1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 struct phy_pg_cfg_pair {
24 	u32 band;
25 	u32 rf_path;
26 	u32 tx_num;
27 	u32 addr;
28 	u32 bitmask;
29 	u32 data;
30 };
31 
32 static const u32 db_invert_table[12][8] = {
33 	{10,		13,		16,		20,
34 	 25,		32,		40,		50},
35 	{64,		80,		101,		128,
36 	 160,		201,		256,		318},
37 	{401,		505,		635,		800,
38 	 1007,		1268,		1596,		2010},
39 	{316,		398,		501,		631,
40 	 794,		1000,		1259,		1585},
41 	{1995,		2512,		3162,		3981,
42 	 5012,		6310,		7943,		10000},
43 	{12589,		15849,		19953,		25119,
44 	 31623,		39811,		50119,		63098},
45 	{79433,		100000,		125893,		158489,
46 	 199526,	251189,		316228,		398107},
47 	{501187,	630957,		794328,		1000000,
48 	 1258925,	1584893,	1995262,	2511886},
49 	{3162278,	3981072,	5011872,	6309573,
50 	 7943282,	1000000,	12589254,	15848932},
51 	{19952623,	25118864,	31622777,	39810717,
52 	 50118723,	63095734,	79432823,	100000000},
53 	{125892541,	158489319,	199526232,	251188643,
54 	 316227766,	398107171,	501187234,	630957345},
55 	{794328235,	1000000000,	1258925412,	1584893192,
56 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
57 };
58 
59 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
60 u8 rtw_ofdm_rates[] = {
61 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
62 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
63 	DESC_RATE48M, DESC_RATE54M
64 };
65 u8 rtw_ht_1s_rates[] = {
66 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
67 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
68 	DESC_RATEMCS6, DESC_RATEMCS7
69 };
70 u8 rtw_ht_2s_rates[] = {
71 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
72 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
73 	DESC_RATEMCS14, DESC_RATEMCS15
74 };
75 u8 rtw_vht_1s_rates[] = {
76 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
77 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
78 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
79 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
80 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
81 };
82 u8 rtw_vht_2s_rates[] = {
83 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
84 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
85 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
86 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
87 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
88 };
89 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
90 	rtw_cck_rates, rtw_ofdm_rates,
91 	rtw_ht_1s_rates, rtw_ht_2s_rates,
92 	rtw_vht_1s_rates, rtw_vht_2s_rates
93 };
94 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
95 	ARRAY_SIZE(rtw_cck_rates),
96 	ARRAY_SIZE(rtw_ofdm_rates),
97 	ARRAY_SIZE(rtw_ht_1s_rates),
98 	ARRAY_SIZE(rtw_ht_2s_rates),
99 	ARRAY_SIZE(rtw_vht_1s_rates),
100 	ARRAY_SIZE(rtw_vht_2s_rates)
101 };
102 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
103 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
104 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
105 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
106 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
107 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
108 
109 enum rtw_phy_band_type {
110 	PHY_BAND_2G	= 0,
111 	PHY_BAND_5G	= 1,
112 };
113 
114 void rtw_phy_init(struct rtw_dev *rtwdev)
115 {
116 	struct rtw_chip_info *chip = rtwdev->chip;
117 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
118 	u32 addr, mask;
119 
120 	dm_info->fa_history[3] = 0;
121 	dm_info->fa_history[2] = 0;
122 	dm_info->fa_history[1] = 0;
123 	dm_info->fa_history[0] = 0;
124 	dm_info->igi_bitmap = 0;
125 	dm_info->igi_history[3] = 0;
126 	dm_info->igi_history[2] = 0;
127 	dm_info->igi_history[1] = 0;
128 
129 	addr = chip->dig[0].addr;
130 	mask = chip->dig[0].mask;
131 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
132 }
133 
134 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
135 {
136 	struct rtw_chip_info *chip = rtwdev->chip;
137 	struct rtw_hal *hal = &rtwdev->hal;
138 	u32 addr, mask;
139 	u8 path;
140 
141 	for (path = 0; path < hal->rf_path_num; path++) {
142 		addr = chip->dig[path].addr;
143 		mask = chip->dig[path].mask;
144 		rtw_write32_mask(rtwdev, addr, mask, igi);
145 	}
146 }
147 
148 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
149 {
150 	struct rtw_chip_info *chip = rtwdev->chip;
151 
152 	chip->ops->false_alarm_statistics(rtwdev);
153 }
154 
155 #define RA_FLOOR_TABLE_SIZE	7
156 #define RA_FLOOR_UP_GAP		3
157 
158 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
159 {
160 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
161 	u8 new_level = 0;
162 	int i;
163 
164 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
165 		if (i >= old_level)
166 			table[i] += RA_FLOOR_UP_GAP;
167 
168 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
169 		if (rssi < table[i]) {
170 			new_level = i;
171 			break;
172 		}
173 	}
174 
175 	return new_level;
176 }
177 
178 struct rtw_phy_stat_iter_data {
179 	struct rtw_dev *rtwdev;
180 	u8 min_rssi;
181 };
182 
183 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
184 {
185 	struct rtw_phy_stat_iter_data *iter_data = data;
186 	struct rtw_dev *rtwdev = iter_data->rtwdev;
187 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
188 	u8 rssi;
189 
190 	rssi = ewma_rssi_read(&si->avg_rssi);
191 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
192 
193 	rtw_fw_send_rssi_info(rtwdev, si);
194 
195 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
196 }
197 
198 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
199 {
200 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
201 	struct rtw_phy_stat_iter_data data = {};
202 
203 	data.rtwdev = rtwdev;
204 	data.min_rssi = U8_MAX;
205 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
206 
207 	dm_info->pre_min_rssi = dm_info->min_rssi;
208 	dm_info->min_rssi = data.min_rssi;
209 }
210 
211 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
212 {
213 	rtw_phy_stat_rssi(rtwdev);
214 	rtw_phy_stat_false_alarm(rtwdev);
215 }
216 
217 #define DIG_PERF_FA_TH_LOW			250
218 #define DIG_PERF_FA_TH_HIGH			500
219 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
220 #define DIG_PERF_MAX				0x5a
221 #define DIG_PERF_MID				0x40
222 #define DIG_CVRG_FA_TH_LOW			2000
223 #define DIG_CVRG_FA_TH_HIGH			4000
224 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
225 #define DIG_CVRG_MAX				0x2a
