1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include "main.h" 8 #include "pci.h" 9 #include "reg.h" 10 #include "tx.h" 11 #include "rx.h" 12 #include "fw.h" 13 #include "ps.h" 14 #include "debug.h" 15 16 static bool rtw_disable_msi; 17 static bool rtw_pci_disable_aspm; 18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644); 19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644); 20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support"); 21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support"); 22 23 static u32 rtw_pci_tx_queue_idx_addr[] = { 24 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ, 25 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ, 26 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ, 27 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ, 28 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ, 29 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q, 30 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ, 31 }; 32 33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue) 34 { 35 switch (queue) { 36 case RTW_TX_QUEUE_BCN: 37 return TX_DESC_QSEL_BEACON; 38 case RTW_TX_QUEUE_H2C: 39 return TX_DESC_QSEL_H2C; 40 case RTW_TX_QUEUE_MGMT: 41 return TX_DESC_QSEL_MGMT; 42 case RTW_TX_QUEUE_HI0: 43 return TX_DESC_QSEL_HIGH; 44 default: 45 return skb->priority; 46 } 47 }; 48 49 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr) 50 { 51 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 52 53 return readb(rtwpci->mmap + addr); 54 } 55 56 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr) 57 { 58 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 59 60 return readw(rtwpci->mmap + addr); 61 } 62 63 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr) 64 { 65 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 66 67 return readl(rtwpci->mmap + addr); 68 } 69 70 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) 71 { 72 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 73 74 writeb(val, rtwpci->mmap + addr); 75 } 76 77 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) 78 { 79 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 80 81 writew(val, rtwpci->mmap + addr); 82 } 83 84 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) 85 { 86 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 87 88 writel(val, rtwpci->mmap + addr); 89 } 90 91 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx) 92 { 93 int offset = tx_ring->r.desc_size * idx; 94 95 return tx_ring->r.head + offset; 96 } 97 98 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev, 99 struct rtw_pci_tx_ring *tx_ring) 100 { 101 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 102 struct rtw_pci_tx_data *tx_data; 103 struct sk_buff *skb, *tmp; 104 dma_addr_t dma; 105 106 /* free every skb remained in tx list */ 107 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) { 108 __skb_unlink(skb, &tx_ring->queue); 109 tx_data = rtw_pci_get_tx_data(skb); 110 dma = tx_data->dma; 111 112 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE); 113 dev_kfree_skb_any(skb); 114 } 115 } 116 117 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev, 118 struct rtw_pci_tx_ring *tx_ring) 119 { 120 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 121 u8 *head = tx_ring->r.head; 122 u32 len = tx_ring->r.len; 123 int ring_sz = len * tx_ring->r.desc_size; 124 125 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 126 127 /* free the ring itself */ 128 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma); 129 tx_ring->r.head = NULL; 130 } 131 132 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev, 133 struct rtw_pci_rx_ring *rx_ring) 134 { 135 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 136 struct sk_buff *skb; 137 int buf_sz = RTK_PCI_RX_BUF_SIZE; 138 dma_addr_t dma; 139 int i; 140 141 for (i = 0; i < rx_ring->r.len; i++) { 142 skb = rx_ring->buf[i]; 143 if (!skb) 144 continue; 145 146 dma = *((dma_addr_t *)skb->cb); 147 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 148 dev_kfree_skb(skb); 149 rx_ring->buf[i] = NULL; 150 } 151 } 152 153 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev, 154 struct rtw_pci_rx_ring *rx_ring) 155 { 156 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 157 u8 *head = rx_ring->r.head; 158 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len; 159 160 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring); 161 162 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma); 163 } 164 165 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev) 166 { 167 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 168 struct rtw_pci_tx_ring *tx_ring; 169 struct rtw_pci_rx_ring *rx_ring; 170 int i; 171 172 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 173 tx_ring = &rtwpci->tx_rings[i]; 174 rtw_pci_free_tx_ring(rtwdev, tx_ring); 175 } 176 177 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) { 178 rx_ring = &rtwpci->rx_rings[i]; 179 rtw_pci_free_rx_ring(rtwdev, rx_ring); 180 } 181 } 182 183 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev, 184 struct rtw_pci_tx_ring *tx_ring, 185 u8 desc_size, u32 len) 186 { 187 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 188 int ring_sz = desc_size * len; 189 dma_addr_t dma; 190 u8 *head; 191 192 if (len > TRX_BD_IDX_MASK) { 193 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len); 194 return -EINVAL; 195 } 196 197 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 198 if (!head) { 199 rtw_err(rtwdev, "failed to allocate tx ring\n"); 200 return -ENOMEM; 201 } 202 203 skb_queue_head_init(&tx_ring->queue); 204 tx_ring->r.head = head; 205 tx_ring->r.dma = dma; 206 tx_ring->r.len = len; 207 tx_ring->r.desc_size = desc_size; 208 tx_ring->r.wp = 0; 209 tx_ring->r.rp = 0; 210 211 return 0; 212 } 213 214 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb, 