1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 EXPORT_SYMBOL(rtw_rate_section);
86 
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 	ARRAY_SIZE(rtw_cck_rates),
89 	ARRAY_SIZE(rtw_ofdm_rates),
90 	ARRAY_SIZE(rtw_ht_1s_rates),
91 	ARRAY_SIZE(rtw_ht_2s_rates),
92 	ARRAY_SIZE(rtw_vht_1s_rates),
93 	ARRAY_SIZE(rtw_vht_2s_rates)
94 };
95 EXPORT_SYMBOL(rtw_rate_size);
96 
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103 
104 enum rtw_phy_band_type {
105 	PHY_BAND_2G	= 0,
106 	PHY_BAND_5G	= 1,
107 };
108 
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110 {
111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 	u8 i, j;
113 
114 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 	}
118 
119 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120 }
121 
122 void rtw_phy_init(struct rtw_dev *rtwdev)
123 {
124 	struct rtw_chip_info *chip = rtwdev->chip;
125 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126 	u32 addr, mask;
127 
128 	dm_info->fa_history[3] = 0;
129 	dm_info->fa_history[2] = 0;
130 	dm_info->fa_history[1] = 0;
131 	dm_info->fa_history[0] = 0;
132 	dm_info->igi_bitmap = 0;
133 	dm_info->igi_history[3] = 0;
134 	dm_info->igi_history[2] = 0;
135 	dm_info->igi_history[1] = 0;
136 
137 	addr = chip->dig[0].addr;
138 	mask = chip->dig[0].mask;
139 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140 	rtw_phy_cck_pd_init(rtwdev);
141 
142 	dm_info->iqk.done = false;
143 }
144 EXPORT_SYMBOL(rtw_phy_init);
145 
146 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
147 {
148 	struct rtw_chip_info *chip = rtwdev->chip;
149 	struct rtw_hal *hal = &rtwdev->hal;
150 	u32 addr, mask;
151 	u8 path;
152 
153 	if (chip->dig_cck) {
154 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
155 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
156 	}
157 
158 	for (path = 0; path < hal->rf_path_num; path++) {
159 		addr = chip->dig[path].addr;
160 		mask = chip->dig[path].mask;
161 		rtw_write32_mask(rtwdev, addr, mask, igi);
162 	}
163 }
164 
165 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_chip_info *chip = rtwdev->chip;
168 
169 	chip->ops->false_alarm_statistics(rtwdev);
170 }
171 
172 #define RA_FLOOR_TABLE_SIZE	7
173 #define RA_FLOOR_UP_GAP		3
174 
175 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
176 {
177 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
178 	u8 new_level = 0;
179 	int i;
180 
181 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
182 		if (i >= old_level)
183 			table[i] += RA_FLOOR_UP_GAP;
184 
185 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
186 		if (rssi < table[i]) {
187 			new_level = i;
188 			break;
189 		}
190 	}
191 
192 	return new_level;
193 }
194 
195 struct rtw_phy_stat_iter_data {
196 	struct rtw_dev *rtwdev;
197 	u8 min_rssi;
198 };
199 
200 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
201 {
202 	struct rtw_phy_stat_iter_data *iter_data = data;
203 	struct rtw_dev *rtwdev = iter_data->rtwdev;
204 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
205 	u8 rssi;
206 
207 	rssi = ewma_rssi_read(&si->avg_rssi);
208 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
209 
210 	rtw_fw_send_rssi_info(rtwdev, si);
211 
212 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
213 }
214 
215 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
216 {
217 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
218 	struct rtw_phy_stat_iter_data data = {};
219 
220 	data.rtwdev = rtwdev;
221 	data.min_rssi = U8_MAX;
222 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
223 
224 	dm_info->pre_min_rssi = dm_info->min_rssi;
225 	dm_info->min_rssi = data.min_rssi;
226 }
227 
228 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
229 {
230 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
231 
232 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
233 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
234 }
235 
236 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
237 {
238 	rtw_phy_stat_rssi(rtwdev);
239 	rtw_phy_stat_false_alarm(rtwdev);
240 	rtw_phy_stat_rate_cnt(rtwdev);
241 }
242 
243 #define DIG_PERF_FA_TH_LOW			250
244 #define DIG_PERF_FA_TH_HIGH			500
245 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
246 #define DIG_PERF_MAX				0x5a
247 #define DIG_PERF_MID				0x40
248 #define DIG_CVRG_FA_TH_LOW			2000
249 #define DIG_CVRG_FA_TH_HIGH			4000
250 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
251 #define DIG_CVRG_MAX				0x2a
252 #define DIG_CVRG_MID				0x26
253 #define DIG_CVRG_MIN				0x1c
254 #define DIG_RSSI_GAIN_OFFSET			15
255 
256 static bool
257 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
258 {
259 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
260 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
261 	u16 *fa_history;
262 	u8 *igi_history;
263 	u8 damping_rssi;
264 	u8 min_rssi;
265 	u8 diff;
266 	u8 igi_bitmap;
267 	bool damping = false;
268 
269 	min_rssi = dm_info->min_rssi;
270 	if (dm_info->damping) {
271 		damping_rssi = dm_info->damping_rssi;
272 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
273 						 damping_rssi - min_rssi;
274 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
275 			dm_info->damping = false;
276 			return false;
277 		}
278 
279 		return true;
280 	}
281 
282 	igi_history = dm_info->igi_history;
283 	fa_history = dm_info->fa_history;
284 	igi_bitmap = dm_info->igi_bitmap & 0xf;
285 	switch (igi_bitmap) {
286 	case 5:
287 		/* down -> up -> down -> up */
288 		if (igi_history[0] > igi_history[1] &&
289 		    igi_history[2] > igi_history[3] &&
290 		    igi_history[0] - igi_history[1] >= 2 &&
291 		    igi_history[2] - igi_history[3] >= 2 &&
292 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
293 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
294 			damping = true;
295 		break;
296 	case 9:
297 		/* up -> down -> down -> up */
298 		if (igi_history[0] > igi_history[1] &&
299 		    igi_history[3] > igi_history[2] &&
300 		    igi_history[0] - igi_history[1] >= 4 &&
301 		    igi_history[3] - igi_history[2] >= 2 &&
302 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
303 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
304 			damping = true;
305 		break;
306 	default:
307 		return false;
308 	}
309 
310 	if (damping) {
311 		dm_info->damping = true;
312 		dm_info->damping_cnt = 0;
313 		dm_info->damping_rssi = min_rssi;
314 	}
315 
316 	return damping;
317 }
318 
319 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
320 				     u8 *upper, u8 *lower, bool linked)
321 {
322 	u8 dig_max, dig_min, dig_mid;
323 	u8 min_rssi;
324 
325 	if (linked) {
326 		dig_max = DIG_PERF_MAX;
327 		dig_mid = DIG_PERF_MID;
328 		/* 22B=0x1c, 22C=0x20 */
329 		dig_min = 0x1c;
330 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
331 	} else {
332 		dig_max = DIG_CVRG_MAX;
333 		dig_mid = DIG_CVRG_MID;
334 		dig_min = DIG_CVRG_MIN;
335 		min_rssi = dig_min;
336 	}
337 
338 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
339 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
340 
341 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
342 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
343 }
344 
345 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
346 				      u16 *fa_th, u8 *step, bool linked)
347 {
348 	u8 min_rssi, pre_min_rssi;
349 
350 	min_rssi = dm_info->min_rssi;
351 	pre_min_rssi = dm_info->pre_min_rssi;
352 	step[0] = 4;
353 	step[1] = 3;
354 	step[2] = 2;
355 
356 	if (linked) {
357 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