226 #define DIG_CVRG_MID				0x26
227 #define DIG_CVRG_MIN				0x1c
228 #define DIG_RSSI_GAIN_OFFSET			15
229 
230 static bool
231 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
232 {
233 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
234 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
235 	u16 *fa_history;
236 	u8 *igi_history;
237 	u8 damping_rssi;
238 	u8 min_rssi;
239 	u8 diff;
240 	u8 igi_bitmap;
241 	bool damping = false;
242 
243 	min_rssi = dm_info->min_rssi;
244 	if (dm_info->damping) {
245 		damping_rssi = dm_info->damping_rssi;
246 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
247 						 damping_rssi - min_rssi;
248 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
249 			dm_info->damping = false;
250 			return false;
251 		}
252 
253 		return true;
254 	}
255 
256 	igi_history = dm_info->igi_history;
257 	fa_history = dm_info->fa_history;
258 	igi_bitmap = dm_info->igi_bitmap & 0xf;
259 	switch (igi_bitmap) {
260 	case 5:
261 		/* down -> up -> down -> up */
262 		if (igi_history[0] > igi_history[1] &&
263 		    igi_history[2] > igi_history[3] &&
264 		    igi_history[0] - igi_history[1] >= 2 &&
265 		    igi_history[2] - igi_history[3] >= 2 &&
266 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
267 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
268 			damping = true;
269 		break;
270 	case 9:
271 		/* up -> down -> down -> up */
272 		if (igi_history[0] > igi_history[1] &&
273 		    igi_history[3] > igi_history[2] &&
274 		    igi_history[0] - igi_history[1] >= 4 &&
275 		    igi_history[3] - igi_history[2] >= 2 &&
276 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
277 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
278 			damping = true;
279 		break;
280 	default:
281 		return false;
282 	}
283 
284 	if (damping) {
285 		dm_info->damping = true;
286 		dm_info->damping_cnt = 0;
287 		dm_info->damping_rssi = min_rssi;
288 	}
289 
290 	return damping;
291 }
292 
293 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
294 				     u8 *upper, u8 *lower, bool linked)
295 {
296 	u8 dig_max, dig_min, dig_mid;
297 	u8 min_rssi;
298 
299 	if (linked) {
300 		dig_max = DIG_PERF_MAX;
301 		dig_mid = DIG_PERF_MID;
302 		/* 22B=0x1c, 22C=0x20 */
303 		dig_min = 0x1c;
304 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
305 	} else {
306 		dig_max = DIG_CVRG_MAX;
307 		dig_mid = DIG_CVRG_MID;
308 		dig_min = DIG_CVRG_MIN;
309 		min_rssi = dig_min;
310 	}
311 
312 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
313 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
314 
315 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
316 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
317 }
318 
319 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
320 				      u16 *fa_th, u8 *step, bool linked)
321 {
322 	u8 min_rssi, pre_min_rssi;
323 
324 	min_rssi = dm_info->min_rssi;
325 	pre_min_rssi = dm_info->pre_min_rssi;
326 	step[0] = 4;
327 	step[1] = 3;
328 	step[2] = 2;
329 
330 	if (linked) {
331 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
332 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
333 		fa_th[2] = DIG_PERF_FA_TH_LOW;
334 		if (pre_min_rssi > min_rssi) {
335 			step[0] = 6;
336 			step[1] = 4;
337 			step[2] = 2;
338 		}
339 	} else {
340 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
341 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
342 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
343 	}
344 }
345 
346 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
347 {
348 	u8 *igi_history;
349 	u16 *fa_history;
350 	u8 igi_bitmap;
351 	bool up;
352 
353 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
354 	igi_history = dm_info->igi_history;
355 	fa_history = dm_info->fa_history;
356 
357 	up = igi > igi_history[0];
358 	igi_bitmap |= up;
359 
360 	igi_history[3] = igi_history[2];
361 	igi_history[2] = igi_history[1];
362 	igi_history[1] = igi_history[0];
363 	igi_history[0] = igi;
364 
365 	fa_history[3] = fa_history[2];
366 	fa_history[2] = fa_history[1];
367 	fa_history[1] = fa_history[0];
368 	fa_history[0] = fa;
369 
370 	dm_info->igi_bitmap = igi_bitmap;
371 }
372 
373 static void rtw_phy_dig(struct rtw_dev *rtwdev)
374 {
375 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
376 	u8 upper_bound, lower_bound;
377 	u8 pre_igi, cur_igi;
378 	u16 fa_th[3], fa_cnt;
379 	u8 level;
380 	u8 step[3];
381 	bool linked;
382 
383 	if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
384 		return;
385 
386 	if (rtw_phy_dig_check_damping(dm_info))
387 		return;
388 
389 	linked = !!rtwdev->sta_cnt;
390 
391 	fa_cnt = dm_info->total_fa_cnt;
392 	pre_igi = dm_info->igi_history[0];
393 
394 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
395 
396 	/* test the false alarm count from the highest threshold level first,
397 	 * and increase it by corresponding step size
398 	 *
399 	 * note that the step size is offset by -2, compensate it afterall
400 	 */
401 	cur_igi = pre_igi;
402 	for (level = 0; level < 3; level++) {
403 		if (fa_cnt > fa_th[level]) {
404 			cur_igi += step[level];
405 			break;
406 		}
407 	}
408 	cur_igi -= 2;
409 
410 	/* calculate the upper/lower bound by the minimum rssi we have among
411 	 * the peers connected with us, meanwhile make sure the igi value does
412 	 * not beyond the hardware limitation
413 	 */
414 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
415 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
416 
417 	/* record current igi value and false alarm statistics for further
418 	 * damping checks, and record the trend of igi values
419 	 */
420 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
421 
422 	if (cur_igi != pre_igi)
423 		rtw_phy_dig_write(rtwdev, cur_igi);
424 }
425 
426 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
427 {
428 	struct rtw_dev *rtwdev = data;
429 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
430 
431 	rtw_update_sta_info(rtwdev, si);
432 }
433 
434 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
435 {
436 	if (rtwdev->watch_dog_cnt & 0x3)
437 		return;
438 
439 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
440 }
441 
442 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
443 {
444 	/* for further calculation */
445 	rtw_phy_statistics(rtwdev);
446 	rtw_phy_dig(rtwdev);
447 	rtw_phy_ra_info_update(rtwdev);
448 }
449 
