1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 struct phy_pg_cfg_pair {
24 	u32 band;
25 	u32 rf_path;
26 	u32 tx_num;
27 	u32 addr;
28 	u32 bitmask;
29 	u32 data;
30 };
31 
32 static const u32 db_invert_table[12][8] = {
33 	{10,		13,		16,		20,
34 	 25,		32,		40,		50},
35 	{64,		80,		101,		128,
36 	 160,		201,		256,		318},
37 	{401,		505,		635,		800,
38 	 1007,		1268,		1596,		2010},
39 	{316,		398,		501,		631,
40 	 794,		1000,		1259,		1585},
41 	{1995,		2512,		3162,		3981,
42 	 5012,		6310,		7943,		10000},
43 	{12589,		15849,		19953,		25119,
44 	 31623,		39811,		50119,		63098},
45 	{79433,		100000,		125893,		158489,
46 	 199526,	251189,		316228,		398107},
47 	{501187,	630957,		794328,		1000000,
48 	 1258925,	1584893,	1995262,	2511886},
49 	{3162278,	3981072,	5011872,	6309573,
50 	 7943282,	1000000,	12589254,	15848932},
51 	{19952623,	25118864,	31622777,	39810717,
52 	 50118723,	63095734,	79432823,	100000000},
53 	{125892541,	158489319,	199526232,	251188643,
54 	 316227766,	398107171,	501187234,	630957345},
55 	{794328235,	1000000000,	1258925412,	1584893192,
56 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
57 };
58 
59 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
60 u8 rtw_ofdm_rates[] = {
61 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
62 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
63 	DESC_RATE48M, DESC_RATE54M
64 };
65 u8 rtw_ht_1s_rates[] = {
66 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
67 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
68 	DESC_RATEMCS6, DESC_RATEMCS7
69 };
70 u8 rtw_ht_2s_rates[] = {
71 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
72 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
73 	DESC_RATEMCS14, DESC_RATEMCS15
74 };
75 u8 rtw_vht_1s_rates[] = {
76 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
77 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
78 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
79 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
80 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
81 };
82 u8 rtw_vht_2s_rates[] = {
83 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
84 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
85 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
86 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
87 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
88 };
89 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
90 	rtw_cck_rates, rtw_ofdm_rates,
91 	rtw_ht_1s_rates, rtw_ht_2s_rates,
92 	rtw_vht_1s_rates, rtw_vht_2s_rates
93 };
94 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
95 	ARRAY_SIZE(rtw_cck_rates),
96 	ARRAY_SIZE(rtw_ofdm_rates),
97 	ARRAY_SIZE(rtw_ht_1s_rates),
98 	ARRAY_SIZE(rtw_ht_2s_rates),
99 	ARRAY_SIZE(rtw_vht_1s_rates),
100 	ARRAY_SIZE(rtw_vht_2s_rates)
101 };
102 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
103 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
104 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
105 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
106 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
107 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
108 
109 enum rtw_phy_band_type {
110 	PHY_BAND_2G	= 0,
111 	PHY_BAND_5G	= 1,
112 };
113 
114 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
115 {
116 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
117 	u8 i, j;
118 
119 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
120 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
121 			dm_info->cck_pd_lv[i][j] = 0;
122 	}
123 
124 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
125 }
126 
127 void rtw_phy_init(struct rtw_dev *rtwdev)
128 {
129 	struct rtw_chip_info *chip = rtwdev->chip;
130 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
131 	u32 addr, mask;
132 
133 	dm_info->fa_history[3] = 0;
134 	dm_info->fa_history[2] = 0;
135 	dm_info->fa_history[1] = 0;
136 	dm_info->fa_history[0] = 0;
137 	dm_info->igi_bitmap = 0;
138 	dm_info->igi_history[3] = 0;
139 	dm_info->igi_history[2] = 0;
140 	dm_info->igi_history[1] = 0;
141 
142 	addr = chip->dig[0].addr;
143 	mask = chip->dig[0].mask;
144 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
145 	rtw_phy_cck_pd_init(rtwdev);
146 }
147 
148 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
149 {
150 	struct rtw_chip_info *chip = rtwdev->chip;
151 	struct rtw_hal *hal = &rtwdev->hal;
152 	u32 addr, mask;
153 	u8 path;
154 
155 	for (path = 0; path < hal->rf_path_num; path++) {
156 		addr = chip->dig[path].addr;
157 		mask = chip->dig[path].mask;
158 		rtw_write32_mask(rtwdev, addr, mask, igi);
159 	}
160 }
161 
162 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
163 {
164 	struct rtw_chip_info *chip = rtwdev->chip;
165 
166 	chip->ops->false_alarm_statistics(rtwdev);
167 }
168 
169 #define RA_FLOOR_TABLE_SIZE	7
170 #define RA_FLOOR_UP_GAP		3
171 
172 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
173 {
174 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
175 	u8 new_level = 0;
176 	int i;
177 
178 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
179 		if (i >= old_level)
180 			table[i] += RA_FLOOR_UP_GAP;
181 
182 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
183 		if (rssi < table[i]) {
184 			new_level = i;
185 			break;
186 		}
187 	}
188 
189 	return new_level;
190 }
191 
192 struct rtw_phy_stat_iter_data {
193 	struct rtw_dev *rtwdev;
194 	u8 min_rssi;
195 };
196 
197 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
198 {
199 	struct rtw_phy_stat_iter_data *iter_data = data;
200 	struct rtw_dev *rtwdev = iter_data->rtwdev;
201 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
202 	u8 rssi;
203 
204 	rssi = ewma_rssi_read(&si->avg_rssi);
205 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
206 
207 	rtw_fw_send_rssi_info(rtwdev, si);
208 
209 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
210 }
211 
212 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
213 {
214 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
215 	struct rtw_phy_stat_iter_data data = {};
216 
217 	data.rtwdev = rtwdev;
218 	data.min_rssi = U8_MAX;
219 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
220 
221 	dm_info->pre_min_rssi = dm_info->min_rssi;
222 	dm_info->min_rssi = data.min_rssi;
223 }
224 
225 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
226 {
227 	rtw_phy_stat_rssi(rtwdev);
228 	rtw_phy_stat_false_alarm(rtwdev);
229 }
230 
231 #define DIG_PERF_FA_TH_LOW			250
232 #define DIG_PERF_FA_TH_HIGH			500
233 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
234 #define DIG_PERF_MAX				0x5a
235 #define DIG_PERF_MID				0x40
236 #define DIG_CVRG_FA_TH_LOW			2000
237 #define DIG_CVRG_FA_TH_HIGH			4000
238 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
239 #define DIG_CVRG_MAX				0x2a
240 #define DIG_CVRG_MID				0x26
241 #define DIG_CVRG_MIN				0x1c
242 #define DIG_RSSI_GAIN_OFFSET			15
243 
244 static bool
