xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 #include "regd.h"
13 #include "sar.h"
14 
15 struct phy_cfg_pair {
16 	u32 addr;
17 	u32 data;
18 };
19 
20 union phy_table_tile {
21 	struct rtw_phy_cond cond;
22 	struct phy_cfg_pair cfg;
23 };
24 
25 static const u32 db_invert_table[12][8] = {
26 	{10,		13,		16,		20,
27 	 25,		32,		40,		50},
28 	{64,		80,		101,		128,
29 	 160,		201,		256,		318},
30 	{401,		505,		635,		800,
31 	 1007,		1268,		1596,		2010},
32 	{316,		398,		501,		631,
33 	 794,		1000,		1259,		1585},
34 	{1995,		2512,		3162,		3981,
35 	 5012,		6310,		7943,		10000},
36 	{12589,		15849,		19953,		25119,
37 	 31623,		39811,		50119,		63098},
38 	{79433,		100000,		125893,		158489,
39 	 199526,	251189,		316228,		398107},
40 	{501187,	630957,		794328,		1000000,
41 	 1258925,	1584893,	1995262,	2511886},
42 	{3162278,	3981072,	5011872,	6309573,
43 	 7943282,	1000000,	12589254,	15848932},
44 	{19952623,	25118864,	31622777,	39810717,
45 	 50118723,	63095734,	79432823,	100000000},
46 	{125892541,	158489319,	199526232,	251188643,
47 	 316227766,	398107171,	501187234,	630957345},
48 	{794328235,	1000000000,	1258925412,	1584893192,
49 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
50 };
51 
52 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
53 u8 rtw_ofdm_rates[] = {
54 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
55 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
56 	DESC_RATE48M, DESC_RATE54M
57 };
58 u8 rtw_ht_1s_rates[] = {
59 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
60 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
61 	DESC_RATEMCS6, DESC_RATEMCS7
62 };
63 u8 rtw_ht_2s_rates[] = {
64 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
65 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
66 	DESC_RATEMCS14, DESC_RATEMCS15
67 };
68 u8 rtw_vht_1s_rates[] = {
69 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
70 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
71 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
72 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
73 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
74 };
75 u8 rtw_vht_2s_rates[] = {
76 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
77 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
78 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
79 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
80 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
81 };
82 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
83 	rtw_cck_rates, rtw_ofdm_rates,
84 	rtw_ht_1s_rates, rtw_ht_2s_rates,
85 	rtw_vht_1s_rates, rtw_vht_2s_rates
86 };
87 EXPORT_SYMBOL(rtw_rate_section);
88 
89 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
90 	ARRAY_SIZE(rtw_cck_rates),
91 	ARRAY_SIZE(rtw_ofdm_rates),
92 	ARRAY_SIZE(rtw_ht_1s_rates),
93 	ARRAY_SIZE(rtw_ht_2s_rates),
94 	ARRAY_SIZE(rtw_vht_1s_rates),
95 	ARRAY_SIZE(rtw_vht_2s_rates)
96 };
97 EXPORT_SYMBOL(rtw_rate_size);
98 
99 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
100 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
101 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
102 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
103 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
104 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
105 
106 enum rtw_phy_band_type {
107 	PHY_BAND_2G	= 0,
108 	PHY_BAND_5G	= 1,
109 };
110 
111 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
112 {
113 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
114 	u8 i, j;
115 
116 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
117 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
118 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
119 	}
120 
121 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
122 }
123 
124 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
125 {
126 	struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
127 
128 	rtw_write32_mask(rtwdev,
129 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
130 			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
131 			 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
132 	rtw_write32_mask(rtwdev,
133 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
134 			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
135 			 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
136 }
137 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
138 
139 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
140 {
141 	const struct rtw_chip_info *chip = rtwdev->chip;
142 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
143 
144 	/* turn off in debugfs for debug usage */
145 	if (!rtw_edcca_enabled) {
146 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
147 		rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
148 		return;
149 	}
150 
151 	switch (rtwdev->regd.dfs_region) {
152 	case NL80211_DFS_ETSI:
153 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
154 		dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
155 		break;
156 	case NL80211_DFS_JP:
157 		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
158 		dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
159 		break;
160 	default:
161 		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
162 		break;
163 	}
164 }
165 
166 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
167 {
168 	const struct rtw_chip_info *chip = rtwdev->chip;
169 
170 	rtw_phy_adaptivity_set_mode(rtwdev);
171 	if (chip->ops->adaptivity_init)
172 		chip->ops->adaptivity_init(rtwdev);
173 }
174 
175 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
176 {
177 	if (rtwdev->chip->ops->adaptivity)
178 		rtwdev->chip->ops->adaptivity(rtwdev);
179 }
180 
181 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
182 {
183 	const struct rtw_chip_info *chip = rtwdev->chip;
184 
185 	if (chip->ops->cfo_init)
186 		chip->ops->cfo_init(rtwdev);
187 }
188 
189 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
190 {
191 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
192 
193 	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
194 	path_div->path_a_cnt = 0;
195 	path_div->path_a_sum = 0;
196 	path_div->path_b_cnt = 0;
197 	path_div->path_b_sum = 0;
198 }
199 
200 void rtw_phy_init(struct rtw_dev *rtwdev)
201 {
202 	const struct rtw_chip_info *chip = rtwdev->chip;
203 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
204 	u32 addr, mask;
205 
206 	dm_info->fa_history[3] = 0;
207 	dm_info->fa_history[2] = 0;
208 	dm_info->fa_history[1] = 0;
209 	dm_info->fa_history[0] = 0;
210 	dm_info->igi_bitmap = 0;
211 	dm_info->igi_history[3] = 0;
212 	dm_info->igi_history[2] = 0;
213 	dm_info->igi_history[1] = 0;
214 
215 	addr = chip->dig[0].addr;
216 	mask = chip->dig[0].mask;
217 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
218 	rtw_phy_cck_pd_init(rtwdev);
219 
220 	dm_info->iqk.done = false;
221 	rtw_phy_adaptivity_init(rtwdev);
222 	rtw_phy_cfo_init(rtwdev);
223 	rtw_phy_tx_path_div_init(rtwdev);
224 }
225 EXPORT_SYMBOL(rtw_phy_init);
226 
227 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
228 {
229 	const struct rtw_chip_info *chip = rtwdev->chip;
230 	struct rtw_hal *hal = &rtwdev->hal;
231 	u32 addr, mask;
232 	u8 path;
233 
234 	if (chip->dig_cck) {
235 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
236 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
237 	}
238 
239 	for (path = 0; path < hal->rf_path_num; path++) {
240 		addr = chip->dig[path].addr;
241 		mask = chip->dig[path].mask;
242 		rtw_write32_mask(rtwdev, addr, mask, igi);
243 	}
244 }
245 
246 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
247 {
248 	const struct rtw_chip_info *chip = rtwdev->chip;
249 
250 	chip->ops->false_alarm_statistics(rtwdev);
251 }
252 
253 #define RA_FLOOR_TABLE_SIZE	7
254 #define RA_FLOOR_UP_GAP		3
255 
256 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
257 {
258 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
259 	u8 new_level = 0;
260 	int i;
261 
262 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
263 		if (i >= old_level)
264 			table[i] += RA_FLOOR_UP_GAP;
265 
266 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
267 		if (rssi < table[i]) {
268 			new_level = i;
269 			break;
270 		}
271 	}
272 
273 	return new_level;
274 }
275 
276 struct rtw_phy_stat_iter_data {
277 	struct rtw_dev *rtwdev;
278 	u8 min_rssi;
279 };
280 
281 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
282 {
283 	struct rtw_phy_stat_iter_data *iter_data = data;
284 	struct rtw_dev *rtwdev = iter_data->rtwdev;
285 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
286 	u8 rssi;
287 
288 	rssi = ewma_rssi_read(&si->avg_rssi);
289 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
290 
291 	rtw_fw_send_rssi_info(rtwdev, si);
292 
293 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
294 }
295 
296 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
297 {
298 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
299 	struct rtw_phy_stat_iter_data data = {};
300 
301 	data.rtwdev = rtwdev;
302 	data.min_rssi = U8_MAX;
303 	rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
304 
305 	dm_info->pre_min_rssi = dm_info->min_rssi;
306 	dm_info->min_rssi = data.min_rssi;
307 }
308 
309 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
310 {
311 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
312 
313 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