215 struct rtw_pci_rx_ring *rx_ring, 216 u32 idx, u32 desc_sz) 217 { 218 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 219 struct rtw_pci_rx_buffer_desc *buf_desc; 220 int buf_sz = RTK_PCI_RX_BUF_SIZE; 221 dma_addr_t dma; 222 223 if (!skb) 224 return -EINVAL; 225 226 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); 227 if (dma_mapping_error(&pdev->dev, dma)) 228 return -EBUSY; 229 230 *((dma_addr_t *)skb->cb) = dma; 231 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 232 idx * desc_sz); 233 memset(buf_desc, 0, sizeof(*buf_desc)); 234 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 235 buf_desc->dma = cpu_to_le32(dma); 236 237 return 0; 238 } 239 240 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma, 241 struct rtw_pci_rx_ring *rx_ring, 242 u32 idx, u32 desc_sz) 243 { 244 struct device *dev = rtwdev->dev; 245 struct rtw_pci_rx_buffer_desc *buf_desc; 246 int buf_sz = RTK_PCI_RX_BUF_SIZE; 247 248 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE); 249 250 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 251 idx * desc_sz); 252 memset(buf_desc, 0, sizeof(*buf_desc)); 253 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 254 buf_desc->dma = cpu_to_le32(dma); 255 } 256 257 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev, 258 struct rtw_pci_rx_ring *rx_ring, 259 u8 desc_size, u32 len) 260 { 261 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 262 struct sk_buff *skb = NULL; 263 dma_addr_t dma; 264 u8 *head; 265 int ring_sz = desc_size * len; 266 int buf_sz = RTK_PCI_RX_BUF_SIZE; 267 int i, allocated; 268 int ret = 0; 269 270 if (len > TRX_BD_IDX_MASK) { 271 rtw_err(rtwdev, "len %d exceeds maximum RX entries\n", len); 272 return -EINVAL; 273 } 274 275 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 276 if (!head) { 277 rtw_err(rtwdev, "failed to allocate rx ring\n"); 278 return -ENOMEM; 279 } 280 rx_ring->r.head = head; 281 282 for (i = 0; i < len; i++) { 283 skb = dev_alloc_skb(buf_sz); 284 if (!skb) { 285 allocated = i; 286 ret = -ENOMEM; 287 goto err_out; 288 } 289 290 memset(skb->data, 0, buf_sz); 291 rx_ring->buf[i] = skb; 292 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size); 293 if (ret) { 294 allocated = i; 295 dev_kfree_skb_any(skb); 296 goto err_out; 297 } 298 } 299 300 rx_ring->r.dma = dma; 301 rx_ring->r.len = len; 302 rx_ring->r.desc_size = desc_size; 303 rx_ring->r.wp = 0; 304 rx_ring->r.rp = 0; 305 306 return 0; 307 308 err_out: 309 for (i = 0; i < allocated; i++) { 310 skb = rx_ring->buf[i]; 311 if (!skb) 312 continue; 313 dma = *((dma_addr_t *)skb->cb); 314 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 315 dev_kfree_skb_any(skb); 316 rx_ring->buf[i] = NULL; 317 } 318 dma_free_coherent(&pdev->dev, ring_sz, head, dma); 319 320 rtw_err(rtwdev, "failed to init rx buffer\n"); 321 322 return ret; 323 } 324 325 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev) 326 { 327 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 328 struct rtw_pci_tx_ring *tx_ring; 329 struct rtw_pci_rx_ring *rx_ring; 330 struct rtw_chip_info *chip = rtwdev->chip; 331 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0; 332 int tx_desc_size, rx_desc_size; 333 u32 len; 334 int ret; 335 336 tx_desc_size = chip->tx_buf_desc_sz; 337 338 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 339 tx_ring = &rtwpci->tx_rings[i]; 340 len = max_num_of_tx_queue(i); 341 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len); 342 if (ret) 343 goto out; 344 } 345 346 rx_desc_size = chip->rx_buf_desc_sz; 347 348 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) { 349 rx_ring = &rtwpci->rx_rings[j]; 350 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size, 351 RTK_MAX_RX_DESC_NUM); 352 if (ret) 353 goto out; 354 } 355 356 return 0; 357 358 out: 359 tx_alloced = i; 360 for (i = 0; i < tx_alloced; i++) { 361 tx_ring = &rtwpci->tx_rings[i]; 362 rtw_pci_free_tx_ring(rtwdev, tx_ring); 363 } 364 365 rx_alloced = j; 366 for (j = 0; j < rx_alloced; j++) { 367 rx_ring = &rtwpci->rx_rings[j]; 368 rtw_pci_free_rx_ring(rtwdev, rx_ring); 369 } 370 371 return ret; 372 } 373 374 static void rtw_pci_deinit(struct rtw_dev *rtwdev) 375 { 376 rtw_pci_free_trx_ring(rtwdev); 377 } 378 379 static int rtw_pci_init(struct rtw_dev *rtwdev) 380 { 381 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 382 int ret = 0; 383 384 rtwpci->irq_mask[0] = IMR_HIGHDOK | 385 IMR_MGNTDOK | 386 IMR_BKDOK | 387 IMR_BEDOK | 388 IMR_VIDOK | 389 IMR_VODOK | 390 IMR_ROK | 391 IMR_BCNDMAINT_E | 392 IMR_C2HCMD | 393 0; 394 rtwpci->irq_mask[1] = IMR_TXFOVW | 395 0; 396 rtwpci->irq_mask[3] = IMR_H2CDOK | 397 0; 398 spin_lock_init(&rtwpci->irq_lock); 399 spin_lock_init(&rtwpci->hwirq_lock); 400 ret = rtw_pci_init_trx_ring(rtwdev); 401 402 return ret; 403 } 404 405 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev) 406 { 407 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 408 u32 len; 409 u8 tmp; 410 dma_addr_t dma; 411 412 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3); 413 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7); 414 415 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma; 416 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma); 417 418 if (!rtw_chip_wcpu_11n(rtwdev)) { 419 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len; 420 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma; 421 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0; 422 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0; 423 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK); 424 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma); 425 } 426 427 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len; 428 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma; 429 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0; 430 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0; 