xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/pci.c (revision b1c8ea3c09db24a55ff84ac047cb2e9d9f644bf9)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
34 			      enum rtw_tx_queue_type queue)
35 {
36 	switch (queue) {
37 	case RTW_TX_QUEUE_BCN:
38 		return TX_DESC_QSEL_BEACON;
39 	case RTW_TX_QUEUE_H2C:
40 		return TX_DESC_QSEL_H2C;
41 	case RTW_TX_QUEUE_MGMT:
42 		return TX_DESC_QSEL_MGMT;
43 	case RTW_TX_QUEUE_HI0:
44 		return TX_DESC_QSEL_HIGH;
45 	default:
46 		return skb->priority;
47 	}
48 };
49 
50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51 {
52 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53 
54 	return readb(rtwpci->mmap + addr);
55 }
56 
57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58 {
59 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60 
61 	return readw(rtwpci->mmap + addr);
62 }
63 
64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65 {
66 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67 
68 	return readl(rtwpci->mmap + addr);
69 }
70 
71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72 {
73 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74 
75 	writeb(val, rtwpci->mmap + addr);
76 }
77 
78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79 {
80 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81 
82 	writew(val, rtwpci->mmap + addr);
83 }
84 
85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86 {
87 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88 
89 	writel(val, rtwpci->mmap + addr);
90 }
91 
92 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
93 				      struct rtw_pci_tx_ring *tx_ring)
94 {
95 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
96 	struct rtw_pci_tx_data *tx_data;
97 	struct sk_buff *skb, *tmp;
98 	dma_addr_t dma;
99 
100 	/* free every skb remained in tx list */
101 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
102 		__skb_unlink(skb, &tx_ring->queue);
103 		tx_data = rtw_pci_get_tx_data(skb);
104 		dma = tx_data->dma;
105 
106 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
107 		dev_kfree_skb_any(skb);
108 	}
109 }
110 
111 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
112 				 struct rtw_pci_tx_ring *tx_ring)
113 {
114 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
115 	u8 *head = tx_ring->r.head;
116 	u32 len = tx_ring->r.len;
117 	int ring_sz = len * tx_ring->r.desc_size;
118 
119 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
120 
121 	/* free the ring itself */
122 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
123 	tx_ring->r.head = NULL;
124 }
125 
126 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
127 				      struct rtw_pci_rx_ring *rx_ring)
128 {
129 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
130 	struct sk_buff *skb;
131 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
132 	dma_addr_t dma;
133 	int i;
134 
135 	for (i = 0; i < rx_ring->r.len; i++) {
136 		skb = rx_ring->buf[i];
137 		if (!skb)
138 			continue;
139 
140 		dma = *((dma_addr_t *)skb->cb);
141 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
142 		dev_kfree_skb(skb);
143 		rx_ring->buf[i] = NULL;
144 	}
145 }
146 
147 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
148 				 struct rtw_pci_rx_ring *rx_ring)
149 {
150 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
151 	u8 *head = rx_ring->r.head;
152 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
153 
154 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
155 
156 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
157 }
158 
159 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
160 {
161 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
162 	struct rtw_pci_tx_ring *tx_ring;
163 	struct rtw_pci_rx_ring *rx_ring;
164 	int i;
165 
166 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
167 		tx_ring = &rtwpci->tx_rings[i];
168 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
169 	}
170 
171 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
172 		rx_ring = &rtwpci->rx_rings[i];
173 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
174 	}
175 }
176 
177 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
178 				struct rtw_pci_tx_ring *tx_ring,
179 				u8 desc_size, u32 len)
180 {
181 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
182 	int ring_sz = desc_size * len;
183 	dma_addr_t dma;
184 	u8 *head;
185 
186 	if (len > TRX_BD_IDX_MASK) {
187 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
188 		return -EINVAL;
189 	}
190 
191 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
192 	if (!head) {
193 		rtw_err(rtwdev, "failed to allocate tx ring\n");
194 		return -ENOMEM;
195 	}
196 
197 	skb_queue_head_init(&tx_ring->queue);
198 	tx_ring->r.head = head;
199 	tx_ring->r.dma = dma;
200 	tx_ring->r.len = len;
201 	tx_ring->r.desc_size = desc_size;
202 	tx_ring->r.wp = 0;
203 	tx_ring->r.rp = 0;
204 
205 	return 0;
206 }
207 
208 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
209 				 struct rtw_pci_rx_ring *rx_ring,
210 				 u32 idx, u32 desc_sz)
211 {
212 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
213 	struct rtw_pci_rx_buffer_desc *buf_desc;
214 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
215 	dma_addr_t dma;
216 
217 	if (!skb)
218 		return -EINVAL;
219 
220 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
221 	if (dma_mapping_error(&pdev->dev, dma))
222 		return -EBUSY;
223 
224 	*((dma_addr_t *)skb->cb) = dma;
