwr_offset;
1947 	s8 *limit = &pwr_param->pwr_limit;
1948 	s8 *remnant = &pwr_param->pwr_remnant;
1949 
1950 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1951 	group = rtw_get_channel_group(ch, rate);
1952 
1953 	/* base power index for 2.4G/5G */
1954 	if (IS_CH_2G_BAND(ch)) {
1955 		band = PHY_BAND_2G;
1956 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1957 						      &pwr_idx->pwr_idx_2g,
1958 						      bw, rate, group);
1959 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1960 	} else {
1961 		band = PHY_BAND_5G;
1962 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1963 						      &pwr_idx->pwr_idx_5g,
1964 						      bw, rate, group);
1965 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1966 	}
1967 
1968 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1969 					    rate, ch, regd);
1970 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1971 		    dm_info->txagc_remnant_ofdm);
1972 }
1973 
1974 u8
1975 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1976 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1977 {
1978 	struct rtw_power_params pwr_param = {0};
1979 	u8 tx_power;
1980 	s8 offset;
1981 
1982 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1983 				channel, regd, &pwr_param);
1984 
1985 	tx_power = pwr_param.pwr_base;
1986 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1987 
1988 	if (rtwdev->chip->en_dis_dpd)
1989 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1990 
1991 	tx_power += offset + pwr_param.pwr_remnant;
1992 
1993 	if (tx_power > rtwdev->chip->max_power_index)
1994 		tx_power = rtwdev->chip->max_power_index;
1995 
1996 	return tx_power;
1997 }
1998 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1999 
2000 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2001 					     u8 ch, u8 path, u8 rs)
2002 {
2003 	struct rtw_hal *hal = &rtwdev->hal;
2004 	u8 regd = rtwdev->regd.txpwr_regd;
2005 	u8 *rates;
2006 	u8 size;
2007 	u8 rate;
2008 	u8 pwr_idx;
2009 	u8 bw;
2010 	int i;
2011 
2012 	if (rs >= RTW_RATE_SECTION_MAX)
2013 		return;
2014 
2015 	rates = rtw_rate_section[rs];
2016 	size = rtw_rate_size[rs];
2017 	bw = hal->current_band_width;
2018 	for (i = 0; i < size; i++) {
2019 		rate = rates[i];
2020 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2021 						     bw, ch, regd);
2022 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2023 	}
2024 }
2025 
2026 /* set tx power level by path for each rates, note that the order of the rates
2027  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2028  * power index into a four-byte power index register, and calls set_tx_agc to
2029  * write these values into hardware
2030  */
2031 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2032 					       u8 ch, u8 path)
2033 {
2034 	struct rtw_hal *hal = &rtwdev->hal;
2035 	u8 rs;
2036 
2037 	/* do not need cck rates if we are not in 2.4G */
2038 	if (hal->current_band_type == RTW_BAND_2G)
2039 		rs = RTW_RATE_SECTION_CCK;
2040 	else
2041 		rs = RTW_RATE_SECTION_OFDM;
2042 
2043 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2044 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2045 }
2046 
2047 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2048 {
2049 	struct rtw_chip_info *chip = rtwdev->chip;
2050 	struct rtw_hal *hal = &rtwdev->hal;
2051 	u8 path;
2052 
2053 	mutex_lock(&hal->tx_power_mutex);
2054 
2055 	for (path = 0; path < hal->rf_path_num; path++)
2056 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2057 
2058 	chip->ops->set_tx_power_index(rtwdev);
2059 	mutex_unlock(&hal->tx_power_mutex);
2060 }
2061 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2062 
2063 static void
2064 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2065 					u8 rs, u8 size, u8 *rates)
2066 {
2067 	u8 rate;
2068 	u8 base_idx, rate_idx;
2069 	s8 base_2g, base_5g;
2070 
2071 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2072 		base_idx = rates[size - 3];
2073 	else
2074 		base_idx = rates[size - 1];
2075 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2076 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2077 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2078 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2079 	for (rate = 0; rate < size; rate++) {
2080 		rate_idx = rates[rate];
2081 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2082 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2083 	}
2084 }
2085 
2086 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2087 {
2088 	u8 path;
2089 
2090 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2091 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2092 				RTW_RATE_SECTION_CCK,
2093 				rtw_cck_size, rtw_cck_rates);
2094 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2095 				RTW_RATE_SECTION_OFDM,
2096 				rtw_ofdm_size, rtw_ofdm_rates);
2097 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2098 				RTW_RATE_SECTION_HT_1S,
2099 				rtw_ht_1s_size, rtw_ht_1s_rates);
2100 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2101 				RTW_RATE_SECTION_HT_2S,
2102 				rtw_ht_2s_size, rtw_ht_2s_rates);
2103 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2104 				RTW_RATE_SECTION_VHT_1S,
2105 				rtw_vht_1s_size, rtw_vht_1s_rates);
2106 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2107 				RTW_RATE_SECTION_VHT_2S,
2108 				rtw_vht_2s_size, rtw_vht_2s_rates);
2109 	}
2110 }
2111 
2112 static void
2113 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2114 {
2115 	s8 base;
2116 	u8 ch;
2117 
2118 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2119 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2120 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2121 	}
2122 
2123 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2124 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2125 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2126 	}
2127 }
2128 
2129 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2130 {
2131 	u8 regd, bw, rs;
2132 
2133 	/* default at channel 1 */
2134 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2135 
2136 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2137 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2138 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2139 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2140 }
2141 