245 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
246 {
247 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
248 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
249 	u16 *fa_history;
250 	u8 *igi_history;
251 	u8 damping_rssi;
252 	u8 min_rssi;
253 	u8 diff;
254 	u8 igi_bitmap;
255 	bool damping = false;
256 
257 	min_rssi = dm_info->min_rssi;
258 	if (dm_info->damping) {
259 		damping_rssi = dm_info->damping_rssi;
260 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
261 						 damping_rssi - min_rssi;
262 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
263 			dm_info->damping = false;
264 			return false;
265 		}
266 
267 		return true;
268 	}
269 
270 	igi_history = dm_info->igi_history;
271 	fa_history = dm_info->fa_history;
272 	igi_bitmap = dm_info->igi_bitmap & 0xf;
273 	switch (igi_bitmap) {
274 	case 5:
275 		/* down -> up -> down -> up */
276 		if (igi_history[0] > igi_history[1] &&
277 		    igi_history[2] > igi_history[3] &&
278 		    igi_history[0] - igi_history[1] >= 2 &&
279 		    igi_history[2] - igi_history[3] >= 2 &&
280 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
281 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
282 			damping = true;
283 		break;
284 	case 9:
285 		/* up -> down -> down -> up */
286 		if (igi_history[0] > igi_history[1] &&
287 		    igi_history[3] > igi_history[2] &&
288 		    igi_history[0] - igi_history[1] >= 4 &&
289 		    igi_history[3] - igi_history[2] >= 2 &&
290 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
291 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
292 			damping = true;
293 		break;
294 	default:
295 		return false;
296 	}
297 
298 	if (damping) {
299 		dm_info->damping = true;
300 		dm_info->damping_cnt = 0;
301 		dm_info->damping_rssi = min_rssi;
302 	}
303 
304 	return damping;
305 }
306 
307 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
308 				     u8 *upper, u8 *lower, bool linked)
309 {
310 	u8 dig_max, dig_min, dig_mid;
311 	u8 min_rssi;
312 
313 	if (linked) {
314 		dig_max = DIG_PERF_MAX;
315 		dig_mid = DIG_PERF_MID;
316 		/* 22B=0x1c, 22C=0x20 */
317 		dig_min = 0x1c;
318 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
319 	} else {
320 		dig_max = DIG_CVRG_MAX;
321 		dig_mid = DIG_CVRG_MID;
322 		dig_min = DIG_CVRG_MIN;
323 		min_rssi = dig_min;
324 	}
325 
326 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
327 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
328 
329 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
330 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
331 }
332 
333 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
334 				      u16 *fa_th, u8 *step, bool linked)
335 {
336 	u8 min_rssi, pre_min_rssi;
337 
338 	min_rssi = dm_info->min_rssi;
339 	pre_min_rssi = dm_info->pre_min_rssi;
340 	step[0] = 4;
341 	step[1] = 3;
342 	step[2] = 2;
343 
344 	if (linked) {
345 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
346 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
347 		fa_th[2] = DIG_PERF_FA_TH_LOW;
348 		if (pre_min_rssi > min_rssi) {
349 			step[0] = 6;
350 			step[1] = 4;
351 			step[2] = 2;
352 		}
353 	} else {
354 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
355 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
356 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
357 	}
358 }
359 
360 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
361 {
362 	u8 *igi_history;
363 	u16 *fa_history;
364 	u8 igi_bitmap;
365 	bool up;
366 
367 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
368 	igi_history = dm_info->igi_history;
369 	fa_history = dm_info->fa_history;
370 
371 	up = igi > igi_history[0];
372 	igi_bitmap |= up;
373 
374 	igi_history[3] = igi_history[2];
375 	igi_history[2] = igi_history[1];
376 	igi_history[1] = igi_history[0];
377 	igi_history[0] = igi;
378 
379 	fa_history[3] = fa_history[2];
380 	fa_history[2] = fa_history[1];
381 	fa_history[1] = fa_history[0];
382 	fa_history[0] = fa;
383 
384 	dm_info->igi_bitmap = igi_bitmap;
385 }
386 
387 static void rtw_phy_dig(struct rtw_dev *rtwdev)
388 {
389 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
390 	u8 upper_bound, lower_bound;
391 	u8 pre_igi, cur_igi;
392 	u16 fa_th[3], fa_cnt;
393 	u8 level;
394 	u8 step[3];
395 	bool linked;
396 
397 	if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
398 		return;
399 
400 	if (rtw_phy_dig_check_damping(dm_info))
401 		return;
402 
403 	linked = !!rtwdev->sta_cnt;
404 
405 	fa_cnt = dm_info->total_fa_cnt;
406 	pre_igi = dm_info->igi_history[0];
407 
408 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
409 
410 	/* test the false alarm count from the highest threshold level first,
411 	 * and increase it by corresponding step size
412 	 *
413 	 * note that the step size is offset by -2, compensate it afterall
414 	 */
415 	cur_igi = pre_igi;
416 	for (level = 0; level < 3; level++) {
417 		if (fa_cnt > fa_th[level]) {
418 			cur_igi += step[level];
419 			break;
420 		}
421 	}
422 	cur_igi -= 2;
423 
424 	/* calculate the upper/lower bound by the minimum rssi we have among
425 	 * the peers connected with us, meanwhile make sure the igi value does
426 	 * not beyond the hardware limitation
427 	 */
428 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
429 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
430 
431 	/* record current igi value and false alarm statistics for further
432 	 * damping checks, and record the trend of igi values
433 	 */
434 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
435 
436 	if (cur_igi != pre_igi)
437 		rtw_phy_dig_write(rtwdev, cur_igi);
438 }
439 
440 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
441 {
442 	struct rtw_dev *rtwdev = data;
443 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
444 
445 	rtw_update_sta_info(rtwdev, si);
446 }
447 
448 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
449 {
450 	if (rtwdev->watch_dog_cnt & 0x3)
451 		return;
452 
453 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
454 }
455 
456 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
457 {
458 	struct rtw_chip_info *chip = rtwdev->chip;
459 
460 	if (chip->ops->dpk_track)
461 		chip->ops->dpk_track(rtwdev);
462 }
463 
464 #define CCK_PD_LV_MAX		5
465 #define CCK_PD_FA_LV1_MIN	1000
466 #define CCK_PD_FA_LV0_MAX	500
467 
468 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
469 {
470 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
471 	u32 cck_fa_avg = dm_info->cck_fa_avg;
472 
473 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
474 		return 1;
475 
476 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
477 		return 0;
478 
479 	return CCK_PD_LV_MAX;
480 }
481 
482 #define CCK_PD_IGI_LV4_VAL 0x38
483 #define CCK_PD_IGI_LV3_VAL 0x2a
484 #define CCK_PD_IGI_LV2_VAL 0x24
485 #define CCK_PD_RSSI_LV4_VAL 32
486 #define CCK_PD_RSSI_LV3_VAL 32
487 #define CCK_PD_RSSI_LV2_VAL 24
488 