314 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
315 }
316 
317 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
318 {
319 	rtw_phy_stat_rssi(rtwdev);
320 	rtw_phy_stat_false_alarm(rtwdev);
321 	rtw_phy_stat_rate_cnt(rtwdev);
322 }
323 
324 #define DIG_PERF_FA_TH_LOW			250
325 #define DIG_PERF_FA_TH_HIGH			500
326 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
327 #define DIG_PERF_MAX				0x5a
328 #define DIG_PERF_MID				0x40
329 #define DIG_CVRG_FA_TH_LOW			2000
330 #define DIG_CVRG_FA_TH_HIGH			4000
331 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
332 #define DIG_CVRG_MAX				0x2a
333 #define DIG_CVRG_MID				0x26
334 #define DIG_CVRG_MIN				0x1c
335 #define DIG_RSSI_GAIN_OFFSET			15
336 
337 static bool
338 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
339 {
340 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
341 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
342 	u16 *fa_history;
343 	u8 *igi_history;
344 	u8 damping_rssi;
345 	u8 min_rssi;
346 	u8 diff;
347 	u8 igi_bitmap;
348 	bool damping = false;
349 
350 	min_rssi = dm_info->min_rssi;
351 	if (dm_info->damping) {
352 		damping_rssi = dm_info->damping_rssi;
353 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
354 						 damping_rssi - min_rssi;
355 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
356 			dm_info->damping = false;
357 			return false;
358 		}
359 
360 		return true;
361 	}
362 
363 	igi_history = dm_info->igi_history;
364 	fa_history = dm_info->fa_history;
365 	igi_bitmap = dm_info->igi_bitmap & 0xf;
366 	switch (igi_bitmap) {
367 	case 5:
368 		/* down -> up -> down -> up */
369 		if (igi_history[0] > igi_history[1] &&
370 		    igi_history[2] > igi_history[3] &&
371 		    igi_history[0] - igi_history[1] >= 2 &&
372 		    igi_history[2] - igi_history[3] >= 2 &&
373 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
374 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
375 			damping = true;
376 		break;
377 	case 9:
378 		/* up -> down -> down -> up */
379 		if (igi_history[0] > igi_history[1] &&
380 		    igi_history[3] > igi_history[2] &&
381 		    igi_history[0] - igi_history[1] >= 4 &&
382 		    igi_history[3] - igi_history[2] >= 2 &&
383 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
384 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
385 			damping = true;
386 		break;
387 	default:
388 		return false;
389 	}
390 
391 	if (damping) {
392 		dm_info->damping = true;
393 		dm_info->damping_cnt = 0;
394 		dm_info->damping_rssi = min_rssi;
395 	}
396 
397 	return damping;
398 }
399 
400 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
401 				     struct rtw_dm_info *dm_info,
402 				     u8 *upper, u8 *lower, bool linked)
403 {
404 	u8 dig_max, dig_min, dig_mid;
405 	u8 min_rssi;
406 
407 	if (linked) {
408 		dig_max = DIG_PERF_MAX;
409 		dig_mid = DIG_PERF_MID;
410 		dig_min = rtwdev->chip->dig_min;
411 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
412 	} else {
413 		dig_max = DIG_CVRG_MAX;
414 		dig_mid = DIG_CVRG_MID;
415 		dig_min = DIG_CVRG_MIN;
416 		min_rssi = dig_min;
417 	}
418 
419 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
420 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
421 
422 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
423 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
424 }
425 
426 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
427 				      u16 *fa_th, u8 *step, bool linked)
428 {
429 	u8 min_rssi, pre_min_rssi;
430 
431 	min_rssi = dm_info->min_rssi;
432 	pre_min_rssi = dm_info->pre_min_rssi;
433 	step[0] = 4;
434 	step[1] = 3;
435 	step[2] = 2;
436 
437 	if (linked) {
438 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
439 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
440 		fa_th[2] = DIG_PERF_FA_TH_LOW;
441 		if (pre_min_rssi > min_rssi) {
442 			step[0] = 6;
443 			step[1] = 4;
444 			step[2] = 2;
445 		}
446 	} else {
447 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
448 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
449 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
450 	}
451 }
452 
453 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
454 {
455 	u8 *igi_history;
456 	u16 *fa_history;
457 	u8 igi_bitmap;
458 	bool up;
459 
460 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
461 	igi_history = dm_info->igi_history;
462 	fa_history = dm_info->fa_history;
463 
464 	up = igi > igi_history[0];
465 	igi_bitmap |= up;
466 
467 	igi_history[3] = igi_history[2];
468 	igi_history[2] = igi_history[1];
469 	igi_history[1] = igi_history[0];
470 	igi_history[0] = igi;
471 
472 	fa_history[3] = fa_history[2];
473 	fa_history[2] = fa_history[1];
474 	fa_history[1] = fa_history[0];
475 	fa_history[0] = fa;
476 
477 	dm_info->igi_bitmap = igi_bitmap;
478 }
479 
480 static void rtw_phy_dig(struct rtw_dev *rtwdev)
481 {
482 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
483 	u8 upper_bound, lower_bound;
484 	u8 pre_igi, cur_igi;
485 	u16 fa_th[3], fa_cnt;
486 	u8 level;
487 	u8 step[3];
488 	bool linked;
489 
490 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
491 		return;
492 
493 	if (rtw_phy_dig_check_damping(dm_info))
494 		return;
495 
496 	linked = !!rtwdev->sta_cnt;
497 
498 	fa_cnt = dm_info->total_fa_cnt;
499 	pre_igi = dm_info->igi_history[0];
500 
501 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
502 
503 	/* test the false alarm count from the highest threshold level first,
504 	 * and increase it by corresponding step size
505 	 *
506 	 * note that the step size is offset by -2, compensate it afterall
507 	 */
508 	cur_igi = pre_igi;
509 	for (level = 0; level < 3; level++) {
510 		if (fa_cnt > fa_th[level]) {
511 			cur_igi += step[level];
512 			break;
513 		}
514 	}
515 	cur_igi -= 2;
516 
517 	/* calculate the upper/lower bound by the minimum rssi we have among
518 	 * the peers connected with us, meanwhile make sure the igi value does
519 	 * not beyond the hardware limitation
520 	 */
521 	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
522 				 linked);
523 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
524 
525 	/* record current igi value and false alarm statistics for further
526 	 * damping checks, and record the trend of igi values
527 	 */
528 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
529 
530 	if (cur_igi != pre_igi)
531 		rtw_phy_dig_write(rtwdev, cur_igi);
532 }
533 
534 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
535 {
536 	struct rtw_dev *rtwdev = data;
537 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
538 
539 	rtw_update_sta_info(rtwdev, si, false);
540 }
541 
542 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
543 {
544 	if (rtwdev->watch_dog_cnt & 0x3)
545 		return;
546 
547 	rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
548 }
549 
550 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
551 {
552 	u8 rate_order;
553 
554 	rate_order = rate_idx;
555 
556 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
557 		rate_order -= DESC_RATEVHT4SS_MCS0;
558 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
559 		rate_order -= DESC_RATEVHT3SS_MCS0;
560 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
561 		rate_order -= DESC_RATEVHT2SS_MCS0;
562 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
563 		rate_order -= DESC_RATEVHT1SS_MCS0;
564 	else if (rate_idx >= DESC_RATEMCS24)
565 		rate_order -= DESC_RATEMCS24;
566 	else if (rate_idx >= DESC_RATEMCS16)
567 		rate_order -= DESC_RATEMCS16;
568 	else if (rate_idx >= DESC_RATEMCS8)
569 		rate_order -= DESC_RATEMCS8;
570 	else if (rate_idx >= DESC_RATEMCS0)
571 		rate_order -= DESC_RATEMCS0;
572 	else if (rate_idx >= DESC_RATE6M)
573 		rate_order -= DESC_RATE6M;
574 	else
575 		rate_order -= DESC_RATE1M;
576 
577 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
578 		rate_order++;
579 
580 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
581 }
582 
583 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
584 {
585 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
586 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
587 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
588 	u32 mask = 0;
589 
590 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
591 	if (mask < dm_info->rrsr_mask_min)
592 		dm_info->rrsr_mask_min = mask;
593 }
594 
595 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
596 {
597 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598 
599 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
600 	rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
601 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
602 }
603 
604 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
605 {
606 	const struct rtw_chip_info *chip = rtwdev->chip;
607 
608 	if (chip->ops->dpk_track)
609 		chip->ops->dpk_track(rtwdev);
610 }
611 
612 struct rtw_rx_addr_match_data {
613 	struct rtw_dev *rtwdev;
614 	struct ieee80211_hdr *hdr;
615 	struct rtw_rx_pkt_stat *pkt_stat;
616 	u8 *bssid;
617 };
618 
619 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
620 				     struct ieee80211_vif *vif)
621 {
622 	struct rtw_rx_addr_match_data *iter_data = data;
623 	struct rtw_dev *rtwdev = iter_data->rtwdev;
624 	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
625 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
626 	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
627 	u8 *bssid = iter_data->bssid;