431 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK); 432 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma); 433 434 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len; 435 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma; 436 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0; 437 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0; 438 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK); 439 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma); 440 441 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len; 442 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma; 443 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0; 444 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0; 445 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK); 446 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma); 447 448 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len; 449 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma; 450 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0; 451 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0; 452 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK); 453 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma); 454 455 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len; 456 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma; 457 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0; 458 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0; 459 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK); 460 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma); 461 462 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len; 463 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma; 464 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0; 465 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0; 466 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK); 467 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma); 468 469 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len; 470 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma; 471 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0; 472 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0; 473 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK); 474 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma); 475 476 /* reset read/write point */ 477 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff); 478 479 /* reset H2C Queue index in a single write */ 480 if (rtw_chip_wcpu_11ac(rtwdev)) 481 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR, 482 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX); 483 } 484 485 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev) 486 { 487 rtw_pci_reset_buf_desc(rtwdev); 488 } 489 490 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev, 491 struct rtw_pci *rtwpci) 492 { 493 unsigned long flags; 494 495 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 496 497 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0]); 498 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]); 499 if (rtw_chip_wcpu_11ac(rtwdev)) 500 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]); 501 502 rtwpci->irq_enabled = true; 503 504 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 505 } 506 507 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev, 508 struct rtw_pci *rtwpci) 509 { 510 unsigned long flags; 511 512 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 513 514 if (!rtwpci->irq_enabled) 515 goto out; 516 517 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0); 518 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0); 519 if (rtw_chip_wcpu_11ac(rtwdev)) 520 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0); 521 522 rtwpci->irq_enabled = false; 523 524 out: 525 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 526 } 527 528 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 529 { 530 /* reset dma and rx tag */ 531 rtw_write32_set(rtwdev, RTK_PCI_CTRL, 532 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN); 533 rtwpci->rx_tag = 0; 534 } 535 536 static int rtw_pci_setup(struct rtw_dev *rtwdev) 537 { 538 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 539 540 rtw_pci_reset_trx_ring(rtwdev); 541 rtw_pci_dma_reset(rtwdev, rtwpci); 542 543 return 0; 544 } 545 546 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 547 { 548 struct rtw_pci_tx_ring *tx_ring; 549 u8 queue; 550 551 rtw_pci_reset_trx_ring(rtwdev); 552 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 553 tx_ring = &rtwpci->tx_rings[queue]; 554 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 555 } 556 } 557 558 static int rtw_pci_start(struct rtw_dev *rtwdev) 559 { 560 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 561 562 spin_lock_bh(&rtwpci->irq_lock); 563 rtw_pci_enable_interrupt(rtwdev, rtwpci); 564 spin_unlock_bh(&rtwpci->irq_lock); 565 566 return 0; 567 } 568 569 static void rtw_pci_stop(struct rtw_dev *rtwdev) 570 { 571 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 572 573 spin_lock_bh(&rtwpci->irq_lock); 574 rtw_pci_disable_interrupt(rtwdev, rtwpci); 575 rtw_pci_dma_release(rtwdev, rtwpci); 576 spin_unlock_bh(&rtwpci->irq_lock); 577 } 578 579 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev) 580 { 581 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 582 struct rtw_pci_tx_ring *tx_ring; 583 bool tx_empty = true; 584 u8 queue; 585 586 lockdep_assert_held(&rtwpci->irq_lock); 587 588 /* Deep PS state is not allowed to TX-DMA */ 589 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 590 /* BCN queue is rsvd page, does not have DMA interrupt 591 * H2C queue is managed by firmware 592 */ 593 if (queue == RTW_TX_QUEUE_BCN || 594 queue == RTW_TX_QUEUE_H2C) 595 continue; 596 597 tx_ring = &rtwpci->tx_rings[queue]; 598 599 /* check