1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 EXPORT_SYMBOL(rtw_rate_section);
86 
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 	ARRAY_SIZE(rtw_cck_rates),
89 	ARRAY_SIZE(rtw_ofdm_rates),
90 	ARRAY_SIZE(rtw_ht_1s_rates),
91 	ARRAY_SIZE(rtw_ht_2s_rates),
92 	ARRAY_SIZE(rtw_vht_1s_rates),
93 	ARRAY_SIZE(rtw_vht_2s_rates)
94 };
95 EXPORT_SYMBOL(rtw_rate_size);
96 
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103 
104 enum rtw_phy_band_type {
105 	PHY_BAND_2G	= 0,
106 	PHY_BAND_5G	= 1,
107 };
108 
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110 {
111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 	u8 i, j;
113 
114 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 	}
118 
119 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120 }
121 
122 void rtw_phy_init(struct rtw_dev *rtwdev)
123 {
124 	struct rtw_chip_info *chip = rtwdev->chip;
125 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126 	u32 addr, mask;
127 
128 	dm_info->fa_history[3] = 0;
129 	dm_info->fa_history[2] = 0;
130 	dm_info->fa_history[1] = 0;
131 	dm_info->fa_history[0] = 0;
132 	dm_info->igi_bitmap = 0;
133 	dm_info->igi_history[3] = 0;
134 	dm_info->igi_history[2] = 0;
135 	dm_info->igi_history[1] = 0;
136 
137 	addr = chip->dig[0].addr;
138 	mask = chip->dig[0].mask;
139 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140 	rtw_phy_cck_pd_init(rtwdev);
141 
142 	dm_info->iqk.done = false;
143 }
144 EXPORT_SYMBOL(rtw_phy_init);
145 
146 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
147 {
148 	struct rtw_chip_info *chip = rtwdev->chip;
149 	struct rtw_hal *hal = &rtwdev->hal;
150 	const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
151 	u32 addr, mask;
152 	u8 path;
153 
154 	if (dig_cck)
155 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
156 
157 	for (path = 0; path < hal->rf_path_num; path++) {
158 		addr = chip->dig[path].addr;
159 		mask = chip->dig[path].mask;
160 		rtw_write32_mask(rtwdev, addr, mask, igi);
161 	}
162 }
163 
164 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
165 {
166 	struct rtw_chip_info *chip = rtwdev->chip;
167 
168 	chip->ops->false_alarm_statistics(rtwdev);
169 }
170 
171 #define RA_FLOOR_TABLE_SIZE	7
172 #define RA_FLOOR_UP_GAP		3
173 
174 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
175 {
176 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
177 	u8 new_level = 0;
178 	int i;
179 
180 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
181 		if (i >= old_level)
182 			table[i] += RA_FLOOR_UP_GAP;
183 
184 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
185 		if (rssi < table[i]) {
186 			new_level = i;
187 			break;
188 		}
189 	}
190 
191 	return new_level;
192 }
193 
194 struct rtw_phy_stat_iter_data {
195 	struct rtw_dev *rtwdev;
196 	u8 min_rssi;
197 };
198 
199 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
200 {
201 	struct rtw_phy_stat_iter_data *iter_data = data;
202 	struct rtw_dev *rtwdev = iter_data->rtwdev;
203 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
204 	u8 rssi;
205 
206 	rssi = ewma_rssi_read(&si->avg_rssi);
207 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
208 
209 	rtw_fw_send_rssi_info(rtwdev, si);
210 
211 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
212 }
213 
214 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
215 {
216 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
217 	struct rtw_phy_stat_iter_data data = {};
218 
219 	data.rtwdev = rtwdev;
220 	data.min_rssi = U8_MAX;
221 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
222 
223 	dm_info->pre_min_rssi = dm_info->min_rssi;
224 	dm_info->min_rssi = data.min_rssi;
225 }
226 
227 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
228 {
229 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
230 
231 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
232 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
233 }
234 
235 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
236 {
237 	rtw_phy_stat_rssi(rtwdev);
238 	rtw_phy_stat_false_alarm(rtwdev);
239 	rtw_phy_stat_rate_cnt(rtwdev);
240 }
241 
242 #define DIG_PERF_FA_TH_LOW			250
243 #define DIG_PERF_FA_TH_HIGH			500
244 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
245 #define DIG_PERF_MAX				0x5a
246 #define DIG_PERF_MID				0x40
247 #define DIG_CVRG_FA_TH_LOW			2000
248 #define DIG_CVRG_FA_TH_HIGH			4000
249 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
250 #define DIG_CVRG_MAX				0x2a
251 #define DIG_CVRG_MID				0x26
252 #define DIG_CVRG_MIN				0x1c
253 #define DIG_RSSI_GAIN_OFFSET			15
254 
255 static bool
256 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
257 {
258 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
259 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
260 	u16 *fa_history;
261 	u8 *igi_history;
262 	u8 damping_rssi;
263 	u8 min_rssi;
264 	u8 diff;
265 	u8 igi_bitmap;
266 	bool damping = false;
267 
268 	min_rssi = dm_info->min_rssi;
269 	if (dm_info->damping) {
270 		damping_rssi = dm_info->damping_rssi;
271 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
272 						 damping_rssi - min_rssi;
273 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
274 			dm_info->damping = false;
275 			return false;
276 		}
277 
278 		return true;
279 	}
280 
281 	igi_history = dm_info->igi_history;
282 	fa_history = dm_info->fa_history;
283 	igi_bitmap = dm_info->igi_bitmap & 0xf;
284 	switch (igi_bitmap) {
285 	case 5:
286 		/* down -> up -> down -> up */
287 		if (igi_history[0] > igi_history[1] &&
288 		    igi_history[2] > igi_history[3] &&
289 		    igi_history[0] - igi_history[1] >= 2 &&
290 		    igi_history[2] - igi_history[3] >= 2 &&
291 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
292 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
293 			damping = true;
294 		break;
295 	case 9:
296 		/* up -> down -> down -> up */
297 		if (igi_history[0] > igi_history[1] &&
298 		    igi_history[3] > igi_history[2] &&
299 		    igi_history[0] - igi_history[1] >= 4 &&
300 		    igi_history[3] - igi_history[2] >= 2 &&
301 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
302 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
303 			damping = true;
304 		break;
305 	default:
306 		return false;
307 	}
308 
309 	if (damping) {
310 		dm_info->damping = true;
311 		dm_info->damping_cnt = 0;
312 		dm_info->damping_rssi = min_rssi;
313 	}
314 
315 	return damping;
316 }
317 
318 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
319 				     u8 *upper, u8 *lower, bool linked)
320 {
321 	u8 dig_max, dig_min, dig_mid;
322 	u8 min_rssi;
323 
324 	if (linked) {
325 		dig_max = DIG_PERF_MAX;
326 		dig_mid = DIG_PERF_MID;
327 		/* 22B=0x1c, 22C=0x20 */
328 		dig_min = 0x1c;
329 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
330 	} else {
331 		dig_max = DIG_CVRG_MAX;
332 		dig_mid = DIG_CVRG_MID;
333 		dig_min = DIG_CVRG_MIN;
334 		min_rssi = dig_min;
335 	}
336 
337 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
338 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
339 
340 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
341 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
342 }
343 
344 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
345 				      u16 *fa_th, u8 *step, bool linked)
346 {
347 	u8 min_rssi, pre_min_rssi;
348 
349 	min_rssi = dm_info->min_rssi;
350 	pre_min_rssi = dm_info->pre_min_rssi;
351 	step[0] = 4;
352 	step[1] = 3;
353 	step[2] = 2;
354 
355 	if (linked) {
356 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
