xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/pci.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
34 {
35 	switch (queue) {
36 	case RTW_TX_QUEUE_BCN:
37 		return TX_DESC_QSEL_BEACON;
38 	case RTW_TX_QUEUE_H2C:
39 		return TX_DESC_QSEL_H2C;
40 	case RTW_TX_QUEUE_MGMT:
41 		return TX_DESC_QSEL_MGMT;
42 	case RTW_TX_QUEUE_HI0:
43 		return TX_DESC_QSEL_HIGH;
44 	default:
45 		return skb->priority;
46 	}
47 };
48 
49 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
50 {
51 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
52 
53 	return readb(rtwpci->mmap + addr);
54 }
55 
56 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
57 {
58 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
59 
60 	return readw(rtwpci->mmap + addr);
61 }
62 
63 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
64 {
65 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
66 
67 	return readl(rtwpci->mmap + addr);
68 }
69 
70 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
71 {
72 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
73 
74 	writeb(val, rtwpci->mmap + addr);
75 }
76 
77 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
78 {
79 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
80 
81 	writew(val, rtwpci->mmap + addr);
82 }
83 
84 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
85 {
86 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
87 
88 	writel(val, rtwpci->mmap + addr);
89 }
90 
91 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
92 {
93 	int offset = tx_ring->r.desc_size * idx;
94 
95 	return tx_ring->r.head + offset;
96 }
97 
98 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
99 				      struct rtw_pci_tx_ring *tx_ring)
100 {
101 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
102 	struct rtw_pci_tx_data *tx_data;
103 	struct sk_buff *skb, *tmp;
104 	dma_addr_t dma;
105 
106 	/* free every skb remained in tx list */
107 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
108 		__skb_unlink(skb, &tx_ring->queue);
109 		tx_data = rtw_pci_get_tx_data(skb);
110 		dma = tx_data->dma;
111 
112 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
113 		dev_kfree_skb_any(skb);
114 	}
115 }
116 
117 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
118 				 struct rtw_pci_tx_ring *tx_ring)
119 {
120 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
121 	u8 *head = tx_ring->r.head;
122 	u32 len = tx_ring->r.len;
123 	int ring_sz = len * tx_ring->r.desc_size;
124 
125 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
126 
127 	/* free the ring itself */
128 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
129 	tx_ring->r.head = NULL;
130 }
131 
132 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
133 				      struct rtw_pci_rx_ring *rx_ring)
134 {
135 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
136 	struct sk_buff *skb;
137 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
138 	dma_addr_t dma;
139 	int i;
140 
141 	for (i = 0; i < rx_ring->r.len; i++) {
142 		skb = rx_ring->buf[i];
143 		if (!skb)
144 			continue;
145 
146 		dma = *((dma_addr_t *)skb->cb);
147 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
148 		dev_kfree_skb(skb);
149 		rx_ring->buf[i] = NULL;
150 	}
151 }
152 
153 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
154 				 struct rtw_pci_rx_ring *rx_ring)
155 {
156 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
157 	u8 *head = rx_ring->r.head;
158 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
159 
160 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
161 
162 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
163 }
164 
165 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
168 	struct rtw_pci_tx_ring *tx_ring;
169 	struct rtw_pci_rx_ring *rx_ring;
170 	int i;
171 
172 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
173 		tx_ring = &rtwpci->tx_rings[i];
174 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
175 	}
176 
177 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
178 		rx_ring = &rtwpci->rx_rings[i];
179 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
180 	}
181 }
182 
183 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
184 				struct rtw_pci_tx_ring *tx_ring,
185 				u8 desc_size, u32 len)
186 {
187 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
188 	int ring_sz = desc_size * len;
189 	dma_addr_t dma;
190 	u8 *head;
191 
192 	if (len > TRX_BD_IDX_MASK) {
193 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
194 		return -EINVAL;
195 	}
196 
197 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
198 	if (!head) {
199 		rtw_err(rtwdev, "failed to allocate tx ring\n");
200 		return -ENOMEM;
201 	}
202 
203 	skb_queue_head_init(&tx_ring->queue);
204 	tx_ring->r.head = head;
205 	tx_ring->r.dma = dma;
206 	tx_ring->r.len = len;
207 	tx_ring->r.desc_size = desc_size;
208 	tx_ring->r.wp = 0;
209 	tx_ring->r.rp = 0;
210 
211 	return 0;
212 }
213 
214 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
215 				 struct rtw_pci_rx_ring *rx_ring,
216 				 u32 idx, u32 desc_sz)
217 {
218 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
219 	struct rtw_pci_rx_buffer_desc *buf_desc;
220 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
221 	dma_addr_t dma;
222 
223 	if (!skb)
224 		return -EINVAL;
225 
226 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
227 	if (dma_mapping_error(&pdev->dev, dma))
228 		return -EBUSY;
229 
230 	*((dma_addr_t *)skb->cb) = dma;
231 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
232 						     idx * desc_sz);
233 	memset(buf_desc, 0, sizeof(*buf_desc));
234 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
235 	buf_desc->dma = cpu_to_le32(dma);
236 
237 	return 0;
238 }
239 
240 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
241 					struct rtw_pci_rx_ring *rx_ring,
242 					u32 idx, u32 desc_sz)
243 {
244 	struct device *dev = rtwdev->dev;
245 	struct rtw_pci_rx_buffer_desc *buf_desc;
246 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
247 
248 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
249 
250 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
251 						     idx * desc_sz);