358 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
359 		fa_th[2] = DIG_PERF_FA_TH_LOW;
360 		if (pre_min_rssi > min_rssi) {
361 			step[0] = 6;
362 			step[1] = 4;
363 			step[2] = 2;
364 		}
365 	} else {
366 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
367 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
368 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
369 	}
370 }
371 
372 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
373 {
374 	u8 *igi_history;
375 	u16 *fa_history;
376 	u8 igi_bitmap;
377 	bool up;
378 
379 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
380 	igi_history = dm_info->igi_history;
381 	fa_history = dm_info->fa_history;
382 
383 	up = igi > igi_history[0];
384 	igi_bitmap |= up;
385 
386 	igi_history[3] = igi_history[2];
387 	igi_history[2] = igi_history[1];
388 	igi_history[1] = igi_history[0];
389 	igi_history[0] = igi;
390 
391 	fa_history[3] = fa_history[2];
392 	fa_history[2] = fa_history[1];
393 	fa_history[1] = fa_history[0];
394 	fa_history[0] = fa;
395 
396 	dm_info->igi_bitmap = igi_bitmap;
397 }
398 
399 static void rtw_phy_dig(struct rtw_dev *rtwdev)
400 {
401 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
402 	u8 upper_bound, lower_bound;
403 	u8 pre_igi, cur_igi;
404 	u16 fa_th[3], fa_cnt;
405 	u8 level;
406 	u8 step[3];
407 	bool linked;
408 
409 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
410 		return;
411 
412 	if (rtw_phy_dig_check_damping(dm_info))
413 		return;
414 
415 	linked = !!rtwdev->sta_cnt;
416 
417 	fa_cnt = dm_info->total_fa_cnt;
418 	pre_igi = dm_info->igi_history[0];
419 
420 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
421 
422 	/* test the false alarm count from the highest threshold level first,
423 	 * and increase it by corresponding step size
424 	 *
425 	 * note that the step size is offset by -2, compensate it afterall
426 	 */
427 	cur_igi = pre_igi;
428 	for (level = 0; level < 3; level++) {
429 		if (fa_cnt > fa_th[level]) {
430 			cur_igi += step[level];
431 			break;
432 		}
433 	}
434 	cur_igi -= 2;
435 
436 	/* calculate the upper/lower bound by the minimum rssi we have among
437 	 * the peers connected with us, meanwhile make sure the igi value does
438 	 * not beyond the hardware limitation
439 	 */
440 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
441 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
442 
443 	/* record current igi value and false alarm statistics for further
444 	 * damping checks, and record the trend of igi values
445 	 */
446 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
447 
448 	if (cur_igi != pre_igi)
449 		rtw_phy_dig_write(rtwdev, cur_igi);
450 }
451 
452 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
453 {
454 	struct rtw_dev *rtwdev = data;
455 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
456 
457 	rtw_update_sta_info(rtwdev, si);
458 }
459 
460 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
461 {
462 	if (rtwdev->watch_dog_cnt & 0x3)
463 		return;
464 
465 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
466 }
467 
468 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
469 {
470 	struct rtw_chip_info *chip = rtwdev->chip;
471 
472 	if (chip->ops->dpk_track)
473 		chip->ops->dpk_track(rtwdev);
474 }
475 
476 #define CCK_PD_FA_LV1_MIN	1000
477 #define CCK_PD_FA_LV0_MAX	500
478 
479 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
480 {
481 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
482 	u32 cck_fa_avg = dm_info->cck_fa_avg;
483 
484 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
485 		return CCK_PD_LV1;
486 
487 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
488 		return CCK_PD_LV0;
489 
490 	return CCK_PD_LV_MAX;
491 }
492 
493 #define CCK_PD_IGI_LV4_VAL 0x38
494 #define CCK_PD_IGI_LV3_VAL 0x2a
495 #define CCK_PD_IGI_LV2_VAL 0x24
496 #define CCK_PD_RSSI_LV4_VAL 32
497 #define CCK_PD_RSSI_LV3_VAL 32
498 #define CCK_PD_RSSI_LV2_VAL 24
499 
500 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
501 {
502 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
503 	u8 igi = dm_info->igi_history[0];
504 	u8 rssi = dm_info->min_rssi;
505 	u32 cck_fa_avg = dm_info->cck_fa_avg;
506 
507 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
508 		return CCK_PD_LV4;
509 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
510 		return CCK_PD_LV3;
511 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
512 		return CCK_PD_LV2;
513 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
514 		return CCK_PD_LV1;
515 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
516 		return CCK_PD_LV0;
517 
518 	return CCK_PD_LV_MAX;
519 }
520 
521 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
522 {
523 	if (!rtw_is_assoc(rtwdev))
524 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
525 	else
526 		return rtw_phy_cck_pd_lv_link(rtwdev);
527 }
528 
529 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
530 {
531 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
532 	struct rtw_chip_info *chip = rtwdev->chip;
533 	u32 cck_fa = dm_info->cck_fa_cnt;
534 	u8 level;
535 
536 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
537 		return;
538 
539 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
540 		dm_info->cck_fa_avg = cck_fa;
541 	else
542 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
543 
544 	level = rtw_phy_cck_pd_lv(rtwdev);
545 
546 	if (level >= CCK_PD_LV_MAX)
547 		return;
548 
549 	if (chip->ops->cck_pd_set)
550 		chip->ops->cck_pd_set(rtwdev, level);
551 }
552 
553 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
554 {
555 	rtwdev->chip->ops->pwr_track(rtwdev);
556 }
557 
558 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
559 {
560 	/* for further calculation */
561 	rtw_phy_statistics(rtwdev);
562 	rtw_phy_dig(rtwdev);
563 	rtw_phy_cck_pd(rtwdev);
564 	rtw_phy_ra_info_update(rtwdev);
565 	rtw_phy_dpk_track(rtwdev);
566 	rtw_phy_pwr_track(rtwdev);
567 }
568 
569 #define FRAC_BITS 3
570 
571 static u8 rtw_phy_power_2_db(s8 power)
572 {
573 	if (power <= -100 || power >= 20)
574 		return 0;
575 	else if (power >= 0)
576 		return 100;
577 	else
578 		return 100 + power;
579 }
580 
581 static u64 rtw_phy_db_2_linear(u8 power_db)
582 {
583 	u8 i, j;
584 	u64 linear;
585 
586 	if (power_db > 96)
587 		power_db = 96;
588 	else if (power_db < 1)
589 		return 1;
590 
591 	/* 1dB ~ 96dB */
592 	i = (power_db - 1) >> 3;
593 	j = (power_db - 1) - (i << 3);
594 
595 	linear = db_invert_table[i][j];
596 	linear = i > 2 ? linear << FRAC_BITS : linear;
597 
598 	return linear;
599 }
600 
601 static u8 rtw_phy_linear_2_db(u64 linear)
602 {
603 	u8 i;
604 	u8 j;
605 	u32 dB;
606 
607 	if (linear >= db_invert_table[11][7])
608 		return 96; /* maximum 96 dB */
609 
610 	for (i = 0; i < 12; i++) {
611 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
612 			break;
613 		else if (i > 2 && linear <= db_invert_table[i][7])
614 			break;
615 	}
616 
617 	for (j = 0; j < 8; j++) {
618 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
619 			break;
620 		else if (i > 2 && linear <= db_invert_table[i][j])
621 			break;
622 	}
623 
624 	if (j == 0 && i == 0)
625 		goto end;
626 
627 	if (j == 0) {
628 		if (i != 3) {
629 			if (db_invert_table[i][0] - linear >
630 			    linear - db_invert_table[i - 1][7]) {
631 				i = i - 1;
632 				j = 7;
633 			}
634 		} else {
635 			if (db_invert_table[3][0] - linear >
636 			    linear - db_invert_table[2][7]) {
637 				i = 2;
638 				j = 7;
639 			}
640 		}
641 	} else {