357 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
358 		fa_th[2] = DIG_PERF_FA_TH_LOW;
359 		if (pre_min_rssi > min_rssi) {
360 			step[0] = 6;
361 			step[1] = 4;
362 			step[2] = 2;
363 		}
364 	} else {
365 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
366 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
367 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
368 	}
369 }
370 
371 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
372 {
373 	u8 *igi_history;
374 	u16 *fa_history;
375 	u8 igi_bitmap;
376 	bool up;
377 
378 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
379 	igi_history = dm_info->igi_history;
380 	fa_history = dm_info->fa_history;
381 
382 	up = igi > igi_history[0];
383 	igi_bitmap |= up;
384 
385 	igi_history[3] = igi_history[2];
386 	igi_history[2] = igi_history[1];
387 	igi_history[1] = igi_history[0];
388 	igi_history[0] = igi;
389 
390 	fa_history[3] = fa_history[2];
391 	fa_history[2] = fa_history[1];
392 	fa_history[1] = fa_history[0];
393 	fa_history[0] = fa;
394 
395 	dm_info->igi_bitmap = igi_bitmap;
396 }
397 
398 static void rtw_phy_dig(struct rtw_dev *rtwdev)
399 {
400 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
401 	u8 upper_bound, lower_bound;
402 	u8 pre_igi, cur_igi;
403 	u16 fa_th[3], fa_cnt;
404 	u8 level;
405 	u8 step[3];
406 	bool linked;
407 
408 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
409 		return;
410 
411 	if (rtw_phy_dig_check_damping(dm_info))
412 		return;
413 
414 	linked = !!rtwdev->sta_cnt;
415 
416 	fa_cnt = dm_info->total_fa_cnt;
417 	pre_igi = dm_info->igi_history[0];
418 
419 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
420 
421 	/* test the false alarm count from the highest threshold level first,
422 	 * and increase it by corresponding step size
423 	 *
424 	 * note that the step size is offset by -2, compensate it afterall
425 	 */
426 	cur_igi = pre_igi;
427 	for (level = 0; level < 3; level++) {
428 		if (fa_cnt > fa_th[level]) {
429 			cur_igi += step[level];
430 			break;
431 		}
432 	}
433 	cur_igi -= 2;
434 
435 	/* calculate the upper/lower bound by the minimum rssi we have among
436 	 * the peers connected with us, meanwhile make sure the igi value does
437 	 * not beyond the hardware limitation
438 	 */
439 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
440 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
441 
442 	/* record current igi value and false alarm statistics for further
443 	 * damping checks, and record the trend of igi values
444 	 */
445 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
446 
447 	if (cur_igi != pre_igi)
448 		rtw_phy_dig_write(rtwdev, cur_igi);
449 }
450 
451 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
452 {
453 	struct rtw_dev *rtwdev = data;
454 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
455 
456 	rtw_update_sta_info(rtwdev, si);
457 }
458 
459 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
460 {
461 	if (rtwdev->watch_dog_cnt & 0x3)
462 		return;
463 
464 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
465 }
466 
467 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
468 {
469 	struct rtw_chip_info *chip = rtwdev->chip;
470 
471 	if (chip->ops->dpk_track)
472 		chip->ops->dpk_track(rtwdev);
473 }
474 
475 #define CCK_PD_FA_LV1_MIN	1000
476 #define CCK_PD_FA_LV0_MAX	500
477 
478 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
479 {
480 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
481 	u32 cck_fa_avg = dm_info->cck_fa_avg;
482 
483 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
484 		return CCK_PD_LV1;
485 
486 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
487 		return CCK_PD_LV0;
488 
489 	return CCK_PD_LV_MAX;
490 }
491 
492 #define CCK_PD_IGI_LV4_VAL 0x38
493 #define CCK_PD_IGI_LV3_VAL 0x2a
494 #define CCK_PD_IGI_LV2_VAL 0x24
495 #define CCK_PD_RSSI_LV4_VAL 32
496 #define CCK_PD_RSSI_LV3_VAL 32
497 #define CCK_PD_RSSI_LV2_VAL 24
498 
499 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
500 {
501 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
502 	u8 igi = dm_info->igi_history[0];
503 	u8 rssi = dm_info->min_rssi;
504 	u32 cck_fa_avg = dm_info->cck_fa_avg;
505 
506 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
507 		return CCK_PD_LV4;
508 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
509 		return CCK_PD_LV3;
510 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
511 		return CCK_PD_LV2;
512 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
513 		return CCK_PD_LV1;
514 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
515 		return CCK_PD_LV0;
516 
517 	return CCK_PD_LV_MAX;
518 }
519 
520 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
521 {
522 	if (!rtw_is_assoc(rtwdev))
523 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
524 	else
525 		return rtw_phy_cck_pd_lv_link(rtwdev);
526 }
527 
528 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
529 {
530 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
531 	struct rtw_chip_info *chip = rtwdev->chip;
532 	u32 cck_fa = dm_info->cck_fa_cnt;
533 	u8 level;
534 
535 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
536 		return;
537 
538 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
539 		dm_info->cck_fa_avg = cck_fa;
540 	else
541 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
542 
543 	level = rtw_phy_cck_pd_lv(rtwdev);
544 
545 	if (level >= CCK_PD_LV_MAX)
546 		return;
547 
548 	if (chip->ops->cck_pd_set)
549 		chip->ops->cck_pd_set(rtwdev, level);
550 }
551 
552 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
553 {
554 	rtwdev->chip->ops->pwr_track(rtwdev);
555 }
556 
557 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
558 {
559 	/* for further calculation */
560 	rtw_phy_statistics(rtwdev);
561 	rtw_phy_dig(rtwdev);
562 	rtw_phy_cck_pd(rtwdev);
563 	rtw_phy_ra_info_update(rtwdev);
564 	rtw_phy_dpk_track(rtwdev);
565 	rtw_phy_pwr_track(rtwdev);
566 }
567 
568 #define FRAC_BITS 3
569 
570 static u8 rtw_phy_power_2_db(s8 power)
571 {
572 	if (power <= -100 || power >= 20)
573 		return 0;
574 	else if (power >= 0)
575 		return 100;
576 	else
577 		return 100 + power;
578 }
579 
580 static u64 rtw_phy_db_2_linear(u8 power_db)
581 {
582 	u8 i, j;
583 	u64 linear;
584 
585 	if (power_db > 96)
586 		power_db = 96;
587 	else if (power_db < 1)
588 		return 1;
589 
590 	/* 1dB ~ 96dB */
591 	i = (power_db - 1) >> 3;
592 	j = (power_db - 1) - (i << 3);
593 
594 	linear = db_invert_table[i][j];
595 	linear = i > 2 ? linear << FRAC_BITS : linear;
596 
597 	return linear;
598 }
599 
600 static u8 rtw_phy_linear_2_db(u64 linear)
601 {
602 	u8 i;
603 	u8 j;
604 	u32 dB;
605 
606 	if (linear >= db_invert_table[11][7])
607 		return 96; /* maximum 96 dB */
608 
609 	for (i = 0; i < 12; i++) {
610 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
611 			break;
612 		else if (i > 2 && linear <= db_invert_table[i][7])
613 			break;
614 	}
615 
616 	for (j = 0; j < 8; j++) {
617 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
618 			break;
619 		else if (i > 2 && linear <= db_invert_table[i][j])
620 			break;
621 	}
622 
623 	if (j == 0 && i == 0)
624 		goto end;
625 
626 	if (j == 0) {
627 		if (i != 3) {
628 			if (db_invert_table[i][0] - linear >
629 			    linear - db_invert_table[i - 1][7]) {
630 				i = i - 1;
631 				j = 7;
632 			}
633 		} else {
634 			if (db_invert_table[3][0] - linear >
635 			    linear - db_invert_table[2][7]) {
636 				i = 2;
637 				j = 7;
638 			}
639 		}
640 	} else {