252 	memset(buf_desc, 0, sizeof(*buf_desc));
253 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
254 	buf_desc->dma = cpu_to_le32(dma);
255 }
256 
257 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
258 				struct rtw_pci_rx_ring *rx_ring,
259 				u8 desc_size, u32 len)
260 {
261 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
262 	struct sk_buff *skb = NULL;
263 	dma_addr_t dma;
264 	u8 *head;
265 	int ring_sz = desc_size * len;
266 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
267 	int i, allocated;
268 	int ret = 0;
269 
270 	if (len > TRX_BD_IDX_MASK) {
271 		rtw_err(rtwdev, "len %d exceeds maximum RX entries\n", len);
272 		return -EINVAL;
273 	}
274 
275 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
276 	if (!head) {
277 		rtw_err(rtwdev, "failed to allocate rx ring\n");
278 		return -ENOMEM;
279 	}
280 	rx_ring->r.head = head;
281 
282 	for (i = 0; i < len; i++) {
283 		skb = dev_alloc_skb(buf_sz);
284 		if (!skb) {
285 			allocated = i;
286 			ret = -ENOMEM;
287 			goto err_out;
288 		}
289 
290 		memset(skb->data, 0, buf_sz);
291 		rx_ring->buf[i] = skb;
292 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
293 		if (ret) {
294 			allocated = i;
295 			dev_kfree_skb_any(skb);
296 			goto err_out;
297 		}
298 	}
299 
300 	rx_ring->r.dma = dma;
301 	rx_ring->r.len = len;
302 	rx_ring->r.desc_size = desc_size;
303 	rx_ring->r.wp = 0;
304 	rx_ring->r.rp = 0;
305 
306 	return 0;
307 
308 err_out:
309 	for (i = 0; i < allocated; i++) {
310 		skb = rx_ring->buf[i];
311 		if (!skb)
312 			continue;
313 		dma = *((dma_addr_t *)skb->cb);
314 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
315 		dev_kfree_skb_any(skb);
316 		rx_ring->buf[i] = NULL;
317 	}
318 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
319 
320 	rtw_err(rtwdev, "failed to init rx buffer\n");
321 
322 	return ret;
323 }
324 
325 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
326 {
327 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
328 	struct rtw_pci_tx_ring *tx_ring;
329 	struct rtw_pci_rx_ring *rx_ring;
330 	struct rtw_chip_info *chip = rtwdev->chip;
331 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
332 	int tx_desc_size, rx_desc_size;
333 	u32 len;
334 	int ret;
335 
336 	tx_desc_size = chip->tx_buf_desc_sz;
337 
338 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
339 		tx_ring = &rtwpci->tx_rings[i];
340 		len = max_num_of_tx_queue(i);
341 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
342 		if (ret)
343 			goto out;
344 	}
345 
346 	rx_desc_size = chip->rx_buf_desc_sz;
347 
348 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
349 		rx_ring = &rtwpci->rx_rings[j];
350 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
351 					   RTK_MAX_RX_DESC_NUM);
352 		if (ret)
353 			goto out;
354 	}
355 
356 	return 0;
357 
358 out:
359 	tx_alloced = i;
360 	for (i = 0; i < tx_alloced; i++) {
361 		tx_ring = &rtwpci->tx_rings[i];
362 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
363 	}
364 
365 	rx_alloced = j;
366 	for (j = 0; j < rx_alloced; j++) {
367 		rx_ring = &rtwpci->rx_rings[j];
368 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
369 	}
370 
371 	return ret;
372 }
373 
374 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
375 {
376 	rtw_pci_free_trx_ring(rtwdev);
377 }
378 
379 static int rtw_pci_init(struct rtw_dev *rtwdev)
380 {
381 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
382 	int ret = 0;
383 
384 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
385 			      IMR_MGNTDOK |
386 			      IMR_BKDOK |
387 			      IMR_BEDOK |
388 			      IMR_VIDOK |
389 			      IMR_VODOK |
390 			      IMR_ROK |
391 			      IMR_BCNDMAINT_E |
392 			      IMR_C2HCMD |
393 			      0;
394 	rtwpci->irq_mask[1] = IMR_TXFOVW |
395 			      0;
396 	rtwpci->irq_mask[3] = IMR_H2CDOK |
397 			      0;
398 	spin_lock_init(&rtwpci->irq_lock);
399 	spin_lock_init(&rtwpci->hwirq_lock);
400 	ret = rtw_pci_init_trx_ring(rtwdev);
401 
402 	return ret;
403 }
404 
405 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
406 {
407 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
408 	u32 len;
409 	u8 tmp;
410 	dma_addr_t dma;
411 
412 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
413 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
414 
415 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
416 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
417 
418 	if (!rtw_chip_wcpu_11n(rtwdev)) {
419 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
420 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
421 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
422 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
423 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
424 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
425 	}
426 
427 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
428 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
429 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
430 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
431 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
432 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
433 
434 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
435 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
436 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
437 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
438 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
439 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
440 
441 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
442 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
443 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
444 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
445 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
446 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
447 
448 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
449 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
450 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
451 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
452 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