if there is any skb DMAing */ 600 if (skb_queue_len(&tx_ring->queue)) { 601 tx_empty = false; 602 break; 603 } 604 } 605 606 if (!tx_empty) { 607 rtw_dbg(rtwdev, RTW_DBG_PS, 608 "TX path not empty, cannot enter deep power save state\n"); 609 return; 610 } 611 612 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); 613 rtw_power_mode_change(rtwdev, true); 614 } 615 616 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev) 617 { 618 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 619 620 lockdep_assert_held(&rtwpci->irq_lock); 621 622 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 623 rtw_power_mode_change(rtwdev, false); 624 } 625 626 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter) 627 { 628 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 629 630 spin_lock_bh(&rtwpci->irq_lock); 631 632 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 633 rtw_pci_deep_ps_enter(rtwdev); 634 635 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 636 rtw_pci_deep_ps_leave(rtwdev); 637 638 spin_unlock_bh(&rtwpci->irq_lock); 639 } 640 641 static u8 ac_to_hwq[] = { 642 [IEEE80211_AC_VO] = RTW_TX_QUEUE_VO, 643 [IEEE80211_AC_VI] = RTW_TX_QUEUE_VI, 644 [IEEE80211_AC_BE] = RTW_TX_QUEUE_BE, 645 [IEEE80211_AC_BK] = RTW_TX_QUEUE_BK, 646 }; 647 648 static u8 rtw_hw_queue_mapping(struct sk_buff *skb) 649 { 650 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 651 __le16 fc = hdr->frame_control; 652 u8 q_mapping = skb_get_queue_mapping(skb); 653 u8 queue; 654 655 if (unlikely(ieee80211_is_beacon(fc))) 656 queue = RTW_TX_QUEUE_BCN; 657 else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc))) 658 queue = RTW_TX_QUEUE_MGMT; 659 else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq))) 660 queue = ac_to_hwq[IEEE80211_AC_BE]; 661 else 662 queue = ac_to_hwq[q_mapping]; 663 664 return queue; 665 } 666 667 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci, 668 struct rtw_pci_tx_ring *ring) 669 { 670 struct sk_buff *prev = skb_dequeue(&ring->queue); 671 struct rtw_pci_tx_data *tx_data; 672 dma_addr_t dma; 673 674 if (!prev) 675 return; 676 677 tx_data = rtw_pci_get_tx_data(prev); 678 dma = tx_data->dma; 679 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE); 680 dev_kfree_skb_any(prev); 681 } 682 683 static void rtw_pci_dma_check(struct rtw_dev *rtwdev, 684 struct rtw_pci_rx_ring *rx_ring, 685 u32 idx) 686 { 687 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 688 struct rtw_chip_info *chip = rtwdev->chip; 689 struct rtw_pci_rx_buffer_desc *buf_desc; 690 u32 desc_sz = chip->rx_buf_desc_sz; 691 u16 total_pkt_size; 692 693 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 694 idx * desc_sz); 695 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size); 696 697 /* rx tag mismatch, throw a warning */ 698 if (total_pkt_size != rtwpci->rx_tag) 699 rtw_warn(rtwdev, "pci bus timeout, check dma status\n"); 700 701 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX; 702 } 703 704 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue) 705 { 706 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 707 struct rtw_pci_tx_ring *ring; 708 u32 bd_idx; 709 710 ring = &rtwpci->tx_rings[queue]; 711 bd_idx = rtw_pci_tx_queue_idx_addr[queue]; 712 713 spin_lock_bh(&rtwpci->irq_lock); 714 rtw_pci_deep_ps_leave(rtwdev); 715 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK); 716 spin_unlock_bh(&rtwpci->irq_lock); 717 } 718 719 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev) 720 { 721 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 722 u8 queue; 723 724 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) 725 if (test_and_clear_bit(queue, rtwpci->tx_queued)) 726 rtw_pci_tx_kick_off_queue(rtwdev, queue); 727 } 728 729 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev, 730 struct rtw_tx_pkt_info *pkt_info, 731 struct sk_buff *skb, u8 queue) 732 { 733 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 734 struct rtw_chip_info *chip = rtwdev->chip; 735 struct rtw_pci_tx_ring *ring; 736 struct rtw_pci_tx_data *tx_data; 737 dma_addr_t dma; 738 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz; 739 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz; 740 u32 size; 741 u32 psb_len; 742 u8 *pkt_desc; 743 struct rtw_pci_tx_buffer_desc *buf_desc; 744 745 ring = &rtwpci->tx_rings[queue]; 746 747 size = skb->len; 748 749 if (queue == RTW_TX_QUEUE_BCN) 750 rtw_pci_release_rsvd_page(rtwpci, ring); 751 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len)) 752 return -ENOSPC; 753 754 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); 755 memset(pkt_desc, 0, tx_pkt_desc_sz); 756 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue); 757 rtw_tx_fill_tx_desc(pkt_info, skb); 758 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len, 759 DMA_TO_DEVICE); 760 if (dma_mapping_error(&rtwpci->pdev->dev, dma)) 761 return -EBUSY; 762 763 /* after this we got dma mapped, there is no way back */ 764 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz); 765 memset(buf_desc, 0, tx_buf_desc_sz); 766 psb_len = (skb->len - 1) / 128 + 1; 767 if (queue == RTW_TX_QUEUE_BCN) 768 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET; 769 770 buf_desc[0].psb_len = cpu_to_le16(psb_len); 771 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz); 772 buf_desc[0].dma = cpu_to_le32(dma); 773 buf_desc[1].buf_size = cpu_to_le16(size); 774 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz); 775 776 tx_data = rtw_pci_get_tx_data(skb); 777 tx_data->dma = dma; 778 tx_data->sn = pkt_info->sn; 779 780 spin_lock_bh(&rtwpci->irq_lock); 781 782 skb_queue_tail(&ring->queue, skb); 783 784 if (queue == RTW_TX_QUEUE_BCN) 785 goto out_unlock; 786 787 /* update write-index, and kick it off later */ 788 set_bit(queue, rtwpci->tx_queued); 789 if (++ring->r.wp >= ring->r.len) 790 ring->r.wp = 0; 791 792 