641 		if (db_invert_table[i][j] - linear >
642 		    linear - db_invert_table[i][j - 1]) {
643 			j = j - 1;
644 		}
645 	}
646 end:
647 	dB = (i << 3) + j + 1;
648 
649 	return dB;
650 }
651 
652 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
653 {
654 	s8 power;
655 	u8 power_db;
656 	u64 linear;
657 	u64 sum = 0;
658 	u8 path;
659 
660 	for (path = 0; path < path_num; path++) {
661 		power = rf_power[path];
662 		power_db = rtw_phy_power_2_db(power);
663 		linear = rtw_phy_db_2_linear(power_db);
664 		sum += linear;
665 	}
666 
667 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
668 	switch (path_num) {
669 	case 2:
670 		sum >>= 1;
671 		break;
672 	case 3:
673 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
674 		break;
675 	case 4:
676 		sum >>= 2;
677 		break;
678 	default:
679 		break;
680 	}
681 
682 	return rtw_phy_linear_2_db(sum);
683 }
684 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
685 
686 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
687 		    u32 addr, u32 mask)
688 {
689 	struct rtw_hal *hal = &rtwdev->hal;
690 	struct rtw_chip_info *chip = rtwdev->chip;
691 	const u32 *base_addr = chip->rf_base_addr;
692 	u32 val, direct_addr;
693 
694 	if (rf_path >= hal->rf_phy_num) {
695 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
696 		return INV_RF_DATA;
697 	}
698 
699 	addr &= 0xff;
700 	direct_addr = base_addr[rf_path] + (addr << 2);
701 	mask &= RFREG_MASK;
702 
703 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
704 
705 	return val;
706 }
707 EXPORT_SYMBOL(rtw_phy_read_rf);
708 
709 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
710 			 u32 addr, u32 mask)
711 {
712 	struct rtw_hal *hal = &rtwdev->hal;
713 	struct rtw_chip_info *chip = rtwdev->chip;
714 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
715 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
716 	u32 val32;
717 	u32 en_pi;
718 	u32 r_addr;
719 	u32 shift;
720 
721 	if (rf_path >= hal->rf_phy_num) {
722 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
723 		return INV_RF_DATA;
724 	}
725 
726 	if (!chip->rf_sipi_read_addr) {
727 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
728 		return INV_RF_DATA;
729 	}
730 
731 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
732 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
733 
734 	addr &= 0xff;
735 
736 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
737 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
738 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
739 
740 	/* toggle read edge of path A */
741 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
742 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
743 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
744 
745 	udelay(120);
746 
747 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
748 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
749 
750 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
751 
752 	shift = __ffs(mask);
753 
754 	return (val32 & mask) >> shift;
755 }
756 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
757 
758 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
759 			       u32 addr, u32 mask, u32 data)
760 {
761 	struct rtw_hal *hal = &rtwdev->hal;
762 	struct rtw_chip_info *chip = rtwdev->chip;
763 	u32 *sipi_addr = chip->rf_sipi_addr;
764 	u32 data_and_addr;
765 	u32 old_data = 0;
766 	u32 shift;
767 
768 	if (rf_path >= hal->rf_phy_num) {
769 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
770 		return false;
771 	}
772 
773 	addr &= 0xff;
774 	mask &= RFREG_MASK;
775 
776 	if (mask != RFREG_MASK) {
777 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
778 
779 		if (old_data == INV_RF_DATA) {
780 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
781 			return false;
782 		}
783 
784 		shift = __ffs(mask);
785 		data = ((old_data) & (~mask)) | (data << shift);
786 	}
787 
788 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
789 
790 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
791 
792 	udelay(13);
793 
794 	return true;
795 }
796 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
797 
798 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
799 			  u32 addr, u32 mask, u32 data)
800 {
801 	struct rtw_hal *hal = &rtwdev->hal;
802 	struct rtw_chip_info *chip = rtwdev->chip;
803 	const u32 *base_addr = chip->rf_base_addr;
804 	u32 direct_addr;
805 
806 	if (rf_path >= hal->rf_phy_num) {
807 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
808 		return false;
809 	}
810 
811 	addr &= 0xff;
812 	direct_addr = base_addr[rf_path] + (addr << 2);
813 	mask &= RFREG_MASK;
814 
815 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
816 
817 	udelay(1);
818 
819 	return true;
820 }
821 
822 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
823 			      u32 addr, u32 mask, u32 data)
824 {
825 	if (addr != 0x00)
826 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
827 
828 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
829 }
830 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
831 
832 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
833 {
834 	struct rtw_hal *hal = &rtwdev->hal;
835 	struct rtw_efuse *efuse = &rtwdev->efuse;
836 	struct rtw_phy_cond cond = {0};
837 
838 	cond.cut = hal->cut_version ? hal->cut_version : 15;
839 	cond.pkg = pkg ? pkg : 15;
840 	cond.plat = 0x04;
841 	cond.rfe = efuse->rfe_option;
842 
843 	switch (rtw_hci_type(rtwdev)) {
844 	case RTW_HCI_TYPE_USB:
845 		cond.intf = INTF_USB;
846 		break;
847 	case RTW_HCI_TYPE_SDIO:
848 		cond.intf = INTF_SDIO;
849 		break;
850 	case RTW_HCI_TYPE_PCIE:
851 	default:
852 		cond.intf = INTF_PCIE;
853 		break;
854 	}
855 
856 	hal->phy_cond = cond;
857 
858 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
859 }
860 
861 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
862 {
863 	struct rtw_hal *hal = &rtwdev->hal;
864 	struct rtw_phy_cond drv_cond = hal->phy_cond;
865 
866 	if (cond.cut && cond.cut != drv_cond.cut)
867 		return false;
868 
869 	if (cond.pkg && cond.pkg != drv_cond.pkg)
870 		return false;
871 
872 	if (cond.intf && cond.intf != drv_cond.intf)
873 		return false;
874 
875 	if (cond.rfe != drv_cond.rfe)
876 		return false;
877 
878 	return true;
879 }
880 
881 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
882 {
883 	const union phy_table_tile *p = tbl->data;
884 	const union phy_table_tile *end = p + tbl->size / 2;
885 	struct rtw_phy_cond pos_cond = {0};
886 	bool is_matched = true, is_skipped = false;
887 
888 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
889 
890 	for (; p < end; p++) {
891 		if (p->cond.pos) {
892 			switch (p->cond.branch) {
893 			case BRANCH_ENDIF:
894 				is_matched = true;
895 				is_skipped = false;
896 				break;
897 			case BRANCH_ELSE:
898 				is_matched = is_skipped ? false : true;
899 				break;
900 			case BRANCH_IF:
901 			case BRANCH_ELIF:
902 			default:
903 				pos_cond = p->cond;
904 				break;
905 			}
906 		} else if (p->cond.neg) {
907 			if (!is_skipped) {
908 				if (check_positive(rtwdev, pos_cond)) {
909 					is_matched = true;
910 					is_skipped = true;
911 				} else {
912 					is_matched = false;
913 					is_skipped = false;
914 				}
915 			} else {
916 				is_matched = false;
917 			}
918 		} else if (is_matched) {
919 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
920 		}
921 	}
922 }
923 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
924 
925 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
926 
927 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
