1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
86 	ARRAY_SIZE(rtw_cck_rates),
87 	ARRAY_SIZE(rtw_ofdm_rates),
88 	ARRAY_SIZE(rtw_ht_1s_rates),
89 	ARRAY_SIZE(rtw_ht_2s_rates),
90 	ARRAY_SIZE(rtw_vht_1s_rates),
91 	ARRAY_SIZE(rtw_vht_2s_rates)
92 };
93 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
94 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
95 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
96 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
97 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
98 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
99 
100 enum rtw_phy_band_type {
101 	PHY_BAND_2G	= 0,
102 	PHY_BAND_5G	= 1,
103 };
104 
105 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
106 {
107 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
108 	u8 i, j;
109 
110 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
111 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
112 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
113 	}
114 
115 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
116 }
117 
118 void rtw_phy_init(struct rtw_dev *rtwdev)
119 {
120 	struct rtw_chip_info *chip = rtwdev->chip;
121 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
122 	u32 addr, mask;
123 
124 	dm_info->fa_history[3] = 0;
125 	dm_info->fa_history[2] = 0;
126 	dm_info->fa_history[1] = 0;
127 	dm_info->fa_history[0] = 0;
128 	dm_info->igi_bitmap = 0;
129 	dm_info->igi_history[3] = 0;
130 	dm_info->igi_history[2] = 0;
131 	dm_info->igi_history[1] = 0;
132 
133 	addr = chip->dig[0].addr;
134 	mask = chip->dig[0].mask;
135 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
136 	rtw_phy_cck_pd_init(rtwdev);
137 }
138 
139 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
140 {
141 	struct rtw_chip_info *chip = rtwdev->chip;
142 	struct rtw_hal *hal = &rtwdev->hal;
143 	u32 addr, mask;
144 	u8 path;
145 
146 	for (path = 0; path < hal->rf_path_num; path++) {
147 		addr = chip->dig[path].addr;
148 		mask = chip->dig[path].mask;
149 		rtw_write32_mask(rtwdev, addr, mask, igi);
150 	}
151 }
152 
153 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
154 {
155 	struct rtw_chip_info *chip = rtwdev->chip;
156 
157 	chip->ops->false_alarm_statistics(rtwdev);
158 }
159 
160 #define RA_FLOOR_TABLE_SIZE	7
161 #define RA_FLOOR_UP_GAP		3
162 
163 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
164 {
165 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
166 	u8 new_level = 0;
167 	int i;
168 
169 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
170 		if (i >= old_level)
171 			table[i] += RA_FLOOR_UP_GAP;
172 
173 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
174 		if (rssi < table[i]) {
175 			new_level = i;
176 			break;
177 		}
178 	}
179 
180 	return new_level;
181 }
182 
183 struct rtw_phy_stat_iter_data {
184 	struct rtw_dev *rtwdev;
185 	u8 min_rssi;
186 };
187 
188 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
189 {
190 	struct rtw_phy_stat_iter_data *iter_data = data;
191 	struct rtw_dev *rtwdev = iter_data->rtwdev;
192 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
193 	u8 rssi;
194 
195 	rssi = ewma_rssi_read(&si->avg_rssi);
196 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
197 
198 	rtw_fw_send_rssi_info(rtwdev, si);
199 
200 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
201 }
202 
203 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
204 {
205 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
206 	struct rtw_phy_stat_iter_data data = {};
207 
208 	data.rtwdev = rtwdev;
209 	data.min_rssi = U8_MAX;
210 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
211 
212 	dm_info->pre_min_rssi = dm_info->min_rssi;
213 	dm_info->min_rssi = data.min_rssi;
214 }
215 
216 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
217 {
218 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
219 
220 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
221 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
222 }
223 
224 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
225 {
226 	rtw_phy_stat_rssi(rtwdev);
227 	rtw_phy_stat_false_alarm(rtwdev);
228 	rtw_phy_stat_rate_cnt(rtwdev);
229 }
230 
231 #define DIG_PERF_FA_TH_LOW			250
232 #define DIG_PERF_FA_TH_HIGH			500
233 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
234 #define DIG_PERF_MAX				0x5a
235 #define DIG_PERF_MID				0x40
236 #define DIG_CVRG_FA_TH_LOW			2000
237 #define DIG_CVRG_FA_TH_HIGH			4000
238 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
239 #define DIG_CVRG_MAX				0x2a
240 #define DIG_CVRG_MID				0x26
241 #define DIG_CVRG_MIN				0x1c
242 #define DIG_RSSI_GAIN_OFFSET			15
243 
244 static bool
245 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
246 {
247 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
248 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
249 	u16 *fa_history;
250 	u8 *igi_history;
251 	u8 damping_rssi;
252 	u8 min_rssi;
253 	u8 diff;
254 	u8 igi_bitmap;
255 	bool damping = false;
256 
257 	min_rssi = dm_info->min_rssi;
258 	if (dm_info->damping) {
259 		damping_rssi = dm_info->damping_rssi;
260 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
261 						 damping_rssi - min_rssi;
262 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
263 			dm_info->damping = false;
264 			return false;
265 		}
266 
267 		return true;
268 	}
269 
270 	igi_history = dm_info->igi_history;
271 	fa_history = dm_info->fa_history;
272 	igi_bitmap = dm_info->igi_bitmap & 0xf;
273 	switch (igi_bitmap) {
274 	case 5:
275 		/* down -> up -> down -> up */
276 		if (igi_history[0] > igi_history[1] &&
277 		    igi_history[2] > igi_history[3] &&
278 		    igi_history[0] - igi_history[1] >= 2 &&
279 		    igi_history[2] - igi_history[3] >= 2 &&
280 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
281 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
282 			damping = true;
283 		break;
284 	case 9:
285 		/* up -> down -> down -> up */
286 		if (igi_history[0] > igi_history[1] &&
287 		    igi_history[3] > igi_history[2] &&
288 		    igi_history[0] - igi_history[1] >= 4 &&
289 		    igi_history[3] - igi_history[2] >= 2 &&
290 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
291 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
292 			damping = true;
293 		break;
294 	default:
295 		return false;
296 	}
297 
298 	if (damping) {
299 		dm_info->damping = true;
300 		dm_info->damping_cnt = 0;
301 		dm_info->damping_rssi = min_rssi;
302 	}
303 
304 	return damping;
305 }
306 
307 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
308 				     u8 *upper, u8 *lower, bool linked)
309 {
310 	u8 dig_max, dig_min, dig_mid;
311 	u8 min_rssi;
312 
313 	if (linked) {
314 		dig_max = DIG_PERF_MAX;
315 		dig_mid = DIG_PERF_MID;
316 		/* 22B=0x1c, 22C=0x20 */
317 		dig_min = 0x1c;
318 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
319 	} else {
320 		dig_max = DIG_CVRG_MAX;
321 		dig_mid = DIG_CVRG_MID;
322 		dig_min = DIG_CVRG_MIN;
323 		min_rssi = dig_min;
324 	}
325 
326 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
327 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
328 
329 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