225 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
226 						     idx * desc_sz);
227 	memset(buf_desc, 0, sizeof(*buf_desc));
228 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
229 	buf_desc->dma = cpu_to_le32(dma);
230 
231 	return 0;
232 }
233 
234 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
235 					struct rtw_pci_rx_ring *rx_ring,
236 					u32 idx, u32 desc_sz)
237 {
238 	struct device *dev = rtwdev->dev;
239 	struct rtw_pci_rx_buffer_desc *buf_desc;
240 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
241 
242 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
243 
244 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
245 						     idx * desc_sz);
246 	memset(buf_desc, 0, sizeof(*buf_desc));
247 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
248 	buf_desc->dma = cpu_to_le32(dma);
249 }
250 
251 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
252 				struct rtw_pci_rx_ring *rx_ring,
253 				u8 desc_size, u32 len)
254 {
255 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
256 	struct sk_buff *skb = NULL;
257 	dma_addr_t dma;
258 	u8 *head;
259 	int ring_sz = desc_size * len;
260 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
261 	int i, allocated;
262 	int ret = 0;
263 
264 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
265 	if (!head) {
266 		rtw_err(rtwdev, "failed to allocate rx ring\n");
267 		return -ENOMEM;
268 	}
269 	rx_ring->r.head = head;
270 
271 	for (i = 0; i < len; i++) {
272 		skb = dev_alloc_skb(buf_sz);
273 		if (!skb) {
274 			allocated = i;
275 			ret = -ENOMEM;
276 			goto err_out;
277 		}
278 
279 		memset(skb->data, 0, buf_sz);
280 		rx_ring->buf[i] = skb;
281 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
282 		if (ret) {
283 			allocated = i;
284 			dev_kfree_skb_any(skb);
285 			goto err_out;
286 		}
287 	}
288 
289 	rx_ring->r.dma = dma;
290 	rx_ring->r.len = len;
291 	rx_ring->r.desc_size = desc_size;
292 	rx_ring->r.wp = 0;
293 	rx_ring->r.rp = 0;
294 
295 	return 0;
296 
297 err_out:
298 	for (i = 0; i < allocated; i++) {
299 		skb = rx_ring->buf[i];
300 		if (!skb)
301 			continue;
302 		dma = *((dma_addr_t *)skb->cb);
303 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
304 		dev_kfree_skb_any(skb);
305 		rx_ring->buf[i] = NULL;
306 	}
307 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
308 
309 	rtw_err(rtwdev, "failed to init rx buffer\n");
310 
311 	return ret;
312 }
313 
314 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
315 {
316 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
317 	struct rtw_pci_tx_ring *tx_ring;
318 	struct rtw_pci_rx_ring *rx_ring;
319 	const struct rtw_chip_info *chip = rtwdev->chip;
320 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
321 	int tx_desc_size, rx_desc_size;
322 	u32 len;
323 	int ret;
324 
325 	tx_desc_size = chip->tx_buf_desc_sz;
326 
327 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
328 		tx_ring = &rtwpci->tx_rings[i];
329 		len = max_num_of_tx_queue(i);
330 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
331 		if (ret)
332 			goto out;
333 	}
334 
335 	rx_desc_size = chip->rx_buf_desc_sz;
336 
337 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
338 		rx_ring = &rtwpci->rx_rings[j];
339 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
340 					   RTK_MAX_RX_DESC_NUM);
341 		if (ret)
342 			goto out;
343 	}
344 
345 	return 0;
346 
347 out:
348 	tx_alloced = i;
349 	for (i = 0; i < tx_alloced; i++) {
350 		tx_ring = &rtwpci->tx_rings[i];
351 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
352 	}
353 
354 	rx_alloced = j;
355 	for (j = 0; j < rx_alloced; j++) {
356 		rx_ring = &rtwpci->rx_rings[j];
357 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
358 	}
359 
360 	return ret;
361 }
362 
363 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
364 {
365 	rtw_pci_free_trx_ring(rtwdev);
366 }
367 
368 static int rtw_pci_init(struct rtw_dev *rtwdev)
369 {
370 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
371 	int ret = 0;
372 
373 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
374 			      IMR_MGNTDOK |
375 			      IMR_BKDOK |
376 			      IMR_BEDOK |
377 			      IMR_VIDOK |
378 			      IMR_VODOK |
379 			      IMR_ROK |
380 			      IMR_BCNDMAINT_E |
381 			      IMR_C2HCMD |
382 			      0;
383 	rtwpci->irq_mask[1] = IMR_TXFOVW |
384 			      0;
385 	rtwpci->irq_mask[3] = IMR_H2CDOK |
386 			      0;
387 	spin_lock_init(&rtwpci->irq_lock);
388 	spin_lock_init(&rtwpci->hwirq_lock);
389 	ret = rtw_pci_init_trx_ring(rtwdev);
390 
391 	return ret;
392 }
393 
394 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
395 {
396 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
397 	u32 len;
398 	u8 tmp;
399 	dma_addr_t dma;
400 
401 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
402 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
403 
404 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
405 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
406 
407 	if (!rtw_chip_wcpu_11n(rtwdev)) {
408 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
409 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
410 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
411 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
412 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
413 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
414 	}
415 
416 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