928 {
929 	if (rtwdev->chip->is_pwr_by_rate_dec)
930 		return bcd_to_dec_pwr_by_rate(hex, i);
931 
932 	return (hex >> (i * 8)) & 0xFF;
933 }
934 
935 static void
936 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
937 					 u32 addr, u32 mask, u32 val, u8 *rate,
938 					 u8 *pwr_by_rate, u8 *rate_num)
939 {
940 	int i;
941 
942 	switch (addr) {
943 	case 0xE00:
944 	case 0x830:
945 		rate[0] = DESC_RATE6M;
946 		rate[1] = DESC_RATE9M;
947 		rate[2] = DESC_RATE12M;
948 		rate[3] = DESC_RATE18M;
949 		for (i = 0; i < 4; ++i)
950 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
951 		*rate_num = 4;
952 		break;
953 	case 0xE04:
954 	case 0x834:
955 		rate[0] = DESC_RATE24M;
956 		rate[1] = DESC_RATE36M;
957 		rate[2] = DESC_RATE48M;
958 		rate[3] = DESC_RATE54M;
959 		for (i = 0; i < 4; ++i)
960 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
961 		*rate_num = 4;
962 		break;
963 	case 0xE08:
964 		rate[0] = DESC_RATE1M;
965 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
966 		*rate_num = 1;
967 		break;
968 	case 0x86C:
969 		if (mask == 0xffffff00) {
970 			rate[0] = DESC_RATE2M;
971 			rate[1] = DESC_RATE5_5M;
972 			rate[2] = DESC_RATE11M;
973 			for (i = 1; i < 4; ++i)
974 				pwr_by_rate[i - 1] =
975 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
976 			*rate_num = 3;
977 		} else if (mask == 0x000000ff) {
978 			rate[0] = DESC_RATE11M;
979 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
980 			*rate_num = 1;
981 		}
982 		break;
983 	case 0xE10:
984 	case 0x83C:
985 		rate[0] = DESC_RATEMCS0;
986 		rate[1] = DESC_RATEMCS1;
987 		rate[2] = DESC_RATEMCS2;
988 		rate[3] = DESC_RATEMCS3;
989 		for (i = 0; i < 4; ++i)
990 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
991 		*rate_num = 4;
992 		break;
993 	case 0xE14:
994 	case 0x848:
995 		rate[0] = DESC_RATEMCS4;
996 		rate[1] = DESC_RATEMCS5;
997 		rate[2] = DESC_RATEMCS6;
998 		rate[3] = DESC_RATEMCS7;
999 		for (i = 0; i < 4; ++i)
1000 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1001 		*rate_num = 4;
1002 		break;
1003 	case 0xE18:
1004 	case 0x84C:
1005 		rate[0] = DESC_RATEMCS8;
1006 		rate[1] = DESC_RATEMCS9;
1007 		rate[2] = DESC_RATEMCS10;
1008 		rate[3] = DESC_RATEMCS11;
1009 		for (i = 0; i < 4; ++i)
1010 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1011 		*rate_num = 4;
1012 		break;
1013 	case 0xE1C:
1014 	case 0x868:
1015 		rate[0] = DESC_RATEMCS12;
1016 		rate[1] = DESC_RATEMCS13;
1017 		rate[2] = DESC_RATEMCS14;
1018 		rate[3] = DESC_RATEMCS15;
1019 		for (i = 0; i < 4; ++i)
1020 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1021 		*rate_num = 4;
1022 		break;
1023 	case 0x838:
1024 		rate[0] = DESC_RATE1M;
1025 		rate[1] = DESC_RATE2M;
1026 		rate[2] = DESC_RATE5_5M;
1027 		for (i = 1; i < 4; ++i)
1028 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1029 								    val, i);
1030 		*rate_num = 3;
1031 		break;
1032 	case 0xC20:
1033 	case 0xE20:
1034 	case 0x1820:
1035 	case 0x1A20:
1036 		rate[0] = DESC_RATE1M;
1037 		rate[1] = DESC_RATE2M;
1038 		rate[2] = DESC_RATE5_5M;
1039 		rate[3] = DESC_RATE11M;
1040 		for (i = 0; i < 4; ++i)
1041 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1042 		*rate_num = 4;
1043 		break;
1044 	case 0xC24:
1045 	case 0xE24:
1046 	case 0x1824:
1047 	case 0x1A24:
1048 		rate[0] = DESC_RATE6M;
1049 		rate[1] = DESC_RATE9M;
1050 		rate[2] = DESC_RATE12M;
1051 		rate[3] = DESC_RATE18M;
1052 		for (i = 0; i < 4; ++i)
1053 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1054 		*rate_num = 4;
1055 		break;
1056 	case 0xC28:
1057 	case 0xE28:
1058 	case 0x1828:
1059 	case 0x1A28:
1060 		rate[0] = DESC_RATE24M;
1061 		rate[1] = DESC_RATE36M;
1062 		rate[2] = DESC_RATE48M;
1063 		rate[3] = DESC_RATE54M;
1064 		for (i = 0; i < 4; ++i)
1065 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1066 		*rate_num = 4;
1067 		break;
1068 	case 0xC2C:
1069 	case 0xE2C:
1070 	case 0x182C:
1071 	case 0x1A2C:
1072 		rate[0] = DESC_RATEMCS0;
1073 		rate[1] = DESC_RATEMCS1;
1074 		rate[2] = DESC_RATEMCS2;
1075 		rate[3] = DESC_RATEMCS3;
1076 		for (i = 0; i < 4; ++i)
1077 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1078 		*rate_num = 4;
1079 		break;
1080 	case 0xC30:
1081 	case 0xE30:
1082 	case 0x1830:
1083 	case 0x1A30:
1084 		rate[0] = DESC_RATEMCS4;
1085 		rate[1] = DESC_RATEMCS5;
1086 		rate[2] = DESC_RATEMCS6;
1087 		rate[3] = DESC_RATEMCS7;
1088 		for (i = 0; i < 4; ++i)
1089 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1090 		*rate_num = 4;
1091 		break;
1092 	case 0xC34:
1093 	case 0xE34:
1094 	case 0x1834:
1095 	case 0x1A34:
1096 		rate[0] = DESC_RATEMCS8;
1097 		rate[1] = DESC_RATEMCS9;
1098 		rate[2] = DESC_RATEMCS10;
1099 		rate[3] = DESC_RATEMCS11;
1100 		for (i = 0; i < 4; ++i)
1101 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1102 		*rate_num = 4;
1103 		break;
1104 	case 0xC38:
1105 	case 0xE38:
1106 	case 0x1838:
1107 	case 0x1A38:
1108 		rate[0] = DESC_RATEMCS12;
1109 		rate[1] = DESC_RATEMCS13;
1110 		rate[2] = DESC_RATEMCS14;
1111 		rate[3] = DESC_RATEMCS15;
1112 		for (i = 0; i < 4; ++i)
1113 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1114 		*rate_num = 4;
1115 		break;
1116 	case 0xC3C:
1117 	case 0xE3C:
1118 	case 0x183C:
1119 	case 0x1A3C:
1120 		rate[0] = DESC_RATEVHT1SS_MCS0;
1121 		rate[1] = DESC_RATEVHT1SS_MCS1;
1122 		rate[2] = DESC_RATEVHT1SS_MCS2;
1123 		rate[3] = DESC_RATEVHT1SS_MCS3;
1124 		for (i = 0; i < 4; ++i)
1125 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1126 		*rate_num = 4;
1127 		break;
1128 	case 0xC40:
1129 	case 0xE40:
1130 	case 0x1840:
1131 	case 0x1A40:
1132 		rate[0] = DESC_RATEVHT1SS_MCS4;
1133 		rate[1] = DESC_RATEVHT1SS_MCS5;
1134 		rate[2] = DESC_RATEVHT1SS_MCS6;
1135 		rate[3] = DESC_RATEVHT1SS_MCS7;
1136 		for (i = 0; i < 4; ++i)
1137 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1138 		*rate_num = 4;
1139 		break;
1140 	case 0xC44:
1141 	case 0xE44:
1142 	case 0x1844:
1143 	case 0x1A44:
1144 		rate[0] = DESC_RATEVHT1SS_MCS8;
1145 		rate[1] = DESC_RATEVHT1SS_MCS9;
1146 		rate[2] = DESC_RATEVHT2SS_MCS0;
1147 		rate[3] = DESC_RATEVHT2SS_MCS1;
1148 		for (i = 0; i < 4; ++i)
1149 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1150 		*rate_num = 4;
1151 		break;
1152 	case 0xC48:
1153 	case 0xE48:
1154 	case 0x1848:
1155 	case 0x1A48:
1156 		rate[0] = DESC_RATEVHT2SS_MCS2;
1157 		rate[1] = DESC_RATEVHT2SS_MCS3;
1158 		rate[2] = DESC_RATEVHT2SS_MCS4;
1159 		rate[3] = DESC_RATEVHT2SS_MCS5;
1160 		for (i = 0; i < 4; ++i)
1161 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1162 		*rate_num = 4;
1163 		break;
1164 	case 0xC4C:
1165 	case 0xE4C:
1166 	case 0x184C:
1167 	case 0x1A4C:
1168 		rate[0] = DESC_RATEVHT2SS_MCS6;
1169 		rate[1] = DESC_RATEVHT2SS_MCS7;
1170 		rate[2] = DESC_RATEVHT2SS_MCS8;
1171 		rate[3] = DESC_RATEVHT2SS_MCS9;
1172 		for (i = 0; i < 4; ++i)
1173 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1174 		*rate_num = 4;
1175 		break;
1176 	case 0xCD8:
1177 	case 0xED8:
1178 	case 0x18D8:
1179 	case 0x1AD8:
1180 		rate[0] = DESC_RATEMCS16;
1181 		rate[1] = DESC_RATEMCS17;
1182 		rate[2] = DESC_RATEMCS18;
1183 		rate[3] = DESC_RATEMCS19;
1184 		for (i = 0; i < 4; ++i)
1185 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1186 		*rate_num = 4;
1187 		break;
1188 	case 0xCDC:
1189 	case 0xEDC:
1190 	case 0x18DC:
1191 	case 0x1ADC:
1192 		rate[0] = DESC_RATEMCS20;
1193 		rate[1] = DESC_RATEMCS21;
1194 		rate[2] = DESC_RATEMCS22;
1195 		rate[3] = DESC_RATEMCS23;