330 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
331 }
332 
333 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
334 				      u16 *fa_th, u8 *step, bool linked)
335 {
336 	u8 min_rssi, pre_min_rssi;
337 
338 	min_rssi = dm_info->min_rssi;
339 	pre_min_rssi = dm_info->pre_min_rssi;
340 	step[0] = 4;
341 	step[1] = 3;
342 	step[2] = 2;
343 
344 	if (linked) {
345 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
346 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
347 		fa_th[2] = DIG_PERF_FA_TH_LOW;
348 		if (pre_min_rssi > min_rssi) {
349 			step[0] = 6;
350 			step[1] = 4;
351 			step[2] = 2;
352 		}
353 	} else {
354 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
355 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
356 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
357 	}
358 }
359 
360 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
361 {
362 	u8 *igi_history;
363 	u16 *fa_history;
364 	u8 igi_bitmap;
365 	bool up;
366 
367 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
368 	igi_history = dm_info->igi_history;
369 	fa_history = dm_info->fa_history;
370 
371 	up = igi > igi_history[0];
372 	igi_bitmap |= up;
373 
374 	igi_history[3] = igi_history[2];
375 	igi_history[2] = igi_history[1];
376 	igi_history[1] = igi_history[0];
377 	igi_history[0] = igi;
378 
379 	fa_history[3] = fa_history[2];
380 	fa_history[2] = fa_history[1];
381 	fa_history[1] = fa_history[0];
382 	fa_history[0] = fa;
383 
384 	dm_info->igi_bitmap = igi_bitmap;
385 }
386 
387 static void rtw_phy_dig(struct rtw_dev *rtwdev)
388 {
389 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
390 	u8 upper_bound, lower_bound;
391 	u8 pre_igi, cur_igi;
392 	u16 fa_th[3], fa_cnt;
393 	u8 level;
394 	u8 step[3];
395 	bool linked;
396 
397 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
398 		return;
399 
400 	if (rtw_phy_dig_check_damping(dm_info))
401 		return;
402 
403 	linked = !!rtwdev->sta_cnt;
404 
405 	fa_cnt = dm_info->total_fa_cnt;
406 	pre_igi = dm_info->igi_history[0];
407 
408 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
409 
410 	/* test the false alarm count from the highest threshold level first,
411 	 * and increase it by corresponding step size
412 	 *
413 	 * note that the step size is offset by -2, compensate it afterall
414 	 */
415 	cur_igi = pre_igi;
416 	for (level = 0; level < 3; level++) {
417 		if (fa_cnt > fa_th[level]) {
418 			cur_igi += step[level];
419 			break;
420 		}
421 	}
422 	cur_igi -= 2;
423 
424 	/* calculate the upper/lower bound by the minimum rssi we have among
425 	 * the peers connected with us, meanwhile make sure the igi value does
426 	 * not beyond the hardware limitation
427 	 */
428 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
429 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
430 
431 	/* record current igi value and false alarm statistics for further
432 	 * damping checks, and record the trend of igi values
433 	 */
434 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
435 
436 	if (cur_igi != pre_igi)
437 		rtw_phy_dig_write(rtwdev, cur_igi);
438 }
439 
440 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
441 {
442 	struct rtw_dev *rtwdev = data;
443 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
444 
445 	rtw_update_sta_info(rtwdev, si);
446 }
447 
448 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
449 {
450 	if (rtwdev->watch_dog_cnt & 0x3)
451 		return;
452 
453 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
454 }
455 
456 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
457 {
458 	struct rtw_chip_info *chip = rtwdev->chip;
459 
460 	if (chip->ops->dpk_track)
461 		chip->ops->dpk_track(rtwdev);
462 }
463 
464 #define CCK_PD_FA_LV1_MIN	1000
465 #define CCK_PD_FA_LV0_MAX	500
466 
467 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
468 {
469 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
470 	u32 cck_fa_avg = dm_info->cck_fa_avg;
471 
472 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
473 		return CCK_PD_LV1;
474 
475 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
476 		return CCK_PD_LV0;
477 
478 	return CCK_PD_LV_MAX;
479 }
480 
481 #define CCK_PD_IGI_LV4_VAL 0x38
482 #define CCK_PD_IGI_LV3_VAL 0x2a
483 #define CCK_PD_IGI_LV2_VAL 0x24
484 #define CCK_PD_RSSI_LV4_VAL 32
485 #define CCK_PD_RSSI_LV3_VAL 32
486 #define CCK_PD_RSSI_LV2_VAL 24
487 
488 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
489 {
490 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
491 	u8 igi = dm_info->igi_history[0];
492 	u8 rssi = dm_info->min_rssi;
493 	u32 cck_fa_avg = dm_info->cck_fa_avg;
494 
495 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
496 		return CCK_PD_LV4;
497 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
498 		return CCK_PD_LV3;
499 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
500 		return CCK_PD_LV2;
501 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
502 		return CCK_PD_LV1;
503 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
504 		return CCK_PD_LV0;
505 
506 	return CCK_PD_LV_MAX;
507 }
508 
509 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
510 {
511 	if (!rtw_is_assoc(rtwdev))
512 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
513 	else
514 		return rtw_phy_cck_pd_lv_link(rtwdev);
515 }
516 
517 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
518 {
519 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
520 	struct rtw_chip_info *chip = rtwdev->chip;
521 	u32 cck_fa = dm_info->cck_fa_cnt;
522 	u8 level;
523 
524 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
525 		return;
526 
527 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
528 		dm_info->cck_fa_avg = cck_fa;
529 	else
530 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
531 
532 	level = rtw_phy_cck_pd_lv(rtwdev);
533 
534 	if (level >= CCK_PD_LV_MAX)
535 		return;
536 
537 	if (chip->ops->cck_pd_set)
538 		chip->ops->cck_pd_set(rtwdev, level);
539 }
540 
541 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
542 {
543 	rtwdev->chip->ops->pwr_track(rtwdev);
544 }
545 
546 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
547 {
548 	/* for further calculation */
549 	rtw_phy_statistics(rtwdev);
550 	rtw_phy_dig(rtwdev);
551 	rtw_phy_cck_pd(rtwdev);
552 	rtw_phy_ra_info_update(rtwdev);
553 	rtw_phy_dpk_track(rtwdev);
554 	rtw_phy_pwr_track(rtwdev);
555 }
556 
557 #define FRAC_BITS 3
558 
559 static u8 rtw_phy_power_2_db(s8 power)
560 {
561 	if (power <= -100 || power >= 20)
562 		return 0;
563 	else if (power >= 0)
564 		return 100;
565 	else
566 		return 100 + power;
567 }
568 
569 static u64 rtw_phy_db_2_linear(u8 power_db)
570 {
571 	u8 i, j;
572 	u64 linear;
573 
574 	if (power_db > 96)
575 		power_db = 96;
576 	else if (power_db < 1)
577 		return 1;
578 
579 	/* 1dB ~ 96dB */
580 	i = (power_db - 1) >> 3;
581 	j = (power_db - 1) - (i << 3);
582 
583 	linear = db_invert_table[i][j];
584 	linear = i > 2 ? linear << FRAC_BITS : linear;
585 
586 	return linear;
587 }
588 
589 static u8 rtw_phy_linear_2_db(u64 linear)
590 {
591 	u8 i;
592 	u8 j;
593 	u32 dB;
594 
595 	if (linear >= db_invert_table[11][7])
596 		return 96; /* maximum 96 dB */