628 	u8 i;
629 
630 	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
631 		return;
632 
633 	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
634 		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
635 		cfo->cfo_cnt[i]++;
636 	}
637 
638 	cfo->packet_count++;
639 }
640 
641 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
642 			 struct rtw_rx_pkt_stat *pkt_stat)
643 {
644 	struct ieee80211_hdr *hdr = pkt_stat->hdr;
645 	struct rtw_rx_addr_match_data data = {};
646 
647 	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
648 	    ieee80211_is_ctl(hdr->frame_control))
649 		return;
650 
651 	data.rtwdev = rtwdev;
652 	data.hdr = hdr;
653 	data.pkt_stat = pkt_stat;
654 	data.bssid = get_hdr_bssid(hdr);
655 
656 	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
657 }
658 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
659 
660 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
661 {
662 	const struct rtw_chip_info *chip = rtwdev->chip;
663 
664 	if (chip->ops->cfo_track)
665 		chip->ops->cfo_track(rtwdev);
666 }
667 
668 #define CCK_PD_FA_LV1_MIN	1000
669 #define CCK_PD_FA_LV0_MAX	500
670 
671 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
672 {
673 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
674 	u32 cck_fa_avg = dm_info->cck_fa_avg;
675 
676 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
677 		return CCK_PD_LV1;
678 
679 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
680 		return CCK_PD_LV0;
681 
682 	return CCK_PD_LV_MAX;
683 }
684 
685 #define CCK_PD_IGI_LV4_VAL 0x38
686 #define CCK_PD_IGI_LV3_VAL 0x2a
687 #define CCK_PD_IGI_LV2_VAL 0x24
688 #define CCK_PD_RSSI_LV4_VAL 32
689 #define CCK_PD_RSSI_LV3_VAL 32
690 #define CCK_PD_RSSI_LV2_VAL 24
691 
692 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
693 {
694 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
695 	u8 igi = dm_info->igi_history[0];
696 	u8 rssi = dm_info->min_rssi;
697 	u32 cck_fa_avg = dm_info->cck_fa_avg;
698 
699 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
700 		return CCK_PD_LV4;
701 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
702 		return CCK_PD_LV3;
703 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
704 		return CCK_PD_LV2;
705 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
706 		return CCK_PD_LV1;
707 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
708 		return CCK_PD_LV0;
709 
710 	return CCK_PD_LV_MAX;
711 }
712 
713 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
714 {
715 	if (!rtw_is_assoc(rtwdev))
716 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
717 	else
718 		return rtw_phy_cck_pd_lv_link(rtwdev);
719 }
720 
721 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
722 {
723 	const struct rtw_chip_info *chip = rtwdev->chip;
724 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
725 	u32 cck_fa = dm_info->cck_fa_cnt;
726 	u8 level;
727 
728 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
729 		return;
730 
731 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
732 		dm_info->cck_fa_avg = cck_fa;
733 	else
734 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
735 
736 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
737 		dm_info->igi_history[0], dm_info->min_rssi,
738 		dm_info->fa_history[0]);
739 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
740 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
741 
742 	level = rtw_phy_cck_pd_lv(rtwdev);
743 
744 	if (level >= CCK_PD_LV_MAX)
745 		return;
746 
747 	if (chip->ops->cck_pd_set)
748 		chip->ops->cck_pd_set(rtwdev, level);
749 }
750 
751 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
752 {
753 	rtwdev->chip->ops->pwr_track(rtwdev);
754 }
755 
756 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
757 {
758 	rtw_fw_update_wl_phy_info(rtwdev);
759 	rtw_phy_ra_info_update(rtwdev);
760 	rtw_phy_rrsr_update(rtwdev);
761 }
762 
763 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
764 {
765 	/* for further calculation */
766 	rtw_phy_statistics(rtwdev);
767 	rtw_phy_dig(rtwdev);
768 	rtw_phy_cck_pd(rtwdev);
769 	rtw_phy_ra_track(rtwdev);
770 	rtw_phy_tx_path_diversity(rtwdev);
771 	rtw_phy_cfo_track(rtwdev);
772 	rtw_phy_dpk_track(rtwdev);
773 	rtw_phy_pwr_track(rtwdev);
774 
775 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
776 		rtw_fw_adaptivity(rtwdev);
777 	else
778 		rtw_phy_adaptivity(rtwdev);
779 }
780 
781 #define FRAC_BITS 3
782 
783 static u8 rtw_phy_power_2_db(s8 power)
784 {
785 	if (power <= -100 || power >= 20)
786 		return 0;
787 	else if (power >= 0)
788 		return 100;
789 	else
790 		return 100 + power;
791 }
792 
793 static u64 rtw_phy_db_2_linear(u8 power_db)
794 {
795 	u8 i, j;
796 	u64 linear;
797 
798 	if (power_db > 96)
799 		power_db = 96;
800 	else if (power_db < 1)
801 		return 1;
802 
803 	/* 1dB ~ 96dB */
804 	i = (power_db - 1) >> 3;
805 	j = (power_db - 1) - (i << 3);
806 
807 	linear = db_invert_table[i][j];
808 	linear = i > 2 ? linear << FRAC_BITS : linear;
809 
810 	return linear;
811 }
812 
813 static u8 rtw_phy_linear_2_db(u64 linear)
814 {
815 	u8 i;
816 	u8 j;
817 	u32 dB;
818 
819 	for (i = 0; i < 12; i++) {
820 		for (j = 0; j < 8; j++) {
821 			if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
822 				goto cnt;
823 			else if (i > 2 && linear <= db_invert_table[i][j])
824 				goto cnt;
825 		}
826 	}
827 
828 	return 96; /* maximum 96 dB */
829 
830 cnt:
831 	if (j == 0 && i == 0)
832 		goto end;
833 
834 	if (j == 0) {
835 		if (i != 3) {
836 			if (db_invert_table[i][0] - linear >
837 			    linear - db_invert_table[i - 1][7]) {
838 				i = i - 1;
839 				j = 7;
840 			}
841 		} else {
842 			if (db_invert_table[3][0] - linear >
843 			    linear - db_invert_table[2][7]) {
844 				i = 2;
845 				j = 7;
846 			}
847 		}
848 	} else {
849 		if (db_invert_table[i][j] - linear >
850 		    linear - db_invert_table[i][j - 1]) {
851 			j = j - 1;
852 		}
853 	}
854 end:
855 	dB = (i << 3) + j + 1;
856 
857 	return dB;
858 }
859 
860 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
861 {
862 	s8 power;
863 	u8 power_db;
864 	u64 linear;
865 	u64 sum = 0;
866 	u8 path;
867 
868 	for (path = 0; path < path_num; path++) {
869 		power = rf_power[path];
870 		power_db = rtw_phy_power_2_db(power);
871 		linear = rtw_phy_db_2_linear(power_db);
872 		sum += linear;
873 	}
874 
875 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
876 	switch (path_num) {
877 	case 2:
878 		sum >>= 1;
879 		break;
880 	case 3:
881 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
882 		break;
883 	case 4:
884 		sum >>= 2;
885 		break;
886 	default:
887 		break;
888 	}
889 
890 	return rtw_phy_linear_2_db(sum);
891 }
892 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
893 
894 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
895 		    u32 addr, u32 mask)
896 {
897 	struct rtw_hal *hal = &rtwdev->hal;
898 	const struct rtw_chip_info *chip = rtwdev->chip;
899 	const u32 *base_addr = chip->rf_base_addr;
900 	u32 val, direct_addr;
901 
902 	if (rf_path >= hal->rf_phy_num) {
903 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
904 		return INV_RF_DATA;
905 	}
906 
907 	addr &= 0xff;
908 	direct_addr = base_addr[rf_path] + (addr << 2);
909 	mask &= RFREG_MASK;
910 
911 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
912 
913 	return val;
914 }
915 EXPORT_SYMBOL(rtw_phy_read_rf);
916 
917 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
918 			 u32 addr, u32 mask)
919 {
920 	struct rtw_hal *hal = &rtwdev->hal;
921 	const struct rtw_chip_info *chip = rtwdev->chip;
922 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
923 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
924 	u32 val32;
925 	u32 en_pi;
926 	u32 r_addr;
927 	u32 shift;
928 
929 	if (rf_path >= hal->rf_phy_num) {
930 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
931 		return INV_RF_DATA;
932 	}
933 
934 	if (!chip->rf_sipi_read_addr) {
935 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
936 		return INV_RF_DATA;
937 	}
938 
939 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
940 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
941 
942 	addr &= 0xff;
943 
944 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
945 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
946 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
947 
948 	/* toggle read edge of path A */
949 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
950 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
951 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
952 
953 	udelay(120);
954 
955 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
956 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
957 
958 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
959 
960 	shift = __ffs(mask);
961 
962 	return (val32 & mask) >> shift;
963 }
964 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
965 
966 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
967 			       u32 addr, u32 mask, u32 data)
968 {
969 	struct rtw_hal *hal = &rtwdev->hal;
970 	const struct rtw_chip_info *chip = rtwdev->chip;
971 	const u32 *sipi_addr = chip->rf_sipi_addr;
972 	u32 data_and_addr;
973 	u32 old_data = 0;
974 	u32 shift;
975 
976 	if (rf_path >= hal->rf_phy_num) {
977 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
978 		return false;
979 	}
980 
981 	addr &= 0xff;
982 	mask &= RFREG_MASK;
983 
984 	if (mask != RFREG_MASK) {