417 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
418 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
419 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
420 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
421 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
422 
423 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
424 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
425 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
426 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
427 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
428 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
429 
430 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
431 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
432 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
433 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
434 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
435 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
436 
437 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
438 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
439 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
440 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
441 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
442 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
443 
444 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
445 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
446 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
447 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
448 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
449 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
450 
451 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
452 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
453 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
454 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
455 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
456 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
457 
458 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
459 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
460 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
461 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
462 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
463 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
464 
465 	/* reset read/write point */
466 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
467 
468 	/* reset H2C Queue index in a single write */
469 	if (rtw_chip_wcpu_11ac(rtwdev))
470 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
471 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
472 }
473 
474 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
475 {
476 	rtw_pci_reset_buf_desc(rtwdev);
477 }
478 
479 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
480 				     struct rtw_pci *rtwpci, bool exclude_rx)
481 {
482 	unsigned long flags;
483 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
484 
485 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
486 
487 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
488 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
489 	if (rtw_chip_wcpu_11ac(rtwdev))
490 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
491 
492 	rtwpci->irq_enabled = true;
493 
494 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
495 }
496 
497 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
498 				      struct rtw_pci *rtwpci)
499 {
500 	unsigned long flags;
501 
502 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
503 
504 	if (!rtwpci->irq_enabled)
505 		goto out;
506 
507 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
508 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
509 	if (rtw_chip_wcpu_11ac(rtwdev))
510 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
511 
512 	rtwpci->irq_enabled = false;
513 
514 out:
515 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
516 }
517 
518 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
519 {
520 	/* reset dma and rx tag */
521 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
522 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
523 	rtwpci->rx_tag = 0;
524 }
525 
526 static int rtw_pci_setup(struct rtw_dev *rtwdev)
527 {
528 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
529 
530 	rtw_pci_reset_trx_ring(rtwdev);
531 	rtw_pci_dma_reset(rtwdev, rtwpci);
532 
533 	return 0;
534 }
535 
536 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
537 {
538 	struct rtw_pci_tx_ring *tx_ring;
539 	enum rtw_tx_queue_type queue;
540 
541 	rtw_pci_reset_trx_ring(rtwdev);
542 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
543 		tx_ring = &rtwpci->tx_rings[queue];
544 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
545 	}
546 }
547 
548 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
549 {
550 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
551 
552 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
553 		return;
554 
555 	napi_enable(&rtwpci->napi);
556 }
557 
558 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
559 {
560 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
561 
562 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
563 		return;
564 
565 	napi_synchronize(&rtwpci->napi);
566 	napi_disable(&rtwpci->napi);
567 }
568 
569 static int rtw_pci_start(struct rtw_dev *rtwdev)