1196 		for (i = 0; i < 4; ++i)
1197 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1198 		*rate_num = 4;
1199 		break;
1200 	case 0xCE0:
1201 	case 0xEE0:
1202 	case 0x18E0:
1203 	case 0x1AE0:
1204 		rate[0] = DESC_RATEVHT3SS_MCS0;
1205 		rate[1] = DESC_RATEVHT3SS_MCS1;
1206 		rate[2] = DESC_RATEVHT3SS_MCS2;
1207 		rate[3] = DESC_RATEVHT3SS_MCS3;
1208 		for (i = 0; i < 4; ++i)
1209 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1210 		*rate_num = 4;
1211 		break;
1212 	case 0xCE4:
1213 	case 0xEE4:
1214 	case 0x18E4:
1215 	case 0x1AE4:
1216 		rate[0] = DESC_RATEVHT3SS_MCS4;
1217 		rate[1] = DESC_RATEVHT3SS_MCS5;
1218 		rate[2] = DESC_RATEVHT3SS_MCS6;
1219 		rate[3] = DESC_RATEVHT3SS_MCS7;
1220 		for (i = 0; i < 4; ++i)
1221 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1222 		*rate_num = 4;
1223 		break;
1224 	case 0xCE8:
1225 	case 0xEE8:
1226 	case 0x18E8:
1227 	case 0x1AE8:
1228 		rate[0] = DESC_RATEVHT3SS_MCS8;
1229 		rate[1] = DESC_RATEVHT3SS_MCS9;
1230 		for (i = 0; i < 2; ++i)
1231 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1232 		*rate_num = 2;
1233 		break;
1234 	default:
1235 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1236 		break;
1237 	}
1238 }
1239 
1240 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1241 					   u32 band, u32 rfpath, u32 txnum,
1242 					   u32 regaddr, u32 bitmask, u32 data)
1243 {
1244 	struct rtw_hal *hal = &rtwdev->hal;
1245 	u8 rate_num = 0;
1246 	u8 rate;
1247 	u8 rates[RTW_RF_PATH_MAX] = {0};
1248 	s8 offset;
1249 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1250 	int i;
1251 
1252 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1253 						 rates, pwr_by_rate, &rate_num);
1254 
1255 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1256 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1257 		    rate_num > RTW_RF_PATH_MAX))
1258 		return;
1259 
1260 	for (i = 0; i < rate_num; i++) {
1261 		offset = pwr_by_rate[i];
1262 		rate = rates[i];
1263 		if (band == PHY_BAND_2G)
1264 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1265 		else if (band == PHY_BAND_5G)
1266 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1267 		else
1268 			continue;
1269 	}
1270 }
1271 
1272 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1273 {
1274 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1275 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1276 
1277 	for (; p < end; p++) {
1278 		if (p->addr == 0xfe || p->addr == 0xffe) {
1279 			msleep(50);
1280 			continue;
1281 		}
1282 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1283 					       p->tx_num, p->addr, p->bitmask,
1284 					       p->data);
1285 	}
1286 }
1287 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1288 
1289 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1290 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1291 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1292 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1293 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1294 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1295 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1296 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1297 
1298 static int rtw_channel_to_idx(u8 band, u8 channel)
1299 {
1300 	int ch_idx;
1301 	u8 n_channel;
1302 
1303 	if (band == PHY_BAND_2G) {
1304 		ch_idx = channel - 1;
1305 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1306 	} else if (band == PHY_BAND_5G) {
1307 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1308 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1309 			if (rtw_channel_idx_5g[ch_idx] == channel)
1310 				break;
1311 	} else {
1312 		return -1;
1313 	}
1314 
1315 	if (ch_idx >= n_channel)
1316 		return -1;
1317 
1318 	return ch_idx;
1319 }
1320 
1321 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1322 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1323 {
1324 	struct rtw_hal *hal = &rtwdev->hal;
1325 	u8 max_power_index = rtwdev->chip->max_power_index;
1326 	s8 ww;
1327 	int ch_idx;
1328 
1329 	pwr_limit = clamp_t(s8, pwr_limit,
1330 			    -max_power_index, max_power_index);
1331 	ch_idx = rtw_channel_to_idx(band, ch);
1332 
1333 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1334 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1335 		WARN(1,
1336 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1337 		     regd, band, bw, rs, ch_idx, pwr_limit);
1338 		return;
1339 	}
1340 
1341 	if (band == PHY_BAND_2G) {
1342 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1343 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1344 		ww = min_t(s8, ww, pwr_limit);
1345 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1346 	} else if (band == PHY_BAND_5G) {
1347 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1348 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1349 		ww = min_t(s8, ww, pwr_limit);
1350 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1351 	}
1352 }
1353 
1354 /* cross-reference 5G power limits if values are not assigned */
1355 static void
1356 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1357 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1358 {
1359 	struct rtw_hal *hal = &rtwdev->hal;
1360 	u8 max_power_index = rtwdev->chip->max_power_index;
1361 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1362 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1363 
1364 	if (lmt_ht == lmt_vht)
1365 		return;
1366 
1367 	if (lmt_ht == max_power_index)
1368 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1369 
1370 	else if (lmt_vht == max_power_index)
1371 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1372 }
1373 
1374 /* cross-reference power limits for ht and vht */
1375 static void
1376 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1377 {
1378 	u8 rs_idx, rs_ht, rs_vht;
1379 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1380 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1381 
1382 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1383 		rs_ht = rs_cmp[rs_idx][0];
1384 		rs_vht = rs_cmp[rs_idx][1];
1385 
1386 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1387 	}
1388 }
1389 
1390 /* cross-reference power limits for 5G channels */
1391 static void
1392 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1393 {
1394 	u8 ch_idx;
1395 
1396 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1397 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1398 }
1399 
1400 /* cross-reference power limits for 20/40M bandwidth */
1401 static void
1402 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1403 {
1404 	u8 bw;
1405 
1406 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1407 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1408 }
1409 
1410 /* cross-reference power limits */
1411 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1412 {
1413 	u8 regd;
1414 
1415 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1416 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1417 }
1418 
1419 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1420 			     const struct rtw_table *tbl)
1421 {
1422 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1423 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1424 
1425 	for (; p < end; p++) {
1426 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1427 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1428 	}
1429 
1430 	rtw_xref_txpwr_lmt(rtwdev);
1431 }
1432 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1433 