597 
598 	for (i = 0; i < 12; i++) {
599 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
600 			break;
601 		else if (i > 2 && linear <= db_invert_table[i][7])
602 			break;
603 	}
604 
605 	for (j = 0; j < 8; j++) {
606 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
607 			break;
608 		else if (i > 2 && linear <= db_invert_table[i][j])
609 			break;
610 	}
611 
612 	if (j == 0 && i == 0)
613 		goto end;
614 
615 	if (j == 0) {
616 		if (i != 3) {
617 			if (db_invert_table[i][0] - linear >
618 			    linear - db_invert_table[i - 1][7]) {
619 				i = i - 1;
620 				j = 7;
621 			}
622 		} else {
623 			if (db_invert_table[3][0] - linear >
624 			    linear - db_invert_table[2][7]) {
625 				i = 2;
626 				j = 7;
627 			}
628 		}
629 	} else {
630 		if (db_invert_table[i][j] - linear >
631 		    linear - db_invert_table[i][j - 1]) {
632 			j = j - 1;
633 		}
634 	}
635 end:
636 	dB = (i << 3) + j + 1;
637 
638 	return dB;
639 }
640 
641 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
642 {
643 	s8 power;
644 	u8 power_db;
645 	u64 linear;
646 	u64 sum = 0;
647 	u8 path;
648 
649 	for (path = 0; path < path_num; path++) {
650 		power = rf_power[path];
651 		power_db = rtw_phy_power_2_db(power);
652 		linear = rtw_phy_db_2_linear(power_db);
653 		sum += linear;
654 	}
655 
656 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
657 	switch (path_num) {
658 	case 2:
659 		sum >>= 1;
660 		break;
661 	case 3:
662 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
663 		break;
664 	case 4:
665 		sum >>= 2;
666 		break;
667 	default:
668 		break;
669 	}
670 
671 	return rtw_phy_linear_2_db(sum);
672 }
673 
674 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
675 		    u32 addr, u32 mask)
676 {
677 	struct rtw_hal *hal = &rtwdev->hal;
678 	struct rtw_chip_info *chip = rtwdev->chip;
679 	const u32 *base_addr = chip->rf_base_addr;
680 	u32 val, direct_addr;
681 
682 	if (rf_path >= hal->rf_path_num) {
683 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
684 		return INV_RF_DATA;
685 	}
686 
687 	addr &= 0xff;
688 	direct_addr = base_addr[rf_path] + (addr << 2);
689 	mask &= RFREG_MASK;
690 
691 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
692 
693 	return val;
694 }
695 
696 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
697 			       u32 addr, u32 mask, u32 data)
698 {
699 	struct rtw_hal *hal = &rtwdev->hal;
700 	struct rtw_chip_info *chip = rtwdev->chip;
701 	u32 *sipi_addr = chip->rf_sipi_addr;
702 	u32 data_and_addr;
703 	u32 old_data = 0;
704 	u32 shift;
705 
706 	if (rf_path >= hal->rf_path_num) {
707 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
708 		return false;
709 	}
710 
711 	addr &= 0xff;
712 	mask &= RFREG_MASK;
713 
714 	if (mask != RFREG_MASK) {
715 		old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
716 
717 		if (old_data == INV_RF_DATA) {
718 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
719 			return false;
720 		}
721 
722 		shift = __ffs(mask);
723 		data = ((old_data) & (~mask)) | (data << shift);
724 	}
725 
726 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
727 
728 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
729 
730 	udelay(13);
731 
732 	return true;
733 }
734 
735 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
736 			  u32 addr, u32 mask, u32 data)
737 {
738 	struct rtw_hal *hal = &rtwdev->hal;
739 	struct rtw_chip_info *chip = rtwdev->chip;
740 	const u32 *base_addr = chip->rf_base_addr;
741 	u32 direct_addr;
742 
743 	if (rf_path >= hal->rf_path_num) {
744 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
745 		return false;
746 	}
747 
748 	addr &= 0xff;
749 	direct_addr = base_addr[rf_path] + (addr << 2);
750 	mask &= RFREG_MASK;
751 
752 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
753 
754 	udelay(1);
755 
756 	return true;
757 }
758 
759 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
760 			      u32 addr, u32 mask, u32 data)
761 {
762 	if (addr != 0x00)
763 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
764 
765 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
766 }
767 
768 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
769 {
770 	struct rtw_hal *hal = &rtwdev->hal;
771 	struct rtw_efuse *efuse = &rtwdev->efuse;
772 	struct rtw_phy_cond cond = {0};
773 
774 	cond.cut = hal->cut_version ? hal->cut_version : 15;
775 	cond.pkg = pkg ? pkg : 15;
776 	cond.plat = 0x04;
777 	cond.rfe = efuse->rfe_option;
778 
779 	switch (rtw_hci_type(rtwdev)) {
780 	case RTW_HCI_TYPE_USB:
781 		cond.intf = INTF_USB;
782 		break;
783 	case RTW_HCI_TYPE_SDIO:
784 		cond.intf = INTF_SDIO;
785 		break;
786 	case RTW_HCI_TYPE_PCIE:
787 	default:
788 		cond.intf = INTF_PCIE;
789 		break;
790 	}
791 
792 	hal->phy_cond = cond;
793 
794 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
795 }
796 
797 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
798 {
799 	struct rtw_hal *hal = &rtwdev->hal;
800 	struct rtw_phy_cond drv_cond = hal->phy_cond;
801 
802 	if (cond.cut && cond.cut != drv_cond.cut)
803 		return false;
804 
805 	if (cond.pkg && cond.pkg != drv_cond.pkg)
806 		return false;
807 
808 	if (cond.intf && cond.intf != drv_cond.intf)
809 		return false;
810 
811 	if (cond.rfe != drv_cond.rfe)
812 		return false;
813 
814 	return true;
815 }
816 
817 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
818 {
819 	const union phy_table_tile *p = tbl->data;
820 	const union phy_table_tile *end = p + tbl->size / 2;
821 	struct rtw_phy_cond pos_cond = {0};
822 	bool is_matched = true, is_skipped = false;
823 
824 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
825 
826 	for (; p < end; p++) {
827 		if (p->cond.pos) {
828 			switch (p->cond.branch) {
829 			case BRANCH_ENDIF:
830 				is_matched = true;
831 				is_skipped = false;
832 				break;
833 			case BRANCH_ELSE:
834 				is_matched = is_skipped ? false : true;
835 				break;
836 			case BRANCH_IF:
837 			case BRANCH_ELIF:
838 			default:
839 				pos_cond = p->cond;
840 				break;
841 			}
842 		} else if (p->cond.neg) {
843 			if (!is_skipped) {
844 				if (check_positive(rtwdev, pos_cond)) {
845 					is_matched = true;
846 					is_skipped = true;
847 				} else {
848 					is_matched = false;
849 					is_skipped = false;
850 				}
851 			} else {
852 				is_matched = false;
853 			}
854 		} else if (is_matched) {
855 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
856 		}
857 	}
858 }
859 
860 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
861 
862 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
863 {
864 	if (rtwdev->chip->is_pwr_by_rate_dec)
865 		return bcd_to_dec_pwr_by_rate(hex, i);
866 
867 	return (hex >> (i * 8)) & 0xFF;
868 }
869 
870 static void
871 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
872 					 u32 addr, u32 mask, u32 val, u8 *rate,
873 					 u8 *pwr_by_rate, u8 *rate_num)
874 {
875 	int i;
876 
877 	switch (addr) {
878 	case 0xE00:
879 	case 0x830:
880 		rate[0] = DESC_RATE6M;
881 		rate[1] = DESC_RATE9M;
882 		rate[2] = DESC_RATE12M;
883 		rate[3] = DESC_RATE18M;
884 		for (i = 0; i < 4; ++i)
885 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
886 		*rate_num = 4;