570 {
571 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572 
573 	rtw_pci_napi_start(rtwdev);
574 
575 	spin_lock_bh(&rtwpci->irq_lock);
576 	rtwpci->running = true;
577 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
578 	spin_unlock_bh(&rtwpci->irq_lock);
579 
580 	return 0;
581 }
582 
583 static void rtw_pci_stop(struct rtw_dev *rtwdev)
584 {
585 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
586 	struct pci_dev *pdev = rtwpci->pdev;
587 
588 	spin_lock_bh(&rtwpci->irq_lock);
589 	rtwpci->running = false;
590 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
591 	spin_unlock_bh(&rtwpci->irq_lock);
592 
593 	synchronize_irq(pdev->irq);
594 	rtw_pci_napi_stop(rtwdev);
595 
596 	spin_lock_bh(&rtwpci->irq_lock);
597 	rtw_pci_dma_release(rtwdev, rtwpci);
598 	spin_unlock_bh(&rtwpci->irq_lock);
599 }
600 
601 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
602 {
603 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
604 	struct rtw_pci_tx_ring *tx_ring;
605 	enum rtw_tx_queue_type queue;
606 	bool tx_empty = true;
607 
608 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
609 		goto enter_deep_ps;
610 
611 	lockdep_assert_held(&rtwpci->irq_lock);
612 
613 	/* Deep PS state is not allowed to TX-DMA */
614 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
615 		/* BCN queue is rsvd page, does not have DMA interrupt
616 		 * H2C queue is managed by firmware
617 		 */
618 		if (queue == RTW_TX_QUEUE_BCN ||
619 		    queue == RTW_TX_QUEUE_H2C)
620 			continue;
621 
622 		tx_ring = &rtwpci->tx_rings[queue];
623 
624 		/* check if there is any skb DMAing */
625 		if (skb_queue_len(&tx_ring->queue)) {
626 			tx_empty = false;
627 			break;
628 		}
629 	}
630 
631 	if (!tx_empty) {
632 		rtw_dbg(rtwdev, RTW_DBG_PS,
633 			"TX path not empty, cannot enter deep power save state\n");
634 		return;
635 	}
636 enter_deep_ps:
637 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
638 	rtw_power_mode_change(rtwdev, true);
639 }
640 
641 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
642 {
643 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
644 
645 	lockdep_assert_held(&rtwpci->irq_lock);
646 
647 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
648 		rtw_power_mode_change(rtwdev, false);
649 }
650 
651 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
652 {
653 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
654 
655 	spin_lock_bh(&rtwpci->irq_lock);
656 
657 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
658 		rtw_pci_deep_ps_enter(rtwdev);
659 
660 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
661 		rtw_pci_deep_ps_leave(rtwdev);
662 
663 	spin_unlock_bh(&rtwpci->irq_lock);
664 }
665 
666 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
667 				      struct rtw_pci_tx_ring *ring)
668 {
669 	struct sk_buff *prev = skb_dequeue(&ring->queue);
670 	struct rtw_pci_tx_data *tx_data;
671 	dma_addr_t dma;
672 
673 	if (!prev)
674 		return;
675 
676 	tx_data = rtw_pci_get_tx_data(prev);
677 	dma = tx_data->dma;
678 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
679 	dev_kfree_skb_any(prev);
680 }
681 
682 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
683 			      struct rtw_pci_rx_ring *rx_ring,
684 			      u32 idx)
685 {
686 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
687 	const struct rtw_chip_info *chip = rtwdev->chip;
688 	struct rtw_pci_rx_buffer_desc *buf_desc;
689 	u32 desc_sz = chip->rx_buf_desc_sz;
690 	u16 total_pkt_size;
691 
692 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
693 						     idx * desc_sz);
694 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
695 
696 	/* rx tag mismatch, throw a warning */
697 	if (total_pkt_size != rtwpci->rx_tag)
698 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
699 
700 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
701 }
702 
703 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
704 {
705 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
706 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
707 
708 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
709 }
710 
711 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
712 {
713 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
714 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
715 	u32 cur_rp;
716 	u8 i;
717 
718 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
719 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
720 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
721 	 * polling times, so we just use for loop with udelay here.
722 	 */
723 	for (i = 0; i < 30; i++) {
724 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
725 		if (cur_rp == ring->r.wp)
726 			return;
727 
728 		udelay(1);
729 	}
730 
731 	if (!drop)
732 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
733 }
734 
735 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
736 				   bool drop)
737 {
738 	u8 q;
739 
740 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
741 		/* It may be not necessary to flush BCN and H2C tx queues. */
742 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
743 			continue;
744 
745 		if (pci_queues & BIT(q))
746 			__pci_flush_queue(rtwdev, q, drop);
747 	}
748 }
749 
750 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
751 {
752 	u32 pci_queues = 0;
753 	u8 i;
754 
755 	/* If all of the hardware queues are requested to flush,
756 	 * flush all of the pci queues.