489 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
490 {
491 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
492 	u8 igi = dm_info->igi_history[0];
493 	u8 rssi = dm_info->min_rssi;
494 	u32 cck_fa_avg = dm_info->cck_fa_avg;
495 
496 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
497 		return 4;
498 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
499 		return 3;
500 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
501 		return 2;
502 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
503 		return 1;
504 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
505 		return 0;
506 
507 	return CCK_PD_LV_MAX;
508 }
509 
510 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
511 {
512 	if (!rtw_is_assoc(rtwdev))
513 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
514 	else
515 		return rtw_phy_cck_pd_lv_link(rtwdev);
516 }
517 
518 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
519 {
520 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
521 	struct rtw_chip_info *chip = rtwdev->chip;
522 	u32 cck_fa = dm_info->cck_fa_cnt;
523 	u8 level;
524 
525 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
526 		return;
527 
528 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
529 		dm_info->cck_fa_avg = cck_fa;
530 	else
531 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
532 
533 	level = rtw_phy_cck_pd_lv(rtwdev);
534 
535 	if (level >= CCK_PD_LV_MAX)
536 		return;
537 
538 	if (chip->ops->cck_pd_set)
539 		chip->ops->cck_pd_set(rtwdev, level);
540 }
541 
542 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
543 {
544 	/* for further calculation */
545 	rtw_phy_statistics(rtwdev);
546 	rtw_phy_dig(rtwdev);
547 	rtw_phy_cck_pd(rtwdev);
548 	rtw_phy_ra_info_update(rtwdev);
549 	rtw_phy_dpk_track(rtwdev);
550 }
551 
552 #define FRAC_BITS 3
553 
554 static u8 rtw_phy_power_2_db(s8 power)
555 {
556 	if (power <= -100 || power >= 20)
557 		return 0;
558 	else if (power >= 0)
559 		return 100;
560 	else
561 		return 100 + power;
562 }
563 
564 static u64 rtw_phy_db_2_linear(u8 power_db)
565 {
566 	u8 i, j;
567 	u64 linear;
568 
569 	if (power_db > 96)
570 		power_db = 96;
571 	else if (power_db < 1)
572 		return 1;
573 
574 	/* 1dB ~ 96dB */
575 	i = (power_db - 1) >> 3;
576 	j = (power_db - 1) - (i << 3);
577 
578 	linear = db_invert_table[i][j];
579 	linear = i > 2 ? linear << FRAC_BITS : linear;
580 
581 	return linear;
582 }
583 
584 static u8 rtw_phy_linear_2_db(u64 linear)
585 {
586 	u8 i;
587 	u8 j;
588 	u32 dB;
589 
590 	if (linear >= db_invert_table[11][7])
591 		return 96; /* maximum 96 dB */
592 
593 	for (i = 0; i < 12; i++) {
594 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
595 			break;
596 		else if (i > 2 && linear <= db_invert_table[i][7])
597 			break;
598 	}
599 
600 	for (j = 0; j < 8; j++) {
601 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
602 			break;
603 		else if (i > 2 && linear <= db_invert_table[i][j])
604 			break;
605 	}
606 
607 	if (j == 0 && i == 0)
608 		goto end;
609 
610 	if (j == 0) {
611 		if (i != 3) {
612 			if (db_invert_table[i][0] - linear >
613 			    linear - db_invert_table[i - 1][7]) {
614 				i = i - 1;
615 				j = 7;
616 			}
617 		} else {
618 			if (db_invert_table[3][0] - linear >
619 			    linear - db_invert_table[2][7]) {
620 				i = 2;
621 				j = 7;
622 			}
623 		}
624 	} else {
625 		if (db_invert_table[i][j] - linear >
626 		    linear - db_invert_table[i][j - 1]) {
627 			j = j - 1;
628 		}
629 	}
630 end:
631 	dB = (i << 3) + j + 1;
632 
633 	return dB;
634 }
635 
636 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
637 {
638 	s8 power;
639 	u8 power_db;
640 	u64 linear;
641 	u64 sum = 0;
642 	u8 path;
643 
644 	for (path = 0; path < path_num; path++) {
645 		power = rf_power[path];
646 		power_db = rtw_phy_power_2_db(power);
647 		linear = rtw_phy_db_2_linear(power_db);
648 		sum += linear;
649 	}
650 
651 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
652 	switch (path_num) {
653 	case 2:
654 		sum >>= 1;
655 		break;
656 	case 3:
657 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
658 		break;
659 	case 4:
660 		sum >>= 2;
661 		break;
662 	default:
663 		break;
664 	}
665 
666 	return rtw_phy_linear_2_db(sum);
667 }
668 
669 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
670 		    u32 addr, u32 mask)
671 {
672 	struct rtw_hal *hal = &rtwdev->hal;
673 	struct rtw_chip_info *chip = rtwdev->chip;
674 	const u32 *base_addr = chip->rf_base_addr;
675 	u32 val, direct_addr;
676 
677 	if (rf_path >= hal->rf_path_num) {
678 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
679 		return INV_RF_DATA;
680 	}
681 
682 	addr &= 0xff;
683 	direct_addr = base_addr[rf_path] + (addr << 2);
684 	mask &= RFREG_MASK;
685 
686 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
687 
688 	return val;
689 }
690 
691 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
692 			       u32 addr, u32 mask, u32 data)
693 {
694 	struct rtw_hal *hal = &rtwdev->hal;
695 	struct rtw_chip_info *chip = rtwdev->chip;
696 	u32 *sipi_addr = chip->rf_sipi_addr;
697 	u32 data_and_addr;
698 	u32 old_data = 0;
699 	u32 shift;
700 
701 	if (rf_path >= hal->rf_path_num) {
702 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
703 		return false;
704 	}
705 
706 	addr &= 0xff;
707 	mask &= RFREG_MASK;
708 
709 	if (mask != RFREG_MASK) {
710 		old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
711 
712 		if (old_data == INV_RF_DATA) {
713 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
714 			return false;
715 		}
716 
717 		shift = __ffs(mask);
718 		data = ((old_data) & (~mask)) | (data << shift);
719 	}
720 
721 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
722 
723 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
724 
725 	udelay(13);
726 
727 	return true;
728 }
729 
730 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
731 			  u32 addr, u32 mask, u32 data)
732 {
733 	struct rtw_hal *hal = &rtwdev->hal;
734 	struct rtw_chip_info *chip = rtwdev->chip;
735 	const u32 *base_addr = chip->rf_base_addr;
736 	u32 direct_addr;
737 
738 	if (rf_path >= hal->rf_path_num) {
739 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
740 		return false;
741 	}
742 
743 	addr &= 0xff;
744 	direct_addr = base_addr[rf_path] + (addr << 2);
745 	mask &= RFREG_MASK;
746 
747 	if (addr == RF_CFGCH) {
748 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
749 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
750 	}
751 
752 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
753 
754 	udelay(1);
755 
756 	if (addr == RF_CFGCH) {
757 		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
758 		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
759 	}
760 
761 	return true;
762 }
763 
764 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
765 			      u32 addr, u32 mask, u32 data)
766 {
767 	if (addr != 0x00)
768 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
769 