1434 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1435 		     u32 addr, u32 data)
1436 {
1437 	rtw_write8(rtwdev, addr, data);
1438 }
1439 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1440 
1441 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1442 		     u32 addr, u32 data)
1443 {
1444 	rtw_write32(rtwdev, addr, data);
1445 }
1446 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1447 
1448 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1449 		    u32 addr, u32 data)
1450 {
1451 	if (addr == 0xfe)
1452 		msleep(50);
1453 	else if (addr == 0xfd)
1454 		mdelay(5);
1455 	else if (addr == 0xfc)
1456 		mdelay(1);
1457 	else if (addr == 0xfb)
1458 		usleep_range(50, 60);
1459 	else if (addr == 0xfa)
1460 		udelay(5);
1461 	else if (addr == 0xf9)
1462 		udelay(1);
1463 	else
1464 		rtw_write32(rtwdev, addr, data);
1465 }
1466 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1467 
1468 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1469 		    u32 addr, u32 data)
1470 {
1471 	if (addr == 0xffe) {
1472 		msleep(50);
1473 	} else if (addr == 0xfe) {
1474 		usleep_range(100, 110);
1475 	} else {
1476 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1477 		udelay(1);
1478 	}
1479 }
1480 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1481 
1482 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1483 {
1484 	struct rtw_chip_info *chip = rtwdev->chip;
1485 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1486 
1487 	if (!chip->rfk_init_tbl)
1488 		return;
1489 
1490 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1491 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1492 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1493 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1494 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1495 
1496 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1497 
1498 	dpk_info->is_dpk_pwr_on = true;
1499 }
1500 
1501 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1502 {
1503 	struct rtw_chip_info *chip = rtwdev->chip;
1504 	u8 rf_path;
1505 
1506 	rtw_load_table(rtwdev, chip->mac_tbl);
1507 	rtw_load_table(rtwdev, chip->bb_tbl);
1508 	rtw_load_table(rtwdev, chip->agc_tbl);
1509 	rtw_load_rfk_table(rtwdev);
1510 
1511 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1512 		const struct rtw_table *tbl;
1513 
1514 		tbl = chip->rf_tbl[rf_path];
1515 		rtw_load_table(rtwdev, tbl);
1516 	}
1517 }
1518 EXPORT_SYMBOL(rtw_phy_load_tables);
1519 
1520 static u8 rtw_get_channel_group(u8 channel)
1521 {
1522 	switch (channel) {
1523 	default:
1524 		WARN_ON(1);
1525 		/* fall through */
1526 	case 1:
1527 	case 2:
1528 	case 36:
1529 	case 38:
1530 	case 40:
1531 	case 42:
1532 		return 0;
1533 	case 3:
1534 	case 4:
1535 	case 5:
1536 	case 44:
1537 	case 46:
1538 	case 48:
1539 	case 50:
1540 		return 1;
1541 	case 6:
1542 	case 7:
1543 	case 8:
1544 	case 52:
1545 	case 54:
1546 	case 56:
1547 	case 58:
1548 		return 2;
1549 	case 9:
1550 	case 10:
1551 	case 11:
1552 	case 60:
1553 	case 62:
1554 	case 64:
1555 		return 3;
1556 	case 12:
1557 	case 13:
1558 	case 100:
1559 	case 102:
1560 	case 104:
1561 	case 106:
1562 		return 4;
1563 	case 14:
1564 	case 108:
1565 	case 110:
1566 	case 112:
1567 	case 114:
1568 		return 5;
1569 	case 116:
1570 	case 118:
1571 	case 120:
1572 	case 122:
1573 		return 6;
1574 	case 124:
1575 	case 126:
1576 	case 128:
1577 	case 130:
1578 		return 7;
1579 	case 132:
1580 	case 134:
1581 	case 136:
1582 	case 138:
1583 		return 8;
1584 	case 140:
1585 	case 142:
1586 	case 144:
1587 		return 9;
1588 	case 149:
1589 	case 151:
1590 	case 153:
1591 	case 155:
1592 		return 10;
1593 	case 157:
1594 	case 159:
1595 	case 161:
1596 		return 11;
1597 	case 165:
1598 	case 167:
1599 	case 169:
1600 	case 171:
1601 		return 12;
1602 	case 173:
1603 	case 175:
1604 	case 177:
1605 		return 13;
1606 	}
1607 }
1608 
1609 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1610 {
1611 	struct rtw_chip_info *chip = rtwdev->chip;
1612 	s8 dpd_diff = 0;
1613 
1614 	if (!chip->en_dis_dpd)
1615 		return 0;
1616 
1617 #define RTW_DPD_RATE_CHECK(_rate)					\
1618 	case DESC_RATE ## _rate:					\
1619 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1620 		dpd_diff = -6 * chip->txgi_factor;			\
1621 	break
1622 
1623 	switch (rate) {
1624 	RTW_DPD_RATE_CHECK(6M);
1625 	RTW_DPD_RATE_CHECK(9M);
1626 	RTW_DPD_RATE_CHECK(MCS0);
1627 	RTW_DPD_RATE_CHECK(MCS1);
1628 	RTW_DPD_RATE_CHECK(MCS8);
1629 	RTW_DPD_RATE_CHECK(MCS9);
1630 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1631 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1632 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1633 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1634 	}
1635 #undef RTW_DPD_RATE_CHECK
1636 
1637 	return dpd_diff;
1638 }
1639 
1640 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1641 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1642 					enum rtw_bandwidth bandwidth,
1643 					u8 rate, u8 group)
1644 {
1645 	struct rtw_chip_info *chip = rtwdev->chip;
1646 	u8 tx_power;
1647 	bool mcs_rate;
1648 	bool above_2ss;
1649 	u8 factor = chip->txgi_factor;
1650 
1651 	if (rate <= DESC_RATE11M)
1652 		tx_power = pwr_idx_2g->cck_base[group];
1653 	else
1654 		tx_power = pwr_idx_2g->bw40_base[group];
1655 
1656 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1657 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1658 
1659 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1660 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1661 		    rate <= DESC_RATEVHT2SS_MCS9);
1662 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1663 		    (rate >= DESC_RATEVHT2SS_MCS0);
1664 
1665 	if (!mcs_rate)
1666 		return tx_power;
1667 
1668 	switch (bandwidth) {
1669 	default:
1670 		WARN_ON(1);
1671 		/* fall through */
1672 	case RTW_CHANNEL_WIDTH_20:
1673 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1674 		if (above_2ss)
1675 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1676 		break;
1677 	case RTW_CHANNEL_WIDTH_40:
1678 		/* bw40 is the base power */
1679 		if (above_2ss)
1680 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1681 		break;
1682 	}
1683 
1684 	return tx_power;
1685 }
1686 
1687 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1688 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1689 					enum rtw_bandwidth bandwidth,
1690 					u8 rate, u8 group)
1691 {
1692 	struct rtw_chip_info *chip = rtwdev->chip;
1693 	u8 tx_power;
1694 	u8 upper, lower;
1695 	bool mcs_rate;
1696 	bool above_2ss;
1697 	u8 factor = chip->txgi_factor;
1698 
1699 	tx_power = pwr_idx_5g->bw40_base[group];
1700 
1701 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1702 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1703 		    rate <= DESC_RATEVHT2SS_MCS9);
1704 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1705 		    (rate >= DESC_RATEVHT2SS_MCS0);
1706 
1707 	if (!mcs_rate) {
1708 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1709 		return tx_power;
1710 	}
1711 
1712 	switch (bandwidth) {
1713 	default:
1714 		WARN_ON(1);
1715 		/* fall through */
1716 	case RTW_CHANNEL_WIDTH_20:
1717 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1718 		if (above_2ss)
1719 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1720 		break;
1721 	case RTW_CHANNEL_WIDTH_40:
1722 		/* bw40 is the base power */
1723 		if (above_2ss)
1724 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1725 		break;
1726 	case RTW_CHANNEL_WIDTH_80:
1727 		/* the base idx of bw80 is the average of bw40+/bw40- */