out_unlock: 793 spin_unlock_bh(&rtwpci->irq_lock); 794 795 return 0; 796 } 797 798 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, 799 u32 size) 800 { 801 struct sk_buff *skb; 802 struct rtw_tx_pkt_info pkt_info = {0}; 803 u8 reg_bcn_work; 804 int ret; 805 806 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); 807 if (!skb) 808 return -ENOMEM; 809 810 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); 811 if (ret) { 812 rtw_err(rtwdev, "failed to write rsvd page data\n"); 813 return ret; 814 } 815 816 /* reserved pages go through beacon queue */ 817 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK); 818 reg_bcn_work |= BIT_PCI_BCNQ_FLAG; 819 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work); 820 821 return 0; 822 } 823 824 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) 825 { 826 struct sk_buff *skb; 827 struct rtw_tx_pkt_info pkt_info = {0}; 828 int ret; 829 830 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); 831 if (!skb) 832 return -ENOMEM; 833 834 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); 835 if (ret) { 836 rtw_err(rtwdev, "failed to write h2c data\n"); 837 return ret; 838 } 839 840 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C); 841 842 return 0; 843 } 844 845 static int rtw_pci_tx_write(struct rtw_dev *rtwdev, 846 struct rtw_tx_pkt_info *pkt_info, 847 struct sk_buff *skb) 848 { 849 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 850 struct rtw_pci_tx_ring *ring; 851 u8 queue = rtw_hw_queue_mapping(skb); 852 int ret; 853 854 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue); 855 if (ret) 856 return ret; 857 858 ring = &rtwpci->tx_rings[queue]; 859 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) { 860 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb)); 861 ring->queue_stopped = true; 862 } 863 864 return 0; 865 } 866 867 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 868 u8 hw_queue) 869 { 870 struct ieee80211_hw *hw = rtwdev->hw; 871 struct ieee80211_tx_info *info; 872 struct rtw_pci_tx_ring *ring; 873 struct rtw_pci_tx_data *tx_data; 874 struct sk_buff *skb; 875 u32 count; 876 u32 bd_idx_addr; 877 u32 bd_idx, cur_rp; 878 u16 q_map; 879 880 ring = &rtwpci->tx_rings[hw_queue]; 881 882 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue]; 883 bd_idx = rtw_read32(rtwdev, bd_idx_addr); 884 cur_rp = bd_idx >> 16; 885 cur_rp &= TRX_BD_IDX_MASK; 886 if (cur_rp >= ring->r.rp) 887 count = cur_rp - ring->r.rp; 888 else 889 count = ring->r.len - (ring->r.rp - cur_rp); 890 891 while (count--) { 892 skb = skb_dequeue(&ring->queue); 893 if (!skb) { 894 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n", 895 count, hw_queue, bd_idx, ring->r.rp, cur_rp); 896 break; 897 } 898 tx_data = rtw_pci_get_tx_data(skb); 899 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, 900 DMA_TO_DEVICE); 901 902 /* just free command packets from host to card */ 903 if (hw_queue == RTW_TX_QUEUE_H2C) { 904 dev_kfree_skb_irq(skb); 905 continue; 906 } 907 908 if (ring->queue_stopped && 909 avail_desc(ring->r.wp, ring->r.rp, ring->r.len) > 4) { 910 q_map = skb_get_queue_mapping(skb); 911 ieee80211_wake_queue(hw, q_map); 912 ring->queue_stopped = false; 913 } 914 915 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz); 916 917 info = IEEE80211_SKB_CB(skb); 918 919 /* enqueue to wait for tx report */ 920 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 921 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); 922 continue; 923 } 924 925 /* always ACK for others, then they won't be marked as drop */ 926 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 927 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 928 else 929 info->flags |= IEEE80211_TX_STAT_ACK; 930 931 ieee80211_tx_info_clear_status(info); 932 ieee80211_tx_status_irqsafe(hw, skb); 933 } 934 935 ring->r.rp = cur_rp; 936 } 937 938 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 939 u8 hw_queue) 940 { 941 struct rtw_chip_info *chip = rtwdev->chip; 942 struct rtw_pci_rx_ring *ring; 943 struct rtw_rx_pkt_stat pkt_stat; 944 struct ieee80211_rx_status rx_status; 945 struct sk_buff *skb, *new; 946 u32 cur_wp, cur_rp, tmp; 947 u32 count; 948 u32 pkt_offset; 949 u32 pkt_desc_sz = chip->rx_pkt_desc_sz; 950 u32 buf_desc_sz = chip->rx_buf_desc_sz; 951 u32 new_len; 952 u8 *rx_desc; 953 dma_addr_t dma; 954 955 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; 956 957 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ); 958 cur_wp = tmp >> 16; 959 cur_wp &= TRX_BD_IDX_MASK; 960 if (cur_wp >= ring->r.wp) 961 count = cur_wp - ring->r.wp; 962 else 963 count = ring->r.len - (ring->r.wp - cur_wp); 964 965 cur_rp = ring->r.rp; 966 while (count--) { 967 rtw_pci_dma_check(rtwdev, ring, cur_rp); 968 skb = ring->buf[cur_rp]; 969 dma = *((dma_addr_t *)skb->cb); 970 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE, 971 DMA_FROM_DEVICE); 972 rx_desc = skb->data; 973 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); 974 975 /* offset from rx_desc to payload */ 976 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + 977 pkt_stat.shift; 978 979 /* allocate a new skb for this frame, 980 * discard the frame if none available 981 */ 982 new_len = pkt_stat.pkt_len + pkt_offset; 983 new = dev_alloc_skb(new_len); 984 if (WARN_ONCE(!new, "rx routine starvation\n")) 985 goto next_rp; 986 987 /* put the DMA data including rx_desc from phy to new skb */ 988 skb_put_data(new, skb->data, new_len); 989 990 if (pkt_stat.is_c2h) { 991 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new); 992 } else { 993 /* remove rx_desc */ 994 skb_pull(new, pkt_offset); 995 996 rtw_rx_stats(rtwdev, pkt_stat.vif, new); 997 memcpy(new->cb, &rx_status, sizeof(rx_status)); 998 ieee80211_rx_irqsafe(rtwdev->hw, new); 999 } 1000 1001 next_rp: 1002 /* new skb delivered to mac80211, re-enable original skb DMA */ 1003 