887 		break;
888 	case 0xE04:
889 	case 0x834:
890 		rate[0] = DESC_RATE24M;
891 		rate[1] = DESC_RATE36M;
892 		rate[2] = DESC_RATE48M;
893 		rate[3] = DESC_RATE54M;
894 		for (i = 0; i < 4; ++i)
895 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
896 		*rate_num = 4;
897 		break;
898 	case 0xE08:
899 		rate[0] = DESC_RATE1M;
900 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
901 		*rate_num = 1;
902 		break;
903 	case 0x86C:
904 		if (mask == 0xffffff00) {
905 			rate[0] = DESC_RATE2M;
906 			rate[1] = DESC_RATE5_5M;
907 			rate[2] = DESC_RATE11M;
908 			for (i = 1; i < 4; ++i)
909 				pwr_by_rate[i - 1] =
910 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
911 			*rate_num = 3;
912 		} else if (mask == 0x000000ff) {
913 			rate[0] = DESC_RATE11M;
914 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
915 			*rate_num = 1;
916 		}
917 		break;
918 	case 0xE10:
919 	case 0x83C:
920 		rate[0] = DESC_RATEMCS0;
921 		rate[1] = DESC_RATEMCS1;
922 		rate[2] = DESC_RATEMCS2;
923 		rate[3] = DESC_RATEMCS3;
924 		for (i = 0; i < 4; ++i)
925 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
926 		*rate_num = 4;
927 		break;
928 	case 0xE14:
929 	case 0x848:
930 		rate[0] = DESC_RATEMCS4;
931 		rate[1] = DESC_RATEMCS5;
932 		rate[2] = DESC_RATEMCS6;
933 		rate[3] = DESC_RATEMCS7;
934 		for (i = 0; i < 4; ++i)
935 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
936 		*rate_num = 4;
937 		break;
938 	case 0xE18:
939 	case 0x84C:
940 		rate[0] = DESC_RATEMCS8;
941 		rate[1] = DESC_RATEMCS9;
942 		rate[2] = DESC_RATEMCS10;
943 		rate[3] = DESC_RATEMCS11;
944 		for (i = 0; i < 4; ++i)
945 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
946 		*rate_num = 4;
947 		break;
948 	case 0xE1C:
949 	case 0x868:
950 		rate[0] = DESC_RATEMCS12;
951 		rate[1] = DESC_RATEMCS13;
952 		rate[2] = DESC_RATEMCS14;
953 		rate[3] = DESC_RATEMCS15;
954 		for (i = 0; i < 4; ++i)
955 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
956 		*rate_num = 4;
957 		break;
958 	case 0x838:
959 		rate[0] = DESC_RATE1M;
960 		rate[1] = DESC_RATE2M;
961 		rate[2] = DESC_RATE5_5M;
962 		for (i = 1; i < 4; ++i)
963 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
964 								    val, i);
965 		*rate_num = 3;
966 		break;
967 	case 0xC20:
968 	case 0xE20:
969 	case 0x1820:
970 	case 0x1A20:
971 		rate[0] = DESC_RATE1M;
972 		rate[1] = DESC_RATE2M;
973 		rate[2] = DESC_RATE5_5M;
974 		rate[3] = DESC_RATE11M;
975 		for (i = 0; i < 4; ++i)
976 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
977 		*rate_num = 4;
978 		break;
979 	case 0xC24:
980 	case 0xE24:
981 	case 0x1824:
982 	case 0x1A24:
983 		rate[0] = DESC_RATE6M;
984 		rate[1] = DESC_RATE9M;
985 		rate[2] = DESC_RATE12M;
986 		rate[3] = DESC_RATE18M;
987 		for (i = 0; i < 4; ++i)
988 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
989 		*rate_num = 4;
990 		break;
991 	case 0xC28:
992 	case 0xE28:
993 	case 0x1828:
994 	case 0x1A28:
995 		rate[0] = DESC_RATE24M;
996 		rate[1] = DESC_RATE36M;
997 		rate[2] = DESC_RATE48M;
998 		rate[3] = DESC_RATE54M;
999 		for (i = 0; i < 4; ++i)
1000 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1001 		*rate_num = 4;
1002 		break;
1003 	case 0xC2C:
1004 	case 0xE2C:
1005 	case 0x182C:
1006 	case 0x1A2C:
1007 		rate[0] = DESC_RATEMCS0;
1008 		rate[1] = DESC_RATEMCS1;
1009 		rate[2] = DESC_RATEMCS2;
1010 		rate[3] = DESC_RATEMCS3;
1011 		for (i = 0; i < 4; ++i)
1012 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1013 		*rate_num = 4;
1014 		break;
1015 	case 0xC30:
1016 	case 0xE30:
1017 	case 0x1830:
1018 	case 0x1A30:
1019 		rate[0] = DESC_RATEMCS4;
1020 		rate[1] = DESC_RATEMCS5;
1021 		rate[2] = DESC_RATEMCS6;
1022 		rate[3] = DESC_RATEMCS7;
1023 		for (i = 0; i < 4; ++i)
1024 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1025 		*rate_num = 4;
1026 		break;
1027 	case 0xC34:
1028 	case 0xE34:
1029 	case 0x1834:
1030 	case 0x1A34:
1031 		rate[0] = DESC_RATEMCS8;
1032 		rate[1] = DESC_RATEMCS9;
1033 		rate[2] = DESC_RATEMCS10;
1034 		rate[3] = DESC_RATEMCS11;
1035 		for (i = 0; i < 4; ++i)
1036 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1037 		*rate_num = 4;
1038 		break;
1039 	case 0xC38:
1040 	case 0xE38:
1041 	case 0x1838:
1042 	case 0x1A38:
1043 		rate[0] = DESC_RATEMCS12;
1044 		rate[1] = DESC_RATEMCS13;
1045 		rate[2] = DESC_RATEMCS14;
1046 		rate[3] = DESC_RATEMCS15;
1047 		for (i = 0; i < 4; ++i)
1048 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1049 		*rate_num = 4;
1050 		break;
1051 	case 0xC3C:
1052 	case 0xE3C:
1053 	case 0x183C:
1054 	case 0x1A3C:
1055 		rate[0] = DESC_RATEVHT1SS_MCS0;
1056 		rate[1] = DESC_RATEVHT1SS_MCS1;
1057 		rate[2] = DESC_RATEVHT1SS_MCS2;
1058 		rate[3] = DESC_RATEVHT1SS_MCS3;
1059 		for (i = 0; i < 4; ++i)
1060 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1061 		*rate_num = 4;
1062 		break;
1063 	case 0xC40:
1064 	case 0xE40:
1065 	case 0x1840:
1066 	case 0x1A40:
1067 		rate[0] = DESC_RATEVHT1SS_MCS4;
1068 		rate[1] = DESC_RATEVHT1SS_MCS5;
1069 		rate[2] = DESC_RATEVHT1SS_MCS6;
1070 		rate[3] = DESC_RATEVHT1SS_MCS7;
1071 		for (i = 0; i < 4; ++i)
1072 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1073 		*rate_num = 4;
1074 		break;
1075 	case 0xC44:
1076 	case 0xE44:
1077 	case 0x1844:
1078 	case 0x1A44:
1079 		rate[0] = DESC_RATEVHT1SS_MCS8;
1080 		rate[1] = DESC_RATEVHT1SS_MCS9;
1081 		rate[2] = DESC_RATEVHT2SS_MCS0;
1082 		rate[3] = DESC_RATEVHT2SS_MCS1;
1083 		for (i = 0; i < 4; ++i)
1084 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1085 		*rate_num = 4;
1086 		break;
1087 	case 0xC48:
1088 	case 0xE48:
1089 	case 0x1848:
1090 	case 0x1A48:
1091 		rate[0] = DESC_RATEVHT2SS_MCS2;
1092 		rate[1] = DESC_RATEVHT2SS_MCS3;
1093 		rate[2] = DESC_RATEVHT2SS_MCS4;
1094 		rate[3] = DESC_RATEVHT2SS_MCS5;
1095 		for (i = 0; i < 4; ++i)
1096 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1097 		*rate_num = 4;
1098 		break;
1099 	case 0xC4C:
1100 	case 0xE4C:
1101 	case 0x184C:
1102 	case 0x1A4C:
1103 		rate[0] = DESC_RATEVHT2SS_MCS6;
1104 		rate[1] = DESC_RATEVHT2SS_MCS7;
1105 		rate[2] = DESC_RATEVHT2SS_MCS8;
1106 		rate[3] = DESC_RATEVHT2SS_MCS9;
1107 		for (i = 0; i < 4; ++i)
1108 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1109 		*rate_num = 4;
1110 		break;
1111 	case 0xCD8:
1112 	case 0xED8:
1113 	case 0x18D8:
1114 	case 0x1AD8:
1115 		rate[0] = DESC_RATEMCS16;
1116 		rate[1] = DESC_RATEMCS17;
1117 		rate[2] = DESC_RATEMCS18;
1118 		rate[3] = DESC_RATEMCS19;
1119 		for (i = 0; i < 4; ++i)
1120 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1121 		*rate_num = 4;
1122 		break;
1123 	case 0xCDC:
1124 	case 0xEDC:
1125 	case 0x18DC:
1126 	case 0x1ADC:
1127 		rate[0] = DESC_RATEMCS20;
1128 		rate[1] = DESC_RATEMCS21;
1129 		rate[2] = DESC_RATEMCS22;
1130 		rate[3] = DESC_RATEMCS23;
1131 		for (i = 0; i < 4; ++i)
1132 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1133 		*rate_num = 4;
1134 		break;
1135 	case 0xCE0:
1136 	case 0xEE0:
1137 	case 0x18E0:
1138 	case 0x1AE0:
1139 		rate[0] = DESC_RATEVHT3SS_MCS0;
1140 		rate[1] = DESC_RATEVHT3SS_MCS1;
1141 		rate[2] = DESC_RATEVHT3SS_MCS2;
1142 		rate[3] = DESC_RATEVHT3SS_MCS3;