642 		if (db_invert_table[i][j] - linear >
643 		    linear - db_invert_table[i][j - 1]) {
644 			j = j - 1;
645 		}
646 	}
647 end:
648 	dB = (i << 3) + j + 1;
649 
650 	return dB;
651 }
652 
653 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
654 {
655 	s8 power;
656 	u8 power_db;
657 	u64 linear;
658 	u64 sum = 0;
659 	u8 path;
660 
661 	for (path = 0; path < path_num; path++) {
662 		power = rf_power[path];
663 		power_db = rtw_phy_power_2_db(power);
664 		linear = rtw_phy_db_2_linear(power_db);
665 		sum += linear;
666 	}
667 
668 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
669 	switch (path_num) {
670 	case 2:
671 		sum >>= 1;
672 		break;
673 	case 3:
674 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
675 		break;
676 	case 4:
677 		sum >>= 2;
678 		break;
679 	default:
680 		break;
681 	}
682 
683 	return rtw_phy_linear_2_db(sum);
684 }
685 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
686 
687 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
688 		    u32 addr, u32 mask)
689 {
690 	struct rtw_hal *hal = &rtwdev->hal;
691 	struct rtw_chip_info *chip = rtwdev->chip;
692 	const u32 *base_addr = chip->rf_base_addr;
693 	u32 val, direct_addr;
694 
695 	if (rf_path >= hal->rf_phy_num) {
696 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
697 		return INV_RF_DATA;
698 	}
699 
700 	addr &= 0xff;
701 	direct_addr = base_addr[rf_path] + (addr << 2);
702 	mask &= RFREG_MASK;
703 
704 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
705 
706 	return val;
707 }
708 EXPORT_SYMBOL(rtw_phy_read_rf);
709 
710 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
711 			 u32 addr, u32 mask)
712 {
713 	struct rtw_hal *hal = &rtwdev->hal;
714 	struct rtw_chip_info *chip = rtwdev->chip;
715 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
716 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
717 	u32 val32;
718 	u32 en_pi;
719 	u32 r_addr;
720 	u32 shift;
721 
722 	if (rf_path >= hal->rf_phy_num) {
723 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
724 		return INV_RF_DATA;
725 	}
726 
727 	if (!chip->rf_sipi_read_addr) {
728 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
729 		return INV_RF_DATA;
730 	}
731 
732 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
733 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
734 
735 	addr &= 0xff;
736 
737 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
738 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
739 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
740 
741 	/* toggle read edge of path A */
742 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
743 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
744 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
745 
746 	udelay(120);
747 
748 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
749 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
750 
751 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
752 
753 	shift = __ffs(mask);
754 
755 	return (val32 & mask) >> shift;
756 }
757 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
758 
759 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
760 			       u32 addr, u32 mask, u32 data)
761 {
762 	struct rtw_hal *hal = &rtwdev->hal;
763 	struct rtw_chip_info *chip = rtwdev->chip;
764 	u32 *sipi_addr = chip->rf_sipi_addr;
765 	u32 data_and_addr;
766 	u32 old_data = 0;
767 	u32 shift;
768 
769 	if (rf_path >= hal->rf_phy_num) {
770 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
771 		return false;
772 	}
773 
774 	addr &= 0xff;
775 	mask &= RFREG_MASK;
776 
777 	if (mask != RFREG_MASK) {
778 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
779 
780 		if (old_data == INV_RF_DATA) {
781 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
782 			return false;
783 		}
784 
785 		shift = __ffs(mask);
786 		data = ((old_data) & (~mask)) | (data << shift);
787 	}
788 
789 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
790 
791 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
792 
793 	udelay(13);
794 
795 	return true;
796 }
797 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
798 
799 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
800 			  u32 addr, u32 mask, u32 data)
801 {
802 	struct rtw_hal *hal = &rtwdev->hal;
803 	struct rtw_chip_info *chip = rtwdev->chip;
804 	const u32 *base_addr = chip->rf_base_addr;
805 	u32 direct_addr;
806 
807 	if (rf_path >= hal->rf_phy_num) {
808 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
809 		return false;
810 	}
811 
812 	addr &= 0xff;
813 	direct_addr = base_addr[rf_path] + (addr << 2);
814 	mask &= RFREG_MASK;
815 
816 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
817 
818 	udelay(1);
819 
820 	return true;
821 }
822 
823 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
824 			      u32 addr, u32 mask, u32 data)
825 {
826 	if (addr != 0x00)
827 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
828 
829 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
830 }
831 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
832 
833 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
834 {
835 	struct rtw_hal *hal = &rtwdev->hal;
836 	struct rtw_efuse *efuse = &rtwdev->efuse;
837 	struct rtw_phy_cond cond = {0};
838 
839 	cond.cut = hal->cut_version ? hal->cut_version : 15;
840 	cond.pkg = pkg ? pkg : 15;
841 	cond.plat = 0x04;
842 	cond.rfe = efuse->rfe_option;
843 
844 	switch (rtw_hci_type(rtwdev)) {
845 	case RTW_HCI_TYPE_USB:
846 		cond.intf = INTF_USB;
847 		break;
848 	case RTW_HCI_TYPE_SDIO:
849 		cond.intf = INTF_SDIO;
850 		break;
851 	case RTW_HCI_TYPE_PCIE:
852 	default:
853 		cond.intf = INTF_PCIE;
854 		break;
855 	}
856 
857 	hal->phy_cond = cond;
858 
859 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
860 }
861 
862 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
863 {
864 	struct rtw_hal *hal = &rtwdev->hal;
865 	struct rtw_phy_cond drv_cond = hal->phy_cond;
866 
867 	if (cond.cut && cond.cut != drv_cond.cut)
868 		return false;
869 
870 	if (cond.pkg && cond.pkg != drv_cond.pkg)
871 		return false;
872 
873 	if (cond.intf && cond.intf != drv_cond.intf)
874 		return false;
875 
876 	if (cond.rfe != drv_cond.rfe)
877 		return false;
878 
879 	return true;
880 }
881 
882 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
883 {
884 	const union phy_table_tile *p = tbl->data;
885 	const union phy_table_tile *end = p + tbl->size / 2;
886 	struct rtw_phy_cond pos_cond = {0};
887 	bool is_matched = true, is_skipped = false;
888 
889 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
890 
891 	for (; p < end; p++) {
892 		if (p->cond.pos) {
893 			switch (p->cond.branch) {
894 			case BRANCH_ENDIF:
895 				is_matched = true;
896 				is_skipped = false;
897 				break;
898 			case BRANCH_ELSE:
899 				is_matched = is_skipped ? false : true;
900 				break;
901 			case BRANCH_IF:
902 			case BRANCH_ELIF:
903 			default:
904 				pos_cond = p->cond;
905 				break;
906 			}
907 		} else if (p->cond.neg) {
908 			if (!is_skipped) {
909 				if (check_positive(rtwdev, pos_cond)) {
910 					is_matched = true;
911 					is_skipped = true;
912 				} else {
913 					is_matched = false;
914 					is_skipped = false;
915 				}
916 			} else {
917 				is_matched = false;
918 			}
919 		} else if (is_matched) {
920 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
921 		}
922 	}
923 }
924 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
925 
926 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
927 