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp, 1004 buf_desc_sz); 1005 1006 /* host read next element in ring */ 1007 if (++cur_rp >= ring->r.len) 1008 cur_rp = 0; 1009 } 1010 1011 ring->r.rp = cur_rp; 1012 ring->r.wp = cur_wp; 1013 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp); 1014 } 1015 1016 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev, 1017 struct rtw_pci *rtwpci, u32 *irq_status) 1018 { 1019 unsigned long flags; 1020 1021 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 1022 1023 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0); 1024 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1); 1025 if (rtw_chip_wcpu_11ac(rtwdev)) 1026 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3); 1027 else 1028 irq_status[3] = 0; 1029 irq_status[0] &= rtwpci->irq_mask[0]; 1030 irq_status[1] &= rtwpci->irq_mask[1]; 1031 irq_status[3] &= rtwpci->irq_mask[3]; 1032 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]); 1033 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]); 1034 if (rtw_chip_wcpu_11ac(rtwdev)) 1035 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]); 1036 1037 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 1038 } 1039 1040 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev) 1041 { 1042 struct rtw_dev *rtwdev = dev; 1043 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1044 1045 /* disable RTW PCI interrupt to avoid more interrupts before the end of 1046 * thread function 1047 * 1048 * disable HIMR here to also avoid new HISR flag being raised before 1049 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs 1050 * are cleared, the edge-triggered interrupt will not be generated when 1051 * a new HISR flag is set. 1052 */ 1053 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1054 1055 return IRQ_WAKE_THREAD; 1056 } 1057 1058 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev) 1059 { 1060 struct rtw_dev *rtwdev = dev; 1061 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1062 u32 irq_status[4]; 1063 1064 spin_lock_bh(&rtwpci->irq_lock); 1065 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status); 1066 1067 if (irq_status[0] & IMR_MGNTDOK) 1068 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT); 1069 if (irq_status[0] & IMR_HIGHDOK) 1070 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0); 1071 if (irq_status[0] & IMR_BEDOK) 1072 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE); 1073 if (irq_status[0] & IMR_BKDOK) 1074 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK); 1075 if (irq_status[0] & IMR_VODOK) 1076 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO); 1077 if (irq_status[0] & IMR_VIDOK) 1078 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI); 1079 if (irq_status[3] & IMR_H2CDOK) 1080 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C); 1081 if (irq_status[0] & IMR_ROK) 1082 rtw_pci_rx_isr(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU); 1083 if (unlikely(irq_status[0] & IMR_C2HCMD)) 1084 rtw_fw_c2h_cmd_isr(rtwdev); 1085 1086 /* all of the jobs for this interrupt have been done */ 1087 rtw_pci_enable_interrupt(rtwdev, rtwpci); 1088 spin_unlock_bh(&rtwpci->irq_lock); 1089 1090 return IRQ_HANDLED; 1091 } 1092 1093 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev, 1094 struct pci_dev *pdev) 1095 { 1096 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1097 unsigned long len; 1098 u8 bar_id = 2; 1099 int ret; 1100 1101 ret = pci_request_regions(pdev, KBUILD_MODNAME); 1102 if (ret) { 1103 rtw_err(rtwdev, "failed to request pci regions\n"); 1104 return ret; 1105 } 1106 1107 len = pci_resource_len(pdev, bar_id); 1108 rtwpci->mmap = pci_iomap(pdev, bar_id, len); 1109 if (!rtwpci->mmap) { 1110 pci_release_regions(pdev); 1111 rtw_err(rtwdev, "failed to map pci memory\n"); 1112 return -ENOMEM; 1113 } 1114 1115 return 0; 1116 } 1117 1118 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev, 1119 struct pci_dev *pdev) 1120 { 1121 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1122 1123 if (rtwpci->mmap) { 1124 pci_iounmap(pdev, rtwpci->mmap); 1125 pci_release_regions(pdev); 1126 } 1127 } 1128 1129 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data) 1130 { 1131 u16 write_addr; 1132 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK); 1133 u8 flag; 1134 u8 cnt; 1135 1136 write_addr = addr & BITS_DBI_ADDR_MASK; 1137 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN); 1138 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data); 1139 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr); 1140 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16); 1141 1142 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1143 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1144 if (flag == 0) 1145 return; 1146 1147 udelay(10); 1148 } 1149 1150 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr); 1151 } 1152 1153 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value) 1154 { 1155 u16 read_addr = addr & BITS_DBI_ADDR_MASK; 1156 u8 flag; 1157 u8 cnt; 1158 1159 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr); 1160 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16); 1161 1162 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1163 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1164 if (flag == 0) { 1165 read_addr = REG_DBI_RDATA_V1 + (addr & 3); 1166 *value = rtw_read8(rtwdev, read_addr); 1167 return 0; 1168 } 1169 1170 udelay(10); 1171 } 1172 1173 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr); 1174 return -EIO; 1175 } 1176 1177 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1) 1178 { 1179 u8 page; 1180 u8 wflag; 1181 u8 cnt; 1182 1183 rtw_write16(rtwdev, REG_MDIO_V1, data); 1184 1185 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1; 1186 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2; 1187 