450 #define FRAC_BITS 3
451 
452 static u8 rtw_phy_power_2_db(s8 power)
453 {
454 	if (power <= -100 || power >= 20)
455 		return 0;
456 	else if (power >= 0)
457 		return 100;
458 	else
459 		return 100 + power;
460 }
461 
462 static u64 rtw_phy_db_2_linear(u8 power_db)
463 {
464 	u8 i, j;
465 	u64 linear;
466 
467 	if (power_db > 96)
468 		power_db = 96;
469 	else if (power_db < 1)
470 		return 1;
471 
472 	/* 1dB ~ 96dB */
473 	i = (power_db - 1) >> 3;
474 	j = (power_db - 1) - (i << 3);
475 
476 	linear = db_invert_table[i][j];
477 	linear = i > 2 ? linear << FRAC_BITS : linear;
478 
479 	return linear;
480 }
481 
482 static u8 rtw_phy_linear_2_db(u64 linear)
483 {
484 	u8 i;
485 	u8 j;
486 	u32 dB;
487 
488 	if (linear >= db_invert_table[11][7])
489 		return 96; /* maximum 96 dB */
490 
491 	for (i = 0; i < 12; i++) {
492 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
493 			break;
494 		else if (i > 2 && linear <= db_invert_table[i][7])
495 			break;
496 	}
497 
498 	for (j = 0; j < 8; j++) {
499 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
500 			break;
501 		else if (i > 2 && linear <= db_invert_table[i][j])
502 			break;
503 	}
504 
505 	if (j == 0 && i == 0)
506 		goto end;
507 
508 	if (j == 0) {
509 		if (i != 3) {
510 			if (db_invert_table[i][0] - linear >
511 			    linear - db_invert_table[i - 1][7]) {
512 				i = i - 1;
513 				j = 7;
514 			}
515 		} else {
516 			if (db_invert_table[3][0] - linear >
517 			    linear - db_invert_table[2][7]) {
518 				i = 2;
519 				j = 7;
520 			}
521 		}
522 	} else {
523 		if (db_invert_table[i][j] - linear >
524 		    linear - db_invert_table[i][j - 1]) {
525 			j = j - 1;
526 		}
527 	}
528 end:
529 	dB = (i << 3) + j + 1;
530 
531 	return dB;
532 }
533 
534 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
535 {
536 	s8 power;
537 	u8 power_db;
538 	u64 linear;
539 	u64 sum = 0;
540 	u8 path;
541 
542 	for (path = 0; path < path_num; path++) {
543 		power = rf_power[path];
544 		power_db = rtw_phy_power_2_db(power);
545 		linear = rtw_phy_db_2_linear(power_db);
546 		sum += linear;
547 	}
548 
549 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
550 	switch (path_num) {
551 	case 2:
552 		sum >>= 1;
553 		break;
554 	case 3:
555 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
556 		break;
557 	case 4:
558 		sum >>= 2;
559 		break;
560 	default:
561 		break;
562 	}
563 
564 	return rtw_phy_linear_2_db(sum);
565 }
566 
567 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
568 		    u32 addr, u32 mask)
569 {
570 	struct rtw_hal *hal = &rtwdev->hal;
571 	struct rtw_chip_info *chip = rtwdev->chip;
572 	const u32 *base_addr = chip->rf_base_addr;
573 	u32 val, direct_addr;
574 
575 	if (rf_path >= hal->rf_path_num) {
576 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
577 		return INV_RF_DATA;
578 	}
579 
580 	addr &= 0xff;
581 	direct_addr = base_addr[rf_path] + (addr << 2);
582 	mask &= RFREG_MASK;
583 
584 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
585 
586 	return val;
587 }
588 
589 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
590 			       u32 addr, u32 mask, u32 data)
591 {
592 	struct rtw_hal *hal = &rtwdev->hal;
593 	struct rtw_chip_info *chip = rtwdev->chip;
594 	u32 *sipi_addr = chip->rf_sipi_addr;
595 	u32 data_and_addr;
596 	u32 old_data = 0;
597 	u32 shift;
598 
599 	if (rf_path >= hal->rf_path_num) {
600 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
601 		return false;
602 	}
603 
604 	addr &= 0xff;
605 	mask &= RFREG_MASK;
606 
607 	if (mask != RFREG_MASK) {
608 		old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
609 
610 		if (old_data == INV_RF_DATA) {
611 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
612 			return false;
613 		}
614 
615 		shift = __ffs(mask);
616 		data = ((old_data) & (~mask)) | (data << shift);
617 	}
618 
619 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
620 
621 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
622 
623 	udelay(13);
624 
625 	return true;
626 }
627 
628 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
629 			  u32 addr, u32 mask, u32 data)
630 {
631 	struct rtw_hal *hal = &rtwdev->hal;
632 	struct rtw_chip_info *chip = rtwdev->chip;
633 	const u32 *base_addr = chip->rf_base_addr;
634 	u32 direct_addr;
635 
636 	if (rf_path >= hal->rf_path_num) {
637 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
638 		return false;
639 	}
640 
641 	addr &= 0xff;
642 	direct_addr = base_addr[rf_path] + (addr << 2);
643 	mask &= RFREG_MASK;
644 
645 	if (addr == RF_CFGCH) {
646 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
647 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
648 	}
649 
650 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
651 
652 	udelay(1);
653 
654 	if (addr == RF_CFGCH) {
655 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
656 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
657 	}
658 
659 	return true;
660 }
661 
662 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
663 			      u32 addr, u32 mask, u32 data)
664 {
665 	if (addr != 0x00)
666 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
667 
668 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
669 }
670 
671 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
672 {
673 	struct rtw_hal *hal = &rtwdev->hal;
674 	struct rtw_efuse *efuse = &rtwdev->efuse;
675 	struct rtw_phy_cond cond = {0};
676 
677 	cond.cut = hal->cut_version ? hal->cut_version : 15;
678 	cond.pkg = pkg ? pkg : 15;
679 	cond.plat = 0x04;
680 	cond.rfe = efuse->rfe_option;
681 
682 	switch (rtw_hci_type(rtwdev)) {
683 	case RTW_HCI_TYPE_USB:
684 		cond.intf = INTF_USB;
685 		break;
686 	case RTW_HCI_TYPE_SDIO:
687 		cond.intf = INTF_SDIO;
688 		break;
689 	case RTW_HCI_TYPE_PCIE:
690 	default:
691 		cond.intf = INTF_PCIE;
692 		break;
693 	}
694 
695 	hal->phy_cond = cond;
696 
697 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
698 }
699 
700 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
701 {
702 	struct rtw_hal *hal = &rtwdev->hal;
703 	struct rtw_phy_cond drv_cond = hal->phy_cond;
704 
705 	if (cond.cut && cond.cut != drv_cond.cut)
706 		return false;
707 
708 	if (cond.pkg && cond.pkg != drv_cond.pkg)
709 		return false;
710 
711 	if (cond.intf && cond.intf != drv_cond.intf)
712 		return false;
713 
714 	if (cond.rfe != drv_cond.rfe)
715 		return false;
716 
717 	return true;