453 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
454 
455 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
456 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
457 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
458 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
459 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
460 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
461 
462 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
463 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
464 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
466 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
467 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
468 
469 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
470 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
471 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
472 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
473 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
474 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
475 
476 	/* reset read/write point */
477 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
478 
479 	/* reset H2C Queue index in a single write */
480 	if (rtw_chip_wcpu_11ac(rtwdev))
481 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
482 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
483 }
484 
485 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
486 {
487 	rtw_pci_reset_buf_desc(rtwdev);
488 }
489 
490 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
491 				     struct rtw_pci *rtwpci)
492 {
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
496 
497 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0]);
498 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
499 	if (rtw_chip_wcpu_11ac(rtwdev))
500 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
501 
502 	rtwpci->irq_enabled = true;
503 
504 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
505 }
506 
507 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
508 				      struct rtw_pci *rtwpci)
509 {
510 	unsigned long flags;
511 
512 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
513 
514 	if (!rtwpci->irq_enabled)
515 		goto out;
516 
517 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
518 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
519 	if (rtw_chip_wcpu_11ac(rtwdev))
520 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
521 
522 	rtwpci->irq_enabled = false;
523 
524 out:
525 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
526 }
527 
528 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
529 {
530 	/* reset dma and rx tag */
531 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
532 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
533 	rtwpci->rx_tag = 0;
534 }
535 
536 static int rtw_pci_setup(struct rtw_dev *rtwdev)
537 {
538 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
539 
540 	rtw_pci_reset_trx_ring(rtwdev);
541 	rtw_pci_dma_reset(rtwdev, rtwpci);
542 
543 	return 0;
544 }
545 
546 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
547 {
548 	struct rtw_pci_tx_ring *tx_ring;
549 	u8 queue;
550 
551 	rtw_pci_reset_trx_ring(rtwdev);
552 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
553 		tx_ring = &rtwpci->tx_rings[queue];
554 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
555 	}
556 }
557 
558 static int rtw_pci_start(struct rtw_dev *rtwdev)
559 {
560 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
561 
562 	spin_lock_bh(&rtwpci->irq_lock);
563 	rtw_pci_enable_interrupt(rtwdev, rtwpci);
564 	spin_unlock_bh(&rtwpci->irq_lock);
565 
566 	return 0;
567 }
568 
569 static void rtw_pci_stop(struct rtw_dev *rtwdev)
570 {
571 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572 
573 	spin_lock_bh(&rtwpci->irq_lock);
574 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
575 	rtw_pci_dma_release(rtwdev, rtwpci);
576 	spin_unlock_bh(&rtwpci->irq_lock);
577 }
578 
579 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
580 {
581 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
582 	struct rtw_pci_tx_ring *tx_ring;
583 	bool tx_empty = true;
584 	u8 queue;
585 
586 	lockdep_assert_held(&rtwpci->irq_lock);
587 
588 	/* Deep PS state is not allowed to TX-DMA */
589 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
590 		/* BCN queue is rsvd page, does not have DMA interrupt
591 		 * H2C queue is managed by firmware
592 		 */
593 		if (queue == RTW_TX_QUEUE_BCN ||
594 		    queue == RTW_TX_QUEUE_H2C)
595 			continue;
596 
597 		tx_ring = &rtwpci->tx_rings[queue];
598 
599 		/* check if there is any skb DMAing */
600 		if (skb_queue_len(&tx_ring->queue)) {
601 			tx_empty = false;
602 			break;
603 		}
604 	}
605 
606 	if (!tx_empty) {
607 		rtw_dbg(rtwdev, RTW_DBG_PS,
608 			"TX path not empty, cannot enter deep power save state\n");
609 		return;
610 	}
611 
612 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
613 	rtw_power_mode_change(rtwdev, true);
614 }
615 
616 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
617 {
618 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
619 
620 	lockdep_assert_held(&rtwpci->irq_lock);
621 
622 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
623 		rtw_power_mode_change(rtwdev, false);
624 }
625 
626 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
627 {
628 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
629 
630 	spin_lock_bh(&rtwpci->irq_lock);
631 
632 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
633 		rtw_pci_deep_ps_enter(rtwdev);
634 
635 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
636 		rtw_pci_deep_ps_leave(rtwdev);
637 
638 	spin_unlock_bh(&rtwpci->irq_lock);
639 }
640 
641 static u8 ac_to_hwq[] = {
642 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
643 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
644 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
645 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
646 };
647 
648 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
649 {
650 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
651 	__le16 fc = hdr->frame_control;
652 	u8 q_mapping = skb_get_queue_mapping(skb);