928 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
929 {
930 	if (rtwdev->chip->is_pwr_by_rate_dec)
931 		return bcd_to_dec_pwr_by_rate(hex, i);
932 
933 	return (hex >> (i * 8)) & 0xFF;
934 }
935 
936 static void
937 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
938 					 u32 addr, u32 mask, u32 val, u8 *rate,
939 					 u8 *pwr_by_rate, u8 *rate_num)
940 {
941 	int i;
942 
943 	switch (addr) {
944 	case 0xE00:
945 	case 0x830:
946 		rate[0] = DESC_RATE6M;
947 		rate[1] = DESC_RATE9M;
948 		rate[2] = DESC_RATE12M;
949 		rate[3] = DESC_RATE18M;
950 		for (i = 0; i < 4; ++i)
951 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
952 		*rate_num = 4;
953 		break;
954 	case 0xE04:
955 	case 0x834:
956 		rate[0] = DESC_RATE24M;
957 		rate[1] = DESC_RATE36M;
958 		rate[2] = DESC_RATE48M;
959 		rate[3] = DESC_RATE54M;
960 		for (i = 0; i < 4; ++i)
961 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
962 		*rate_num = 4;
963 		break;
964 	case 0xE08:
965 		rate[0] = DESC_RATE1M;
966 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
967 		*rate_num = 1;
968 		break;
969 	case 0x86C:
970 		if (mask == 0xffffff00) {
971 			rate[0] = DESC_RATE2M;
972 			rate[1] = DESC_RATE5_5M;
973 			rate[2] = DESC_RATE11M;
974 			for (i = 1; i < 4; ++i)
975 				pwr_by_rate[i - 1] =
976 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
977 			*rate_num = 3;
978 		} else if (mask == 0x000000ff) {
979 			rate[0] = DESC_RATE11M;
980 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
981 			*rate_num = 1;
982 		}
983 		break;
984 	case 0xE10:
985 	case 0x83C:
986 		rate[0] = DESC_RATEMCS0;
987 		rate[1] = DESC_RATEMCS1;
988 		rate[2] = DESC_RATEMCS2;
989 		rate[3] = DESC_RATEMCS3;
990 		for (i = 0; i < 4; ++i)
991 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
992 		*rate_num = 4;
993 		break;
994 	case 0xE14:
995 	case 0x848:
996 		rate[0] = DESC_RATEMCS4;
997 		rate[1] = DESC_RATEMCS5;
998 		rate[2] = DESC_RATEMCS6;
999 		rate[3] = DESC_RATEMCS7;
1000 		for (i = 0; i < 4; ++i)
1001 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1002 		*rate_num = 4;
1003 		break;
1004 	case 0xE18:
1005 	case 0x84C:
1006 		rate[0] = DESC_RATEMCS8;
1007 		rate[1] = DESC_RATEMCS9;
1008 		rate[2] = DESC_RATEMCS10;
1009 		rate[3] = DESC_RATEMCS11;
1010 		for (i = 0; i < 4; ++i)
1011 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1012 		*rate_num = 4;
1013 		break;
1014 	case 0xE1C:
1015 	case 0x868:
1016 		rate[0] = DESC_RATEMCS12;
1017 		rate[1] = DESC_RATEMCS13;
1018 		rate[2] = DESC_RATEMCS14;
1019 		rate[3] = DESC_RATEMCS15;
1020 		for (i = 0; i < 4; ++i)
1021 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1022 		*rate_num = 4;
1023 		break;
1024 	case 0x838:
1025 		rate[0] = DESC_RATE1M;
1026 		rate[1] = DESC_RATE2M;
1027 		rate[2] = DESC_RATE5_5M;
1028 		for (i = 1; i < 4; ++i)
1029 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1030 								    val, i);
1031 		*rate_num = 3;
1032 		break;
1033 	case 0xC20:
1034 	case 0xE20:
1035 	case 0x1820:
1036 	case 0x1A20:
1037 		rate[0] = DESC_RATE1M;
1038 		rate[1] = DESC_RATE2M;
1039 		rate[2] = DESC_RATE5_5M;
1040 		rate[3] = DESC_RATE11M;
1041 		for (i = 0; i < 4; ++i)
1042 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1043 		*rate_num = 4;
1044 		break;
1045 	case 0xC24:
1046 	case 0xE24:
1047 	case 0x1824:
1048 	case 0x1A24:
1049 		rate[0] = DESC_RATE6M;
1050 		rate[1] = DESC_RATE9M;
1051 		rate[2] = DESC_RATE12M;
1052 		rate[3] = DESC_RATE18M;
1053 		for (i = 0; i < 4; ++i)
1054 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1055 		*rate_num = 4;
1056 		break;
1057 	case 0xC28:
1058 	case 0xE28:
1059 	case 0x1828:
1060 	case 0x1A28:
1061 		rate[0] = DESC_RATE24M;
1062 		rate[1] = DESC_RATE36M;
1063 		rate[2] = DESC_RATE48M;
1064 		rate[3] = DESC_RATE54M;
1065 		for (i = 0; i < 4; ++i)
1066 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1067 		*rate_num = 4;
1068 		break;
1069 	case 0xC2C:
1070 	case 0xE2C:
1071 	case 0x182C:
1072 	case 0x1A2C:
1073 		rate[0] = DESC_RATEMCS0;
1074 		rate[1] = DESC_RATEMCS1;
1075 		rate[2] = DESC_RATEMCS2;
1076 		rate[3] = DESC_RATEMCS3;
1077 		for (i = 0; i < 4; ++i)
1078 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1079 		*rate_num = 4;
1080 		break;
1081 	case 0xC30:
1082 	case 0xE30:
1083 	case 0x1830:
1084 	case 0x1A30:
1085 		rate[0] = DESC_RATEMCS4;
1086 		rate[1] = DESC_RATEMCS5;
1087 		rate[2] = DESC_RATEMCS6;
1088 		rate[3] = DESC_RATEMCS7;
1089 		for (i = 0; i < 4; ++i)
1090 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1091 		*rate_num = 4;
1092 		break;
1093 	case 0xC34:
1094 	case 0xE34:
1095 	case 0x1834:
1096 	case 0x1A34:
1097 		rate[0] = DESC_RATEMCS8;
1098 		rate[1] = DESC_RATEMCS9;
1099 		rate[2] = DESC_RATEMCS10;
1100 		rate[3] = DESC_RATEMCS11;
1101 		for (i = 0; i < 4; ++i)
1102 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1103 		*rate_num = 4;
1104 		break;
1105 	case 0xC38:
1106 	case 0xE38:
1107 	case 0x1838:
1108 	case 0x1A38:
1109 		rate[0] = DESC_RATEMCS12;
1110 		rate[1] = DESC_RATEMCS13;
1111 		rate[2] = DESC_RATEMCS14;
1112 		rate[3] = DESC_RATEMCS15;
1113 		for (i = 0; i < 4; ++i)
1114 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1115 		*rate_num = 4;
1116 		break;
1117 	case 0xC3C:
1118 	case 0xE3C:
1119 	case 0x183C:
1120 	case 0x1A3C:
1121 		rate[0] = DESC_RATEVHT1SS_MCS0;
1122 		rate[1] = DESC_RATEVHT1SS_MCS1;
1123 		rate[2] = DESC_RATEVHT1SS_MCS2;
1124 		rate[3] = DESC_RATEVHT1SS_MCS3;
1125 		for (i = 0; i < 4; ++i)
1126 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1127 		*rate_num = 4;
1128 		break;
1129 	case 0xC40:
1130 	case 0xE40:
1131 	case 0x1840:
1132 	case 0x1A40:
1133 		rate[0] = DESC_RATEVHT1SS_MCS4;
1134 		rate[1] = DESC_RATEVHT1SS_MCS5;
1135 		rate[2] = DESC_RATEVHT1SS_MCS6;
1136 		rate[3] = DESC_RATEVHT1SS_MCS7;
1137 		for (i = 0; i < 4; ++i)
1138 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1139 		*rate_num = 4;
1140 		break;
1141 	case 0xC44:
1142 	case 0xE44:
1143 	case 0x1844:
1144 	case 0x1A44:
1145 		rate[0] = DESC_RATEVHT1SS_MCS8;
1146 		rate[1] = DESC_RATEVHT1SS_MCS9;
1147 		rate[2] = DESC_RATEVHT2SS_MCS0;
1148 		rate[3] = DESC_RATEVHT2SS_MCS1;
1149 		for (i = 0; i < 4; ++i)
1150 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1151 		*rate_num = 4;
1152 		break;
1153 	case 0xC48:
1154 	case 0xE48:
1155 	case 0x1848:
1156 	case 0x1A48:
1157 		rate[0] = DESC_RATEVHT2SS_MCS2;
1158 		rate[1] = DESC_RATEVHT2SS_MCS3;
1159 		rate[2] = DESC_RATEVHT2SS_MCS4;
1160 		rate[3] = DESC_RATEVHT2SS_MCS5;
1161 		for (i = 0; i < 4; ++i)
1162 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1163 		*rate_num = 4;
1164 		break;
1165 	case 0xC4C:
1166 	case 0xE4C:
1167 	case 0x184C:
1168 	case 0x1A4C:
1169 		rate[0] = DESC_RATEVHT2SS_MCS6;
1170 		rate[1] = DESC_RATEVHT2SS_MCS7;
1171 		rate[2] = DESC_RATEVHT2SS_MCS8;
1172 		rate[3] = DESC_RATEVHT2SS_MCS9;
1173 		for (i = 0; i < 4; ++i)
1174 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1175 		*rate_num = 4;
1176 		break;
1177 	case 0xCD8:
1178 	case 0xED8:
1179 	case 0x18D8:
1180 	case 0x1AD8:
1181 		rate[0] = DESC_RATEMCS16;
1182 		rate[1] = DESC_RATEMCS17;
1183 		rate[2] = DESC_RATEMCS18;
1184 		rate[3] = DESC_RATEMCS19;
1185 		for (i = 0; i < 4; ++i)
1186 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1187 		*rate_num = 4;
1188 		break;
1189 	case 0xCDC:
1190 	case 0xEDC:
1191 	case 0x18DC:
1192 	case 0x1ADC:
1193 		rate[0] = DESC_RATEMCS20;
1194 		rate[1] = DESC_RATEMCS21;
1195 		rate[2] = DESC_RATEMCS22;
1196 		rate[3] = DESC_RATEMCS23;