1728 		lower = pwr_idx_5g->bw40_base[group];
1729 		upper = pwr_idx_5g->bw40_base[group + 1];
1730 
1731 		tx_power = (lower + upper) / 2;
1732 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1733 		if (above_2ss)
1734 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1735 		break;
1736 	}
1737 
1738 	return tx_power;
1739 }
1740 
1741 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1742 				     enum rtw_bandwidth bw, u8 rf_path,
1743 				     u8 rate, u8 channel, u8 regd)
1744 {
1745 	struct rtw_hal *hal = &rtwdev->hal;
1746 	u8 *cch_by_bw = hal->cch_by_bw;
1747 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1748 	u8 rs;
1749 	int ch_idx;
1750 	u8 cur_bw, cur_ch;
1751 	s8 cur_lmt;
1752 
1753 	if (regd > RTW_REGD_WW)
1754 		return power_limit;
1755 
1756 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1757 		rs = RTW_RATE_SECTION_CCK;
1758 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1759 		rs = RTW_RATE_SECTION_OFDM;
1760 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1761 		rs = RTW_RATE_SECTION_HT_1S;
1762 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1763 		rs = RTW_RATE_SECTION_HT_2S;
1764 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1765 		rs = RTW_RATE_SECTION_VHT_1S;
1766 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1767 		rs = RTW_RATE_SECTION_VHT_2S;
1768 	else
1769 		goto err;
1770 
1771 	/* only 20M BW with cck and ofdm */
1772 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1773 		bw = RTW_CHANNEL_WIDTH_20;
1774 
1775 	/* only 20/40M BW with ht */
1776 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1777 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1778 
1779 	/* select min power limit among [20M BW ~ current BW] */
1780 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1781 		cur_ch = cch_by_bw[cur_bw];
1782 
1783 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1784 		if (ch_idx < 0)
1785 			goto err;
1786 
1787 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1788 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1789 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1790 
1791 		power_limit = min_t(s8, cur_lmt, power_limit);
1792 	}
1793 
1794 	return power_limit;
1795 
1796 err:
1797 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1798 	     band, bw, rf_path, rate, channel);
1799 	return (s8)rtwdev->chip->max_power_index;
1800 }
1801 
1802 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1803 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1804 {
1805 	struct rtw_hal *hal = &rtwdev->hal;
1806 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1807 	struct rtw_txpwr_idx *pwr_idx;
1808 	u8 group, band;
1809 	u8 *base = &pwr_param->pwr_base;
1810 	s8 *offset = &pwr_param->pwr_offset;
1811 	s8 *limit = &pwr_param->pwr_limit;
1812 	s8 *remnant = &pwr_param->pwr_remnant;
1813 
1814 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1815 	group = rtw_get_channel_group(ch);
1816 
1817 	/* base power index for 2.4G/5G */
1818 	if (IS_CH_2G_BAND(ch)) {
1819 		band = PHY_BAND_2G;
1820 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1821 						      &pwr_idx->pwr_idx_2g,
1822 						      bw, rate, group);
1823 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1824 	} else {
1825 		band = PHY_BAND_5G;
1826 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1827 						      &pwr_idx->pwr_idx_5g,
1828 						      bw, rate, group);
1829 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1830 	}
1831 
1832 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1833 					    rate, ch, regd);
1834 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1835 		    dm_info->txagc_remnant_ofdm);
1836 }
1837 
1838 u8
1839 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1840 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1841 {
1842 	struct rtw_power_params pwr_param = {0};
1843 	u8 tx_power;
1844 	s8 offset;
1845 
1846 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1847 				channel, regd, &pwr_param);
1848 
1849 	tx_power = pwr_param.pwr_base;
1850 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1851 
1852 	if (rtwdev->chip->en_dis_dpd)
1853 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1854 
1855 	tx_power += offset + pwr_param.pwr_remnant;
1856 
1857 	if (tx_power > rtwdev->chip->max_power_index)
1858 		tx_power = rtwdev->chip->max_power_index;
1859 
1860 	return tx_power;
1861 }
1862 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1863 
1864 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1865 					     u8 ch, u8 path, u8 rs)
1866 {
1867 	struct rtw_hal *hal = &rtwdev->hal;
1868 	u8 regd = rtwdev->regd.txpwr_regd;
1869 	u8 *rates;
1870 	u8 size;
1871 	u8 rate;
1872 	u8 pwr_idx;
1873 	u8 bw;
1874 	int i;
1875 
1876 	if (rs >= RTW_RATE_SECTION_MAX)
1877 		return;
1878 
1879 	rates = rtw_rate_section[rs];
1880 	size = rtw_rate_size[rs];
1881 	bw = hal->current_band_width;
1882 	for (i = 0; i < size; i++) {
1883 		rate = rates[i];
1884 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1885 						     bw, ch, regd);
1886 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1887 	}
1888 }
1889 
1890 /* set tx power level by path for each rates, note that the order of the rates
1891  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1892  * power index into a four-byte power index register, and calls set_tx_agc to
1893  * write these values into hardware
1894  */
1895 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1896 					       u8 ch, u8 path)
1897 {
1898 	struct rtw_hal *hal = &rtwdev->hal;
1899 	u8 rs;
1900 
1901 	/* do not need cck rates if we are not in 2.4G */
1902 	if (hal->current_band_type == RTW_BAND_2G)
1903 		rs = RTW_RATE_SECTION_CCK;
1904 	else
1905 		rs = RTW_RATE_SECTION_OFDM;
1906 
1907 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1908 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1909 }
1910 
1911 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1912 {
1913 	struct rtw_chip_info *chip = rtwdev->chip;
1914 	struct rtw_hal *hal = &rtwdev->hal;
1915 	u8 path;
1916 
1917 	mutex_lock(&hal->tx_power_mutex);
1918 
1919 	for (path = 0; path < hal->rf_path_num; path++)
1920 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1921 
1922 	chip->ops->set_tx_power_index(rtwdev);
1923 	mutex_unlock(&hal->tx_power_mutex);
1924 }
1925 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1926 
1927 static void
1928 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1929 					u8 rs, u8 size, u8 *rates)
1930 {
1931 	u8 rate;
1932 	u8 base_idx, rate_idx;
1933 	s8 base_2g, base_5g;
1934 
1935 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1936 		base_idx = rates[size - 3];
1937 	else
1938 		base_idx = rates[size - 1];
1939 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1940 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1941 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1942 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1943 	for (rate = 0; rate < size; rate++) {
1944 		rate_idx = rates[rate];
1945 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1946 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1947 	}
1948 }
1949 
1950 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1951 {
1952 	u8 path;
1953 
1954 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1955 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1956 				RTW_RATE_SECTION_CCK,
1957 				rtw_cck_size, rtw_cck_rates);
1958 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1959 				RTW_RATE_SECTION_OFDM,