653 	u8 queue;
654 
655 	if (unlikely(ieee80211_is_beacon(fc)))
656 		queue = RTW_TX_QUEUE_BCN;
657 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
658 		queue = RTW_TX_QUEUE_MGMT;
659 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
660 		queue = ac_to_hwq[IEEE80211_AC_BE];
661 	else
662 		queue = ac_to_hwq[q_mapping];
663 
664 	return queue;
665 }
666 
667 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
668 				      struct rtw_pci_tx_ring *ring)
669 {
670 	struct sk_buff *prev = skb_dequeue(&ring->queue);
671 	struct rtw_pci_tx_data *tx_data;
672 	dma_addr_t dma;
673 
674 	if (!prev)
675 		return;
676 
677 	tx_data = rtw_pci_get_tx_data(prev);
678 	dma = tx_data->dma;
679 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
680 	dev_kfree_skb_any(prev);
681 }
682 
683 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
684 			      struct rtw_pci_rx_ring *rx_ring,
685 			      u32 idx)
686 {
687 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
688 	struct rtw_chip_info *chip = rtwdev->chip;
689 	struct rtw_pci_rx_buffer_desc *buf_desc;
690 	u32 desc_sz = chip->rx_buf_desc_sz;
691 	u16 total_pkt_size;
692 
693 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
694 						     idx * desc_sz);
695 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
696 
697 	/* rx tag mismatch, throw a warning */
698 	if (total_pkt_size != rtwpci->rx_tag)
699 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
700 
701 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
702 }
703 
704 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
705 {
706 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
707 	struct rtw_pci_tx_ring *ring;
708 	u32 bd_idx;
709 
710 	ring = &rtwpci->tx_rings[queue];
711 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
712 
713 	spin_lock_bh(&rtwpci->irq_lock);
714 	rtw_pci_deep_ps_leave(rtwdev);
715 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
716 	spin_unlock_bh(&rtwpci->irq_lock);
717 }
718 
719 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
720 {
721 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
722 	u8 queue;
723 
724 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
725 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
726 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
727 }
728 
729 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
730 				 struct rtw_tx_pkt_info *pkt_info,
731 				 struct sk_buff *skb, u8 queue)
732 {
733 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
734 	struct rtw_chip_info *chip = rtwdev->chip;
735 	struct rtw_pci_tx_ring *ring;
736 	struct rtw_pci_tx_data *tx_data;
737 	dma_addr_t dma;
738 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
739 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
740 	u32 size;
741 	u32 psb_len;
742 	u8 *pkt_desc;
743 	struct rtw_pci_tx_buffer_desc *buf_desc;
744 
745 	ring = &rtwpci->tx_rings[queue];
746 
747 	size = skb->len;
748 
749 	if (queue == RTW_TX_QUEUE_BCN)
750 		rtw_pci_release_rsvd_page(rtwpci, ring);
751 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
752 		return -ENOSPC;
753 
754 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
755 	memset(pkt_desc, 0, tx_pkt_desc_sz);
756 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
757 	rtw_tx_fill_tx_desc(pkt_info, skb);
758 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
759 			     DMA_TO_DEVICE);
760 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
761 		return -EBUSY;
762 
763 	/* after this we got dma mapped, there is no way back */
764 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
765 	memset(buf_desc, 0, tx_buf_desc_sz);
766 	psb_len = (skb->len - 1) / 128 + 1;
767 	if (queue == RTW_TX_QUEUE_BCN)
768 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
769 
770 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
771 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
772 	buf_desc[0].dma = cpu_to_le32(dma);
773 	buf_desc[1].buf_size = cpu_to_le16(size);
774 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
775 
776 	tx_data = rtw_pci_get_tx_data(skb);
777 	tx_data->dma = dma;
778 	tx_data->sn = pkt_info->sn;
779 
780 	spin_lock_bh(&rtwpci->irq_lock);
781 
782 	skb_queue_tail(&ring->queue, skb);
783 
784 	if (queue == RTW_TX_QUEUE_BCN)
785 		goto out_unlock;
786 
787 	/* update write-index, and kick it off later */
788 	set_bit(queue, rtwpci->tx_queued);
789 	if (++ring->r.wp >= ring->r.len)
790 		ring->r.wp = 0;
791 
792 out_unlock:
793 	spin_unlock_bh(&rtwpci->irq_lock);
794 
795 	return 0;
796 }
797 
798 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
799 					u32 size)
800 {
801 	struct sk_buff *skb;
802 	struct rtw_tx_pkt_info pkt_info = {0};
803 	u8 reg_bcn_work;
804 	int ret;
805 
806 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
807 	if (!skb)
808 		return -ENOMEM;
809 
810 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
811 	if (ret) {
812 		rtw_err(rtwdev, "failed to write rsvd page data\n");
813 		return ret;
814 	}
815 
816 	/* reserved pages go through beacon queue */
817 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
818 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
819 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
820 
821 	return 0;
822 }
823 
824 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
825 {
826 	struct sk_buff *skb;
827 	struct rtw_tx_pkt_info pkt_info = {0};
828 	int ret;
829 
830 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
831 	if (!skb)
832 		return -ENOMEM;
833 
834 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
835 	if (ret) {
836 		rtw_err(rtwdev, "failed to write h2c data\n");
837 		return ret;
838 	}
839 
840 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
841 
842 	return 0;
843 }
844 
845 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
846 			    struct rtw_tx_pkt_info *pkt_info,
847 			    struct sk_buff *skb)
848 {
849 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
850 	struct rtw_pci_tx_ring *ring;
851 	u8 queue = rtw_hw_queue_mapping(skb);
852 	int ret;
853 
854 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
855 	if (ret)
856 		return ret;
857 