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK); 1188 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page); 1189 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1); 1190 1191 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1192 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG, 1193 BIT_MDIO_WFLAG_V1); 1194 if (wflag == 0) 1195 return; 1196 1197 udelay(10); 1198 } 1199 1200 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr); 1201 } 1202 1203 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable) 1204 { 1205 u8 value; 1206 int ret; 1207 1208 if (rtw_pci_disable_aspm) 1209 return; 1210 1211 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1212 if (ret) { 1213 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); 1214 return; 1215 } 1216 1217 if (enable) 1218 value |= BIT_CLKREQ_SW_EN; 1219 else 1220 value &= ~BIT_CLKREQ_SW_EN; 1221 1222 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1223 } 1224 1225 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable) 1226 { 1227 u8 value; 1228 int ret; 1229 1230 if (rtw_pci_disable_aspm) 1231 return; 1232 1233 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1234 if (ret) { 1235 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret); 1236 return; 1237 } 1238 1239 if (enable) 1240 value |= BIT_L1_SW_EN; 1241 else 1242 value &= ~BIT_L1_SW_EN; 1243 1244 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1245 } 1246 1247 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter) 1248 { 1249 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1250 1251 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can 1252 * only be enabled when host supports it. 1253 * 1254 * And ASPM mechanism should be enabled when driver/firmware enters 1255 * power save mode, without having heavy traffic. Because we've 1256 * experienced some inter-operability issues that the link tends 1257 * to enter L1 state on the fly even when driver is having high 1258 * throughput. This is probably because the ASPM behavior slightly 1259 * varies from different SOC. 1260 */ 1261 if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1) 1262 rtw_pci_aspm_set(rtwdev, enter); 1263 } 1264 1265 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev) 1266 { 1267 struct rtw_chip_info *chip = rtwdev->chip; 1268 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1269 struct pci_dev *pdev = rtwpci->pdev; 1270 u16 link_ctrl; 1271 int ret; 1272 1273 /* RTL8822CE has enabled REFCLK auto calibration, it does not need 1274 * to add clock delay to cover the REFCLK timing gap. 1275 */ 1276 if (chip->id == RTW_CHIP_TYPE_8822C) 1277 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0); 1278 1279 /* Though there is standard PCIE configuration space to set the 1280 * link control register, but by Realtek's design, driver should 1281 * check if host supports CLKREQ/ASPM to enable the HW module. 1282 * 1283 * These functions are implemented by two HW modules associated, 1284 * one is responsible to access PCIE configuration space to 1285 * follow the host settings, and another is in charge of doing 1286 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes 1287 * the host does not support it, and due to some reasons or wrong 1288 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device 1289 * loss if HW misbehaves on the link. 1290 * 1291 * Hence it's designed that driver should first check the PCIE 1292 * configuration space is sync'ed and enabled, then driver can turn 1293 * on the other module that is actually working on the mechanism. 1294 */ 1295 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); 1296 if (ret) { 1297 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); 1298 return; 1299 } 1300 1301 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) 1302 rtw_pci_clkreq_set(rtwdev, true); 1303 1304 rtwpci->link_ctrl = link_ctrl; 1305 } 1306 1307 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev) 1308 { 1309 struct rtw_chip_info *chip = rtwdev->chip; 1310 1311 switch (chip->id) { 1312 case RTW_CHIP_TYPE_8822C: 1313 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D) 1314 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG, 1315 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1); 1316 break; 1317 default: 1318 break; 1319 } 1320 } 1321 1322 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev) 1323 { 1324 struct rtw_chip_info *chip = rtwdev->chip; 1325 const struct rtw_intf_phy_para *para; 1326 u16 cut; 1327 u16 value; 1328 u16 offset; 1329 int i; 1330 1331 cut = BIT(0) << rtwdev->hal.cut_version; 1332 1333 for (i = 0; i < chip->intf_table->n_gen1_para; i++) { 1334 para = &chip->intf_table->gen1_para[i]; 1335 if (!(para->cut_mask & cut)) 1336 continue; 1337 if (para->offset == 0xffff) 1338 break; 1339 offset = para->offset; 1340 value = para->value; 1341 if (para->ip_sel == RTW_IP_SEL_PHY) 1342 rtw_mdio_write(rtwdev, offset, value, true); 1343 else 1344 rtw_dbi_write8(rtwdev, offset, value); 1345 } 1346 1347 for (i = 0; i < chip->intf_table->n_gen2_para; i++) { 1348 para = &chip->intf_table->gen2_para[i]; 1349 if (!