1143 		for (i = 0; i < 4; ++i)
1144 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1145 		*rate_num = 4;
1146 		break;
1147 	case 0xCE4:
1148 	case 0xEE4:
1149 	case 0x18E4:
1150 	case 0x1AE4:
1151 		rate[0] = DESC_RATEVHT3SS_MCS4;
1152 		rate[1] = DESC_RATEVHT3SS_MCS5;
1153 		rate[2] = DESC_RATEVHT3SS_MCS6;
1154 		rate[3] = DESC_RATEVHT3SS_MCS7;
1155 		for (i = 0; i < 4; ++i)
1156 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1157 		*rate_num = 4;
1158 		break;
1159 	case 0xCE8:
1160 	case 0xEE8:
1161 	case 0x18E8:
1162 	case 0x1AE8:
1163 		rate[0] = DESC_RATEVHT3SS_MCS8;
1164 		rate[1] = DESC_RATEVHT3SS_MCS9;
1165 		for (i = 0; i < 2; ++i)
1166 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1167 		*rate_num = 2;
1168 		break;
1169 	default:
1170 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1171 		break;
1172 	}
1173 }
1174 
1175 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1176 					   u32 band, u32 rfpath, u32 txnum,
1177 					   u32 regaddr, u32 bitmask, u32 data)
1178 {
1179 	struct rtw_hal *hal = &rtwdev->hal;
1180 	u8 rate_num = 0;
1181 	u8 rate;
1182 	u8 rates[RTW_RF_PATH_MAX] = {0};
1183 	s8 offset;
1184 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1185 	int i;
1186 
1187 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1188 						 rates, pwr_by_rate, &rate_num);
1189 
1190 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1191 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1192 		    rate_num > RTW_RF_PATH_MAX))
1193 		return;
1194 
1195 	for (i = 0; i < rate_num; i++) {
1196 		offset = pwr_by_rate[i];
1197 		rate = rates[i];
1198 		if (band == PHY_BAND_2G)
1199 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1200 		else if (band == PHY_BAND_5G)
1201 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1202 		else
1203 			continue;
1204 	}
1205 }
1206 
1207 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1208 {
1209 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1210 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1211 
1212 	for (; p < end; p++) {
1213 		if (p->addr == 0xfe || p->addr == 0xffe) {
1214 			msleep(50);
1215 			continue;
1216 		}
1217 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1218 					       p->tx_num, p->addr, p->bitmask,
1219 					       p->data);
1220 	}
1221 }
1222 
1223 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1224 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1225 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1226 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1227 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1228 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1229 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1230 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1231 
1232 static int rtw_channel_to_idx(u8 band, u8 channel)
1233 {
1234 	int ch_idx;
1235 	u8 n_channel;
1236 
1237 	if (band == PHY_BAND_2G) {
1238 		ch_idx = channel - 1;
1239 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1240 	} else if (band == PHY_BAND_5G) {
1241 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1242 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1243 			if (rtw_channel_idx_5g[ch_idx] == channel)
1244 				break;
1245 	} else {
1246 		return -1;
1247 	}
1248 
1249 	if (ch_idx >= n_channel)
1250 		return -1;
1251 
1252 	return ch_idx;
1253 }
1254 
1255 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1256 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1257 {
1258 	struct rtw_hal *hal = &rtwdev->hal;
1259 	u8 max_power_index = rtwdev->chip->max_power_index;
1260 	s8 ww;
1261 	int ch_idx;
1262 
1263 	pwr_limit = clamp_t(s8, pwr_limit,
1264 			    -max_power_index, max_power_index);
1265 	ch_idx = rtw_channel_to_idx(band, ch);
1266 
1267 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1268 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1269 		WARN(1,
1270 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1271 		     regd, band, bw, rs, ch_idx, pwr_limit);
1272 		return;
1273 	}
1274 
1275 	if (band == PHY_BAND_2G) {
1276 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1277 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1278 		ww = min_t(s8, ww, pwr_limit);
1279 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1280 	} else if (band == PHY_BAND_5G) {
1281 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1282 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1283 		ww = min_t(s8, ww, pwr_limit);
1284 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1285 	}
1286 }
1287 
1288 /* cross-reference 5G power limits if values are not assigned */
1289 static void
1290 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1291 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1292 {
1293 	struct rtw_hal *hal = &rtwdev->hal;
1294 	u8 max_power_index = rtwdev->chip->max_power_index;
1295 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1296 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1297 
1298 	if (lmt_ht == lmt_vht)
1299 		return;
1300 
1301 	if (lmt_ht == max_power_index)
1302 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1303 
1304 	else if (lmt_vht == max_power_index)
1305 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1306 }
1307 
1308 /* cross-reference power limits for ht and vht */
1309 static void
1310 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1311 {
1312 	u8 rs_idx, rs_ht, rs_vht;
1313 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1314 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1315 
1316 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1317 		rs_ht = rs_cmp[rs_idx][0];
1318 		rs_vht = rs_cmp[rs_idx][1];
1319 
1320 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1321 	}
1322 }
1323 
1324 /* cross-reference power limits for 5G channels */
1325 static void
1326 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1327 {
1328 	u8 ch_idx;
1329 
1330 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1331 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1332 }
1333 
1334 /* cross-reference power limits for 20/40M bandwidth */
1335 static void
1336 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1337 {
1338 	u8 bw;
1339 
1340 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1341 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1342 }
1343 
1344 /* cross-reference power limits */
1345 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1346 {
1347 	u8 regd;
1348 
1349 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1350 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1351 }
1352 
1353 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1354 			     const struct rtw_table *tbl)
1355 {
1356 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1357 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1358 
1359 	for (; p < end; p++) {
1360 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1361 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1362 	}
1363 
1364 	rtw_xref_txpwr_lmt(rtwdev);
1365 }
1366 
1367 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1368 		     u32 addr, u32 data)
1369 {
1370 	rtw_write8(rtwdev, addr, data);
1371 }
1372 