858 	ring = &rtwpci->tx_rings[queue];
859 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
860 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
861 		ring->queue_stopped = true;
862 	}
863 
864 	return 0;
865 }
866 
867 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
868 			   u8 hw_queue)
869 {
870 	struct ieee80211_hw *hw = rtwdev->hw;
871 	struct ieee80211_tx_info *info;
872 	struct rtw_pci_tx_ring *ring;
873 	struct rtw_pci_tx_data *tx_data;
874 	struct sk_buff *skb;
875 	u32 count;
876 	u32 bd_idx_addr;
877 	u32 bd_idx, cur_rp;
878 	u16 q_map;
879 
880 	ring = &rtwpci->tx_rings[hw_queue];
881 
882 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
883 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
884 	cur_rp = bd_idx >> 16;
885 	cur_rp &= TRX_BD_IDX_MASK;
886 	if (cur_rp >= ring->r.rp)
887 		count = cur_rp - ring->r.rp;
888 	else
889 		count = ring->r.len - (ring->r.rp - cur_rp);
890 
891 	while (count--) {
892 		skb = skb_dequeue(&ring->queue);
893 		if (!skb) {
894 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
895 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
896 			break;
897 		}
898 		tx_data = rtw_pci_get_tx_data(skb);
899 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
900 				 DMA_TO_DEVICE);
901 
902 		/* just free command packets from host to card */
903 		if (hw_queue == RTW_TX_QUEUE_H2C) {
904 			dev_kfree_skb_irq(skb);
905 			continue;
906 		}
907 
908 		if (ring->queue_stopped &&
909 		    avail_desc(ring->r.wp, ring->r.rp, ring->r.len) > 4) {
910 			q_map = skb_get_queue_mapping(skb);
911 			ieee80211_wake_queue(hw, q_map);
912 			ring->queue_stopped = false;
913 		}
914 
915 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
916 
917 		info = IEEE80211_SKB_CB(skb);
918 
919 		/* enqueue to wait for tx report */
920 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
921 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
922 			continue;
923 		}
924 
925 		/* always ACK for others, then they won't be marked as drop */
926 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
927 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
928 		else
929 			info->flags |= IEEE80211_TX_STAT_ACK;
930 
931 		ieee80211_tx_info_clear_status(info);
932 		ieee80211_tx_status_irqsafe(hw, skb);
933 	}
934 
935 	ring->r.rp = cur_rp;
936 }
937 
938 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
939 			   u8 hw_queue)
940 {
941 	struct rtw_chip_info *chip = rtwdev->chip;
942 	struct rtw_pci_rx_ring *ring;
943 	struct rtw_rx_pkt_stat pkt_stat;
944 	struct ieee80211_rx_status rx_status;
945 	struct sk_buff *skb, *new;
946 	u32 cur_wp, cur_rp, tmp;
947 	u32 count;
948 	u32 pkt_offset;
949 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
950 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
951 	u32 new_len;
952 	u8 *rx_desc;
953 	dma_addr_t dma;
954 
955 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
956 
957 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
958 	cur_wp = tmp >> 16;
959 	cur_wp &= TRX_BD_IDX_MASK;
960 	if (cur_wp >= ring->r.wp)
961 		count = cur_wp - ring->r.wp;
962 	else
963 		count = ring->r.len - (ring->r.wp - cur_wp);
964 
965 	cur_rp = ring->r.rp;
966 	while (count--) {
967 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
968 		skb = ring->buf[cur_rp];
969 		dma = *((dma_addr_t *)skb->cb);
970 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
971 					DMA_FROM_DEVICE);
972 		rx_desc = skb->data;
973 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
974 
975 		/* offset from rx_desc to payload */
976 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
977 			     pkt_stat.shift;
978 
979 		/* allocate a new skb for this frame,
980 		 * discard the frame if none available
981 		 */
982 		new_len = pkt_stat.pkt_len + pkt_offset;
983 		new = dev_alloc_skb(new_len);
984 		if (WARN_ONCE(!new, "rx routine starvation\n"))
985 			goto next_rp;
986 
987 		/* put the DMA data including rx_desc from phy to new skb */
988 		skb_put_data(new, skb->data, new_len);
989 
990 		if (pkt_stat.is_c2h) {
991 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
992 		} else {
993 			/* remove rx_desc */
994 			skb_pull(new, pkt_offset);
995 
996 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
997 			memcpy(new->cb, &rx_status, sizeof(rx_status));
998 			ieee80211_rx_irqsafe(rtwdev->hw, new);
999 		}
1000 
1001 next_rp:
1002 		/* new skb delivered to mac80211, re-enable original skb DMA */
1003 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1004 					    buf_desc_sz);
1005 
1006 		/* host read next element in ring */
1007 		if (++cur_rp >= ring->r.len)
1008 			cur_rp = 0;
1009 	}
1010 
1011 	ring->r.rp = cur_rp;
1012 	ring->r.wp = cur_wp;
1013 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1014 }
1015 
1016 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1017 				   struct rtw_pci *rtwpci, u32 *irq_status)
1018 {
1019 	unsigned long flags;
1020 
1021 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1022 
1023 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1024 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1025 	if (rtw_chip_wcpu_11ac(rtwdev))
1026 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1027 	else
1028 		irq_status[3] = 0;
1029 	irq_status[0] &= rtwpci->irq_mask[0];
1030 	irq_status[1] &= rtwpci->irq_mask[1];
1031 	irq_status[3] &= rtwpci->irq_mask[3];
1032 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1033 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1034 	if (rtw_chip_wcpu_11ac(rtwdev))
1035 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1036 
1037 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1038 }
1039 
1040 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1041 {
1042 	struct rtw_dev *rtwdev = dev;
1043 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1044 
1045 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1046 	 * thread function
1047 	 *
1048 	 * disable HIMR here to also avoid new HISR flag being raised before
1049 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1050 	 * are cleared, the edge-triggered interrupt will not be generated when
1051 	 * a new HISR flag is set.