770 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
771 }
772 
773 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
774 {
775 	struct rtw_hal *hal = &rtwdev->hal;
776 	struct rtw_efuse *efuse = &rtwdev->efuse;
777 	struct rtw_phy_cond cond = {0};
778 
779 	cond.cut = hal->cut_version ? hal->cut_version : 15;
780 	cond.pkg = pkg ? pkg : 15;
781 	cond.plat = 0x04;
782 	cond.rfe = efuse->rfe_option;
783 
784 	switch (rtw_hci_type(rtwdev)) {
785 	case RTW_HCI_TYPE_USB:
786 		cond.intf = INTF_USB;
787 		break;
788 	case RTW_HCI_TYPE_SDIO:
789 		cond.intf = INTF_SDIO;
790 		break;
791 	case RTW_HCI_TYPE_PCIE:
792 	default:
793 		cond.intf = INTF_PCIE;
794 		break;
795 	}
796 
797 	hal->phy_cond = cond;
798 
799 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
800 }
801 
802 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
803 {
804 	struct rtw_hal *hal = &rtwdev->hal;
805 	struct rtw_phy_cond drv_cond = hal->phy_cond;
806 
807 	if (cond.cut && cond.cut != drv_cond.cut)
808 		return false;
809 
810 	if (cond.pkg && cond.pkg != drv_cond.pkg)
811 		return false;
812 
813 	if (cond.intf && cond.intf != drv_cond.intf)
814 		return false;
815 
816 	if (cond.rfe != drv_cond.rfe)
817 		return false;
818 
819 	return true;
820 }
821 
822 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
823 {
824 	const union phy_table_tile *p = tbl->data;
825 	const union phy_table_tile *end = p + tbl->size / 2;
826 	struct rtw_phy_cond pos_cond = {0};
827 	bool is_matched = true, is_skipped = false;
828 
829 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
830 
831 	for (; p < end; p++) {
832 		if (p->cond.pos) {
833 			switch (p->cond.branch) {
834 			case BRANCH_ENDIF:
835 				is_matched = true;
836 				is_skipped = false;
837 				break;
838 			case BRANCH_ELSE:
839 				is_matched = is_skipped ? false : true;
840 				break;
841 			case BRANCH_IF:
842 			case BRANCH_ELIF:
843 			default:
844 				pos_cond = p->cond;
845 				break;
846 			}
847 		} else if (p->cond.neg) {
848 			if (!is_skipped) {
849 				if (check_positive(rtwdev, pos_cond)) {
850 					is_matched = true;
851 					is_skipped = true;
852 				} else {
853 					is_matched = false;
854 					is_skipped = false;
855 				}
856 			} else {
857 				is_matched = false;
858 			}
859 		} else if (is_matched) {
860 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
861 		}
862 	}
863 }
864 
865 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
866 
867 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
868 {
869 	if (rtwdev->chip->is_pwr_by_rate_dec)
870 		return bcd_to_dec_pwr_by_rate(hex, i);
871 
872 	return (hex >> (i * 8)) & 0xFF;
873 }
874 
875 static void
876 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
877 					 u32 addr, u32 mask, u32 val, u8 *rate,
878 					 u8 *pwr_by_rate, u8 *rate_num)
879 {
880 	int i;
881 
882 	switch (addr) {
883 	case 0xE00:
884 	case 0x830:
885 		rate[0] = DESC_RATE6M;
886 		rate[1] = DESC_RATE9M;
887 		rate[2] = DESC_RATE12M;
888 		rate[3] = DESC_RATE18M;
889 		for (i = 0; i < 4; ++i)
890 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
891 		*rate_num = 4;
892 		break;
893 	case 0xE04:
894 	case 0x834:
895 		rate[0] = DESC_RATE24M;
896 		rate[1] = DESC_RATE36M;
897 		rate[2] = DESC_RATE48M;
898 		rate[3] = DESC_RATE54M;
899 		for (i = 0; i < 4; ++i)
900 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
901 		*rate_num = 4;
902 		break;
903 	case 0xE08:
904 		rate[0] = DESC_RATE1M;
905 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
906 		*rate_num = 1;
907 		break;
908 	case 0x86C:
909 		if (mask == 0xffffff00) {
910 			rate[0] = DESC_RATE2M;
911 			rate[1] = DESC_RATE5_5M;
912 			rate[2] = DESC_RATE11M;
913 			for (i = 1; i < 4; ++i)
914 				pwr_by_rate[i - 1] =
915 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
916 			*rate_num = 3;
917 		} else if (mask == 0x000000ff) {
918 			rate[0] = DESC_RATE11M;
919 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
920 			*rate_num = 1;
921 		}
922 		break;
923 	case 0xE10:
924 	case 0x83C:
925 		rate[0] = DESC_RATEMCS0;
926 		rate[1] = DESC_RATEMCS1;
927 		rate[2] = DESC_RATEMCS2;
928 		rate[3] = DESC_RATEMCS3;
929 		for (i = 0; i < 4; ++i)
930 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
931 		*rate_num = 4;
932 		break;
933 	case 0xE14:
934 	case 0x848:
935 		rate[0] = DESC_RATEMCS4;
936 		rate[1] = DESC_RATEMCS5;
937 		rate[2] = DESC_RATEMCS6;
938 		rate[3] = DESC_RATEMCS7;
939 		for (i = 0; i < 4; ++i)
940 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
941 		*rate_num = 4;
942 		break;
943 	case 0xE18:
944 	case 0x84C:
945 		rate[0] = DESC_RATEMCS8;
946 		rate[1] = DESC_RATEMCS9;
947 		rate[2] = DESC_RATEMCS10;
948 		rate[3] = DESC_RATEMCS11;
949 		for (i = 0; i < 4; ++i)
950 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
951 		*rate_num = 4;
952 		break;
953 	case 0xE1C:
954 	case 0x868:
955 		rate[0] = DESC_RATEMCS12;
956 		rate[1] = DESC_RATEMCS13;
957 		rate[2] = DESC_RATEMCS14;
958 		rate[3] = DESC_RATEMCS15;
959 		for (i = 0; i < 4; ++i)
960 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
961 		*rate_num = 4;
962 		break;
963 	case 0x838:
964 		rate[0] = DESC_RATE1M;
965 		rate[1] = DESC_RATE2M;
966 		rate[2] = DESC_RATE5_5M;
967 		for (i = 1; i < 4; ++i)
968 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
969 								    val, i);
970 		*rate_num = 3;
971 		break;
972 	case 0xC20:
973 	case 0xE20:
974 	case 0x1820:
975 	case 0x1A20:
976 		rate[0] = DESC_RATE1M;
977 		rate[1] = DESC_RATE2M;
978 		rate[2] = DESC_RATE5_5M;
979 		rate[3] = DESC_RATE11M;
980 		for (i = 0; i < 4; ++i)
981 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
982 		*rate_num = 4;
983 		break;
984 	case 0xC24:
985 	case 0xE24:
986 	case 0x1824:
987 	case 0x1A24:
988 		rate[0] = DESC_RATE6M;
989 		rate[1] = DESC_RATE9M;
990 		rate[2] = DESC_RATE12M;
991 		rate[3] = DESC_RATE18M;
992 		for (i = 0; i < 4; ++i)
993 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
994 		*rate_num = 4;
995 		break;
996 	case 0xC28:
997 	case 0xE28:
998 	case 0x1828:
999 	case 0x1A28:
1000 		rate[0] = DESC_RATE24M;
1001 		rate[1] = DESC_RATE36M;
1002 		rate[2] = DESC_RATE48M;
1003 		rate[3] = DESC_RATE54M;
1004 		for (i = 0; i < 4; ++i)
1005 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1006 		*rate_num = 4;
1007 		break;
1008 	case 0xC2C:
1009 	case 0xE2C:
1010 	case 0x182C:
1011 	case 0x1A2C:
1012 		rate[0] = DESC_RATEMCS0;
1013 		rate[1] = DESC_RATEMCS1;
1014 		rate[2] = DESC_RATEMCS2;
1015 		rate[3] = DESC_RATEMCS3;
1016 		for (i = 0; i < 4; ++i)
1017 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1018 		*rate_num = 4;
1019 		break;
1020 	case 0xC30:
1021 	case 0xE30:
1022 	case 0x1830:
1023 	case 0x1A30:
1024 		rate[0] = DESC_RATEMCS4;
1025 		rate[1] = DESC_RATEMCS5;
1026 		rate[2] = DESC_RATEMCS6;
1027 		rate[3] = DESC_RATEMCS7;
1028 		for (i = 0; i < 4; ++i)
1029 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1030 		*rate_num = 4;