1197 		for (i = 0; i < 4; ++i)
1198 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1199 		*rate_num = 4;
1200 		break;
1201 	case 0xCE0:
1202 	case 0xEE0:
1203 	case 0x18E0:
1204 	case 0x1AE0:
1205 		rate[0] = DESC_RATEVHT3SS_MCS0;
1206 		rate[1] = DESC_RATEVHT3SS_MCS1;
1207 		rate[2] = DESC_RATEVHT3SS_MCS2;
1208 		rate[3] = DESC_RATEVHT3SS_MCS3;
1209 		for (i = 0; i < 4; ++i)
1210 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1211 		*rate_num = 4;
1212 		break;
1213 	case 0xCE4:
1214 	case 0xEE4:
1215 	case 0x18E4:
1216 	case 0x1AE4:
1217 		rate[0] = DESC_RATEVHT3SS_MCS4;
1218 		rate[1] = DESC_RATEVHT3SS_MCS5;
1219 		rate[2] = DESC_RATEVHT3SS_MCS6;
1220 		rate[3] = DESC_RATEVHT3SS_MCS7;
1221 		for (i = 0; i < 4; ++i)
1222 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1223 		*rate_num = 4;
1224 		break;
1225 	case 0xCE8:
1226 	case 0xEE8:
1227 	case 0x18E8:
1228 	case 0x1AE8:
1229 		rate[0] = DESC_RATEVHT3SS_MCS8;
1230 		rate[1] = DESC_RATEVHT3SS_MCS9;
1231 		for (i = 0; i < 2; ++i)
1232 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1233 		*rate_num = 2;
1234 		break;
1235 	default:
1236 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1237 		break;
1238 	}
1239 }
1240 
1241 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1242 					   u32 band, u32 rfpath, u32 txnum,
1243 					   u32 regaddr, u32 bitmask, u32 data)
1244 {
1245 	struct rtw_hal *hal = &rtwdev->hal;
1246 	u8 rate_num = 0;
1247 	u8 rate;
1248 	u8 rates[RTW_RF_PATH_MAX] = {0};
1249 	s8 offset;
1250 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1251 	int i;
1252 
1253 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1254 						 rates, pwr_by_rate, &rate_num);
1255 
1256 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1257 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1258 		    rate_num > RTW_RF_PATH_MAX))
1259 		return;
1260 
1261 	for (i = 0; i < rate_num; i++) {
1262 		offset = pwr_by_rate[i];
1263 		rate = rates[i];
1264 		if (band == PHY_BAND_2G)
1265 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1266 		else if (band == PHY_BAND_5G)
1267 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1268 		else
1269 			continue;
1270 	}
1271 }
1272 
1273 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1274 {
1275 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1276 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1277 
1278 	for (; p < end; p++) {
1279 		if (p->addr == 0xfe || p->addr == 0xffe) {
1280 			msleep(50);
1281 			continue;
1282 		}
1283 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1284 					       p->tx_num, p->addr, p->bitmask,
1285 					       p->data);
1286 	}
1287 }
1288 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1289 
1290 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1291 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1292 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1293 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1294 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1295 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1296 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1297 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1298 
1299 static int rtw_channel_to_idx(u8 band, u8 channel)
1300 {
1301 	int ch_idx;
1302 	u8 n_channel;
1303 
1304 	if (band == PHY_BAND_2G) {
1305 		ch_idx = channel - 1;
1306 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1307 	} else if (band == PHY_BAND_5G) {
1308 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1309 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1310 			if (rtw_channel_idx_5g[ch_idx] == channel)
1311 				break;
1312 	} else {
1313 		return -1;
1314 	}
1315 
1316 	if (ch_idx >= n_channel)
1317 		return -1;
1318 
1319 	return ch_idx;
1320 }
1321 
1322 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1323 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1324 {
1325 	struct rtw_hal *hal = &rtwdev->hal;
1326 	u8 max_power_index = rtwdev->chip->max_power_index;
1327 	s8 ww;
1328 	int ch_idx;
1329 
1330 	pwr_limit = clamp_t(s8, pwr_limit,
1331 			    -max_power_index, max_power_index);
1332 	ch_idx = rtw_channel_to_idx(band, ch);
1333 
1334 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1335 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1336 		WARN(1,
1337 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1338 		     regd, band, bw, rs, ch_idx, pwr_limit);
1339 		return;
1340 	}
1341 
1342 	if (band == PHY_BAND_2G) {
1343 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1344 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1345 		ww = min_t(s8, ww, pwr_limit);
1346 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1347 	} else if (band == PHY_BAND_5G) {
1348 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1349 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1350 		ww = min_t(s8, ww, pwr_limit);
1351 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1352 	}
1353 }
1354 
1355 /* cross-reference 5G power limits if values are not assigned */
1356 static void
1357 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1358 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1359 {
1360 	struct rtw_hal *hal = &rtwdev->hal;
1361 	u8 max_power_index = rtwdev->chip->max_power_index;
1362 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1363 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1364 
1365 	if (lmt_ht == lmt_vht)
1366 		return;
1367 
1368 	if (lmt_ht == max_power_index)
1369 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1370 
1371 	else if (lmt_vht == max_power_index)
1372 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1373 }
1374 
1375 /* cross-reference power limits for ht and vht */
1376 static void
1377 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1378 {
1379 	u8 rs_idx, rs_ht, rs_vht;
1380 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1381 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1382 
1383 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1384 		rs_ht = rs_cmp[rs_idx][0];
1385 		rs_vht = rs_cmp[rs_idx][1];
1386 
1387 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1388 	}
1389 }
1390 
1391 /* cross-reference power limits for 5G channels */
1392 static void
1393 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1394 {
1395 	u8 ch_idx;
1396 
1397 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1398 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1399 }
1400 
1401 /* cross-reference power limits for 20/40M bandwidth */
1402 static void
1403 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1404 {
1405 	u8 bw;
1406 
1407 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1408 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1409 }
1410 
1411 /* cross-reference power limits */
1412 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1413 {
1414 	u8 regd;
1415 
1416 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1417 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1418 }
1419 
1420 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1421 			     const struct rtw_table *tbl)
1422 {
1423 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1424 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1425 
1426 	for (; p < end; p++) {
1427 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1428 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1429 	}
1430 
1431 	rtw_xref_txpwr_lmt(rtwdev);
1432 }
1433 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1434 