757 	 */
758 	if (queues == BIT(rtwdev->hw->queues) - 1) {
759 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
760 	} else {
761 		for (i = 0; i < rtwdev->hw->queues; i++)
762 			if (queues & BIT(i))
763 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
764 	}
765 
766 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
767 }
768 
769 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
770 				      enum rtw_tx_queue_type queue)
771 {
772 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
773 	struct rtw_pci_tx_ring *ring;
774 	u32 bd_idx;
775 
776 	ring = &rtwpci->tx_rings[queue];
777 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
778 
779 	spin_lock_bh(&rtwpci->irq_lock);
780 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
781 		rtw_pci_deep_ps_leave(rtwdev);
782 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
783 	spin_unlock_bh(&rtwpci->irq_lock);
784 }
785 
786 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
787 {
788 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
789 	enum rtw_tx_queue_type queue;
790 
791 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
792 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
793 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
794 }
795 
796 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
797 				 struct rtw_tx_pkt_info *pkt_info,
798 				 struct sk_buff *skb,
799 				 enum rtw_tx_queue_type queue)
800 {
801 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
802 	const struct rtw_chip_info *chip = rtwdev->chip;
803 	struct rtw_pci_tx_ring *ring;
804 	struct rtw_pci_tx_data *tx_data;
805 	dma_addr_t dma;
806 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
807 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
808 	u32 size;
809 	u32 psb_len;
810 	u8 *pkt_desc;
811 	struct rtw_pci_tx_buffer_desc *buf_desc;
812 
813 	ring = &rtwpci->tx_rings[queue];
814 
815 	size = skb->len;
816 
817 	if (queue == RTW_TX_QUEUE_BCN)
818 		rtw_pci_release_rsvd_page(rtwpci, ring);
819 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
820 		return -ENOSPC;
821 
822 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
823 	memset(pkt_desc, 0, tx_pkt_desc_sz);
824 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
825 	rtw_tx_fill_tx_desc(pkt_info, skb);
826 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
827 			     DMA_TO_DEVICE);
828 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
829 		return -EBUSY;
830 
831 	/* after this we got dma mapped, there is no way back */
832 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
833 	memset(buf_desc, 0, tx_buf_desc_sz);
834 	psb_len = (skb->len - 1) / 128 + 1;
835 	if (queue == RTW_TX_QUEUE_BCN)
836 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
837 
838 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
839 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
840 	buf_desc[0].dma = cpu_to_le32(dma);
841 	buf_desc[1].buf_size = cpu_to_le16(size);
842 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
843 
844 	tx_data = rtw_pci_get_tx_data(skb);
845 	tx_data->dma = dma;
846 	tx_data->sn = pkt_info->sn;
847 
848 	spin_lock_bh(&rtwpci->irq_lock);
849 
850 	skb_queue_tail(&ring->queue, skb);
851 
852 	if (queue == RTW_TX_QUEUE_BCN)
853 		goto out_unlock;
854 
855 	/* update write-index, and kick it off later */
856 	set_bit(queue, rtwpci->tx_queued);
857 	if (++ring->r.wp >= ring->r.len)
858 		ring->r.wp = 0;
859 
860 out_unlock:
861 	spin_unlock_bh(&rtwpci->irq_lock);
862 
863 	return 0;
864 }
865 
866 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
867 					u32 size)
868 {
869 	struct sk_buff *skb;
870 	struct rtw_tx_pkt_info pkt_info = {0};
871 	u8 reg_bcn_work;
872 	int ret;
873 
874 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
875 	if (!skb)
876 		return -ENOMEM;
877 
878 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
879 	if (ret) {
880 		rtw_err(rtwdev, "failed to write rsvd page data\n");
881 		return ret;
882 	}
883 
884 	/* reserved pages go through beacon queue */
885 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
886 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
887 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
888 
889 	return 0;
890 }
891 
892 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
893 {
894 	struct sk_buff *skb;
895 	struct rtw_tx_pkt_info pkt_info = {0};
896 	int ret;
897 
898 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
899 	if (!skb)
900 		return -ENOMEM;
901 
902 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
903 	if (ret) {
904 		rtw_err(rtwdev, "failed to write h2c data\n");
905 		return ret;
906 	}
907 
908 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
909 
910 	return 0;
911 }
912 
913 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
914 			    struct rtw_tx_pkt_info *pkt_info,
915 			    struct sk_buff *skb)
916 {
917 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
918 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
919 	struct rtw_pci_tx_ring *ring;