985 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
986 
987 		if (old_data == INV_RF_DATA) {
988 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
989 			return false;
990 		}
991 
992 		shift = __ffs(mask);
993 		data = ((old_data) & (~mask)) | (data << shift);
994 	}
995 
996 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
997 
998 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
999 
1000 	udelay(13);
1001 
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1005 
1006 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1007 			  u32 addr, u32 mask, u32 data)
1008 {
1009 	struct rtw_hal *hal = &rtwdev->hal;
1010 	const struct rtw_chip_info *chip = rtwdev->chip;
1011 	const u32 *base_addr = chip->rf_base_addr;
1012 	u32 direct_addr;
1013 
1014 	if (rf_path >= hal->rf_phy_num) {
1015 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1016 		return false;
1017 	}
1018 
1019 	addr &= 0xff;
1020 	direct_addr = base_addr[rf_path] + (addr << 2);
1021 	mask &= RFREG_MASK;
1022 
1023 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
1024 
1025 	udelay(1);
1026 
1027 	return true;
1028 }
1029 
1030 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1031 			      u32 addr, u32 mask, u32 data)
1032 {
1033 	if (addr != 0x00)
1034 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1035 
1036 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1037 }
1038 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1039 
1040 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1041 {
1042 	struct rtw_hal *hal = &rtwdev->hal;
1043 	struct rtw_efuse *efuse = &rtwdev->efuse;
1044 	struct rtw_phy_cond cond = {0};
1045 
1046 	cond.cut = hal->cut_version ? hal->cut_version : 15;
1047 	cond.pkg = pkg ? pkg : 15;
1048 	cond.plat = 0x04;
1049 	cond.rfe = efuse->rfe_option;
1050 
1051 	switch (rtw_hci_type(rtwdev)) {
1052 	case RTW_HCI_TYPE_USB:
1053 		cond.intf = INTF_USB;
1054 		break;
1055 	case RTW_HCI_TYPE_SDIO:
1056 		cond.intf = INTF_SDIO;
1057 		break;
1058 	case RTW_HCI_TYPE_PCIE:
1059 	default:
1060 		cond.intf = INTF_PCIE;
1061 		break;
1062 	}
1063 
1064 	hal->phy_cond = cond;
1065 
1066 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
1067 }
1068 
1069 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
1070 {
1071 	struct rtw_hal *hal = &rtwdev->hal;
1072 	struct rtw_phy_cond drv_cond = hal->phy_cond;
1073 
1074 	if (cond.cut && cond.cut != drv_cond.cut)
1075 		return false;
1076 
1077 	if (cond.pkg && cond.pkg != drv_cond.pkg)
1078 		return false;
1079 
1080 	if (cond.intf && cond.intf != drv_cond.intf)
1081 		return false;
1082 
1083 	if (cond.rfe != drv_cond.rfe)
1084 		return false;
1085 
1086 	return true;
1087 }
1088 
1089 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1090 {
1091 	const union phy_table_tile *p = tbl->data;
1092 	const union phy_table_tile *end = p + tbl->size / 2;
1093 	struct rtw_phy_cond pos_cond = {0};
1094 	bool is_matched = true, is_skipped = false;
1095 
1096 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1097 
1098 	for (; p < end; p++) {
1099 		if (p->cond.pos) {
1100 			switch (p->cond.branch) {
1101 			case BRANCH_ENDIF:
1102 				is_matched = true;
1103 				is_skipped = false;
1104 				break;
1105 			case BRANCH_ELSE:
1106 				is_matched = is_skipped ? false : true;
1107 				break;
1108 			case BRANCH_IF:
1109 			case BRANCH_ELIF:
1110 			default:
1111 				pos_cond = p->cond;
1112 				break;
1113 			}
1114 		} else if (p->cond.neg) {
1115 			if (!is_skipped) {
1116 				if (check_positive(rtwdev, pos_cond)) {
1117 					is_matched = true;
1118 					is_skipped = true;
1119 				} else {
1120 					is_matched = false;
1121 					is_skipped = false;
1122 				}
1123 			} else {
1124 				is_matched = false;
1125 			}
1126 		} else if (is_matched) {
1127 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1128 		}
1129 	}
1130 }
1131 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1132 
1133 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1134 
1135 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1136 {
1137 	if (rtwdev->chip->is_pwr_by_rate_dec)
1138 		return bcd_to_dec_pwr_by_rate(hex, i);
1139 
1140 	return (hex >> (i * 8)) & 0xFF;
1141 }
1142 
1143 static void
1144 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1145 					 u32 addr, u32 mask, u32 val, u8 *rate,
1146 					 u8 *pwr_by_rate, u8 *rate_num)
1147 {
1148 	int i;
1149 
1150 	switch (addr) {
1151 	case 0xE00:
1152 	case 0x830:
1153 		rate[0] = DESC_RATE6M;
1154 		rate[1] = DESC_RATE9M;
1155 		rate[2] = DESC_RATE12M;
1156 		rate[3] = DESC_RATE18M;
1157 		for (i = 0; i < 4; ++i)
1158 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1159 		*rate_num = 4;
1160 		break;
1161 	case 0xE04:
1162 	case 0x834:
1163 		rate[0] = DESC_RATE24M;
1164 		rate[1] = DESC_RATE36M;
1165 		rate[2] = DESC_RATE48M;
1166 		rate[3] = DESC_RATE54M;
1167 		for (i = 0; i < 4; ++i)
1168 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169 		*rate_num = 4;
1170 		break;
1171 	case 0xE08:
1172 		rate[0] = DESC_RATE1M;
1173 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1174 		*rate_num = 1;
1175 		break;
1176 	case 0x86C:
1177 		if (mask == 0xffffff00) {
1178 			rate[0] = DESC_RATE2M;
1179 			rate[1] = DESC_RATE5_5M;
1180 			rate[2] = DESC_RATE11M;
1181 			for (i = 1; i < 4; ++i)
1182 				pwr_by_rate[i - 1] =
1183 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1184 			*rate_num = 3;
1185 		} else if (mask == 0x000000ff) {
1186 			rate[0] = DESC_RATE11M;
1187 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1188 			*rate_num = 1;
1189 		}
1190 		break;
1191 	case 0xE10:
1192 	case 0x83C:
1193 		rate[0] = DESC_RATEMCS0;
1194 		rate[1] = DESC_RATEMCS1;
1195 		rate[2] = DESC_RATEMCS2;
1196 		rate[3] = DESC_RATEMCS3;
1197 		for (i = 0; i < 4; ++i)
1198 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1199 		*rate_num = 4;
1200 		break;
1201 	case 0xE14:
1202 	case 0x848:
1203 		rate[0] = DESC_RATEMCS4;
1204 		rate[1] = DESC_RATEMCS5;
1205 		rate[2] = DESC_RATEMCS6;
1206 		rate[3] = DESC_RATEMCS7;
1207 		for (i = 0; i < 4; ++i)
1208 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1209 		*rate_num = 4;
1210 		break;
1211 	case 0xE18:
1212 	case 0x84C:
1213 		rate[0] = DESC_RATEMCS8;
1214 		rate[1] = DESC_RATEMCS9;
1215 		rate[2] = DESC_RATEMCS10;
1216 		rate[3] = DESC_RATEMCS11;
1217 		for (i = 0; i < 4; ++i)
1218 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1219 		*rate_num = 4;
1220 		break;
1221 	case 0xE1C:
1222 	case 0x868:
1223 		rate[0] = DESC_RATEMCS12;
1224 		rate[1] = DESC_RATEMCS13;
1225 		rate[2] = DESC_RATEMCS14;
1226 		rate[3] = DESC_RATEMCS15;
1227 		for (i = 0; i < 4; ++i)
1228 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1229 		*rate_num = 4;
1230 		break;
1231 	case 0x838:
1232 		rate[0] = DESC_RATE1M;
1233 		rate[1] = DESC_RATE2M;
1234 		rate[2] = DESC_RATE5_5M;
1235 		for (i = 1; i < 4; ++i)
1236 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1237 								    val, i);
1238 		*rate_num = 3;
1239 		break;
1240 	case 0xC20:
1241 	case 0xE20:
1242 	case 0x1820:
1243 	case 0x1A20:
1244 		rate[0] = DESC_RATE1M;
1245 		rate[1] = DESC_RATE2M;
1246 		rate[2] = DESC_RATE5_5M;
1247 		rate[3] = DESC_RATE11M;
1248 		for (i = 0; i < 4; ++i)
1249 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1250 		*rate_num = 4;
1251 		break;
1252 	case 0xC24:
1253 	case 0xE24:
1254 	case 0x1824:
1255 	case 0x1A24:
1256 		rate[0] = DESC_RATE6M;
1257 		rate[1] = DESC_RATE9M;
1258 		rate[2] = DESC_RATE12M;
1259 		rate[3] = DESC_RATE18M;
1260 		for (i = 0; i < 4; ++i)
1261 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1262 		*rate_num = 4;
1263 		break;
1264 	case 0xC28:
1265 	case 0xE28:
1266 	case 0x1828:
1267 	case 0x1A28:
1268 		rate[0] = DESC_RATE24M;
1269 		rate[1] = DESC_RATE36M;
1270 		rate[2] = DESC_RATE48M;
1271 		rate[3] = DESC_RATE54M;
1272 		for (i = 0; i < 4; ++i)
1273 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1274 		*rate_num = 4;
1275 		break;
1276 	case 0xC2C:
1277 	case 0xE2C:
1278 	case 0x182C:
1279 	case 0x1A2C:
1280 		rate[0] = DESC_RATEMCS0;
1281 		rate[1] = DESC_RATEMCS1;
1282 		rate[2] = DESC_RATEMCS2;
1283 		rate[3] = DESC_RATEMCS3;
1284 		for (i = 0; i < 4; ++i)
1285 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1286 		*rate_num = 4;
1287 		break;
1288 	case 0xC30:
1289 	case 0xE30:
1290 	case 0x1830:
1291 	case 0x1A30:
1292 		rate[0] = DESC_RATEMCS4;
1293 		rate[1] = DESC_RATEMCS5;
1294 		rate[2] = DESC_RATEMCS6;
1295 		rate[3] = DESC_RATEMCS7;
1296 		for (i = 0; i < 4; ++i)
1297 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1298 		*rate_num = 4;
1299 		break;
1300 	case 0xC34:
1301 	case 0xE34:
1302 	case 0x1834:
1303 	case 0x1A34:
1304 		rate[0] = DESC_RATEMCS8;
1305 		rate[1] = DESC_RATEMCS9;
1306 		rate[2] = DESC_RATEMCS10;
1307 		rate[3] = DESC_RATEMCS11;
1308 		for (i = 0; i < 4; ++i)
1309 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1310 		*rate_num = 4;
1311 		break;
1312 	case 0xC38:
1313 	case 0xE38:
1314 	case 0x1838:
1315 	case 0x1A38:
1316 		rate[0] = DESC_RATEMCS12;
1317 		rate[1] = DESC_RATEMCS13;
1318 		rate[2] = DESC_RATEMCS14;
1319 		rate[3] = DESC_RATEMCS15;
1320 		for (i = 0; i < 4; ++i)
1321 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1322 		*rate_num = 4;
1323 		break;
1324 	case 0xC3C:
1325 	case 0xE3C:
1326 	case 0x183C:
1327 	case 0x1A3C:
1328 		rate[0] = DESC_RATEVHT1SS_MCS0;