718 }
719 
720 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
721 {
722 	const union phy_table_tile *p = tbl->data;
723 	const union phy_table_tile *end = p + tbl->size / 2;
724 	struct rtw_phy_cond pos_cond = {0};
725 	bool is_matched = true, is_skipped = false;
726 
727 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
728 
729 	for (; p < end; p++) {
730 		if (p->cond.pos) {
731 			switch (p->cond.branch) {
732 			case BRANCH_ENDIF:
733 				is_matched = true;
734 				is_skipped = false;
735 				break;
736 			case BRANCH_ELSE:
737 				is_matched = is_skipped ? false : true;
738 				break;
739 			case BRANCH_IF:
740 			case BRANCH_ELIF:
741 			default:
742 				pos_cond = p->cond;
743 				break;
744 			}
745 		} else if (p->cond.neg) {
746 			if (!is_skipped) {
747 				if (check_positive(rtwdev, pos_cond)) {
748 					is_matched = true;
749 					is_skipped = true;
750 				} else {
751 					is_matched = false;
752 					is_skipped = false;
753 				}
754 			} else {
755 				is_matched = false;
756 			}
757 		} else if (is_matched) {
758 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
759 		}
760 	}
761 }
762 
763 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
764 
765 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
766 {
767 	if (rtwdev->chip->is_pwr_by_rate_dec)
768 		return bcd_to_dec_pwr_by_rate(hex, i);
769 
770 	return (hex >> (i * 8)) & 0xFF;
771 }
772 
773 static void
774 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
775 					 u32 addr, u32 mask, u32 val, u8 *rate,
776 					 u8 *pwr_by_rate, u8 *rate_num)
777 {
778 	int i;
779 
780 	switch (addr) {
781 	case 0xE00:
782 	case 0x830:
783 		rate[0] = DESC_RATE6M;
784 		rate[1] = DESC_RATE9M;
785 		rate[2] = DESC_RATE12M;
786 		rate[3] = DESC_RATE18M;
787 		for (i = 0; i < 4; ++i)
788 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
789 		*rate_num = 4;
790 		break;
791 	case 0xE04:
792 	case 0x834:
793 		rate[0] = DESC_RATE24M;
794 		rate[1] = DESC_RATE36M;
795 		rate[2] = DESC_RATE48M;
796 		rate[3] = DESC_RATE54M;
797 		for (i = 0; i < 4; ++i)
798 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
799 		*rate_num = 4;
800 		break;
801 	case 0xE08:
802 		rate[0] = DESC_RATE1M;
803 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
804 		*rate_num = 1;
805 		break;
806 	case 0x86C:
807 		if (mask == 0xffffff00) {
808 			rate[0] = DESC_RATE2M;
809 			rate[1] = DESC_RATE5_5M;
810 			rate[2] = DESC_RATE11M;
811 			for (i = 1; i < 4; ++i)
812 				pwr_by_rate[i - 1] =
813 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
814 			*rate_num = 3;
815 		} else if (mask == 0x000000ff) {
816 			rate[0] = DESC_RATE11M;
817 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
818 			*rate_num = 1;
819 		}
820 		break;
821 	case 0xE10:
822 	case 0x83C:
823 		rate[0] = DESC_RATEMCS0;
824 		rate[1] = DESC_RATEMCS1;
825 		rate[2] = DESC_RATEMCS2;
826 		rate[3] = DESC_RATEMCS3;
827 		for (i = 0; i < 4; ++i)
828 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
829 		*rate_num = 4;
830 		break;
831 	case 0xE14:
832 	case 0x848:
833 		rate[0] = DESC_RATEMCS4;
834 		rate[1] = DESC_RATEMCS5;
835 		rate[2] = DESC_RATEMCS6;
836 		rate[3] = DESC_RATEMCS7;
837 		for (i = 0; i < 4; ++i)
838 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
839 		*rate_num = 4;
840 		break;
841 	case 0xE18:
842 	case 0x84C:
843 		rate[0] = DESC_RATEMCS8;
844 		rate[1] = DESC_RATEMCS9;
845 		rate[2] = DESC_RATEMCS10;
846 		rate[3] = DESC_RATEMCS11;
847 		for (i = 0; i < 4; ++i)
848 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
849 		*rate_num = 4;
850 		break;
851 	case 0xE1C:
852 	case 0x868:
853 		rate[0] = DESC_RATEMCS12;
854 		rate[1] = DESC_RATEMCS13;
855 		rate[2] = DESC_RATEMCS14;
856 		rate[3] = DESC_RATEMCS15;
857 		for (i = 0; i < 4; ++i)
858 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
859 		*rate_num = 4;
860 		break;
861 	case 0x838:
862 		rate[0] = DESC_RATE1M;
863 		rate[1] = DESC_RATE2M;
864 		rate[2] = DESC_RATE5_5M;
865 		for (i = 1; i < 4; ++i)
866 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
867 								    val, i);
868 		*rate_num = 3;
869 		break;
870 	case 0xC20:
871 	case 0xE20:
872 	case 0x1820:
873 	case 0x1A20:
874 		rate[0] = DESC_RATE1M;
875 		rate[1] = DESC_RATE2M;
876 		rate[2] = DESC_RATE5_5M;
877 		rate[3] = DESC_RATE11M;
878 		for (i = 0; i < 4; ++i)
879 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
880 		*rate_num = 4;
881 		break;
882 	case 0xC24:
883 	case 0xE24:
884 	case 0x1824:
885 	case 0x1A24:
886 		rate[0] = DESC_RATE6M;
887 		rate[1] = DESC_RATE9M;
888 		rate[2] = DESC_RATE12M;
889 		rate[3] = DESC_RATE18M;
890 		for (i = 0; i < 4; ++i)
891 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
892 		*rate_num = 4;
893 		break;
894 	case 0xC28:
895 	case 0xE28:
896 	case 0x1828:
897 	case 0x1A28:
898 		rate[0] = DESC_RATE24M;
899 		rate[1] = DESC_RATE36M;
900 		rate[2] = DESC_RATE48M;
901 		rate[3] = DESC_RATE54M;
902 		for (i = 0; i < 4; ++i)
903 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
904 		*rate_num = 4;
905 		break;
906 	case 0xC2C:
907 	case 0xE2C:
908 	case 0x182C:
909 	case 0x1A2C:
910 		rate[0] = DESC_RATEMCS0;
911 		rate[1] = DESC_RATEMCS1;
912 		rate[2] = DESC_RATEMCS2;
913 		rate[3] = DESC_RATEMCS3;
914 		for (i = 0; i < 4; ++i)
915 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
916 		*rate_num = 4;
917 		break;
918 	case 0xC30:
919 	case 0xE30:
920 	case 0x1830:
921 	case 0x1A30:
922 		rate[0] = DESC_RATEMCS4;
923 		rate[1] = DESC_RATEMCS5;
924 		rate[2] = DESC_RATEMCS6;
925 		rate[3] = DESC_RATEMCS7;
926 		for (i = 0; i < 4; ++i)
927 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
928 		*rate_num = 4;
929 		break;
930 	case 0xC34:
931 	case 0xE34:
932 	case 0x1834:
933 	case 0x1A34:
934 		rate[0] = DESC_RATEMCS8;
935 		rate[1] = DESC_RATEMCS9;
936 		rate[2] = DESC_RATEMCS10;
937 		rate[3] = DESC_RATEMCS11;
938 		for (i = 0; i < 4; ++i)
939 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
940 		*rate_num = 4;
941 		break;
942 	case 0xC38:
943 	case 0xE38:
944 	case 0x1838:
945 	case 0x1A38:
946 		rate[0] = DESC_RATEMCS12;
947 		rate[1] = DESC_RATEMCS13;
948 		rate[2] = DESC_RATEMCS14;
949 		rate[3] = DESC_RATEMCS15;
950 		for (i = 0; i < 4; ++i)
951 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
952 		*rate_num = 4;
953 		break;
954 	case 0xC3C:
955 	case 0xE3C:
956 	case 0x183C:
957 	case 0x1A3C:
958 		rate[0] = DESC_RATEVHT1SS_MCS0;
959 		rate[1] = DESC_RATEVHT1SS_MCS1;
960 		rate[2] = DESC_RATEVHT1SS_MCS2;
961 		rate[3] = DESC_RATEVHT1SS_MCS3;
962 		for (i = 0; i < 4; ++i)
963 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
964 		*rate_num = 4;
965 		break;
966 	case 0xC40:
967 	case 0xE40:
968 	case 0x1840:
969 	case 0x1A40:
970 		rate[0] = DESC_RATEVHT1SS_MCS4;
971 		rate[1] = DESC_RATEVHT1SS_MCS5;
972 		rate[2] = DESC_RATEVHT1SS_MCS6;
973 		rate[3] = DESC_RATEVHT1SS_MCS7;
974 		for (i = 0; i < 4; ++i)
975 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
976 		*rate_num = 4;
977 		break;
978 	case 0xC44:
979 	case 0xE44:
980 	case 0x1844:
981 	case 0x1A44:
982 		rate[0] = DESC_RATEVHT1SS_MCS8;
983 		rate[1] = DESC_RATEVHT1SS_MCS9;
984 		rate[2] = DESC_RATEVHT2SS_MCS0;
985 		rate[3] = DESC_RATEVHT2SS_MCS1;
986 		for (i = 0; i < 4; ++i)
987 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
988 		*rate_num = 4;
989 		break;
990 	case 0xC48:
991 	case 0xE48:
992 	case 0x1848:
993 	case 0x1A48:
994 		rate[0] = DESC_RATEVHT2SS_MCS2;
995 		rate[1] = DESC_RATEVHT2SS_MCS3;
996 		rate[2] = DESC_RATEVHT2SS_MCS4;
997 		rate[3] = DESC_RATEVHT2SS_MCS5;
998 		for (i = 0; i < 4; ++i)
999 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1000 		*rate_num = 4;
1001 		break;
1002 	case 0xC4C:
1003 	case 0xE4C:
1004 	case 0x184C:
1005 	case 0x1A4C:
1006 		rate[0] = DESC_RATEVHT2SS_MCS6;
1007 		rate[1] = DESC_RATEVHT2SS_MCS7;
1008 		rate[2] = DESC_RATEVHT2SS_MCS8;
1009 		rate[3] = DESC_RATEVHT2SS_MCS9;
1010 		for (i = 0; i < 4; ++i)
1011 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1012 		*rate_num = 4;
1013 		break;
1014 	case 0xCD8:
1015 	case 0xED8:
1016 	case 0x18D8:
1017 	case 0x1AD8:
1018 		rate[0] = DESC_RATEMCS16;
1019 		rate[1] = DESC_RATEMCS17;
1020 		rate[2] = DESC_RATEMCS18;
1021 		rate[3] = DESC_RATEMCS19;
1022 		for (i = 0; i < 4; ++i)
1023 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1024 		*rate_num = 4;
1025 		break;
1026 	case 0xCDC:
1027 	case 0xEDC:
1028 	case 0x18DC:
1029 	case 0x1ADC:
1030 		rate[0] = DESC_RATEMCS20;
1031 		rate[1] = DESC_RATEMCS21;
1032 		rate[2] = DESC_RATEMCS22;
1033 		rate[3] = DESC_RATEMCS23;
1034 		for (i = 0; i < 4; ++i)
1035 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1036 		*rate_num = 4;
1037 		break;
1038 	case 0xCE0:
1039 	case 0xEE0:
1040 	case 0x18E0:
1041 	case 0x1AE0:
1042 		rate[0] = DESC_RATEVHT3SS_MCS0;
1043 		rate[1] = DESC_RATEVHT3SS_MCS1;
1044 		rate[2] = DESC_RATEVHT3SS_MCS2;
1045 		rate[3] = DESC_RATEVHT3SS_MCS3;
1046 		for (i = 0; i < 4; ++i)
1047 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1048 		*rate_num = 4;
1049 		break;
1050 	case 0xCE4:
1051 	case 0xEE4:
1052 	case 0x18E4:
1053 	case 0x1AE4:
1054 		rate[0] = DESC_RATEVHT3SS_MCS4;
1055 		rate[1] = DESC_RATEVHT3SS_MCS5;
1056 		rate[2] = DESC_RATEVHT3SS_MCS6;
1057 		rate[3] = DESC_RATEVHT3SS_MCS7;
1058 		for (i = 0; i < 4; ++i)
1059 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1060 		*rate_num = 4;
1061 		break;
1062 	case 0xCE8:
1063 	case 0xEE8:
1064 	case 0x18E8:
1065 	case 0x1AE8:
1066 		rate[0] = DESC_RATEVHT3SS_MCS8;
1067 		rate[1] = DESC_RATEVHT3SS_MCS9;
1068 		for (i = 0; i < 2; ++i)
1069 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1070 		*rate_num = 2;
1071 		break;
1072 	default:
1073 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1074 		break;
1075 	}
1076 }
1077 
1078 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1079 					   u32 band, u32 rfpath, u32 txnum,
1080 					   u32 regaddr, u32 bitmask, u32 data)
1081 {
1082 	struct rtw_hal *hal = &rtwdev->hal;
1083 	u8 rate_num = 0;
1084 	u8 rate;
1085 	u8 rates[RTW_RF_PATH_MAX] = {0};
1086 	s8 offset;
1087 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1088 	int i;
1089 
1090 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1091 						 rates, pwr_by_rate, &rate_num);
1092 
1093 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1094 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1095 		    rate_num > RTW_RF_PATH_MAX))
1096 		return;
1097 
1098 	for (i = 0; i < rate_num; i++) {
1099 		offset = pwr_by_rate[i];
1100 		rate = rates[i];
1101 		if (band == PHY_BAND_2G)
1102 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1103 		else if (band == PHY_BAND_5G)
1104 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1105 		else
1106 			continue;
1107 	}
1108 }
1109 
1110 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1111 {
1112 	const struct phy_pg_cfg_pair *p = tbl->data;
1113 	const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
1114 
1115 	BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
1116 
1117 	for (; p < end; p++) {
1118 		if (p->addr == 0xfe || p->addr == 0xffe) {
1119 			msleep(50);
1120 			continue;
1121 		}
1122 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1123 					       p->tx_num, p->addr, p->bitmask,
1124 					       p->data);
1125 	}
1126 }
1127 
1128 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1129 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1130 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1131 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1132 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1133 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1134 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1135 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1136 
1137 static int rtw_channel_to_idx(u8 band, u8 channel)
1138 {
1139 	int ch_idx;
1140 	u8 n_channel;
1141 
1142 	if (band == PHY_BAND_2G) {
1143 		ch_idx = channel - 1;
1144 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1145 	} else if (band == PHY_BAND_5G) {
1146 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1147 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1148 			if (rtw_channel_idx_5g[ch_idx] == channel)
1149 				break;
1150 	} else {
1151 		return -1;
1152 	}
1153 
1154 	if (ch_idx >= n_channel)
1155 		return -1;
1156 
1157 	return ch_idx;
1158 }
1159 
1160 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1161 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1162 {
1163 	struct rtw_hal *hal = &rtwdev->hal;
1164 	u8 max_power_index = rtwdev->chip->max_power_index;
1165 	s8 ww;
1166 	int ch_idx;
1167 
1168 	pwr_limit = clamp_t(s8, pwr_limit,
1169 			    -max_power_index, max_power_index);