920 	int ret;
921 
922 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
923 	if (ret)
924 		return ret;
925 
926 	ring = &rtwpci->tx_rings[queue];
927 	spin_lock_bh(&rtwpci->irq_lock);
928 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
929 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
930 		ring->queue_stopped = true;
931 	}
932 	spin_unlock_bh(&rtwpci->irq_lock);
933 
934 	return 0;
935 }
936 
937 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
938 			   u8 hw_queue)
939 {
940 	struct ieee80211_hw *hw = rtwdev->hw;
941 	struct ieee80211_tx_info *info;
942 	struct rtw_pci_tx_ring *ring;
943 	struct rtw_pci_tx_data *tx_data;
944 	struct sk_buff *skb;
945 	u32 count;
946 	u32 bd_idx_addr;
947 	u32 bd_idx, cur_rp, rp_idx;
948 	u16 q_map;
949 
950 	ring = &rtwpci->tx_rings[hw_queue];
951 
952 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
953 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
954 	cur_rp = bd_idx >> 16;
955 	cur_rp &= TRX_BD_IDX_MASK;
956 	rp_idx = ring->r.rp;
957 	if (cur_rp >= ring->r.rp)
958 		count = cur_rp - ring->r.rp;
959 	else
960 		count = ring->r.len - (ring->r.rp - cur_rp);
961 
962 	while (count--) {
963 		skb = skb_dequeue(&ring->queue);
964 		if (!skb) {
965 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
966 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
967 			break;
968 		}
969 		tx_data = rtw_pci_get_tx_data(skb);
970 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
971 				 DMA_TO_DEVICE);
972 
973 		/* just free command packets from host to card */
974 		if (hw_queue == RTW_TX_QUEUE_H2C) {
975 			dev_kfree_skb_irq(skb);
976 			continue;
977 		}
978 
979 		if (ring->queue_stopped &&
980 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
981 			q_map = skb_get_queue_mapping(skb);
982 			ieee80211_wake_queue(hw, q_map);
983 			ring->queue_stopped = false;
984 		}
985 
986 		if (++rp_idx >= ring->r.len)
987 			rp_idx = 0;
988 
989 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
990 
991 		info = IEEE80211_SKB_CB(skb);
992 
993 		/* enqueue to wait for tx report */
994 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
995 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
996 			continue;
997 		}
998 
999 		/* always ACK for others, then they won't be marked as drop */
1000 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1001 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1002 		else
1003 			info->flags |= IEEE80211_TX_STAT_ACK;
1004 
1005 		ieee80211_tx_info_clear_status(info);
1006 		ieee80211_tx_status_irqsafe(hw, skb);
1007 	}
1008 
1009 	ring->r.rp = cur_rp;
1010 }
1011 
1012 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1013 {
1014 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1015 	struct napi_struct *napi = &rtwpci->napi;
1016 
1017 	napi_schedule(napi);
1018 }
1019 
1020 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1021 				     struct rtw_pci *rtwpci)
1022 {
1023 	struct rtw_pci_rx_ring *ring;
1024 	int count = 0;
1025 	u32 tmp, cur_wp;
1026 
1027 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1028 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1029 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1030 	if (cur_wp >= ring->r.wp)
1031 		count = cur_wp - ring->r.wp;
1032 	else
1033 		count = ring->r.len - (ring->r.wp - cur_wp);
1034 
1035 	return count;
1036 }
1037 
1038 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1039 			   u8 hw_queue, u32 limit)
1040 {
1041 	const struct rtw_chip_info *chip = rtwdev->chip;
1042 	struct napi_struct *napi = &rtwpci->napi;
1043 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1044 	struct rtw_rx_pkt_stat pkt_stat;
1045 	struct ieee80211_rx_status rx_status;
1046 	struct sk_buff *skb, *new;
1047 	u32 cur_rp = ring->r.rp;
1048 	u32 count, rx_done = 0;
1049 	u32 pkt_offset;
1050 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1051 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1052 	u32 new_len;
1053 	u8 *rx_desc;
1054 	dma_addr_t dma;
1055 
1056 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1057 	count = min(count, limit);
1058 
1059 	while (count--) {
1060 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1061 		skb = ring->buf[cur_rp];
1062 		dma = *((dma_addr_t *)skb->cb);
1063 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1064 					DMA_FROM_DEVICE);
1065 		rx_desc = skb->data;
1066 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1067 
1068 		/* offset from rx_desc to payload */
1069 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1070 			     pkt_stat.shift;
1071 
1072 		/* allocate a new skb for this frame,
1073 		 * discard the frame if none available
1074 		 */
1075 		new_len = pkt_stat.pkt_len + pkt_offset;
1076 		new = dev_alloc_skb(new_len);
1077 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1078 			goto next_rp;
1079 
1080 		/* put the DMA data including rx_desc from phy to new skb */
1081 		skb_put_data(new, skb->data, new_len);
1082 
1083 		if (pkt_stat.is_c2h) {