1031 		break;
1032 	case 0xC34:
1033 	case 0xE34:
1034 	case 0x1834:
1035 	case 0x1A34:
1036 		rate[0] = DESC_RATEMCS8;
1037 		rate[1] = DESC_RATEMCS9;
1038 		rate[2] = DESC_RATEMCS10;
1039 		rate[3] = DESC_RATEMCS11;
1040 		for (i = 0; i < 4; ++i)
1041 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1042 		*rate_num = 4;
1043 		break;
1044 	case 0xC38:
1045 	case 0xE38:
1046 	case 0x1838:
1047 	case 0x1A38:
1048 		rate[0] = DESC_RATEMCS12;
1049 		rate[1] = DESC_RATEMCS13;
1050 		rate[2] = DESC_RATEMCS14;
1051 		rate[3] = DESC_RATEMCS15;
1052 		for (i = 0; i < 4; ++i)
1053 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1054 		*rate_num = 4;
1055 		break;
1056 	case 0xC3C:
1057 	case 0xE3C:
1058 	case 0x183C:
1059 	case 0x1A3C:
1060 		rate[0] = DESC_RATEVHT1SS_MCS0;
1061 		rate[1] = DESC_RATEVHT1SS_MCS1;
1062 		rate[2] = DESC_RATEVHT1SS_MCS2;
1063 		rate[3] = DESC_RATEVHT1SS_MCS3;
1064 		for (i = 0; i < 4; ++i)
1065 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1066 		*rate_num = 4;
1067 		break;
1068 	case 0xC40:
1069 	case 0xE40:
1070 	case 0x1840:
1071 	case 0x1A40:
1072 		rate[0] = DESC_RATEVHT1SS_MCS4;
1073 		rate[1] = DESC_RATEVHT1SS_MCS5;
1074 		rate[2] = DESC_RATEVHT1SS_MCS6;
1075 		rate[3] = DESC_RATEVHT1SS_MCS7;
1076 		for (i = 0; i < 4; ++i)
1077 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1078 		*rate_num = 4;
1079 		break;
1080 	case 0xC44:
1081 	case 0xE44:
1082 	case 0x1844:
1083 	case 0x1A44:
1084 		rate[0] = DESC_RATEVHT1SS_MCS8;
1085 		rate[1] = DESC_RATEVHT1SS_MCS9;
1086 		rate[2] = DESC_RATEVHT2SS_MCS0;
1087 		rate[3] = DESC_RATEVHT2SS_MCS1;
1088 		for (i = 0; i < 4; ++i)
1089 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1090 		*rate_num = 4;
1091 		break;
1092 	case 0xC48:
1093 	case 0xE48:
1094 	case 0x1848:
1095 	case 0x1A48:
1096 		rate[0] = DESC_RATEVHT2SS_MCS2;
1097 		rate[1] = DESC_RATEVHT2SS_MCS3;
1098 		rate[2] = DESC_RATEVHT2SS_MCS4;
1099 		rate[3] = DESC_RATEVHT2SS_MCS5;
1100 		for (i = 0; i < 4; ++i)
1101 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1102 		*rate_num = 4;
1103 		break;
1104 	case 0xC4C:
1105 	case 0xE4C:
1106 	case 0x184C:
1107 	case 0x1A4C:
1108 		rate[0] = DESC_RATEVHT2SS_MCS6;
1109 		rate[1] = DESC_RATEVHT2SS_MCS7;
1110 		rate[2] = DESC_RATEVHT2SS_MCS8;
1111 		rate[3] = DESC_RATEVHT2SS_MCS9;
1112 		for (i = 0; i < 4; ++i)
1113 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1114 		*rate_num = 4;
1115 		break;
1116 	case 0xCD8:
1117 	case 0xED8:
1118 	case 0x18D8:
1119 	case 0x1AD8:
1120 		rate[0] = DESC_RATEMCS16;
1121 		rate[1] = DESC_RATEMCS17;
1122 		rate[2] = DESC_RATEMCS18;
1123 		rate[3] = DESC_RATEMCS19;
1124 		for (i = 0; i < 4; ++i)
1125 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1126 		*rate_num = 4;
1127 		break;
1128 	case 0xCDC:
1129 	case 0xEDC:
1130 	case 0x18DC:
1131 	case 0x1ADC:
1132 		rate[0] = DESC_RATEMCS20;
1133 		rate[1] = DESC_RATEMCS21;
1134 		rate[2] = DESC_RATEMCS22;
1135 		rate[3] = DESC_RATEMCS23;
1136 		for (i = 0; i < 4; ++i)
1137 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1138 		*rate_num = 4;
1139 		break;
1140 	case 0xCE0:
1141 	case 0xEE0:
1142 	case 0x18E0:
1143 	case 0x1AE0:
1144 		rate[0] = DESC_RATEVHT3SS_MCS0;
1145 		rate[1] = DESC_RATEVHT3SS_MCS1;
1146 		rate[2] = DESC_RATEVHT3SS_MCS2;
1147 		rate[3] = DESC_RATEVHT3SS_MCS3;
1148 		for (i = 0; i < 4; ++i)
1149 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1150 		*rate_num = 4;
1151 		break;
1152 	case 0xCE4:
1153 	case 0xEE4:
1154 	case 0x18E4:
1155 	case 0x1AE4:
1156 		rate[0] = DESC_RATEVHT3SS_MCS4;
1157 		rate[1] = DESC_RATEVHT3SS_MCS5;
1158 		rate[2] = DESC_RATEVHT3SS_MCS6;
1159 		rate[3] = DESC_RATEVHT3SS_MCS7;
1160 		for (i = 0; i < 4; ++i)
1161 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1162 		*rate_num = 4;
1163 		break;
1164 	case 0xCE8:
1165 	case 0xEE8:
1166 	case 0x18E8:
1167 	case 0x1AE8:
1168 		rate[0] = DESC_RATEVHT3SS_MCS8;
1169 		rate[1] = DESC_RATEVHT3SS_MCS9;
1170 		for (i = 0; i < 2; ++i)
1171 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1172 		*rate_num = 2;
1173 		break;
1174 	default:
1175 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1176 		break;
1177 	}
1178 }
1179 
1180 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1181 					   u32 band, u32 rfpath, u32 txnum,
1182 					   u32 regaddr, u32 bitmask, u32 data)
1183 {
1184 	struct rtw_hal *hal = &rtwdev->hal;
1185 	u8 rate_num = 0;
1186 	u8 rate;
1187 	u8 rates[RTW_RF_PATH_MAX] = {0};
1188 	s8 offset;
1189 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1190 	int i;
1191 
1192 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1193 						 rates, pwr_by_rate, &rate_num);
1194 
1195 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1196 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1197 		    rate_num > RTW_RF_PATH_MAX))
1198 		return;
1199 
1200 	for (i = 0; i < rate_num; i++) {
1201 		offset = pwr_by_rate[i];
1202 		rate = rates[i];
1203 		if (band == PHY_BAND_2G)
1204 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1205 		else if (band == PHY_BAND_5G)
1206 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1207 		else
1208 			continue;
1209 	}
1210 }
1211 
1212 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1213 {
1214 	const struct phy_pg_cfg_pair *p = tbl->data;
1215 	const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
1216 
1217 	BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
1218 
1219 	for (; p < end; p++) {
1220 		if (p->addr == 0xfe || p->addr == 0xffe) {
1221 			msleep(50);
1222 			continue;
1223 		}
1224 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1225 					       p->tx_num, p->addr, p->bitmask,
1226 					       p->data);
1227 	}
1228 }
1229 
1230 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1231 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1232 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1233 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1234 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1235 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1236 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1237 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1238 
1239 static int rtw_channel_to_idx(u8 band, u8 channel)
1240 {
1241 	int ch_idx;
1242 	u8 n_channel;
1243 
1244 	if (band == PHY_BAND_2G) {
1245 		ch_idx = channel - 1;
1246 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1247 	} else if (band == PHY_BAND_5G) {
1248 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1249 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1250 			if (rtw_channel_idx_5g[ch_idx] == channel)
1251 				break;
1252 	} else {
1253 		return -1;
1254 	}
1255 
1256 	if (ch_idx >= n_channel)
1257 		return -1;
1258 
1259 	return ch_idx;
1260 }
1261 
1262 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1263 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1264 {