1329 		rate[1] = DESC_RATEVHT1SS_MCS1;
1330 		rate[2] = DESC_RATEVHT1SS_MCS2;
1331 		rate[3] = DESC_RATEVHT1SS_MCS3;
1332 		for (i = 0; i < 4; ++i)
1333 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1334 		*rate_num = 4;
1335 		break;
1336 	case 0xC40:
1337 	case 0xE40:
1338 	case 0x1840:
1339 	case 0x1A40:
1340 		rate[0] = DESC_RATEVHT1SS_MCS4;
1341 		rate[1] = DESC_RATEVHT1SS_MCS5;
1342 		rate[2] = DESC_RATEVHT1SS_MCS6;
1343 		rate[3] = DESC_RATEVHT1SS_MCS7;
1344 		for (i = 0; i < 4; ++i)
1345 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1346 		*rate_num = 4;
1347 		break;
1348 	case 0xC44:
1349 	case 0xE44:
1350 	case 0x1844:
1351 	case 0x1A44:
1352 		rate[0] = DESC_RATEVHT1SS_MCS8;
1353 		rate[1] = DESC_RATEVHT1SS_MCS9;
1354 		rate[2] = DESC_RATEVHT2SS_MCS0;
1355 		rate[3] = DESC_RATEVHT2SS_MCS1;
1356 		for (i = 0; i < 4; ++i)
1357 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1358 		*rate_num = 4;
1359 		break;
1360 	case 0xC48:
1361 	case 0xE48:
1362 	case 0x1848:
1363 	case 0x1A48:
1364 		rate[0] = DESC_RATEVHT2SS_MCS2;
1365 		rate[1] = DESC_RATEVHT2SS_MCS3;
1366 		rate[2] = DESC_RATEVHT2SS_MCS4;
1367 		rate[3] = DESC_RATEVHT2SS_MCS5;
1368 		for (i = 0; i < 4; ++i)
1369 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1370 		*rate_num = 4;
1371 		break;
1372 	case 0xC4C:
1373 	case 0xE4C:
1374 	case 0x184C:
1375 	case 0x1A4C:
1376 		rate[0] = DESC_RATEVHT2SS_MCS6;
1377 		rate[1] = DESC_RATEVHT2SS_MCS7;
1378 		rate[2] = DESC_RATEVHT2SS_MCS8;
1379 		rate[3] = DESC_RATEVHT2SS_MCS9;
1380 		for (i = 0; i < 4; ++i)
1381 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1382 		*rate_num = 4;
1383 		break;
1384 	case 0xCD8:
1385 	case 0xED8:
1386 	case 0x18D8:
1387 	case 0x1AD8:
1388 		rate[0] = DESC_RATEMCS16;
1389 		rate[1] = DESC_RATEMCS17;
1390 		rate[2] = DESC_RATEMCS18;
1391 		rate[3] = DESC_RATEMCS19;
1392 		for (i = 0; i < 4; ++i)
1393 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1394 		*rate_num = 4;
1395 		break;
1396 	case 0xCDC:
1397 	case 0xEDC:
1398 	case 0x18DC:
1399 	case 0x1ADC:
1400 		rate[0] = DESC_RATEMCS20;
1401 		rate[1] = DESC_RATEMCS21;
1402 		rate[2] = DESC_RATEMCS22;
1403 		rate[3] = DESC_RATEMCS23;
1404 		for (i = 0; i < 4; ++i)
1405 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1406 		*rate_num = 4;
1407 		break;
1408 	case 0xCE0:
1409 	case 0xEE0:
1410 	case 0x18E0:
1411 	case 0x1AE0:
1412 		rate[0] = DESC_RATEVHT3SS_MCS0;
1413 		rate[1] = DESC_RATEVHT3SS_MCS1;
1414 		rate[2] = DESC_RATEVHT3SS_MCS2;
1415 		rate[3] = DESC_RATEVHT3SS_MCS3;
1416 		for (i = 0; i < 4; ++i)
1417 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1418 		*rate_num = 4;
1419 		break;
1420 	case 0xCE4:
1421 	case 0xEE4:
1422 	case 0x18E4:
1423 	case 0x1AE4:
1424 		rate[0] = DESC_RATEVHT3SS_MCS4;
1425 		rate[1] = DESC_RATEVHT3SS_MCS5;
1426 		rate[2] = DESC_RATEVHT3SS_MCS6;
1427 		rate[3] = DESC_RATEVHT3SS_MCS7;
1428 		for (i = 0; i < 4; ++i)
1429 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1430 		*rate_num = 4;
1431 		break;
1432 	case 0xCE8:
1433 	case 0xEE8:
1434 	case 0x18E8:
1435 	case 0x1AE8:
1436 		rate[0] = DESC_RATEVHT3SS_MCS8;
1437 		rate[1] = DESC_RATEVHT3SS_MCS9;
1438 		for (i = 0; i < 2; ++i)
1439 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1440 		*rate_num = 2;
1441 		break;
1442 	default:
1443 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1444 		break;
1445 	}
1446 }
1447 
1448 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1449 					   u32 band, u32 rfpath, u32 txnum,
1450 					   u32 regaddr, u32 bitmask, u32 data)
1451 {
1452 	struct rtw_hal *hal = &rtwdev->hal;
1453 	u8 rate_num = 0;
1454 	u8 rate;
1455 	u8 rates[RTW_RF_PATH_MAX] = {0};
1456 	s8 offset;
1457 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1458 	int i;
1459 
1460 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1461 						 rates, pwr_by_rate, &rate_num);
1462 
1463 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1464 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1465 		    rate_num > RTW_RF_PATH_MAX))
1466 		return;
1467 
1468 	for (i = 0; i < rate_num; i++) {
1469 		offset = pwr_by_rate[i];
1470 		rate = rates[i];
1471 		if (band == PHY_BAND_2G)
1472 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1473 		else if (band == PHY_BAND_5G)
1474 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1475 		else
1476 			continue;
1477 	}
1478 }
1479 
1480 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1481 {
1482 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1483 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1484 
1485 	for (; p < end; p++) {
1486 		if (p->addr == 0xfe || p->addr == 0xffe) {
1487 			msleep(50);
1488 			continue;
1489 		}
1490 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1491 					       p->tx_num, p->addr, p->bitmask,
1492 					       p->data);
1493 	}
1494 }
1495 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1496 
1497 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1498 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1499 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1500 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1501 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1502 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1503 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1504 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1505 
1506 static int rtw_channel_to_idx(u8 band, u8 channel)
1507 {
1508 	int ch_idx;
1509 	u8 n_channel;
1510 
1511 	if (band == PHY_BAND_2G) {
1512 		ch_idx = channel - 1;
1513 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1514 	} else if (band == PHY_BAND_5G) {
1515 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1516 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1517 			if (rtw_channel_idx_5g[ch_idx] == channel)
1518 				break;
1519 	} else {
1520 		return -1;
1521 	}
1522 
1523 	if (ch_idx >= n_channel)
1524 		return -1;
1525 
1526 	return ch_idx;
1527 }
1528 
1529 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1530 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1531 {
1532 	struct rtw_hal *hal = &rtwdev->hal;
1533 	u8 max_power_index = rtwdev->chip->max_power_index;
1534 	s8 ww;
1535 	int ch_idx;
1536 
1537 	pwr_limit = clamp_t(s8, pwr_limit,
1538 			    -max_power_index, max_power_index);
1539 	ch_idx = rtw_channel_to_idx(band, ch);
1540 
1541 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1542 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1543 		WARN(1,
1544 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1545 		     regd, band, bw, rs, ch_idx, pwr_limit);
1546 		return;
1547 	}
1548 
1549 	if (band == PHY_BAND_2G) {
1550 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1551 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1552 		ww = min_t(s8, ww, pwr_limit);
1553 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1554 	} else if (band == PHY_BAND_5G) {
1555 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1556 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1557 		ww = min_t(s8, ww, pwr_limit);
1558 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1559 	}
1560 }
1561 
1562 /* cross-reference 5G power limits if values are not assigned */
1563 static void
1564 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1565 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1566 {
1567 	struct rtw_hal *hal = &rtwdev->hal;
1568 	u8 max_power_index = rtwdev->chip->max_power_index;
1569 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1570 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1571 
1572 	if (lmt_ht == lmt_vht)
1573 		return;
1574 
1575 	if (lmt_ht == max_power_index)
1576 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1577 
1578 	else if (lmt_vht == max_power_index)
1579 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1580 }
1581 
1582 /* cross-reference power limits for ht and vht */
1583 static void
1584 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1585 {
1586 	u8 rs_idx, rs_ht, rs_vht;
1587 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1588 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1589 
1590 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1591 		rs_ht = rs_cmp[rs_idx][0];
1592 		rs_vht = rs_cmp[rs_idx][1];
1593 
1594 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1595 	}
1596 }
1597 
1598 /* cross-reference power limits for 5G channels */
1599 static void
1600 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1601 {
1602 	u8 ch_idx;
1603 
1604 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1605 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1606 }
1607 
1608 /* cross-reference power limits for 20/40M bandwidth */
1609 static void
1610 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1611 {
1612 	u8 bw;
1613 
1614 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1615 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1616 }
1617 
1618 /* cross-reference power limits */
1619 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1620 {
1621 	u8 regd;
1622 
1623 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1624 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1625 }
1626 
1627 static void
1628 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1629 {
1630 	u8 ch;
1631 
1632 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1633 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1634 			hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1635 