1052 	 */
1053 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1054 
1055 	return IRQ_WAKE_THREAD;
1056 }
1057 
1058 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1059 {
1060 	struct rtw_dev *rtwdev = dev;
1061 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1062 	u32 irq_status[4];
1063 
1064 	spin_lock_bh(&rtwpci->irq_lock);
1065 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1066 
1067 	if (irq_status[0] & IMR_MGNTDOK)
1068 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1069 	if (irq_status[0] & IMR_HIGHDOK)
1070 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1071 	if (irq_status[0] & IMR_BEDOK)
1072 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1073 	if (irq_status[0] & IMR_BKDOK)
1074 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1075 	if (irq_status[0] & IMR_VODOK)
1076 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1077 	if (irq_status[0] & IMR_VIDOK)
1078 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1079 	if (irq_status[3] & IMR_H2CDOK)
1080 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1081 	if (irq_status[0] & IMR_ROK)
1082 		rtw_pci_rx_isr(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU);
1083 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1084 		rtw_fw_c2h_cmd_isr(rtwdev);
1085 
1086 	/* all of the jobs for this interrupt have been done */
1087 	rtw_pci_enable_interrupt(rtwdev, rtwpci);
1088 	spin_unlock_bh(&rtwpci->irq_lock);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1094 			      struct pci_dev *pdev)
1095 {
1096 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1097 	unsigned long len;
1098 	u8 bar_id = 2;
1099 	int ret;
1100 
1101 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1102 	if (ret) {
1103 		rtw_err(rtwdev, "failed to request pci regions\n");
1104 		return ret;
1105 	}
1106 
1107 	len = pci_resource_len(pdev, bar_id);
1108 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1109 	if (!rtwpci->mmap) {
1110 		pci_release_regions(pdev);
1111 		rtw_err(rtwdev, "failed to map pci memory\n");
1112 		return -ENOMEM;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1119 				 struct pci_dev *pdev)
1120 {
1121 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1122 
1123 	if (rtwpci->mmap) {
1124 		pci_iounmap(pdev, rtwpci->mmap);
1125 		pci_release_regions(pdev);
1126 	}
1127 }
1128 
1129 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1130 {
1131 	u16 write_addr;
1132 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1133 	u8 flag;
1134 	u8 cnt;
1135 
1136 	write_addr = addr & BITS_DBI_ADDR_MASK;
1137 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1138 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1139 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1140 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1141 
1142 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1143 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1144 		if (flag == 0)
1145 			return;
1146 
1147 		udelay(10);
1148 	}
1149 
1150 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1151 }
1152 
1153 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1154 {
1155 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1156 	u8 flag;
1157 	u8 cnt;
1158 
1159 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1160 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1161 
1162 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1163 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1164 		if (flag == 0) {
1165 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1166 			*value = rtw_read8(rtwdev, read_addr);
1167 			return 0;
1168 		}
1169 
1170 		udelay(10);
1171 	}
1172 
1173 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1174 	return -EIO;
1175 }
1176 
1177 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1178 {
1179 	u8 page;
1180 	u8 wflag;
1181 	u8 cnt;
1182 
1183 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1184 
1185 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1186 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1187 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1188 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1189 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1190 
1191 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1192 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1193 					BIT_MDIO_WFLAG_V1);
1194 		if (wflag == 0)
1195 			return;
1196 
1197 		udelay(10);
1198 	}
1199 
1200 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1201 }
1202 
1203 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1204 {
1205 	u8 value;
1206 	int ret;
1207 
1208 	if (rtw_pci_disable_aspm)
1209 		return;
1210 
1211 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1212 	if (ret) {
1213 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1214 		return;
1215 	}
1216 
1217 	if (enable)
1218 		value |= BIT_CLKREQ_SW_EN;
1219 	else
1220 		value &= ~BIT_CLKREQ_SW_EN;
1221 
1222 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1223 }
1224 
1225 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1226 {
1227 	u8 value;
1228 	int ret;
1229 
1230 	if (rtw_pci_disable_aspm)
1231 		return;
1232 
1233 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1234 	if (ret) {
1235 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1236 		return;
1237 	}
1238 
1239 	if (enable)
1240 		value |= BIT_L1_SW_EN;
1241 	else
1242 		value &= ~BIT_L1_SW_EN;
1243 
1244 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1245 }
1246 
1247 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1248 {
1249 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1250 
1251 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1252 	 * only be enabled when host supports it.
1253 	 *
1254 	 * And ASPM mechanism should be enabled when driver/firmware enters
1255 	 * power save mode, without having heavy traffic. Because we've
1256 	 * experienced some inter-operability issues that the link tends
1257 	 * to enter L1 state on the fly even when driver is having high
1258 	 * throughput. This is probably because the ASPM behavior slightly
1259 	 * varies from different SOC.