2142 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2143 					u8 regd, u8 bw, u8 rs)
2144 {
2145 	struct rtw_hal *hal = &rtwdev->hal;
2146 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2147 	u8 ch;
2148 
2149 	/* 2.4G channels */
2150 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2151 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2152 
2153 	/* 5G channels */
2154 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2155 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2156 }
2157 
2158 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2159 {
2160 	struct rtw_hal *hal = &rtwdev->hal;
2161 	u8 regd, path, rate, rs, bw;
2162 
2163 	/* init tx power by rate offset */
2164 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2165 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2166 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2167 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2168 		}
2169 	}
2170 
2171 	/* init tx power limit */
2172 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2173 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2174 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2175 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2176 							    rs);
2177 }
2178 
2179 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2180 				struct rtw_swing_table *swing_table)
2181 {
2182 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2183 	u8 channel = rtwdev->hal.current_channel;
2184 
2185 	if (IS_CH_2G_BAND(channel)) {
2186 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2187 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2188 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2189 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2190 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2191 		} else {
2192 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2193 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2194 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2195 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2196 		}
2197 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2198 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2199 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2200 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2201 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2202 	} else if (IS_CH_5G_BAND_3(channel)) {
2203 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2204 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2205 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2206 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2207 	} else if (IS_CH_5G_BAND_4(channel)) {
2208 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2209 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2210 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2211 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2212 	} else {
2213 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2214 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2215 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2216 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2217 	}
2218 }
2219 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2220 
2221 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2222 {
2223 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2224 
2225 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2226 	dm_info->thermal_avg[path] =
2227 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2228 }
2229 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2230 
2231 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2232 				      u8 path)
2233 {
2234 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2235 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2236 
2237 	if (avg == thermal)
2238 		return false;
2239 
2240 	return true;
2241 }
2242 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2243 
2244 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2245 {
2246 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2247 	u8 therm_avg, therm_efuse, therm_delta;
2248 
2249 	therm_avg = dm_info->thermal_avg[path];
2250 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2251 	therm_delta = abs(therm_avg - therm_efuse);
2252 
2253 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2254 }
2255 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2256 
2257 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2258 			       struct rtw_swing_table *swing_table,
2259 			       u8 tbl_path, u8 therm_path, u8 delta)
2260 {
2261 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2262 	const u8 *delta_swing_table_idx_pos;
2263 	const u8 *delta_swing_table_idx_neg;
2264 
2265 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2266 		rtw_warn(rtwdev, "power track table overflow\n");
2267 		return 0;
2268 	}
2269 
2270 	if (!swing_table) {
2271 		rtw_warn(rtwdev, "swing table not configured\n");
2272 		return 0;
2273 	}
2274 
2275 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2276 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2277 
2278 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2279 		rtw_warn(rtwdev, "invalid swing table index\n");
2280 		return 0;
2281 	}
2282 
2283 	if (dm_info->thermal_avg[therm_path] >
2284 	    rtwdev->efuse.thermal_meter[therm_path])
2285 		return delta_swing_table_idx_pos[delta];
2286 	else
2287 		return -delta_swing_table_idx_neg[delta];
2288 }
2289 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2290 
2291 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2292 {
2293 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2294 	u8 delta_lck;
2295 
2296 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2297 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2298 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2299 		return true;
2300 	}
2301 	return false;
2302 }
2303 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2304 
2305 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2306 {
2307 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2308 	u8 delta_iqk;
2309 
2310 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2311 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2312 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2313 		return true;
2314 	}
2315 	return false;
2316 }
2317 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2318