1373 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1374 		     u32 addr, u32 data)
1375 {
1376 	rtw_write32(rtwdev, addr, data);
1377 }
1378 
1379 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1380 		    u32 addr, u32 data)
1381 {
1382 	if (addr == 0xfe)
1383 		msleep(50);
1384 	else if (addr == 0xfd)
1385 		mdelay(5);
1386 	else if (addr == 0xfc)
1387 		mdelay(1);
1388 	else if (addr == 0xfb)
1389 		usleep_range(50, 60);
1390 	else if (addr == 0xfa)
1391 		udelay(5);
1392 	else if (addr == 0xf9)
1393 		udelay(1);
1394 	else
1395 		rtw_write32(rtwdev, addr, data);
1396 }
1397 
1398 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1399 		    u32 addr, u32 data)
1400 {
1401 	if (addr == 0xffe) {
1402 		msleep(50);
1403 	} else if (addr == 0xfe) {
1404 		usleep_range(100, 110);
1405 	} else {
1406 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1407 		udelay(1);
1408 	}
1409 }
1410 
1411 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1412 {
1413 	struct rtw_chip_info *chip = rtwdev->chip;
1414 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1415 
1416 	if (!chip->rfk_init_tbl)
1417 		return;
1418 
1419 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1420 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1421 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1422 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1423 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1424 
1425 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1426 
1427 	dpk_info->is_dpk_pwr_on = true;
1428 }
1429 
1430 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1431 {
1432 	struct rtw_chip_info *chip = rtwdev->chip;
1433 	u8 rf_path;
1434 
1435 	rtw_load_table(rtwdev, chip->mac_tbl);
1436 	rtw_load_table(rtwdev, chip->bb_tbl);
1437 	rtw_load_table(rtwdev, chip->agc_tbl);
1438 	rtw_load_rfk_table(rtwdev);
1439 
1440 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1441 		const struct rtw_table *tbl;
1442 
1443 		tbl = chip->rf_tbl[rf_path];
1444 		rtw_load_table(rtwdev, tbl);
1445 	}
1446 }
1447 
1448 static u8 rtw_get_channel_group(u8 channel)
1449 {
1450 	switch (channel) {
1451 	default:
1452 		WARN_ON(1);
1453 		/* fall through */
1454 	case 1:
1455 	case 2:
1456 	case 36:
1457 	case 38:
1458 	case 40:
1459 	case 42:
1460 		return 0;
1461 	case 3:
1462 	case 4:
1463 	case 5:
1464 	case 44:
1465 	case 46:
1466 	case 48:
1467 	case 50:
1468 		return 1;
1469 	case 6:
1470 	case 7:
1471 	case 8:
1472 	case 52:
1473 	case 54:
1474 	case 56:
1475 	case 58:
1476 		return 2;
1477 	case 9:
1478 	case 10:
1479 	case 11:
1480 	case 60:
1481 	case 62:
1482 	case 64:
1483 		return 3;
1484 	case 12:
1485 	case 13:
1486 	case 100:
1487 	case 102:
1488 	case 104:
1489 	case 106:
1490 		return 4;
1491 	case 14:
1492 	case 108:
1493 	case 110:
1494 	case 112:
1495 	case 114:
1496 		return 5;
1497 	case 116:
1498 	case 118:
1499 	case 120:
1500 	case 122:
1501 		return 6;
1502 	case 124:
1503 	case 126:
1504 	case 128:
1505 	case 130:
1506 		return 7;
1507 	case 132:
1508 	case 134:
1509 	case 136:
1510 	case 138:
1511 		return 8;
1512 	case 140:
1513 	case 142:
1514 	case 144:
1515 		return 9;
1516 	case 149:
1517 	case 151:
1518 	case 153:
1519 	case 155:
1520 		return 10;
1521 	case 157:
1522 	case 159:
1523 	case 161:
1524 		return 11;
1525 	case 165:
1526 	case 167:
1527 	case 169:
1528 	case 171:
1529 		return 12;
1530 	case 173:
1531 	case 175:
1532 	case 177:
1533 		return 13;
1534 	}
1535 }
1536 
1537 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1538 {
1539 	struct rtw_chip_info *chip = rtwdev->chip;
1540 	s8 dpd_diff = 0;
1541 
1542 	if (!chip->en_dis_dpd)
1543 		return 0;
1544 
1545 #define RTW_DPD_RATE_CHECK(_rate)					\
1546 	case DESC_RATE ## _rate:					\
1547 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1548 		dpd_diff = -6 * chip->txgi_factor;			\
1549 	break
1550 
1551 	switch (rate) {
1552 	RTW_DPD_RATE_CHECK(6M);
1553 	RTW_DPD_RATE_CHECK(9M);
1554 	RTW_DPD_RATE_CHECK(MCS0);
1555 	RTW_DPD_RATE_CHECK(MCS1);
1556 	RTW_DPD_RATE_CHECK(MCS8);
1557 	RTW_DPD_RATE_CHECK(MCS9);
1558 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1559 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1560 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1561 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1562 	}
1563 #undef RTW_DPD_RATE_CHECK
1564 
1565 	return dpd_diff;
1566 }
1567 
1568 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1569 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1570 					enum rtw_bandwidth bandwidth,
1571 					u8 rate, u8 group)
1572 {
1573 	struct rtw_chip_info *chip = rtwdev->chip;
1574 	u8 tx_power;
1575 	bool mcs_rate;
1576 	bool above_2ss;
1577 	u8 factor = chip->txgi_factor;
1578 
1579 	if (rate <= DESC_RATE11M)
1580 		tx_power = pwr_idx_2g->cck_base[group];
1581 	else
1582 		tx_power = pwr_idx_2g->bw40_base[group];
1583 
1584 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1585 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1586 
1587 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1588 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1589 		    rate <= DESC_RATEVHT2SS_MCS9);
1590 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1591 		    (rate >= DESC_RATEVHT2SS_MCS0);
1592 
1593 	if (!mcs_rate)
1594 		return tx_power;
1595 
1596 	switch (bandwidth) {
1597 	default:
1598 		WARN_ON(1);
1599 		/* fall through */
1600 	case RTW_CHANNEL_WIDTH_20:
1601 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1602 		if (above_2ss)
1603 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1604 		break;
1605 	case RTW_CHANNEL_WIDTH_40:
1606 		/* bw40 is the base power */
1607 		if (above_2ss)
1608 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1609 		break;
1610 	}
1611 
1612 	return tx_power;
1613 }
1614 
1615 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1616 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1617 					enum rtw_bandwidth bandwidth,
1618 					u8 rate, u8 group)
1619 {
1620 	struct rtw_chip_info *chip = rtwdev->chip;
1621 	u8 tx_power;
1622 	u8 upper, lower;
1623 	bool mcs_rate;
1624 	bool above_2ss;
1625 	u8 factor = chip->txgi_factor;
1626 
1627 	tx_power = pwr_idx_5g->bw40_base[group];
1628 
1629 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1630 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1631 		    rate <= DESC_RATEVHT2SS_MCS9);
1632 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1633 		    (rate >= DESC_RATEVHT2SS_MCS0);
1634 
1635 	if (!mcs_rate) {
1636 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1637 		return tx_power;
1638 	}
1639 
1640 	switch (bandwidth) {
1641 	default:
1642 		WARN_ON(1);
1643 		/* fall through */
1644 	case RTW_CHANNEL_WIDTH_20:
1645 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1646 		if (above_2ss)
1647 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1648 		break;
1649 	case RTW_CHANNEL_WIDTH_40:
1650 		/* bw40 is the base power */
1651 		if (above_2ss)
1652 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1653 		break;
1654 	case RTW_CHANNEL_WIDTH_80:
1655 		/* the base idx of bw80 is the average of bw40+/bw40- */
1656 		lower = pwr_idx_5g->bw40_base[group];