1170 	ch_idx = rtw_channel_to_idx(band, ch);
1171 
1172 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1173 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1174 		WARN(1,
1175 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1176 		     regd, band, bw, rs, ch_idx, pwr_limit);
1177 		return;
1178 	}
1179 
1180 	if (band == PHY_BAND_2G) {
1181 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1182 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1183 		ww = min_t(s8, ww, pwr_limit);
1184 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1185 	} else if (band == PHY_BAND_5G) {
1186 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1187 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1188 		ww = min_t(s8, ww, pwr_limit);
1189 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1190 	}
1191 }
1192 
1193 /* cross-reference 5G power limits if values are not assigned */
1194 static void
1195 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1196 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1197 {
1198 	struct rtw_hal *hal = &rtwdev->hal;
1199 	u8 max_power_index = rtwdev->chip->max_power_index;
1200 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1201 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1202 
1203 	if (lmt_ht == lmt_vht)
1204 		return;
1205 
1206 	if (lmt_ht == max_power_index)
1207 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1208 
1209 	else if (lmt_vht == max_power_index)
1210 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1211 }
1212 
1213 /* cross-reference power limits for ht and vht */
1214 static void
1215 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1216 {
1217 	u8 rs_idx, rs_ht, rs_vht;
1218 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1219 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1220 
1221 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1222 		rs_ht = rs_cmp[rs_idx][0];
1223 		rs_vht = rs_cmp[rs_idx][1];
1224 
1225 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1226 	}
1227 }
1228 
1229 /* cross-reference power limits for 5G channels */
1230 static void
1231 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1232 {
1233 	u8 ch_idx;
1234 
1235 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1236 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1237 }
1238 
1239 /* cross-reference power limits for 20/40M bandwidth */
1240 static void
1241 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1242 {
1243 	u8 bw;
1244 
1245 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1246 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1247 }
1248 
1249 /* cross-reference power limits */
1250 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1251 {
1252 	u8 regd;
1253 
1254 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1255 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1256 }
1257 
1258 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1259 			     const struct rtw_table *tbl)
1260 {
1261 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1262 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1263 
1264 	for (; p < end; p++) {
1265 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1266 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1267 	}
1268 
1269 	rtw_xref_txpwr_lmt(rtwdev);
1270 }
1271 
1272 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1273 		     u32 addr, u32 data)
1274 {
1275 	rtw_write8(rtwdev, addr, data);
1276 }
1277 
1278 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1279 		     u32 addr, u32 data)
1280 {
1281 	rtw_write32(rtwdev, addr, data);
1282 }
1283 
1284 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1285 		    u32 addr, u32 data)
1286 {
1287 	if (addr == 0xfe)
1288 		msleep(50);
1289 	else if (addr == 0xfd)
1290 		mdelay(5);
1291 	else if (addr == 0xfc)
1292 		mdelay(1);
1293 	else if (addr == 0xfb)
1294 		usleep_range(50, 60);
1295 	else if (addr == 0xfa)
1296 		udelay(5);
1297 	else if (addr == 0xf9)
1298 		udelay(1);
1299 	else
1300 		rtw_write32(rtwdev, addr, data);
1301 }
1302 
1303 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1304 		    u32 addr, u32 data)
1305 {
1306 	if (addr == 0xffe) {
1307 		msleep(50);
1308 	} else if (addr == 0xfe) {
1309 		usleep_range(100, 110);
1310 	} else {
1311 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1312 		udelay(1);
1313 	}
1314 }
1315 
1316 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1317 {
1318 	struct rtw_chip_info *chip = rtwdev->chip;
1319 
1320 	if (!chip->rfk_init_tbl)
1321 		return;
1322 
1323 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1324 }
1325 
1326 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1327 {
1328 	struct rtw_chip_info *chip = rtwdev->chip;
1329 	u8 rf_path;
1330 
1331 	rtw_load_table(rtwdev, chip->mac_tbl);
1332 	rtw_load_table(rtwdev, chip->bb_tbl);
1333 	rtw_load_table(rtwdev, chip->agc_tbl);
1334 	rtw_load_rfk_table(rtwdev);
1335 
1336 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1337 		const struct rtw_table *tbl;
1338 
1339 		tbl = chip->rf_tbl[rf_path];
1340 		rtw_load_table(rtwdev, tbl);
1341 	}
1342 }
1343 
1344 static u8 rtw_get_channel_group(u8 channel)
1345 {
1346 	switch (channel) {
1347 	default:
1348 		WARN_ON(1);
1349 		/* fall through */
1350 	case 1:
1351 	case 2:
1352 	case 36:
1353 	case 38:
1354 	case 40:
1355 	case 42:
1356 		return 0;
1357 	case 3:
1358 	case 4:
1359 	case 5:
1360 	case 44:
1361 	case 46:
1362 	case 48:
1363 	case 50:
1364 		return 1;
1365 	case 6:
1366 	case 7:
1367 	case 8:
1368 	case 52:
1369 	case 54:
1370 	case 56:
1371 	case 58:
1372 		return 2;
1373 	case 9:
1374 	case 10:
1375 	case 11:
1376 	case 60:
1377 	case 62:
1378 	case 64:
1379 		return 3;
1380 	case 12:
1381 	case 13:
1382 	case 100:
1383 	case 102:
1384 	case 104:
1385 	case 106:
1386 		return 4;
1387 	case 14:
1388 	case 108:
1389 	case 110:
1390 	case 112:
1391 	case 114:
1392 		return 5;
1393 	case 116:
1394 	case 118:
1395 	case 120:
1396 	case 122:
1397 		return 6;
1398 	case 124:
1399 	case 126:
1400 	case 128:
1401 	case 130:
1402 		return 7;
1403 	case 132:
1404 	case 134:
1405 	case 136:
1406 	case 138:
1407 		return 8;
1408 	case 140:
1409 	case 142:
1410 	case 144:
1411 		return 9;
1412 	case 149:
1413 	case 151:
1414 	case 153:
1415 	case 155:
1416 		return 10;
1417 	case 157:
1418 	case 159:
1419 	case 161:
1420 		return 11;
1421 	case 165:
1422 	case 167:
1423 	case 169:
1424 	case 171:
1425 		return 12;
1426 	case 173:
1427 	case 175:
1428 	case 177:
1429 		return 13;
1430 	}
1431 }
1432 
1433 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1434 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1435 					enum rtw_bandwidth bandwidth,
1436 					u8 rate, u8 group)
1437 {
1438 	struct rtw_chip_info *chip = rtwdev->chip;
1439 	u8 tx_power;
1440 	bool mcs_rate;
1441 	bool above_2ss;
1442 	u8 factor = chip->txgi_factor;
1443 
1444 	if (rate <= DESC_RATE11M)
1445 		tx_power = pwr_idx_2g->cck_base[group];
1446 	else
1447 		tx_power = pwr_idx_2g->bw40_base[group];
1448 
1449 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1450 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1451 
1452 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1453 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1454 		    rate <= DESC_RATEVHT2SS_MCS9);
1455 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1456 		    (rate >= DESC_RATEVHT2SS_MCS0);
1457 
1458 	if (!mcs_rate)
1459 		return tx_power;
1460 
1461 	switch (bandwidth) {
1462 	default:
1463 		WARN_ON(1);
1464 		/* fall through */
1465 	case RTW_CHANNEL_WIDTH_20:
1466 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1467 		if (above_2ss)
1468 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1469 		break;
1470 	case RTW_CHANNEL_WIDTH_40:
1471 		/* bw40 is the base power */
1472 		if (above_2ss)
1473 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1474 		break;
1475 	}
1476 
1477 	return tx_power;
1478 }
1479 
1480 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1481 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1482 					enum rtw_bandwidth bandwidth,
1483 					u8 rate, u8 group)
1484 {
1485 	struct rtw_chip_info *chip = rtwdev->chip;
1486 	u8 tx_power;
1487 	u8 upper, lower;
1488 	bool mcs_rate;
1489 	bool above_2ss;
1490 	u8 factor = chip->txgi_factor;
1491 
1492 	tx_power = pwr_idx_5g->bw40_base[group];
1493 
1494 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1495 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1496 		    rate <= DESC_RATEVHT2SS_MCS9);
1497 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1498 		    (rate >= DESC_RATEVHT2SS_MCS0);
1499 
1500 	if (!mcs_rate) {
1501 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1502 		return tx_power;
1503 	}
1504 
1505 	switch (bandwidth) {
1506 	default:
1507 		WARN_ON(1);
1508 		/* fall through */
1509 	case RTW_CHANNEL_WIDTH_20:
1510 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1511 		if (above_2ss)
1512 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1513 		break;
1514 	case RTW_CHANNEL_WIDTH_40:
1515 		/* bw40 is the base power */
1516 		if (above_2ss)
1517 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1518 		break;
1519 	case RTW_CHANNEL_WIDTH_80:
1520 		/* the base idx of bw80 is the average of bw40+/bw40- */
1521 		lower = pwr_idx_5g->bw40_base[group];
1522 		upper = pwr_idx_5g->bw40_base[group + 1];
1523 
1524 		tx_power = (lower + upper) / 2;
1525 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1526 		if (above_2ss)
1527 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1528 		break;
1529 	}
1530 
1531 	return tx_power;
1532 }
1533 
1534 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1535 				     enum rtw_bandwidth bw, u8 rf_path,
1536 				     u8 rate, u8 channel, u8 regd)
1537 {
1538 	struct rtw_hal *hal = &rtwdev->hal;
1539 	u8 *cch_by_bw = hal->cch_by_bw;
1540 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1541 	u8 rs;
1542 	int ch_idx;
1543 	u8 cur_bw, cur_ch;
1544 	s8 cur_lmt;
1545 
1546 	if (regd > RTW_REGD_WW)
1547 		return power_limit;
1548 
1549 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1550 		rs = RTW_RATE_SECTION_CCK;
1551 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1552 		rs = RTW_RATE_SECTION_OFDM;
1553 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1554 		rs = RTW_RATE_SECTION_HT_1S;
1555 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1556 		rs = RTW_RATE_SECTION_HT_2S;
1557 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1558 		rs = RTW_RATE_SECTION_VHT_1S;
1559 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1560 		rs = RTW_RATE_SECTION_VHT_2S;
1561 	else
1562 		goto err;
1563 
1564 	/* only 20M BW with cck and ofdm */
1565 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1566 		bw = RTW_CHANNEL_WIDTH_20;
1567 
1568 	/* only 20/40M BW with ht */
1569 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1570 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1571 
1572 	/* select min power limit among [20M BW ~ current BW] */
1573 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1574 		cur_ch = cch_by_bw[cur_bw];
1575 
1576 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1577 		if (ch_idx < 0)
1578 			goto err;
1579 
1580 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1581 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1582 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1583 
1584 		power_limit = min_t(s8, cur_lmt, power_limit);
1585 	}
1586 
1587 	return power_limit;
1588 
1589 err:
1590 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1591 	     band, bw, rf_path, rate, channel);
1592 	return (s8)rtwdev->chip->max_power_index;
1593 }
1594 
1595 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1596 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1597 {
1598 	struct rtw_hal *hal = &rtwdev->hal;
1599 	struct rtw_txpwr_idx *pwr_idx;
1600 	u8 group, band;
1601 	u8 *base = &pwr_param->pwr_base;
1602 	s8 *offset = &pwr_param->pwr_offset;
1603 	s8 *limit = &pwr_param->pwr_limit;
1604 
1605 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1606 	group = rtw_get_channel_group(ch);
1607 
1608 	/* base power index for 2.4G/5G */
1609 	if (ch <= 14) {
1610 		band = PHY_BAND_2G;
1611 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1612 						      &pwr_idx->pwr_idx_2g,
1613 						      bw, rate, group);
1614 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1615 	} else {
1616 		band = PHY_BAND_5G;
1617 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1618 						      &pwr_idx->pwr_idx_5g,
1619 						      bw, rate, group);
1620 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1621 	}
1622 
1623 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1624 					    rate, ch, regd);
1625 }
1626 
1627 u8