1960 				rtw_ofdm_size, rtw_ofdm_rates);
1961 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1962 				RTW_RATE_SECTION_HT_1S,
1963 				rtw_ht_1s_size, rtw_ht_1s_rates);
1964 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1965 				RTW_RATE_SECTION_HT_2S,
1966 				rtw_ht_2s_size, rtw_ht_2s_rates);
1967 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1968 				RTW_RATE_SECTION_VHT_1S,
1969 				rtw_vht_1s_size, rtw_vht_1s_rates);
1970 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1971 				RTW_RATE_SECTION_VHT_2S,
1972 				rtw_vht_2s_size, rtw_vht_2s_rates);
1973 	}
1974 }
1975 
1976 static void
1977 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1978 {
1979 	s8 base;
1980 	u8 ch;
1981 
1982 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1983 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1984 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1985 	}
1986 
1987 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1988 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1989 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1990 	}
1991 }
1992 
1993 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1994 {
1995 	u8 regd, bw, rs;
1996 
1997 	/* default at channel 1 */
1998 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1999 
2000 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2001 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2002 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2003 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2004 }
2005 
2006 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2007 					u8 regd, u8 bw, u8 rs)
2008 {
2009 	struct rtw_hal *hal = &rtwdev->hal;
2010 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2011 	u8 ch;
2012 
2013 	/* 2.4G channels */
2014 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2015 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2016 
2017 	/* 5G channels */
2018 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2019 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2020 }
2021 
2022 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2023 {
2024 	struct rtw_hal *hal = &rtwdev->hal;
2025 	u8 regd, path, rate, rs, bw;
2026 
2027 	/* init tx power by rate offset */
2028 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2029 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2030 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2031 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2032 		}
2033 	}
2034 
2035 	/* init tx power limit */
2036 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2037 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2038 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2039 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2040 							    rs);
2041 }
2042 
2043 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2044 				struct rtw_swing_table *swing_table)
2045 {
2046 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2047 	u8 channel = rtwdev->hal.current_channel;
2048 
2049 	if (IS_CH_2G_BAND(channel)) {
2050 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2051 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2052 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2053 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2054 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2055 		} else {
2056 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2057 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2058 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2059 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2060 		}
2061 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2062 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2063 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2064 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2065 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2066 	} else if (IS_CH_5G_BAND_3(channel)) {
2067 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2068 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2069 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2070 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2071 	} else if (IS_CH_5G_BAND_4(channel)) {
2072 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2073 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2074 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2075 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2076 	} else {
2077 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2078 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2079 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2080 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2081 	}
2082 }
2083 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2084 
2085 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2086 {
2087 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2088 
2089 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2090 	dm_info->thermal_avg[path] =
2091 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2092 }
2093 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2094 
2095 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2096 				      u8 path)
2097 {
2098 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2099 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2100 
2101 	if (avg == thermal)
2102 		return false;
2103 
2104 	return true;
2105 }
2106 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2107 
2108 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2109 {
2110 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2111 	u8 therm_avg, therm_efuse, therm_delta;
2112 
2113 	therm_avg = dm_info->thermal_avg[path];
2114 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2115 	therm_delta = abs(therm_avg - therm_efuse);
2116 
2117 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2118 }
2119 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2120 
2121 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2122 			       struct rtw_swing_table *swing_table,
2123 			       u8 tbl_path, u8 therm_path, u8 delta)
2124 {
2125 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2126 	const u8 *delta_swing_table_idx_pos;
2127 	const u8 *delta_swing_table_idx_neg;
2128 
2129 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2130 		rtw_warn(rtwdev, "power track table overflow\n");
2131 		return 0;
2132 	}
2133 
2134 	if (!swing_table) {
2135 		rtw_warn(rtwdev, "swing table not configured\n");
2136 		return 0;
2137 	}
2138 
2139 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2140 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2141 
2142 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2143 		rtw_warn(rtwdev, "invalid swing table index\n");
2144 		return 0;
2145 	}
2146 
2147 	if (dm_info->thermal_avg[therm_path] >
2148 	    rtwdev->efuse.thermal_meter[therm_path])
2149 		return delta_swing_table_idx_pos[delta];
2150 	else
2151 		return -delta_swing_table_idx_neg[delta];
2152 }
2153 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2154 
2155 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2156 {
2157 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2158 	u8 delta_iqk;
2159 
2160 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2161 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2162 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2163 		return true;
2164 	}
2165 	return false;
2166 }
2167 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2168