1657 		upper = pwr_idx_5g->bw40_base[group + 1];
1658 
1659 		tx_power = (lower + upper) / 2;
1660 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1661 		if (above_2ss)
1662 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1663 		break;
1664 	}
1665 
1666 	return tx_power;
1667 }
1668 
1669 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1670 				     enum rtw_bandwidth bw, u8 rf_path,
1671 				     u8 rate, u8 channel, u8 regd)
1672 {
1673 	struct rtw_hal *hal = &rtwdev->hal;
1674 	u8 *cch_by_bw = hal->cch_by_bw;
1675 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1676 	u8 rs;
1677 	int ch_idx;
1678 	u8 cur_bw, cur_ch;
1679 	s8 cur_lmt;
1680 
1681 	if (regd > RTW_REGD_WW)
1682 		return power_limit;
1683 
1684 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1685 		rs = RTW_RATE_SECTION_CCK;
1686 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1687 		rs = RTW_RATE_SECTION_OFDM;
1688 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1689 		rs = RTW_RATE_SECTION_HT_1S;
1690 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1691 		rs = RTW_RATE_SECTION_HT_2S;
1692 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1693 		rs = RTW_RATE_SECTION_VHT_1S;
1694 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1695 		rs = RTW_RATE_SECTION_VHT_2S;
1696 	else
1697 		goto err;
1698 
1699 	/* only 20M BW with cck and ofdm */
1700 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1701 		bw = RTW_CHANNEL_WIDTH_20;
1702 
1703 	/* only 20/40M BW with ht */
1704 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1705 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1706 
1707 	/* select min power limit among [20M BW ~ current BW] */
1708 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1709 		cur_ch = cch_by_bw[cur_bw];
1710 
1711 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1712 		if (ch_idx < 0)
1713 			goto err;
1714 
1715 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1716 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1717 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1718 
1719 		power_limit = min_t(s8, cur_lmt, power_limit);
1720 	}
1721 
1722 	return power_limit;
1723 
1724 err:
1725 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1726 	     band, bw, rf_path, rate, channel);
1727 	return (s8)rtwdev->chip->max_power_index;
1728 }
1729 
1730 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1731 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1732 {
1733 	struct rtw_hal *hal = &rtwdev->hal;
1734 	struct rtw_txpwr_idx *pwr_idx;
1735 	u8 group, band;
1736 	u8 *base = &pwr_param->pwr_base;
1737 	s8 *offset = &pwr_param->pwr_offset;
1738 	s8 *limit = &pwr_param->pwr_limit;
1739 
1740 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1741 	group = rtw_get_channel_group(ch);
1742 
1743 	/* base power index for 2.4G/5G */
1744 	if (IS_CH_2G_BAND(ch)) {
1745 		band = PHY_BAND_2G;
1746 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1747 						      &pwr_idx->pwr_idx_2g,
1748 						      bw, rate, group);
1749 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1750 	} else {
1751 		band = PHY_BAND_5G;
1752 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1753 						      &pwr_idx->pwr_idx_5g,
1754 						      bw, rate, group);
1755 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1756 	}
1757 
1758 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1759 					    rate, ch, regd);
1760 }
1761 
1762 u8
1763 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1764 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1765 {
1766 	struct rtw_power_params pwr_param = {0};
1767 	u8 tx_power;
1768 	s8 offset;
1769 
1770 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1771 				channel, regd, &pwr_param);
1772 
1773 	tx_power = pwr_param.pwr_base;
1774 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1775 
1776 	if (rtwdev->chip->en_dis_dpd)
1777 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1778 
1779 	tx_power += offset;
1780 
1781 	if (tx_power > rtwdev->chip->max_power_index)
1782 		tx_power = rtwdev->chip->max_power_index;
1783 
1784 	return tx_power;
1785 }
1786 
1787 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1788 					     u8 ch, u8 path, u8 rs)
1789 {
1790 	struct rtw_hal *hal = &rtwdev->hal;
1791 	u8 regd = rtwdev->regd.txpwr_regd;
1792 	u8 *rates;
1793 	u8 size;
1794 	u8 rate;
1795 	u8 pwr_idx;
1796 	u8 bw;
1797 	int i;
1798 
1799 	if (rs >= RTW_RATE_SECTION_MAX)
1800 		return;
1801 
1802 	rates = rtw_rate_section[rs];
1803 	size = rtw_rate_size[rs];
1804 	bw = hal->current_band_width;
1805 	for (i = 0; i < size; i++) {
1806 		rate = rates[i];
1807 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1808 						     bw, ch, regd);
1809 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1810 	}
1811 }
1812 
1813 /* set tx power level by path for each rates, note that the order of the rates
1814  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1815  * power index into a four-byte power index register, and calls set_tx_agc to
1816  * write these values into hardware
1817  */
1818 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1819 					       u8 ch, u8 path)
1820 {
1821 	struct rtw_hal *hal = &rtwdev->hal;
1822 	u8 rs;
1823 
1824 	/* do not need cck rates if we are not in 2.4G */
1825 	if (hal->current_band_type == RTW_BAND_2G)
1826 		rs = RTW_RATE_SECTION_CCK;
1827 	else
1828 		rs = RTW_RATE_SECTION_OFDM;
1829 
1830 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1831 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1832 }
1833 
1834 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1835 {
1836 	struct rtw_chip_info *chip = rtwdev->chip;
1837 	struct rtw_hal *hal = &rtwdev->hal;
1838 	u8 path;
1839 
1840 	mutex_lock(&hal->tx_power_mutex);
1841 
1842 	for (path = 0; path < hal->rf_path_num; path++)
1843 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1844 
1845 	chip->ops->set_tx_power_index(rtwdev);
1846 	mutex_unlock(&hal->tx_power_mutex);
1847 }
1848 
1849 static void
1850 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1851 					u8 rs, u8 size, u8 *rates)
1852 {
1853 	u8 rate;
1854 	u8 base_idx, rate_idx;
1855 	s8 base_2g, base_5g;
1856 
1857 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1858 		base_idx = rates[size - 3];
1859 	else
1860 		base_idx = rates[size - 1];
1861 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1862 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1863 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1864 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1865 	for (rate = 0; rate < size; rate++) {
1866 		rate_idx = rates[rate];
1867 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1868 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1869 	}
1870 }
1871 
1872 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1873 {
1874 	u8 path;
1875 
1876 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1877 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1878 				RTW_RATE_SECTION_CCK,
1879 				rtw_cck_size, rtw_cck_rates);
1880 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1881 				RTW_RATE_SECTION_OFDM,