1628 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1629 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1630 {
1631 	struct rtw_power_params pwr_param = {0};
1632 	u8 tx_power;
1633 	s8 offset;
1634 
1635 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1636 				channel, regd, &pwr_param);
1637 
1638 	tx_power = pwr_param.pwr_base;
1639 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1640 
1641 	tx_power += offset;
1642 
1643 	if (tx_power > rtwdev->chip->max_power_index)
1644 		tx_power = rtwdev->chip->max_power_index;
1645 
1646 	return tx_power;
1647 }
1648 
1649 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1650 					     u8 ch, u8 path, u8 rs)
1651 {
1652 	struct rtw_hal *hal = &rtwdev->hal;
1653 	u8 regd = rtwdev->regd.txpwr_regd;
1654 	u8 *rates;
1655 	u8 size;
1656 	u8 rate;
1657 	u8 pwr_idx;
1658 	u8 bw;
1659 	int i;
1660 
1661 	if (rs >= RTW_RATE_SECTION_MAX)
1662 		return;
1663 
1664 	rates = rtw_rate_section[rs];
1665 	size = rtw_rate_size[rs];
1666 	bw = hal->current_band_width;
1667 	for (i = 0; i < size; i++) {
1668 		rate = rates[i];
1669 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1670 						     bw, ch, regd);
1671 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1672 	}
1673 }
1674 
1675 /* set tx power level by path for each rates, note that the order of the rates
1676  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1677  * power index into a four-byte power index register, and calls set_tx_agc to
1678  * write these values into hardware
1679  */
1680 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1681 					       u8 ch, u8 path)
1682 {
1683 	struct rtw_hal *hal = &rtwdev->hal;
1684 	u8 rs;
1685 
1686 	/* do not need cck rates if we are not in 2.4G */
1687 	if (hal->current_band_type == RTW_BAND_2G)
1688 		rs = RTW_RATE_SECTION_CCK;
1689 	else
1690 		rs = RTW_RATE_SECTION_OFDM;
1691 
1692 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1693 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1694 }
1695 
1696 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1697 {
1698 	struct rtw_chip_info *chip = rtwdev->chip;
1699 	struct rtw_hal *hal = &rtwdev->hal;
1700 	u8 path;
1701 
1702 	mutex_lock(&hal->tx_power_mutex);
1703 
1704 	for (path = 0; path < hal->rf_path_num; path++)
1705 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1706 
1707 	chip->ops->set_tx_power_index(rtwdev);
1708 	mutex_unlock(&hal->tx_power_mutex);
1709 }
1710 
1711 static void
1712 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1713 					u8 rs, u8 size, u8 *rates)
1714 {
1715 	u8 rate;
1716 	u8 base_idx, rate_idx;
1717 	s8 base_2g, base_5g;
1718 
1719 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1720 		base_idx = rates[size - 3];
1721 	else
1722 		base_idx = rates[size - 1];
1723 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1724 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1725 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1726 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1727 	for (rate = 0; rate < size; rate++) {
1728 		rate_idx = rates[rate];
1729 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1730 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1731 	}
1732 }
1733 
1734 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1735 {
1736 	u8 path;
1737 
1738 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1739 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1740 				RTW_RATE_SECTION_CCK,
1741 				rtw_cck_size, rtw_cck_rates);
1742 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1743 				RTW_RATE_SECTION_OFDM,
1744 				rtw_ofdm_size, rtw_ofdm_rates);
1745 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1746 				RTW_RATE_SECTION_HT_1S,
1747 				rtw_ht_1s_size, rtw_ht_1s_rates);
1748 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1749 				RTW_RATE_SECTION_HT_2S,
1750 				rtw_ht_2s_size, rtw_ht_2s_rates);
1751 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1752 				RTW_RATE_SECTION_VHT_1S,
1753 				rtw_vht_1s_size, rtw_vht_1s_rates);
1754 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1755 				RTW_RATE_SECTION_VHT_2S,
1756 				rtw_vht_2s_size, rtw_vht_2s_rates);
1757 	}
1758 }
1759 
1760 static void
1761 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1762 {
1763 	s8 base;
1764 	u8 ch;
1765 
1766 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1767 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1768 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1769 	}
1770 
1771 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1772 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1773 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1774 	}
1775 }
1776 
1777 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1778 {
1779 	u8 regd, bw, rs;
1780 
1781 	/* default at channel 1 */
1782 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1783 
1784 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1785 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1786 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1787 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1788 }
1789 
1790 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1791 					u8 regd, u8 bw, u8 rs)
1792 {
1793 	struct rtw_hal *hal = &rtwdev->hal;
1794 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1795 	u8 ch;
1796 
1797 	/* 2.4G channels */
1798 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1799 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1800 
1801 	/* 5G channels */
1802 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1803 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1804 }
1805 
1806 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1807 {
1808 	struct rtw_hal *hal = &rtwdev->hal;
1809 	u8 regd, path, rate, rs, bw;
1810 
1811 	/* init tx power by rate offset */
1812 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1813 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1814 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1815 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1816 		}
1817 	}
1818 
1819 	/* init tx power limit */
1820 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1821 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1822 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1823 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1824 							    rs);
1825 }
1826