(para->cut_mask & cut)) 1350 continue; 1351 if (para->offset == 0xffff) 1352 break; 1353 offset = para->offset; 1354 value = para->value; 1355 if (para->ip_sel == RTW_IP_SEL_PHY) 1356 rtw_mdio_write(rtwdev, offset, value, false); 1357 else 1358 rtw_dbi_write8(rtwdev, offset, value); 1359 } 1360 1361 rtw_pci_link_cfg(rtwdev); 1362 } 1363 1364 static int __maybe_unused rtw_pci_suspend(struct device *dev) 1365 { 1366 return 0; 1367 } 1368 1369 static int __maybe_unused rtw_pci_resume(struct device *dev) 1370 { 1371 return 0; 1372 } 1373 1374 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume); 1375 EXPORT_SYMBOL(rtw_pm_ops); 1376 1377 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1378 { 1379 int ret; 1380 1381 ret = pci_enable_device(pdev); 1382 if (ret) { 1383 rtw_err(rtwdev, "failed to enable pci device\n"); 1384 return ret; 1385 } 1386 1387 pci_set_master(pdev); 1388 pci_set_drvdata(pdev, rtwdev->hw); 1389 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); 1390 1391 return 0; 1392 } 1393 1394 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1395 { 1396 pci_clear_master(pdev); 1397 pci_disable_device(pdev); 1398 } 1399 1400 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1401 { 1402 struct rtw_pci *rtwpci; 1403 int ret; 1404 1405 rtwpci = (struct rtw_pci *)rtwdev->priv; 1406 rtwpci->pdev = pdev; 1407 1408 /* after this driver can access to hw registers */ 1409 ret = rtw_pci_io_mapping(rtwdev, pdev); 1410 if (ret) { 1411 rtw_err(rtwdev, "failed to request pci io region\n"); 1412 goto err_out; 1413 } 1414 1415 ret = rtw_pci_init(rtwdev); 1416 if (ret) { 1417 rtw_err(rtwdev, "failed to allocate pci resources\n"); 1418 goto err_io_unmap; 1419 } 1420 1421 return 0; 1422 1423 err_io_unmap: 1424 rtw_pci_io_unmapping(rtwdev, pdev); 1425 1426 err_out: 1427 return ret; 1428 } 1429 1430 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1431 { 1432 rtw_pci_deinit(rtwdev); 1433 rtw_pci_io_unmapping(rtwdev, pdev); 1434 } 1435 1436 static struct rtw_hci_ops rtw_pci_ops = { 1437 .tx_write = rtw_pci_tx_write, 1438 .tx_kick_off = rtw_pci_tx_kick_off, 1439 .setup = rtw_pci_setup, 1440 .start = rtw_pci_start, 1441 .stop = rtw_pci_stop, 1442 .deep_ps = rtw_pci_deep_ps, 1443 .link_ps = rtw_pci_link_ps, 1444 .interface_cfg = rtw_pci_interface_cfg, 1445 1446 .read8 = rtw_pci_read8, 1447 .read16 = rtw_pci_read16, 1448 .read32 = rtw_pci_read32, 1449 .write8 = rtw_pci_write8, 1450 .write16 = rtw_pci_write16, 1451 .write32 = rtw_pci_write32, 1452 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page, 1453 .write_data_h2c = rtw_pci_write_data_h2c, 1454 }; 1455 1456 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1457 { 1458 unsigned int flags = PCI_IRQ_LEGACY; 1459 int ret; 1460 1461 if (!rtw_disable_msi) 1462 flags |= PCI_IRQ_MSI; 1463 1464 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); 1465 if (ret < 0) { 1466 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n"); 1467 return ret; 1468 } 1469 1470 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, 1471 rtw_pci_interrupt_handler, 1472 rtw_pci_interrupt_threadfn, 1473 IRQF_SHARED, KBUILD_MODNAME, rtwdev); 1474 if (ret) { 1475 rtw_err(rtwdev, "failed to request irq %d\n", ret); 1476 pci_free_irq_vectors(pdev); 1477 } 1478 1479 return ret; 1480 } 1481 1482 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1483 { 1484 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); 1485 pci_free_irq_vectors(pdev); 1486 } 1487 1488 int rtw_pci_probe(struct pci_dev *pdev, 1489 const struct pci_device_id *id) 1490 { 1491 struct ieee80211_hw *hw; 1492 struct rtw_dev *rtwdev; 1493 int drv_data_size; 1494 int ret; 1495 1496 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci); 1497 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); 1498 if (!hw) { 1499 dev_err(&pdev->dev, "failed to allocate hw\n"); 1500 return -ENOMEM; 1501 } 1502 1503 rtwdev = hw->priv; 1504 rtwdev->hw = hw; 1505 rtwdev->dev = &pdev->dev; 1506 rtwdev->chip = (struct rtw_chip_info *)id->driver_data; 1507 rtwdev->hci.ops = &rtw_pci_ops; 1508 rtwdev->hci.type = RTW_HCI_TYPE_PCIE; 1509 1510 ret = rtw_core_init(rtwdev); 1511 if (ret) 1512 goto err_release_hw; 1513 1514 rtw_dbg(rtwdev, RTW_DBG_PCI, 1515 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n", 1516 pdev->vendor, pdev->device, pdev->revision); 1517 1518 ret = rtw_pci_claim(rtwdev, pdev); 1519 if (ret) { 1520 rtw_err(rtwdev, "failed to claim pci device\n"); 1521 goto err_deinit_core; 1522 } 1523 1524 ret = rtw_pci_setup_resource(rtwdev, pdev); 1525 if (ret) { 1526 rtw_err(rtwdev, "failed to setup pci resources\n"); 1527 goto err_pci_declaim; 1528 } 1529 1530 ret = rtw_chip_info_setup(rtwdev); 1531 if (ret) { 1532 rtw_err(rtwdev, "failed to setup chip information\n"); 1533 goto err_destroy_pci; 1534 } 1535 1536 rtw_pci_phy_cfg(rtwdev); 1537 1538 ret = rtw_register_hw(rtwdev, hw); 1539 if (ret) { 1540 rtw_err(rtwdev, "failed to register hw\n"); 1541 goto err_destroy_pci; 1542 } 1543 1544 ret = rtw_pci_request_irq(rtwdev, pdev); 1545 if (ret) { 1546 ieee80211_unregister_hw(hw); 1547 goto err_destroy_pci; 1548 } 1549 1550 return 0; 1551 1552 err_destroy_pci: 1553 rtw_pci_destroy(rtwdev, pdev); 1554 1555 err_pci_declaim: 1556 rtw_pci_declaim(rtwdev, pdev); 1557 1558 err_deinit_core: 1559 rtw_core_deinit(rtwdev); 1560 1561 err_release_hw: 1562 ieee80211_free_hw(hw); 1563 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(rtw_pci_probe); 1567 1568 void rtw_pci_remove(struct pci_dev *pdev) 1569 { 1570 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1571 struct rtw_dev *rtwdev; 1572 struct rtw_pci *rtwpci; 1573 1574 if (!hw) 1575 return; 1576 1577 rtwdev = hw->priv; 1578 rtwpci = (struct rtw_pci *)rtwdev->priv; 1579 1580 rtw_unregister_hw(rtwdev, hw); 1581 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1582 rtw_pci_destroy(rtwdev, pdev); 1583 rtw_pci_declaim(rtwdev, pdev); 1584 rtw_pci_free_irq(rtwdev, pdev); 1585 rtw_core_deinit(rtwdev); 1586 ieee80211_free_hw(hw); 1587 } 1588 EXPORT_SYMBOL(rtw_pci_remove); 1589 1590 void rtw_pci_shutdown(struct pci_dev *pdev) 1591 { 1592 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1593 struct rtw_dev *rtwdev; 1594 struct rtw_chip_info *chip; 1595 1596 if (!hw) 1597 return; 1598 1599 rtwdev = hw->priv; 1600 chip = rtwdev->chip; 1601 1602 if (chip->ops->shutdown) 1603 chip->ops->shutdown(rtwdev); 1604 1605 pci_set_power_state(pdev, PCI_D3hot); 1606 } 1607 EXPORT_SYMBOL(rtw_pci_shutdown); 1608 1609 MODULE_AUTHOR("Realtek Corporation"); 1610 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver"); 1611 MODULE_LICENSE("Dual BSD/GPL"); 1612