1084 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1085 		} else {
1086 			/* remove rx_desc */
1087 			skb_pull(new, pkt_offset);
1088 
1089 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1090 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1091 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1092 			rx_done++;
1093 		}
1094 
1095 next_rp:
1096 		/* new skb delivered to mac80211, re-enable original skb DMA */
1097 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1098 					    buf_desc_sz);
1099 
1100 		/* host read next element in ring */
1101 		if (++cur_rp >= ring->r.len)
1102 			cur_rp = 0;
1103 	}
1104 
1105 	ring->r.rp = cur_rp;
1106 	/* 'rp', the last position we have read, is seen as previous posistion
1107 	 * of 'wp' that is used to calculate 'count' next time.
1108 	 */
1109 	ring->r.wp = cur_rp;
1110 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1111 
1112 	return rx_done;
1113 }
1114 
1115 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1116 				   struct rtw_pci *rtwpci, u32 *irq_status)
1117 {
1118 	unsigned long flags;
1119 
1120 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1121 
1122 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1123 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1124 	if (rtw_chip_wcpu_11ac(rtwdev))
1125 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1126 	else
1127 		irq_status[3] = 0;
1128 	irq_status[0] &= rtwpci->irq_mask[0];
1129 	irq_status[1] &= rtwpci->irq_mask[1];
1130 	irq_status[3] &= rtwpci->irq_mask[3];
1131 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1132 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1133 	if (rtw_chip_wcpu_11ac(rtwdev))
1134 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1135 
1136 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1137 }
1138 
1139 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1140 {
1141 	struct rtw_dev *rtwdev = dev;
1142 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1143 
1144 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1145 	 * thread function
1146 	 *
1147 	 * disable HIMR here to also avoid new HISR flag being raised before
1148 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1149 	 * are cleared, the edge-triggered interrupt will not be generated when
1150 	 * a new HISR flag is set.
1151 	 */
1152 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1153 
1154 	return IRQ_WAKE_THREAD;
1155 }
1156 
1157 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1158 {
1159 	struct rtw_dev *rtwdev = dev;
1160 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1161 	u32 irq_status[4];
1162 	bool rx = false;
1163 
1164 	spin_lock_bh(&rtwpci->irq_lock);
1165 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1166 
1167 	if (irq_status[0] & IMR_MGNTDOK)
1168 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1169 	if (irq_status[0] & IMR_HIGHDOK)
1170 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1171 	if (irq_status[0] & IMR_BEDOK)
1172 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1173 	if (irq_status[0] & IMR_BKDOK)
1174 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1175 	if (irq_status[0] & IMR_VODOK)
1176 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1177 	if (irq_status[0] & IMR_VIDOK)
1178 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1179 	if (irq_status[3] & IMR_H2CDOK)
1180 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1181 	if (irq_status[0] & IMR_ROK) {
1182 		rtw_pci_rx_isr(rtwdev);
1183 		rx = true;
1184 	}
1185 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1186 		rtw_fw_c2h_cmd_isr(rtwdev);
1187 
1188 	/* all of the jobs for this interrupt have been done */
1189 	if (rtwpci->running)
1190 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1191 	spin_unlock_bh(&rtwpci->irq_lock);
1192 
1193 	return IRQ_HANDLED;
1194 }
1195 
1196 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1197 			      struct pci_dev *pdev)
1198 {
1199 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1200 	unsigned long len;
1201 	u8 bar_id = 2;
1202 	int ret;
1203 
1204 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1205 	if (ret) {
1206 		rtw_err(rtwdev, "failed to request pci regions\n");
1207 		return ret;
1208 	}
1209 
1210 	len = pci_resource_len(pdev, bar_id);
1211 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1212 	if (!rtwpci->mmap) {
1213 		pci_release_regions(pdev);
1214 		rtw_err(rtwdev, "failed to map pci memory\n");
1215 		return -ENOMEM;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1222 				 struct pci_dev *pdev)
1223 {
1224 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1225 
1226 	if (rtwpci->mmap) {
1227 		pci_iounmap(pdev, rtwpci->mmap);
1228 		pci_release_regions(pdev);
1229 	}
1230 }
1231 
1232 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1233 {
1234 	u16 write_addr;
1235 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1236 	u8 flag;
1237 	u8 cnt;
1238 
1239 	write_addr = addr & BITS_DBI_ADDR_MASK;