1435 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1436 		     u32 addr, u32 data)
1437 {
1438 	rtw_write8(rtwdev, addr, data);
1439 }
1440 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1441 
1442 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1443 		     u32 addr, u32 data)
1444 {
1445 	rtw_write32(rtwdev, addr, data);
1446 }
1447 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1448 
1449 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1450 		    u32 addr, u32 data)
1451 {
1452 	if (addr == 0xfe)
1453 		msleep(50);
1454 	else if (addr == 0xfd)
1455 		mdelay(5);
1456 	else if (addr == 0xfc)
1457 		mdelay(1);
1458 	else if (addr == 0xfb)
1459 		usleep_range(50, 60);
1460 	else if (addr == 0xfa)
1461 		udelay(5);
1462 	else if (addr == 0xf9)
1463 		udelay(1);
1464 	else
1465 		rtw_write32(rtwdev, addr, data);
1466 }
1467 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1468 
1469 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1470 		    u32 addr, u32 data)
1471 {
1472 	if (addr == 0xffe) {
1473 		msleep(50);
1474 	} else if (addr == 0xfe) {
1475 		usleep_range(100, 110);
1476 	} else {
1477 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1478 		udelay(1);
1479 	}
1480 }
1481 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1482 
1483 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1484 {
1485 	struct rtw_chip_info *chip = rtwdev->chip;
1486 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1487 
1488 	if (!chip->rfk_init_tbl)
1489 		return;
1490 
1491 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1492 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1493 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1494 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1495 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1496 
1497 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1498 
1499 	dpk_info->is_dpk_pwr_on = true;
1500 }
1501 
1502 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1503 {
1504 	struct rtw_chip_info *chip = rtwdev->chip;
1505 	u8 rf_path;
1506 
1507 	rtw_load_table(rtwdev, chip->mac_tbl);
1508 	rtw_load_table(rtwdev, chip->bb_tbl);
1509 	rtw_load_table(rtwdev, chip->agc_tbl);
1510 	rtw_load_rfk_table(rtwdev);
1511 
1512 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1513 		const struct rtw_table *tbl;
1514 
1515 		tbl = chip->rf_tbl[rf_path];
1516 		rtw_load_table(rtwdev, tbl);
1517 	}
1518 }
1519 EXPORT_SYMBOL(rtw_phy_load_tables);
1520 
1521 static u8 rtw_get_channel_group(u8 channel)
1522 {
1523 	switch (channel) {
1524 	default:
1525 		WARN_ON(1);
1526 		fallthrough;
1527 	case 1:
1528 	case 2:
1529 	case 36:
1530 	case 38:
1531 	case 40:
1532 	case 42:
1533 		return 0;
1534 	case 3:
1535 	case 4:
1536 	case 5:
1537 	case 44:
1538 	case 46:
1539 	case 48:
1540 	case 50:
1541 		return 1;
1542 	case 6:
1543 	case 7:
1544 	case 8:
1545 	case 52:
1546 	case 54:
1547 	case 56:
1548 	case 58:
1549 		return 2;
1550 	case 9:
1551 	case 10:
1552 	case 11:
1553 	case 60:
1554 	case 62:
1555 	case 64:
1556 		return 3;
1557 	case 12:
1558 	case 13:
1559 	case 100:
1560 	case 102:
1561 	case 104:
1562 	case 106:
1563 		return 4;
1564 	case 14:
1565 	case 108:
1566 	case 110:
1567 	case 112:
1568 	case 114:
1569 		return 5;
1570 	case 116:
1571 	case 118:
1572 	case 120:
1573 	case 122:
1574 		return 6;
1575 	case 124:
1576 	case 126:
1577 	case 128:
1578 	case 130:
1579 		return 7;
1580 	case 132:
1581 	case 134:
1582 	case 136:
1583 	case 138:
1584 		return 8;
1585 	case 140:
1586 	case 142:
1587 	case 144:
1588 		return 9;
1589 	case 149:
1590 	case 151:
1591 	case 153:
1592 	case 155:
1593 		return 10;
1594 	case 157:
1595 	case 159:
1596 	case 161:
1597 		return 11;
1598 	case 165:
1599 	case 167:
1600 	case 169:
1601 	case 171:
1602 		return 12;
1603 	case 173:
1604 	case 175:
1605 	case 177:
1606 		return 13;
1607 	}
1608 }
1609 
1610 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1611 {
1612 	struct rtw_chip_info *chip = rtwdev->chip;
1613 	s8 dpd_diff = 0;
1614 
1615 	if (!chip->en_dis_dpd)
1616 		return 0;
1617 
1618 #define RTW_DPD_RATE_CHECK(_rate)					\
1619 	case DESC_RATE ## _rate:					\
1620 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1621 		dpd_diff = -6 * chip->txgi_factor;			\
1622 	break
1623 
1624 	switch (rate) {
1625 	RTW_DPD_RATE_CHECK(6M);
1626 	RTW_DPD_RATE_CHECK(9M);
1627 	RTW_DPD_RATE_CHECK(MCS0);
1628 	RTW_DPD_RATE_CHECK(MCS1);
1629 	RTW_DPD_RATE_CHECK(MCS8);
1630 	RTW_DPD_RATE_CHECK(MCS9);
1631 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1632 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1633 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1634 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1635 	}
1636 #undef RTW_DPD_RATE_CHECK
1637 
1638 	return dpd_diff;
1639 }
1640 
1641 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1642 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1643 					enum rtw_bandwidth bandwidth,
1644 					u8 rate, u8 group)
1645 {
1646 	struct rtw_chip_info *chip = rtwdev->chip;
1647 	u8 tx_power;
1648 	bool mcs_rate;
1649 	bool above_2ss;
1650 	u8 factor = chip->txgi_factor;
1651 
1652 	if (rate <= DESC_RATE11M)
1653 		tx_power = pwr_idx_2g->cck_base[group];
1654 	else
1655 		tx_power = pwr_idx_2g->bw40_base[group];
1656 
1657 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1658 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1659 
1660 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1661 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1662 		    rate <= DESC_RATEVHT2SS_MCS9);
1663 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1664 		    (rate >= DESC_RATEVHT2SS_MCS0);
1665 
1666 	if (!mcs_rate)
1667 		return tx_power;
1668 
1669 	switch (bandwidth) {
1670 	default:
1671 		WARN_ON(1);
1672 		fallthrough;
1673 	case RTW_CHANNEL_WIDTH_20:
1674 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1675 		if (above_2ss)
1676 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1677 		break;
1678 	case RTW_CHANNEL_WIDTH_40:
1679 		/* bw40 is the base power */
1680 		if (above_2ss)
1681 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1682 		break;
1683 	}
1684 
1685 	return tx_power;
1686 }
1687 
1688 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1689 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1690 					enum rtw_bandwidth bandwidth,
1691 					u8 rate, u8 group)
1692 {
1693 	struct rtw_chip_info *chip = rtwdev->chip;
1694 	u8 tx_power;
1695 	u8 upper, lower;
1696 	bool mcs_rate;
1697 	bool above_2ss;
1698 	u8 factor = chip->txgi_factor;
1699 
1700 	tx_power = pwr_idx_5g->bw40_base[group];
1701 
1702 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1703 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1704 		    rate <= DESC_RATEVHT2SS_MCS9);
1705 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1706 		    (rate >= DESC_RATEVHT2SS_MCS0);
1707 
1708 	if (!mcs_rate) {
1709 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1710 		return tx_power;
1711 	}
1712 
1713 	switch (bandwidth) {
1714 	default:
1715 		WARN_ON(1);
1716 		fallthrough;
1717 	case RTW_CHANNEL_WIDTH_20:
1718 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1719 		if (above_2ss)
1720 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1721 		break;
1722 	case RTW_CHANNEL_WIDTH_40:
1723 		/* bw40 is the base power */
1724 		if (above_2ss)
1725 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1726 		break;
1727 	case RTW_CHANNEL_WIDTH_80:
1728 		/* the base idx of bw80 is the average of bw40+/bw40- */