1260 	 */
1261 	if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
1262 		rtw_pci_aspm_set(rtwdev, enter);
1263 }
1264 
1265 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1266 {
1267 	struct rtw_chip_info *chip = rtwdev->chip;
1268 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1269 	struct pci_dev *pdev = rtwpci->pdev;
1270 	u16 link_ctrl;
1271 	int ret;
1272 
1273 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1274 	 * to add clock delay to cover the REFCLK timing gap.
1275 	 */
1276 	if (chip->id == RTW_CHIP_TYPE_8822C)
1277 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1278 
1279 	/* Though there is standard PCIE configuration space to set the
1280 	 * link control register, but by Realtek's design, driver should
1281 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1282 	 *
1283 	 * These functions are implemented by two HW modules associated,
1284 	 * one is responsible to access PCIE configuration space to
1285 	 * follow the host settings, and another is in charge of doing
1286 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1287 	 * the host does not support it, and due to some reasons or wrong
1288 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1289 	 * loss if HW misbehaves on the link.
1290 	 *
1291 	 * Hence it's designed that driver should first check the PCIE
1292 	 * configuration space is sync'ed and enabled, then driver can turn
1293 	 * on the other module that is actually working on the mechanism.
1294 	 */
1295 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1296 	if (ret) {
1297 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1298 		return;
1299 	}
1300 
1301 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1302 		rtw_pci_clkreq_set(rtwdev, true);
1303 
1304 	rtwpci->link_ctrl = link_ctrl;
1305 }
1306 
1307 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1308 {
1309 	struct rtw_chip_info *chip = rtwdev->chip;
1310 
1311 	switch (chip->id) {
1312 	case RTW_CHIP_TYPE_8822C:
1313 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1314 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1315 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1316 		break;
1317 	default:
1318 		break;
1319 	}
1320 }
1321 
1322 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1323 {
1324 	struct rtw_chip_info *chip = rtwdev->chip;
1325 	const struct rtw_intf_phy_para *para;
1326 	u16 cut;
1327 	u16 value;
1328 	u16 offset;
1329 	int i;
1330 
1331 	cut = BIT(0) << rtwdev->hal.cut_version;
1332 
1333 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1334 		para = &chip->intf_table->gen1_para[i];
1335 		if (!(para->cut_mask & cut))
1336 			continue;
1337 		if (para->offset == 0xffff)
1338 			break;
1339 		offset = para->offset;
1340 		value = para->value;
1341 		if (para->ip_sel == RTW_IP_SEL_PHY)
1342 			rtw_mdio_write(rtwdev, offset, value, true);
1343 		else
1344 			rtw_dbi_write8(rtwdev, offset, value);
1345 	}
1346 
1347 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1348 		para = &chip->intf_table->gen2_para[i];
1349 		if (!(para->cut_mask & cut))
1350 			continue;
1351 		if (para->offset == 0xffff)
1352 			break;
1353 		offset = para->offset;
1354 		value = para->value;
1355 		if (para->ip_sel == RTW_IP_SEL_PHY)
1356 			rtw_mdio_write(rtwdev, offset, value, false);
1357 		else
1358 			rtw_dbi_write8(rtwdev, offset, value);
1359 	}
1360 
1361 	rtw_pci_link_cfg(rtwdev);
1362 }
1363 
1364 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1365 {
1366 	return 0;
1367 }
1368 
1369 static int __maybe_unused rtw_pci_resume(struct device *dev)
1370 {
1371 	return 0;
1372 }
1373 
1374 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1375 EXPORT_SYMBOL(rtw_pm_ops);
1376 
1377 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1378 {
1379 	int ret;
1380 
1381 	ret = pci_enable_device(pdev);
1382 	if (ret) {
1383 		rtw_err(rtwdev, "failed to enable pci device\n");
1384 		return ret;
1385 	}
1386 
1387 	pci_set_master(pdev);
1388 	pci_set_drvdata(pdev, rtwdev->hw);
1389 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1390 
1391 	return 0;
1392 }
1393 
1394 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1395 {
1396 	pci_clear_master(pdev);
1397 	pci_disable_device(pdev);
1398 }
1399 
1400 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1401 {
1402 	struct rtw_pci *rtwpci;
1403 	int ret;
1404 
1405 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1406 	rtwpci->pdev = pdev;
1407 
1408 	/* after this driver can access to hw registers */
1409 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1410 	if (ret) {
1411 		rtw_err(rtwdev, "failed to request pci io region\n");
1412 		goto err_out;
1413 	}
1414 
1415 	ret = rtw_pci_init(rtwdev);
1416 	if (ret) {
1417 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1418 		goto err_io_unmap;
1419 	}
1420 
1421 	return 0;
1422 
1423 err_io_unmap:
1424 	rtw_pci_io_unmapping(rtwdev, pdev);
1425 
1426 err_out:
1427 	return ret;
1428 }
1429 