1636 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1637 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1638 			hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1639 }
1640 
1641 static void
1642 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1643 {
1644 	u8 bw, rs;
1645 
1646 	for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1647 		for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1648 			__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1649 					       bw, rs);
1650 }
1651 
1652 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1653 			     const struct rtw_table *tbl)
1654 {
1655 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1656 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1657 	u32 regd_cfg_flag = 0;
1658 	u8 regd_alt;
1659 	u8 i;
1660 
1661 	for (; p < end; p++) {
1662 		regd_cfg_flag |= BIT(p->regd);
1663 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1664 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1665 	}
1666 
1667 	for (i = 0; i < RTW_REGD_MAX; i++) {
1668 		if (i == RTW_REGD_WW)
1669 			continue;
1670 
1671 		if (regd_cfg_flag & BIT(i))
1672 			continue;
1673 
1674 		rtw_dbg(rtwdev, RTW_DBG_REGD,
1675 			"txpwr regd %d does not be configured\n", i);
1676 
1677 		if (rtw_regd_has_alt(i, &regd_alt) &&
1678 		    regd_cfg_flag & BIT(regd_alt)) {
1679 			rtw_dbg(rtwdev, RTW_DBG_REGD,
1680 				"cfg txpwr regd %d by regd %d as alternative\n",
1681 				i, regd_alt);
1682 
1683 			rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1684 			continue;
1685 		}
1686 
1687 		rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1688 		rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1689 	}
1690 
1691 	rtw_xref_txpwr_lmt(rtwdev);
1692 }
1693 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1694 
1695 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1696 		     u32 addr, u32 data)
1697 {
1698 	rtw_write8(rtwdev, addr, data);
1699 }
1700 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1701 
1702 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1703 		     u32 addr, u32 data)
1704 {
1705 	rtw_write32(rtwdev, addr, data);
1706 }
1707 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1708 
1709 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1710 		    u32 addr, u32 data)
1711 {
1712 	if (addr == 0xfe)
1713 		msleep(50);
1714 	else if (addr == 0xfd)
1715 		mdelay(5);
1716 	else if (addr == 0xfc)
1717 		mdelay(1);
1718 	else if (addr == 0xfb)
1719 		usleep_range(50, 60);
1720 	else if (addr == 0xfa)
1721 		udelay(5);
1722 	else if (addr == 0xf9)
1723 		udelay(1);
1724 	else
1725 		rtw_write32(rtwdev, addr, data);
1726 }
1727 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1728 
1729 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1730 		    u32 addr, u32 data)
1731 {
1732 	if (addr == 0xffe) {
1733 		msleep(50);
1734 	} else if (addr == 0xfe) {
1735 		usleep_range(100, 110);
1736 	} else {
1737 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1738 		udelay(1);
1739 	}
1740 }
1741 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1742 
1743 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1744 {
1745 	const struct rtw_chip_info *chip = rtwdev->chip;
1746 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1747 
1748 	if (!chip->rfk_init_tbl)
1749 		return;
1750 
1751 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1752 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1753 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1754 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1755 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1756 
1757 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1758 
1759 	dpk_info->is_dpk_pwr_on = true;
1760 }
1761 
1762 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1763 {
1764 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1765 	const struct rtw_chip_info *chip = rtwdev->chip;
1766 	u8 rf_path;
1767 
1768 	rtw_load_table(rtwdev, chip->mac_tbl);
1769 	rtw_load_table(rtwdev, chip->bb_tbl);
1770 	rtw_load_table(rtwdev, chip->agc_tbl);
1771 	if (rfe_def->agc_btg_tbl)
1772 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1773 	rtw_load_rfk_table(rtwdev);
1774 
1775 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1776 		const struct rtw_table *tbl;
1777 
1778 		tbl = chip->rf_tbl[rf_path];
1779 		rtw_load_table(rtwdev, tbl);
1780 	}
1781 }
1782 EXPORT_SYMBOL(rtw_phy_load_tables);
1783 
1784 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1785 {
1786 	switch (channel) {
1787 	default:
1788 		WARN_ON(1);
1789 		fallthrough;
1790 	case 1:
1791 	case 2:
1792 	case 36:
1793 	case 38:
1794 	case 40:
1795 	case 42:
1796 		return 0;
1797 	case 3:
1798 	case 4:
1799 	case 5:
1800 	case 44:
1801 	case 46:
1802 	case 48:
1803 	case 50:
1804 		return 1;
1805 	case 6:
1806 	case 7:
1807 	case 8:
1808 	case 52:
1809 	case 54:
1810 	case 56:
1811 	case 58:
1812 		return 2;
1813 	case 9:
1814 	case 10:
1815 	case 11:
1816 	case 60:
1817 	case 62:
1818 	case 64:
1819 		return 3;
1820 	case 12:
1821 	case 13:
1822 	case 100:
1823 	case 102:
1824 	case 104:
1825 	case 106:
1826 		return 4;
1827 	case 14:
1828 		return rate <= DESC_RATE11M ? 5 : 4;
1829 	case 108:
1830 	case 110:
1831 	case 112:
1832 	case 114:
1833 		return 5;
1834 	case 116:
1835 	case 118:
1836 	case 120:
1837 	case 122:
1838 		return 6;
1839 	case 124:
1840 	case 126:
1841 	case 128:
1842 	case 130:
1843 		return 7;
1844 	case 132:
1845 	case 134:
1846 	case 136:
1847 	case 138:
1848 		return 8;
1849 	case 140:
1850 	case 142:
1851 	case 144:
1852 		return 9;
1853 	case 149:
1854 	case 151:
1855 	case 153:
1856 	case 155:
1857 		return 10;
1858 	case 157:
1859 	case 159:
1860 	case 161:
1861 		return 11;
1862 	case 165:
1863 	case 167:
1864 	case 169:
1865 	case 171:
1866 		return 12;
1867 	case 173:
1868 	case 175:
1869 	case 177:
1870 		return 13;
1871 	}
1872 }
1873 
1874 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1875 {
1876 	const struct rtw_chip_info *chip = rtwdev->chip;
1877 	s8 dpd_diff = 0;
1878 
1879 	if (!chip->en_dis_dpd)
1880 		return 0;
1881 
1882 #define RTW_DPD_RATE_CHECK(_rate)					\
1883 	case DESC_RATE ## _rate:					\
1884 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1885 		dpd_diff = -6 * chip->txgi_factor;			\
1886 	break
1887 
1888 	switch (rate) {
1889 	RTW_DPD_RATE_CHECK(6M);
1890 	RTW_DPD_RATE_CHECK(9M);
1891 	RTW_DPD_RATE_CHECK(MCS0);
1892 	RTW_DPD_RATE_CHECK(MCS1);
1893 	RTW_DPD_RATE_CHECK(MCS8);
1894 	RTW_DPD_RATE_CHECK(MCS9);
1895 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1896 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1897 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1898 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1899 	}
1900 #undef RTW_DPD_RATE_CHECK
1901 
1902 	return dpd_diff;
1903 }
1904 
1905 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1906 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1907 					enum rtw_bandwidth bandwidth,
1908 					u8 rate, u8 group)
1909 {
1910 	const struct rtw_chip_info *chip = rtwdev->chip;
1911 	u8 tx_power;
1912 	bool mcs_rate;
1913 	bool above_2ss;
1914 	u8 factor = chip->txgi_factor;
1915 
1916 	if (rate <= DESC_RATE11M)
1917 		tx_power = pwr_idx_2g->cck_base[group];
1918 	else
1919 		tx_power = pwr_idx_2g->bw40_base[group];
1920 
1921 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1922 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1923 
1924 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1925 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1926 		    rate <= DESC_RATEVHT2SS_MCS9);
1927 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1928 		    (rate >= DESC_RATEVHT2SS_MCS0);
1929 
1930 	if (!mcs_rate)
1931 		return tx_power;
1932 
1933 	switch (bandwidth) {
1934 	default:
1935 		WARN_ON(1);
1936 		fallthrough;
1937 	case RTW_CHANNEL_WIDTH_20:
1938 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1939 		if (above_2ss)
1940 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1941 		break;
1942 	case RTW_CHANNEL_WIDTH_40:
1943 		/* bw40 is the base power */
1944 		if (above_2ss)
1945 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1946 		break;
1947 	}
1948 
1949 	return tx_power;
1950 }
1951 
1952 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1953 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1954 					enum rtw_bandwidth bandwidth,
1955 					u8 rate, u8 group)
1956 {
1957 	const struct rtw_chip_info *chip = rtwdev->chip;
1958 	u8 tx_power;
1959 	u8 upper, lower;
1960 	bool mcs_rate;
1961 	bool above_2ss;
1962 	u8 factor = chip->txgi_factor;
1963 
1964 	tx_power = pwr_idx_5g->bw40_base[group];
1965 
1966 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1967 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1968 		    rate <= DESC_RATEVHT2SS_MCS9);
1969 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1970 		    (rate >= DESC_RATEVHT2SS_MCS0);
1971 
1972 	if (!mcs_rate) {
1973 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1974 		return tx_power;
1975 	}
1976 
1977 	switch (bandwidth) {
1978 	default:
1979 		WARN_ON(1);
1980 		fallthrough;
1981 	case RTW_CHANNEL_WIDTH_20:
1982 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1983 		if (above_2ss)
1984 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1985 		break;
1986 	case RTW_CHANNEL_WIDTH_40:
1987 		/* bw40 is the base power */
1988 		if (above_2ss)
1989 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1990 		break;
1991 	case RTW_CHANNEL_WIDTH_80:
1992 		/* the base idx of bw80 is the average of bw40+/bw40- */
1993 		lower = pwr_idx_5g->bw40_base[group];
1994 		upper = pwr_idx_5g->bw40_base[group + 1];
1995 
1996 		tx_power = (lower + upper) / 2;
1997 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1998 		if (above_2ss)
1999 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2000 		break;
2001 	}
2002 
2003 	return tx_power;
2004 }
2005 
2006 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
2007 static u8 rtw_phy_rate_to_rate_section(u8 rate)
2008 {
2009 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2010 		return RTW_RATE_SECTION_CCK;
2011 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2012 		return RTW_RATE_SECTION_OFDM;
2013 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2014 		return RTW_RATE_SECTION_HT_1S;
2015 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2016 		return RTW_RATE_SECTION_HT_2S;
2017 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2018 		return RTW_RATE_SECTION_VHT_1S;
2019 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2020 		return RTW_RATE_SECTION_VHT_2S;
2021 	else
2022 		return RTW_RATE_SECTION_MAX;
2023 }
2024 
2025 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2026 				     enum rtw_bandwidth bw, u8 rf_path,
2027 				     u8 rate, u8 channel, u8 regd)
2028 {
2029 	struct rtw_hal *hal = &rtwdev->hal;
2030 	u8 *cch_by_bw = hal->cch_by_bw;
2031 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
2032 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2033 	int ch_idx;
2034 	u8 cur_bw, cur_ch;
2035 	s8 cur_lmt;
2036 
2037 	if (regd > RTW_REGD_WW)
2038 		return power_limit;
2039 
2040 	if (rs == RTW_RATE_SECTION_MAX)
2041 		goto err;
2042 
2043 	/* only 20M BW with cck and ofdm */
2044 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2045 		bw = RTW_CHANNEL_WIDTH_20;
2046 
2047 	/* only 20/40M BW with ht */
2048 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2049 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2050 
2051 	/* select min power limit among [20M BW ~ current BW] */
2052 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2053 		cur_ch = cch_by_bw[cur_bw];
2054 
2055 		ch_idx = rtw_channel_to_idx(band, cur_ch);
2056 		if (ch_idx < 0)
2057 			goto err;
2058 
2059 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2060 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2061 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2062 
2063 		power_limit = min_t(s8, cur_lmt, power_limit);
2064 	}
2065 
2066 	return power_limit;
2067 
2068 err:
2069 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2070 	     band, bw, rf_path, rate, channel);
2071 	return (s8)rtwdev->chip->max_power_index;
2072 }
2073 
2074 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2075 				   u8 rf_path, u8 rate)
2076 {
2077 	u8 rs = rtw_phy_rate_to_rate_section(rate);
2078 	struct rtw_sar_arg arg = {
2079 		.sar_band = sar_band,
2080 		.path = rf_path,
2081 		.rs = rs,
2082 	};
2083 
2084 	if (rs == RTW_RATE_SECTION_MAX)
2085 		goto err;
2086 
2087 	return rtw_query_sar(rtwdev, &arg);
2088 
2089 err:
2090 	WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2091 	     sar_band, rf_path, rate);
2092 	return (s8)rtwdev->chip->max_power_index;
2093 }
2094 
2095 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2096 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2097 {
2098 	struct rtw_hal *hal = &rtwdev->hal;
2099 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2100 	struct rtw_txpwr_idx *pwr_idx;
2101 	u8 group, band;
2102 	u8 *base = &pwr_param->pwr_base;
2103 	s8 *offset = &pwr_param->pwr_offset;
2104 	s8 *limit = &pwr_param->pwr_limit;
2105 	s8 *remnant = &pwr_param->pwr_remnant;
2106 	s8 *sar = &pwr_param->pwr_sar;
2107 
2108 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2109 	group = rtw_get_channel_group(ch, rate);
2110 
2111 	/* base power index for 2.4G/5G */
2112 	if (IS_CH_2G_BAND(ch)) {
2113 		band = PHY_BAND_2G;
2114 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2115 						      &pwr_idx->pwr_idx_2g,
2116 						      bw, rate, group);
2117 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2118 	} else {
2119 		band = PHY_BAND_5G;
2120 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2121 						      &pwr_idx->pwr_idx_5g,
2122 						      bw, rate, group);
2123 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2124 	}
2125 
2126 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2127 					    rate, ch, regd);
2128 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2129 		    dm_info->txagc_remnant_ofdm);
2130 	*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2131 }
2132 
2133 u8
2134 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2135 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2136 {
2137 	struct rtw_power_params pwr_param = {0};
2138 	u8 tx_power;
2139 	s8 offset;
2140 
2141 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2142 				channel, regd, &pwr_param);
2143 
2144 	tx_power = pwr_param.pwr_base;
2145 	offset = min3(pwr_param.pwr_offset,
2146 		      pwr_param.pwr_limit,
2147 		      pwr_param.pwr_sar);
2148 
2149 	if (rtwdev->chip->en_dis_dpd)
2150 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2151 
2152 	tx_power += offset + pwr_param.pwr_remnant;
2153 
2154 	if (tx_power > rtwdev->chip->max_power_index)
2155 		tx_power = rtwdev->chip->max_power_index;
2156 
2157 	return tx_power;
2158 }
2159 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2160 
2161 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2162 					     u8 ch, u8 path, u8 rs)
2163 {
2164 	struct rtw_hal *hal = &rtwdev->hal;
2165 	u8 regd = rtw_regd_get(rtwdev);
2166 	u8 *rates;
2167 	u8 size;
2168 	u8 rate;
2169 	u8 pwr_idx;
2170 	u8 bw;
2171 	int i;
2172 
2173 	if (rs >= RTW_RATE_SECTION_MAX)
2174 		return;
2175 
2176 	rates = rtw_rate_section[rs];
2177 	size = rtw_rate_size[rs];
2178 	bw = hal->current_band_width;
2179 	for (i = 0; i < size; i++) {
2180 		rate = rates[i];
2181 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2182 						     bw, ch, regd);
2183 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2184 	}
2185 }
2186 
2187 /* set tx power level by path for each rates, note that the order of the rates
2188  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2189  * power index into a four-byte power index register, and calls set_tx_agc to
2190  * write these values into hardware
2191  */
2192 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2193 					       u8 ch, u8 path)
2194 {
2195 	struct rtw_hal *hal = &rtwdev->hal;
2196 	u8 rs;
2197 
2198 	/* do not need cck rates if we are not in 2.4G */
2199 	if (hal->current_band_type == RTW_BAND_2G)
2200 		rs = RTW_RATE_SECTION_CCK;
2201 	else
2202 		rs = RTW_RATE_SECTION_OFDM;
2203 
2204 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2205 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2206 }
2207 
2208 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2209 {
2210 	const struct rtw_chip_info *chip = rtwdev->chip;
2211 	struct rtw_hal *hal = &rtwdev->hal;
2212 	u8 path;
2213 
2214 	mutex_lock(&hal->tx_power_mutex);
2215 
2216 	for (path = 0; path < hal->rf_path_num; path++)
2217 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2218 
2219 	chip->ops->set_tx_power_index(rtwdev);
2220 	mutex_unlock(&hal->tx_power_mutex);
2221 }
2222 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2223 
2224 static void
2225 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2226 					u8 rs, u8 size, u8 *rates)
2227 {
2228 	u8 rate;
2229 	u8 base_idx, rate_idx;
2230 	s8 base_2g, base_5g;
2231 
2232 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2233 		base_idx = rates[size - 3];
2234 	else
2235 		base_idx = rates[size - 1];
2236 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2237 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2238 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2239 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2240 	for (rate = 0; rate < size; rate++) {
2241 		rate_idx = rates[rate];
2242 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2243 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2244 	}
2245 }
2246 
2247 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2248 {
2249 	u8 path;
2250 
2251 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2252 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2253 				RTW_RATE_SECTION_CCK,
2254 				rtw_cck_size, rtw_cck_rates);
2255 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2256 				RTW_RATE_SECTION_OFDM,
2257 				rtw_ofdm_size, rtw_ofdm_rates);
2258 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2259 				RTW_RATE_SECTION_HT_1S,
2260 				rtw_ht_1s_size, rtw_ht_1s_rates);
2261 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2262 				RTW_RATE_SECTION_HT_2S,
2263 				rtw_ht_2s_size, rtw_ht_2s_rates);
2264 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2265 				RTW_RATE_SECTION_VHT_1S,
2266 				rtw_vht_1s_size, rtw_vht_1s_rates);
2267 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2268 				RTW_RATE_SECTION_VHT_2S,
2269 				rtw_vht_2s_size, rtw_vht_2s_rates);
2270 	}
2271 }
2272 
2273 static void
2274 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2275 {
2276 	s8 base;