1265 	struct rtw_hal *hal = &rtwdev->hal;
1266 	u8 max_power_index = rtwdev->chip->max_power_index;
1267 	s8 ww;
1268 	int ch_idx;
1269 
1270 	pwr_limit = clamp_t(s8, pwr_limit,
1271 			    -max_power_index, max_power_index);
1272 	ch_idx = rtw_channel_to_idx(band, ch);
1273 
1274 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1275 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1276 		WARN(1,
1277 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1278 		     regd, band, bw, rs, ch_idx, pwr_limit);
1279 		return;
1280 	}
1281 
1282 	if (band == PHY_BAND_2G) {
1283 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1284 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1285 		ww = min_t(s8, ww, pwr_limit);
1286 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1287 	} else if (band == PHY_BAND_5G) {
1288 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1289 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1290 		ww = min_t(s8, ww, pwr_limit);
1291 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1292 	}
1293 }
1294 
1295 /* cross-reference 5G power limits if values are not assigned */
1296 static void
1297 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1298 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1299 {
1300 	struct rtw_hal *hal = &rtwdev->hal;
1301 	u8 max_power_index = rtwdev->chip->max_power_index;
1302 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1303 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1304 
1305 	if (lmt_ht == lmt_vht)
1306 		return;
1307 
1308 	if (lmt_ht == max_power_index)
1309 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1310 
1311 	else if (lmt_vht == max_power_index)
1312 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1313 }
1314 
1315 /* cross-reference power limits for ht and vht */
1316 static void
1317 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1318 {
1319 	u8 rs_idx, rs_ht, rs_vht;
1320 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1321 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1322 
1323 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1324 		rs_ht = rs_cmp[rs_idx][0];
1325 		rs_vht = rs_cmp[rs_idx][1];
1326 
1327 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1328 	}
1329 }
1330 
1331 /* cross-reference power limits for 5G channels */
1332 static void
1333 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1334 {
1335 	u8 ch_idx;
1336 
1337 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1338 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1339 }
1340 
1341 /* cross-reference power limits for 20/40M bandwidth */
1342 static void
1343 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1344 {
1345 	u8 bw;
1346 
1347 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1348 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1349 }
1350 
1351 /* cross-reference power limits */
1352 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1353 {
1354 	u8 regd;
1355 
1356 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1357 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1358 }
1359 
1360 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1361 			     const struct rtw_table *tbl)
1362 {
1363 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1364 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1365 
1366 	for (; p < end; p++) {
1367 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1368 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1369 	}
1370 
1371 	rtw_xref_txpwr_lmt(rtwdev);
1372 }
1373 
1374 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1375 		     u32 addr, u32 data)
1376 {
1377 	rtw_write8(rtwdev, addr, data);
1378 }
1379 
1380 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1381 		     u32 addr, u32 data)
1382 {
1383 	rtw_write32(rtwdev, addr, data);
1384 }
1385 
1386 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1387 		    u32 addr, u32 data)
1388 {
1389 	if (addr == 0xfe)
1390 		msleep(50);
1391 	else if (addr == 0xfd)
1392 		mdelay(5);
1393 	else if (addr == 0xfc)
1394 		mdelay(1);
1395 	else if (addr == 0xfb)
1396 		usleep_range(50, 60);
1397 	else if (addr == 0xfa)
1398 		udelay(5);
1399 	else if (addr == 0xf9)
1400 		udelay(1);
1401 	else
1402 		rtw_write32(rtwdev, addr, data);
1403 }
1404 
1405 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1406 		    u32 addr, u32 data)
1407 {
1408 	if (addr == 0xffe) {
1409 		msleep(50);
1410 	} else if (addr == 0xfe) {
1411 		usleep_range(100, 110);
1412 	} else {
1413 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1414 		udelay(1);
1415 	}
1416 }
1417 
1418 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1419 {
1420 	struct rtw_chip_info *chip = rtwdev->chip;
1421 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1422 
1423 	if (!chip->rfk_init_tbl)
1424 		return;
1425 
1426 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1427 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1428 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1429 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1430 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1431 
1432 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1433 
1434 	dpk_info->is_dpk_pwr_on = 1;
1435 }
1436 
1437 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1438 {
1439 	struct rtw_chip_info *chip = rtwdev->chip;
1440 	u8 rf_path;
1441 
1442 	rtw_load_table(rtwdev, chip->mac_tbl);
1443 	rtw_load_table(rtwdev, chip->bb_tbl);
1444 	rtw_load_table(rtwdev, chip->agc_tbl);
1445 	rtw_load_rfk_table(rtwdev);
1446 
1447 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1448 		const struct rtw_table *tbl;
1449 
1450 		tbl = chip->rf_tbl[rf_path];
1451 		rtw_load_table(rtwdev, tbl);
1452 	}
1453 }
1454 
1455 static u8 rtw_get_channel_group(u8 channel)
1456 {
1457 	switch (channel) {
1458 	default:
1459 		WARN_ON(1);
1460 		/* fall through */
1461 	case 1:
1462 	case 2:
1463 	case 36:
1464 	case 38:
1465 	case 40:
1466 	case 42:
1467 		return 0;
1468 	case 3:
1469 	case 4:
1470 	case 5:
1471 	case 44:
1472 	case 46:
1473 	case 48:
1474 	case 50:
1475 		return 1;
1476 	case 6:
1477 	case 7:
1478 	case 8:
1479 	case 52:
1480 	case 54:
1481 	case 56:
1482 	case 58:
1483 		return 2;
1484 	case 9:
1485 	case 10:
1486 	case 11:
1487 	case 60:
1488 	case 62:
1489 	case 64:
1490 		return 3;
1491 	case 12:
1492 	case 13:
1493 	case 100:
1494 	case 102:
1495 	case 104:
1496 	case 106:
1497 		return 4;
1498 	case 14:
1499 	case 108:
1500 	case 110:
1501 	case 112:
1502 	case 114:
1503 		return 5;
1504 	case 116:
1505 	case 118:
1506 	case 120:
1507 	case 122:
1508 		return 6;
1509 	case 124:
1510 	case 126:
1511 	case 128:
1512 	case 130:
1513 		return 7;
1514 	case 132:
1515 	case 134:
1516 	case 136:
1517 	case 138:
1518 		return 8;
1519 	case 140:
1520 	case 142:
1521 	case 144:
1522 		return 9;
1523 	case 149:
1524 	case 151:
1525 	case 153:
1526 	case 155:
1527 		return 10;
1528 	case 157:
1529 	case 159:
1530 	case 161:
1531 		return 11;
1532 	case 165:
1533 	case 167:
1534 	case 169:
1535 	case 171:
1536 		return 12;
1537 	case 173:
1538 	case 175:
1539 	case 177:
1540 		return 13;
1541 	}
1542 }
1543 
1544 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1545 {
1546 	struct rtw_chip_info *chip = rtwdev->chip;
1547 	s8 dpd_diff = 0;
1548 
1549 	if (!chip->en_dis_dpd)
1550 		return 0;
1551 
1552 #define RTW_DPD_RATE_CHECK(_rate)					\
1553 	case DESC_RATE ## _rate:					\
1554 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1555 		dpd_diff = -6 * chip->txgi_factor;			\
1556 	break
1557 
1558 	switch (rate) {
1559 	RTW_DPD_RATE_CHECK(6M);
1560 	RTW_DPD_RATE_CHECK(9M);
1561 	RTW_DPD_RATE_CHECK(MCS0);
1562 	RTW_DPD_RATE_CHECK(MCS1);
1563 	RTW_DPD_RATE_CHECK(MCS8);
1564 	RTW_DPD_RATE_CHECK(MCS9);
1565 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1566 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1567 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1568 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1569 	}
1570 #undef RTW_DPD_RATE_CHECK
1571 
1572 	return dpd_diff;
1573 }
1574 
1575 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1576 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1577 					enum rtw_bandwidth bandwidth,
1578 					u8 rate, u8 group)
1579 {
1580 	struct rtw_chip_info *chip = rtwdev->chip;
1581 	u8 tx_power;
1582 	bool mcs_rate;
1583 	bool above_2ss;
1584 	u8 factor = chip->txgi_factor;
1585 
1586 	if (rate <= DESC_RATE11M)
1587 		tx_power = pwr_idx_2g->cck_base[group];
1588 	else
1589 		tx_power = pwr_idx_2g->bw40_base[group];
1590 
1591 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1592 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1593 
1594 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1595 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1596 		    rate <= DESC_RATEVHT2SS_MCS9);
1597 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1598 		    (rate >= DESC_RATEVHT2SS_MCS0);
1599 
1600 	if (!mcs_rate)
1601 		return tx_power;
1602 
1603 	switch (bandwidth) {
1604 	default:
1605 		WARN_ON(1);
1606 		/* fall through */
1607 	case RTW_CHANNEL_WIDTH_20:
1608 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1609 		if (above_2ss)
1610 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1611 		break;
1612 	case RTW_CHANNEL_WIDTH_40:
1613 		/* bw40 is the base power */
1614 		if (above_2ss)
1615 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1616 		break;
1617 	}
1618 
1619 	return tx_power;
1620 }
1621 
1622 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1623 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1624 					enum rtw_bandwidth bandwidth,
1625 					u8 rate, u8 group)
1626 {
1627 	struct rtw_chip_info *chip = rtwdev->chip;
1628 	u8 tx_power;
1629 	u8 upper, lower;
1630 	bool mcs_rate;
1631 	bool above_2ss;
1632 	u8 factor = chip->txgi_factor;
1633 
1634 	tx_power = pwr_idx_5g->bw40_base[group];
1635 
1636 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1637 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1638 		    rate <= DESC_RATEVHT2SS_MCS9);
1639 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1640 		    (rate >= DESC_RATEVHT2SS_MCS0);
1641 
1642 	if (!mcs_rate) {
1643 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1644 		return tx_power;
1645 	}
1646 
1647 	switch (bandwidth) {
1648 	default:
1649 		WARN_ON(1);
1650 		/* fall through */
1651 	case RTW_CHANNEL_WIDTH_20:
1652 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1653 		if (above_2ss)
1654 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1655 		break;
1656 	case RTW_CHANNEL_WIDTH_40:
1657 		/* bw40 is the base power */
1658 		if (above_2ss)
1659 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1660 		break;
1661 	case RTW_CHANNEL_WIDTH_80:
1662 		/* the base idx of bw80 is the average of bw40+/bw40- */
1663 		lower = pwr_idx_5g->bw40_base[group];
1664 		upper = pwr_idx_5g->bw40_base[group + 1];
1665 
1666 		tx_power = (lower + upper) / 2;
1667 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1668 		if (above_2ss)
1669 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1670 		break;
1671 	}
1672 
1673 	return tx_power;
1674 }
1675 
1676 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1677 				     enum rtw_bandwidth bw, u8 rf_path,
1678 				     u8 rate, u8 channel, u8 regd)
1679 {
1680 	struct rtw_hal *hal = &rtwdev->hal;
1681 	u8 *cch_by_bw = hal->cch_by_bw;
1682 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1683 	u8 rs;
1684 	int ch_idx;
1685 	u8 cur_bw, cur_ch;
1686 	s8 cur_lmt;
1687 
1688 	if (regd > RTW_REGD_WW)
1689 		return power_limit;
1690 
1691 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1692 		rs = RTW_RATE_SECTION_CCK;
1693 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1694 		rs = RTW_RATE_SECTION_OFDM;
1695 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1696 		rs = RTW_RATE_SECTION_HT_1S;
1697 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1698 		rs = RTW_RATE_SECTION_HT_2S;
1699 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1700 		rs = RTW_RATE_SECTION_VHT_1S;
1701 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1702 		rs = RTW_RATE_SECTION_VHT_2S;
1703 	else
1704 		goto err;
1705 
1706 	/* only 20M BW with cck and ofdm */
1707 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1708 		bw = RTW_CHANNEL_WIDTH_20;
1709 
1710 	/* only 20/40M BW with ht */
1711 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1712 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1713 
1714 	/* select min power limit among [20M BW ~ current BW] */
1715 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1716 		cur_ch = cch_by_bw[cur_bw];
1717 
1718 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1719 		if (ch_idx < 0)
1720 			goto err;
1721 
1722 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1723 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1724 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1725 
1726 		power_limit = min_t(s8, cur_lmt, power_limit);
1727 	}
1728 
1729 	return power_limit;
1730 
1731 err:
1732 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1733 	     band, bw, rf_path, rate, channel);
1734 	return (s8)rtwdev->chip->max_power_index;
1735 }
1736 
1737 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1738 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1739 {
1740 	struct rtw_hal *hal = &rtwdev->hal;
1741 	struct rtw_txpwr_idx *pwr_idx;
1742 	u8 group, band;
1743 	u8 *base = &pwr_param->pwr_base;
1744 	s8 *offset = &pwr_param->pwr_offset;
1745 	s8 *limit = &pwr_param->pwr_limit;
1746 
1747 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1748 	group = rtw_get_channel_group(ch);
1749 
1750 	/* base power index for 2.4G/5G */
1751 	if (ch <= 14) {
1752 		band = PHY_BAND_2G;
1753 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1754 						      &pwr_idx->pwr_idx_2g,