1729 		lower = pwr_idx_5g->bw40_base[group];
1730 		upper = pwr_idx_5g->bw40_base[group + 1];
1731 
1732 		tx_power = (lower + upper) / 2;
1733 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1734 		if (above_2ss)
1735 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1736 		break;
1737 	}
1738 
1739 	return tx_power;
1740 }
1741 
1742 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1743 				     enum rtw_bandwidth bw, u8 rf_path,
1744 				     u8 rate, u8 channel, u8 regd)
1745 {
1746 	struct rtw_hal *hal = &rtwdev->hal;
1747 	u8 *cch_by_bw = hal->cch_by_bw;
1748 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1749 	u8 rs;
1750 	int ch_idx;
1751 	u8 cur_bw, cur_ch;
1752 	s8 cur_lmt;
1753 
1754 	if (regd > RTW_REGD_WW)
1755 		return power_limit;
1756 
1757 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1758 		rs = RTW_RATE_SECTION_CCK;
1759 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1760 		rs = RTW_RATE_SECTION_OFDM;
1761 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1762 		rs = RTW_RATE_SECTION_HT_1S;
1763 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1764 		rs = RTW_RATE_SECTION_HT_2S;
1765 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1766 		rs = RTW_RATE_SECTION_VHT_1S;
1767 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1768 		rs = RTW_RATE_SECTION_VHT_2S;
1769 	else
1770 		goto err;
1771 
1772 	/* only 20M BW with cck and ofdm */
1773 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1774 		bw = RTW_CHANNEL_WIDTH_20;
1775 
1776 	/* only 20/40M BW with ht */
1777 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1778 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1779 
1780 	/* select min power limit among [20M BW ~ current BW] */
1781 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1782 		cur_ch = cch_by_bw[cur_bw];
1783 
1784 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1785 		if (ch_idx < 0)
1786 			goto err;
1787 
1788 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1789 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1790 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1791 
1792 		power_limit = min_t(s8, cur_lmt, power_limit);
1793 	}
1794 
1795 	return power_limit;
1796 
1797 err:
1798 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1799 	     band, bw, rf_path, rate, channel);
1800 	return (s8)rtwdev->chip->max_power_index;
1801 }
1802 
1803 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1804 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1805 {
1806 	struct rtw_hal *hal = &rtwdev->hal;
1807 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1808 	struct rtw_txpwr_idx *pwr_idx;
1809 	u8 group, band;
1810 	u8 *base = &pwr_param->pwr_base;
1811 	s8 *offset = &pwr_param->pwr_offset;
1812 	s8 *limit = &pwr_param->pwr_limit;
1813 	s8 *remnant = &pwr_param->pwr_remnant;
1814 
1815 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1816 	group = rtw_get_channel_group(ch);
1817 
1818 	/* base power index for 2.4G/5G */
1819 	if (IS_CH_2G_BAND(ch)) {
1820 		band = PHY_BAND_2G;
1821 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1822 						      &pwr_idx->pwr_idx_2g,
1823 						      bw, rate, group);
1824 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1825 	} else {
1826 		band = PHY_BAND_5G;
1827 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1828 						      &pwr_idx->pwr_idx_5g,
1829 						      bw, rate, group);
1830 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1831 	}
1832 
1833 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1834 					    rate, ch, regd);
1835 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1836 		    dm_info->txagc_remnant_ofdm);
1837 }
1838 
1839 u8
1840 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1841 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1842 {
1843 	struct rtw_power_params pwr_param = {0};
1844 	u8 tx_power;
1845 	s8 offset;
1846 
1847 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1848 				channel, regd, &pwr_param);
1849 
1850 	tx_power = pwr_param.pwr_base;
1851 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1852 
1853 	if (rtwdev->chip->en_dis_dpd)
1854 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1855 
1856 	tx_power += offset + pwr_param.pwr_remnant;
1857 
1858 	if (tx_power > rtwdev->chip->max_power_index)
1859 		tx_power = rtwdev->chip->max_power_index;
1860 
1861 	return tx_power;
1862 }
1863 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1864 
1865 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1866 					     u8 ch, u8 path, u8 rs)
1867 {
1868 	struct rtw_hal *hal = &rtwdev->hal;
1869 	u8 regd = rtwdev->regd.txpwr_regd;
1870 	u8 *rates;
1871 	u8 size;
1872 	u8 rate;
1873 	u8 pwr_idx;
1874 	u8 bw;
1875 	int i;
1876 
1877 	if (rs >= RTW_RATE_SECTION_MAX)
1878 		return;
1879 
1880 	rates = rtw_rate_section[rs];
1881 	size = rtw_rate_size[rs];
1882 	bw = hal->current_band_width;
1883 	for (i = 0; i < size; i++) {
1884 		rate = rates[i];
1885 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1886 						     bw, ch, regd);
1887 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1888 	}
1889 }
1890 
1891 /* set tx power level by path for each rates, note that the order of the rates
1892  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1893  * power index into a four-byte power index register, and calls set_tx_agc to
1894  * write these values into hardware
1895  */
1896 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1897 					       u8 ch, u8 path)
1898 {
1899 	struct rtw_hal *hal = &rtwdev->hal;
1900 	u8 rs;
1901 
1902 	/* do not need cck rates if we are not in 2.4G */
1903 	if (hal->current_band_type == RTW_BAND_2G)
1904 		rs = RTW_RATE_SECTION_CCK;
1905 	else
1906 		rs = RTW_RATE_SECTION_OFDM;
1907 
1908 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1909 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1910 }
1911 
1912 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1913 {
1914 	struct rtw_chip_info *chip = rtwdev->chip;
1915 	struct rtw_hal *hal = &rtwdev->hal;
1916 	u8 path;
1917 
1918 	mutex_lock(&hal->tx_power_mutex);
1919 
1920 	for (path = 0; path < hal->rf_path_num; path++)
1921 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1922 
1923 	chip->ops->set_tx_power_index(rtwdev);
1924 	mutex_unlock(&hal->tx_power_mutex);
1925 }
1926 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1927 
1928 static void
1929 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1930 					u8 rs, u8 size, u8 *rates)
1931 {
1932 	u8 rate;
1933 	u8 base_idx, rate_idx;
1934 	s8 base_2g, base_5g;
1935 
1936 	if (rs >= RTW_RATE_SECTION_VHT_1S)
1937 		base_idx = rates[size - 3];
1938 	else
1939 		base_idx = rates[size - 1];
1940 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1941 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1942 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1943 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1944 	for (rate = 0; rate < size; rate++) {
1945 		rate_idx = rates[rate];
1946 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1947 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1948 	}
1949 }
1950 
1951 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1952 {
1953 	u8 path;
1954 
1955 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1956 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1957 				RTW_RATE_SECTION_CCK,
1958 				rtw_cck_size, rtw_cck_rates);
1959 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1960 				RTW_RATE_SECTION_OFDM,