1430 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1431 {
1432 	rtw_pci_deinit(rtwdev);
1433 	rtw_pci_io_unmapping(rtwdev, pdev);
1434 }
1435 
1436 static struct rtw_hci_ops rtw_pci_ops = {
1437 	.tx_write = rtw_pci_tx_write,
1438 	.tx_kick_off = rtw_pci_tx_kick_off,
1439 	.setup = rtw_pci_setup,
1440 	.start = rtw_pci_start,
1441 	.stop = rtw_pci_stop,
1442 	.deep_ps = rtw_pci_deep_ps,
1443 	.link_ps = rtw_pci_link_ps,
1444 	.interface_cfg = rtw_pci_interface_cfg,
1445 
1446 	.read8 = rtw_pci_read8,
1447 	.read16 = rtw_pci_read16,
1448 	.read32 = rtw_pci_read32,
1449 	.write8 = rtw_pci_write8,
1450 	.write16 = rtw_pci_write16,
1451 	.write32 = rtw_pci_write32,
1452 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1453 	.write_data_h2c = rtw_pci_write_data_h2c,
1454 };
1455 
1456 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1457 {
1458 	unsigned int flags = PCI_IRQ_LEGACY;
1459 	int ret;
1460 
1461 	if (!rtw_disable_msi)
1462 		flags |= PCI_IRQ_MSI;
1463 
1464 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1465 	if (ret < 0) {
1466 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1467 		return ret;
1468 	}
1469 
1470 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1471 					rtw_pci_interrupt_handler,
1472 					rtw_pci_interrupt_threadfn,
1473 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1474 	if (ret) {
1475 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1476 		pci_free_irq_vectors(pdev);
1477 	}
1478 
1479 	return ret;
1480 }
1481 
1482 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1483 {
1484 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1485 	pci_free_irq_vectors(pdev);
1486 }
1487 
1488 int rtw_pci_probe(struct pci_dev *pdev,
1489 		  const struct pci_device_id *id)
1490 {
1491 	struct ieee80211_hw *hw;
1492 	struct rtw_dev *rtwdev;
1493 	int drv_data_size;
1494 	int ret;
1495 
1496 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1497 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1498 	if (!hw) {
1499 		dev_err(&pdev->dev, "failed to allocate hw\n");
1500 		return -ENOMEM;
1501 	}
1502 
1503 	rtwdev = hw->priv;
1504 	rtwdev->hw = hw;
1505 	rtwdev->dev = &pdev->dev;
1506 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1507 	rtwdev->hci.ops = &rtw_pci_ops;
1508 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1509 
1510 	ret = rtw_core_init(rtwdev);
1511 	if (ret)
1512 		goto err_release_hw;
1513 
1514 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1515 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1516 		pdev->vendor, pdev->device, pdev->revision);
1517 
1518 	ret = rtw_pci_claim(rtwdev, pdev);
1519 	if (ret) {
1520 		rtw_err(rtwdev, "failed to claim pci device\n");
1521 		goto err_deinit_core;
1522 	}
1523 
1524 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1525 	if (ret) {
1526 		rtw_err(rtwdev, "failed to setup pci resources\n");
1527 		goto err_pci_declaim;
1528 	}
1529 
1530 	ret = rtw_chip_info_setup(rtwdev);
1531 	if (ret) {
1532 		rtw_err(rtwdev, "failed to setup chip information\n");
1533 		goto err_destroy_pci;
1534 	}
1535 
1536 	rtw_pci_phy_cfg(rtwdev);
1537 
1538 	ret = rtw_register_hw(rtwdev, hw);
1539 	if (ret) {
1540 		rtw_err(rtwdev, "failed to register hw\n");
1541 		goto err_destroy_pci;
1542 	}
1543 
1544 	ret = rtw_pci_request_irq(rtwdev, pdev);
1545 	if (ret) {
1546 		ieee80211_unregister_hw(hw);
1547 		goto err_destroy_pci;
1548 	}
1549 
1550 	return 0;
1551 
1552 err_destroy_pci:
1553 	rtw_pci_destroy(rtwdev, pdev);
1554 
1555 err_pci_declaim:
1556 	rtw_pci_declaim(rtwdev, pdev);
1557 
1558 err_deinit_core:
1559 	rtw_core_deinit(rtwdev);
1560 
1561 err_release_hw:
1562 	ieee80211_free_hw(hw);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(rtw_pci_probe);
1567 
1568 void rtw_pci_remove(struct pci_dev *pdev)
1569 {
1570 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1571 	struct rtw_dev *rtwdev;
1572 	struct rtw_pci *rtwpci;
1573 
1574 	if (!hw)
1575 		return;
1576 
1577 	rtwdev = hw->priv;
1578 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1579 
1580 	rtw_unregister_hw(rtwdev, hw);
1581 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1582 	rtw_pci_destroy(rtwdev, pdev);
1583 	rtw_pci_declaim(rtwdev, pdev);
1584 	rtw_pci_free_irq(rtwdev, pdev);
1585 	rtw_core_deinit(rtwdev);
1586 	ieee80211_free_hw(hw);
1587 }
1588 EXPORT_SYMBOL(rtw_pci_remove);
1589 
1590 void rtw_pci_shutdown(struct pci_dev *pdev)
1591 {
1592 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1593 	struct rtw_dev *rtwdev;
1594 	struct rtw_chip_info *chip;
1595 
1596 	if (!hw)
1597 		return;
1598 
1599 	rtwdev = hw->priv;
1600 	chip = rtwdev->chip;
1601 
1602 	if (chip->ops->shutdown)
1603 		chip->ops->shutdown(rtwdev);
1604 
1605 	pci_set_power_state(pdev, PCI_D3hot);
1606 }
1607 EXPORT_SYMBOL(rtw_pci_shutdown);
1608 
1609 MODULE_AUTHOR("Realtek Corporation");
1610 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1611 MODULE_LICENSE("Dual BSD/GPL");
1612