2277 	u8 ch;
2278 
2279 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2280 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2281 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2282 	}
2283 
2284 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2285 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2286 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2287 	}
2288 }
2289 
2290 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2291 {
2292 	u8 regd, bw, rs;
2293 
2294 	/* default at channel 1 */
2295 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2296 
2297 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2298 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2299 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2300 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2301 }
2302 
2303 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2304 					u8 regd, u8 bw, u8 rs)
2305 {
2306 	struct rtw_hal *hal = &rtwdev->hal;
2307 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2308 	u8 ch;
2309 
2310 	/* 2.4G channels */
2311 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2312 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2313 
2314 	/* 5G channels */
2315 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2316 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2317 }
2318 
2319 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2320 {
2321 	struct rtw_hal *hal = &rtwdev->hal;
2322 	u8 regd, path, rate, rs, bw;
2323 
2324 	/* init tx power by rate offset */
2325 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2326 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2327 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2328 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2329 		}
2330 	}
2331 
2332 	/* init tx power limit */
2333 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2334 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2335 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2336 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2337 							    rs);
2338 }
2339 
2340 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2341 				struct rtw_swing_table *swing_table)
2342 {
2343 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2344 	u8 channel = rtwdev->hal.current_channel;
2345 
2346 	if (IS_CH_2G_BAND(channel)) {
2347 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2348 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2349 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2350 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2351 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2352 		} else {
2353 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2354 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2355 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2356 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2357 		}
2358 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2359 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2360 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2361 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2362 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2363 	} else if (IS_CH_5G_BAND_3(channel)) {
2364 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2365 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2366 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2367 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2368 	} else if (IS_CH_5G_BAND_4(channel)) {
2369 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2370 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2371 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2372 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2373 	} else {
2374 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2375 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2376 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2377 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2378 	}
2379 }
2380 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2381 
2382 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2383 {
2384 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2385 
2386 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2387 	dm_info->thermal_avg[path] =
2388 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2389 }
2390 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2391 
2392 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2393 				      u8 path)
2394 {
2395 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2396 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2397 
2398 	if (avg == thermal)
2399 		return false;
2400 
2401 	return true;
2402 }
2403 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2404 
2405 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2406 {
2407 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2408 	u8 therm_avg, therm_efuse, therm_delta;
2409 
2410 	therm_avg = dm_info->thermal_avg[path];
2411 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2412 	therm_delta = abs(therm_avg - therm_efuse);
2413 
2414 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2415 }
2416 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2417 
2418 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2419 			       struct rtw_swing_table *swing_table,
2420 			       u8 tbl_path, u8 therm_path, u8 delta)
2421 {
2422 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2423 	const u8 *delta_swing_table_idx_pos;
2424 	const u8 *delta_swing_table_idx_neg;
2425 
2426 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2427 		rtw_warn(rtwdev, "power track table overflow\n");
2428 		return 0;
2429 	}
2430 
2431 	if (!swing_table) {
2432 		rtw_warn(rtwdev, "swing table not configured\n");
2433 		return 0;
2434 	}
2435 
2436 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2437 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2438 
2439 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2440 		rtw_warn(rtwdev, "invalid swing table index\n");
2441 		return 0;
2442 	}
2443 
2444 	if (dm_info->thermal_avg[therm_path] >
2445 	    rtwdev->efuse.thermal_meter[therm_path])
2446 		return delta_swing_table_idx_pos[delta];
2447 	else
2448 		return -delta_swing_table_idx_neg[delta];
2449 }
2450 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2451 
2452 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2453 {
2454 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2455 	u8 delta_lck;
2456 
2457 	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2458 	if (delta_lck >= rtwdev->chip->lck_threshold) {
2459 		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2460 		return true;
2461 	}
2462 	return false;
2463 }
2464 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2465 
2466 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2467 {
2468 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2469 	u8 delta_iqk;
2470 
2471 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2472 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2473 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2474 		return true;
2475 	}
2476 	return false;
2477 }
2478 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2479 
2480 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2481 				       enum rtw_bb_path tx_path_sel_1ss)
2482 {
2483 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2484 	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2485 	const struct rtw_chip_info *chip = rtwdev->chip;
2486 
2487 	if (tx_path_sel_1ss == path_div->current_tx_path)
2488 		return;
2489 
2490 	path_div->current_tx_path = tx_path_sel_1ss;
2491 	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2492 		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2493 	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2494 				  tx_path_sel_1ss, tx_path_sel_cck, false);
2495 }
2496 
2497 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2498 {
2499 	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2500 	enum rtw_bb_path path = path_div->current_tx_path;
2501 	s32 rssi_a = 0, rssi_b = 0;
2502 
2503 	if (path_div->path_a_cnt)
2504 		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2505 	else
2506 		rssi_a = 0;
2507 	if (path_div->path_b_cnt)
2508 		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2509 	else
2510 		rssi_b = 0;
2511 
2512 	if (rssi_a != rssi_b)
2513 		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2514 
2515 	path_div->path_a_cnt = 0;
2516 	path_div->path_a_sum = 0;
2517 	path_div->path_b_cnt = 0;
2518 	path_div->path_b_sum = 0;
2519 	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2520 }
2521 
2522 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2523 {
2524 	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2525 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2526 			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2527 			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2528 		return;
2529 	}
2530 	if (rtwdev->sta_cnt == 0) {
2531 		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2532 		return;
2533 	}
2534 
2535 	rtw_phy_tx_path_div_select(rtwdev);
2536 }
2537 
2538 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2539 {
2540 	const struct rtw_chip_info *chip = rtwdev->chip;
2541 
2542 	if (!chip->path_div_supported)
2543 		return;
2544 
2545 	rtw_phy_tx_path_diversity_2ss(rtwdev);
2546 }
2547