1961 				rtw_ofdm_size, rtw_ofdm_rates);
1962 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1963 				RTW_RATE_SECTION_HT_1S,
1964 				rtw_ht_1s_size, rtw_ht_1s_rates);
1965 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1966 				RTW_RATE_SECTION_HT_2S,
1967 				rtw_ht_2s_size, rtw_ht_2s_rates);
1968 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1969 				RTW_RATE_SECTION_VHT_1S,
1970 				rtw_vht_1s_size, rtw_vht_1s_rates);
1971 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1972 				RTW_RATE_SECTION_VHT_2S,
1973 				rtw_vht_2s_size, rtw_vht_2s_rates);
1974 	}
1975 }
1976 
1977 static void
1978 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1979 {
1980 	s8 base;
1981 	u8 ch;
1982 
1983 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1984 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1985 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1986 	}
1987 
1988 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1989 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1990 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1991 	}
1992 }
1993 
1994 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1995 {
1996 	u8 regd, bw, rs;
1997 
1998 	/* default at channel 1 */
1999 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2000 
2001 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2002 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2003 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2004 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2005 }
2006 
2007 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2008 					u8 regd, u8 bw, u8 rs)
2009 {
2010 	struct rtw_hal *hal = &rtwdev->hal;
2011 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2012 	u8 ch;
2013 
2014 	/* 2.4G channels */
2015 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2016 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2017 
2018 	/* 5G channels */
2019 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2020 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2021 }
2022 
2023 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2024 {
2025 	struct rtw_hal *hal = &rtwdev->hal;
2026 	u8 regd, path, rate, rs, bw;
2027 
2028 	/* init tx power by rate offset */
2029 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2030 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2031 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2032 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2033 		}
2034 	}
2035 
2036 	/* init tx power limit */
2037 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2038 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2039 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2040 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2041 							    rs);
2042 }
2043 
2044 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2045 				struct rtw_swing_table *swing_table)
2046 {
2047 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2048 	u8 channel = rtwdev->hal.current_channel;
2049 
2050 	if (IS_CH_2G_BAND(channel)) {
2051 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2052 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2053 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2054 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2055 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2056 		} else {
2057 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2058 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2059 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2060 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2061 		}
2062 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2063 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2064 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2065 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2066 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2067 	} else if (IS_CH_5G_BAND_3(channel)) {
2068 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2069 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2070 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2071 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2072 	} else if (IS_CH_5G_BAND_4(channel)) {
2073 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2074 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2075 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2076 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2077 	} else {
2078 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2079 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2080 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2081 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2082 	}
2083 }
2084 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2085 
2086 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2087 {
2088 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2089 
2090 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2091 	dm_info->thermal_avg[path] =
2092 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2093 }
2094 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2095 
2096 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2097 				      u8 path)
2098 {
2099 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2100 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2101 
2102 	if (avg == thermal)
2103 		return false;
2104 
2105 	return true;
2106 }
2107 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2108 
2109 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2110 {
2111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2112 	u8 therm_avg, therm_efuse, therm_delta;
2113 
2114 	therm_avg = dm_info->thermal_avg[path];
2115 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2116 	therm_delta = abs(therm_avg - therm_efuse);
2117 
2118 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2119 }
2120 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2121 
2122 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2123 			       struct rtw_swing_table *swing_table,
2124 			       u8 tbl_path, u8 therm_path, u8 delta)
2125 {
2126 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2127 	const u8 *delta_swing_table_idx_pos;
2128 	const u8 *delta_swing_table_idx_neg;
2129 
2130 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2131 		rtw_warn(rtwdev, "power track table overflow\n");
2132 		return 0;
2133 	}
2134 
2135 	if (!swing_table) {
2136 		rtw_warn(rtwdev, "swing table not configured\n");
2137 		return 0;
2138 	}
2139 
2140 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2141 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2142 
2143 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2144 		rtw_warn(rtwdev, "invalid swing table index\n");
2145 		return 0;
2146 	}
2147 
2148 	if (dm_info->thermal_avg[therm_path] >
2149 	    rtwdev->efuse.thermal_meter[therm_path])
2150 		return delta_swing_table_idx_pos[delta];
2151 	else
2152 		return -delta_swing_table_idx_neg[delta];
2153 }
2154 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2155 
2156 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2157 {
2158 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2159 	u8 delta_iqk;
2160 
2161 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2162 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2163 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2164 		return true;
2165 	}
2166 	return false;
2167 }
2168 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2169