1882 				rtw_ofdm_size, rtw_ofdm_rates);
1883 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1884 				RTW_RATE_SECTION_HT_1S,
1885 				rtw_ht_1s_size, rtw_ht_1s_rates);
1886 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1887 				RTW_RATE_SECTION_HT_2S,
1888 				rtw_ht_2s_size, rtw_ht_2s_rates);
1889 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1890 				RTW_RATE_SECTION_VHT_1S,
1891 				rtw_vht_1s_size, rtw_vht_1s_rates);
1892 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1893 				RTW_RATE_SECTION_VHT_2S,
1894 				rtw_vht_2s_size, rtw_vht_2s_rates);
1895 	}
1896 }
1897 
1898 static void
1899 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1900 {
1901 	s8 base;
1902 	u8 ch;
1903 
1904 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1905 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1906 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1907 	}
1908 
1909 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1910 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1911 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1912 	}
1913 }
1914 
1915 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1916 {
1917 	u8 regd, bw, rs;
1918 
1919 	/* default at channel 1 */
1920 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1921 
1922 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1923 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1924 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1925 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1926 }
1927 
1928 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1929 					u8 regd, u8 bw, u8 rs)
1930 {
1931 	struct rtw_hal *hal = &rtwdev->hal;
1932 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1933 	u8 ch;
1934 
1935 	/* 2.4G channels */
1936 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1937 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1938 
1939 	/* 5G channels */
1940 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1941 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1942 }
1943 
1944 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1945 {
1946 	struct rtw_hal *hal = &rtwdev->hal;
1947 	u8 regd, path, rate, rs, bw;
1948 
1949 	/* init tx power by rate offset */
1950 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1951 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1952 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1953 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1954 		}
1955 	}
1956 
1957 	/* init tx power limit */
1958 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1959 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1960 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1961 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1962 							    rs);
1963 }
1964 
1965 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
1966 				struct rtw_swing_table *swing_table)
1967 {
1968 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
1969 	u8 channel = rtwdev->hal.current_channel;
1970 
1971 	if (IS_CH_2G_BAND(channel)) {
1972 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
1973 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
1974 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
1975 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
1976 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
1977 		} else {
1978 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
1979 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
1980 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
1981 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
1982 		}
1983 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
1984 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
1985 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
1986 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
1987 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
1988 	} else if (IS_CH_5G_BAND_3(channel)) {
1989 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
1990 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
1991 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
1992 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
1993 	} else if (IS_CH_5G_BAND_4(channel)) {
1994 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
1995 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
1996 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
1997 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
1998 	} else {
1999 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2000 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2001 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2002 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2003 	}
2004 }
2005 
2006 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2007 {
2008 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2009 
2010 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2011 	dm_info->thermal_avg[path] =
2012 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2013 }
2014 
2015 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2016 				      u8 path)
2017 {
2018 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2019 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2020 
2021 	if (avg == thermal)
2022 		return false;
2023 
2024 	return true;
2025 }
2026 
2027 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2028 {
2029 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2030 	u8 therm_avg, therm_efuse, therm_delta;
2031 
2032 	therm_avg = dm_info->thermal_avg[path];
2033 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2034 	therm_delta = abs(therm_avg - therm_efuse);
2035 
2036 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2037 }
2038 
2039 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2040 			       struct rtw_swing_table *swing_table,
2041 			       u8 tbl_path, u8 therm_path, u8 delta)
2042 {
2043 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2044 	const u8 *delta_swing_table_idx_pos;
2045 	const u8 *delta_swing_table_idx_neg;
2046 
2047 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2048 		rtw_warn(rtwdev, "power track table overflow\n");
2049 		return 0;
2050 	}
2051 
2052 	if (!swing_table) {
2053 		rtw_warn(rtwdev, "swing table not configured\n");
2054 		return 0;
2055 	}
2056 
2057 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2058 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2059 
2060 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2061 		rtw_warn(rtwdev, "invalid swing table index\n");
2062 		return 0;
2063 	}
2064 
2065 	if (dm_info->thermal_avg[therm_path] >
2066 	    rtwdev->efuse.thermal_meter[therm_path])
2067 		return delta_swing_table_idx_pos[delta];
2068 	else
2069 		return -delta_swing_table_idx_neg[delta];
2070 }
2071 
2072 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2073 {
2074 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2075 	u8 delta_iqk;
2076 
2077 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2078 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2079 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2080 		return true;
2081 	}
2082 	return false;
2083 }
2084