1755 						      bw, rate, group);
1756 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1757 	} else {
1758 		band = PHY_BAND_5G;
1759 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1760 						      &pwr_idx->pwr_idx_5g,
1761 						      bw, rate, group);
1762 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1763 	}
1764 
1765 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1766 					    rate, ch, regd);
1767 }
1768 
1769 u8
1770 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1771 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1772 {
1773 	struct rtw_power_params pwr_param = {0};
1774 	u8 tx_power;
1775 	s8 offset;
1776 
1777 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1778 				channel, regd, &pwr_param);
1779 
1780 	tx_power = pwr_param.pwr_base;
1781 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1782 
1783 	if (rtwdev->chip->en_dis_dpd)
1784 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1785 
1786 	tx_power += offset;
1787 
1788 	if (tx_power > rtwdev->chip->max_power_index)
1789 		tx_power = rtwdev->chip->max_power_index;
1790 
1791 	return tx_power;
1792 }
1793 
1794 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1795 					     u8 ch, u8 path, u8 rs)
1796 {
1797 	struct rtw_hal *hal = &rtwdev->hal;
1798 	u8 regd = rtwdev->regd.txpwr_regd;
1799 	u8 *rates;
1800 	u8 size;
1801 	u8 rate;
1802 	u8 pwr_idx;
1803 	u8 bw;
1804 	int i;
1805 
1806 	if (rs >= RTW_RATE_SECTION_MAX)
1807 		return;
1808 
1809 	rates = rtw_rate_section[rs];
1810 	size = rtw_rate_size[rs];
1811 	bw = hal->current_band_width;
1812 	for (i = 0; i < size; i++) {
1813 		rate = rates[i];
1814 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1815 						     bw, ch, regd);
1816 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1817 	}
1818 }
1819 
1820 /* set tx power level by path for each rates, note that the order of the rates
1821  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1822  * power index into a four-byte power index register, and calls set_tx_agc to
1823  * write these values into hardware
1824  */
1825 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1826 					       u8 ch, u8 path)
1827 {
1828 	struct rtw_hal *hal = &rtwdev->hal;
1829 	u8 rs;
1830 
1831 	/* do not need cck rates if we are not in 2.4G */
1832 	if (hal->current_band_type == RTW_BAND_2G)
1833 		rs = RTW_RATE_SECTION_CCK;
1834 	else
1835 		rs = RTW_RATE_SECTION_OFDM;
1836 
1837 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1838 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1839 }
1840 
1841 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1842 {
1843 	struct rtw_chip_info *chip = rtwdev->chip;
1844 	struct rtw_hal *hal = &rtwdev->hal;
1845 	u8 path;
1846 
1847 	mutex_lock(&hal->tx_power_mutex);
1848 
1849 	for (path = 0; path < hal->rf_path_num; path++)
1850 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1851 
1852 	chip->ops->set_tx_power_index(rtwdev);
1853 	mutex_unlock(&hal->tx_power_mutex);
1854 }
1855 
1856 static void
1857 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1858 					u8 rs, u8 size, u8 *rates)
1859 {
1860 	u8 rate;
1861 	u8 base_idx, rate_idx;
1862 	s8 base_2g, base_5g;
1863 
1864 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1865 		base_idx = rates[size - 3];
1866 	else
1867 		base_idx = rates[size - 1];
1868 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1869 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1870 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1871 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1872 	for (rate = 0; rate < size; rate++) {
1873 		rate_idx = rates[rate];
1874 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1875 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1876 	}
1877 }
1878 
1879 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1880 {
1881 	u8 path;
1882 
1883 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1884 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1885 				RTW_RATE_SECTION_CCK,
1886 				rtw_cck_size, rtw_cck_rates);
1887 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1888 				RTW_RATE_SECTION_OFDM,
1889 				rtw_ofdm_size, rtw_ofdm_rates);
1890 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1891 				RTW_RATE_SECTION_HT_1S,
1892 				rtw_ht_1s_size, rtw_ht_1s_rates);
1893 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1894 				RTW_RATE_SECTION_HT_2S,
1895 				rtw_ht_2s_size, rtw_ht_2s_rates);
1896 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1897 				RTW_RATE_SECTION_VHT_1S,
1898 				rtw_vht_1s_size, rtw_vht_1s_rates);
1899 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1900 				RTW_RATE_SECTION_VHT_2S,
1901 				rtw_vht_2s_size, rtw_vht_2s_rates);
1902 	}
1903 }
1904 
1905 static void
1906 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1907 {
1908 	s8 base;
1909 	u8 ch;
1910 
1911 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1912 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1913 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1914 	}
1915 
1916 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1917 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1918 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1919 	}
1920 }
1921 
1922 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1923 {
1924 	u8 regd, bw, rs;
1925 
1926 	/* default at channel 1 */
1927 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1928 
1929 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1930 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1931 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1932 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1933 }
1934 
1935 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1936 					u8 regd, u8 bw, u8 rs)
1937 {
1938 	struct rtw_hal *hal = &rtwdev->hal;
1939 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1940 	u8 ch;
1941 
1942 	/* 2.4G channels */
1943 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1944 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1945 
1946 	/* 5G channels */
1947 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1948 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1949 }
1950 
1951 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1952 {
1953 	struct rtw_hal *hal = &rtwdev->hal;
1954 	u8 regd, path, rate, rs, bw;
1955 
1956 	/* init tx power by rate offset */
1957 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1958 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1959 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1960 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1961 		}
1962 	}
1963 
1964 	/* init tx power limit */
1965 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1966 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1967 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1968 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1969 							    rs);
1970 }
1971