1240 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1241 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1242 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1243 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1244 
1245 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1246 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1247 		if (flag == 0)
1248 			return;
1249 
1250 		udelay(10);
1251 	}
1252 
1253 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1254 }
1255 
1256 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1257 {
1258 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1259 	u8 flag;
1260 	u8 cnt;
1261 
1262 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1263 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1264 
1265 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1266 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1267 		if (flag == 0) {
1268 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1269 			*value = rtw_read8(rtwdev, read_addr);
1270 			return 0;
1271 		}
1272 
1273 		udelay(10);
1274 	}
1275 
1276 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1277 	return -EIO;
1278 }
1279 
1280 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1281 {
1282 	u8 page;
1283 	u8 wflag;
1284 	u8 cnt;
1285 
1286 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1287 
1288 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1289 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1290 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1291 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1292 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1293 
1294 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1295 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1296 					BIT_MDIO_WFLAG_V1);
1297 		if (wflag == 0)
1298 			return;
1299 
1300 		udelay(10);
1301 	}
1302 
1303 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1304 }
1305 
1306 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1307 {
1308 	u8 value;
1309 	int ret;
1310 
1311 	if (rtw_pci_disable_aspm)
1312 		return;
1313 
1314 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1315 	if (ret) {
1316 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1317 		return;
1318 	}
1319 
1320 	if (enable)
1321 		value |= BIT_CLKREQ_SW_EN;
1322 	else
1323 		value &= ~BIT_CLKREQ_SW_EN;
1324 
1325 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1326 }
1327 
1328 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1329 {
1330 	u8 value;
1331 	int ret;
1332 
1333 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1334 	if (ret) {
1335 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1336 		return;
1337 	}
1338 
1339 	if (enable)
1340 		value &= ~BIT_CLKREQ_N_PAD;
1341 	else
1342 		value |= BIT_CLKREQ_N_PAD;
1343 
1344 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1345 }
1346 
1347 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1348 {
1349 	u8 value;
1350 	int ret;
1351 
1352 	if (rtw_pci_disable_aspm)
1353 		return;
1354 
1355 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1356 	if (ret) {
1357 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1358 		return;
1359 	}
1360 
1361 	if (enable)
1362 		value |= BIT_L1_SW_EN;
1363 	else
1364 		value &= ~BIT_L1_SW_EN;
1365 
1366 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1367 }
1368 
1369 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1370 {
1371 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1372 
1373 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1374 	 * only be enabled when host supports it.
1375 	 *
1376 	 * And ASPM mechanism should be enabled when driver/firmware enters
1377 	 * power save mode, without having heavy traffic. Because we've
1378 	 * experienced some inter-operability issues that the link tends
1379 	 * to enter L1 state on the fly even when driver is having high
1380 	 * throughput. This is probably because the ASPM behavior slightly
1381 	 * varies from different SOC.
1382 	 */
1383 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1384 		return;
1385 
1386 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1387 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1388 		rtw_pci_aspm_set(rtwdev, enter);
1389 }
1390 
1391 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1392 {
1393 	const struct rtw_chip_info *chip = rtwdev->chip;
1394 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1395 	struct pci_dev *pdev = rtwpci->pdev;
1396 	u16 link_ctrl;
1397 	int ret;
1398 
1399 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1400 	 * to add clock delay to cover the REFCLK timing gap.
1401 	 */
1402 	if (chip->id == RTW_CHIP_TYPE_8822C)
1403 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1404 
1405 	/* Though there is standard PCIE configuration space to set the
1406 	 * link control register, but by Realtek's design, driver should
1407 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1408 	 *
1409 	 * These functions are implemented by two HW modules associated,
1410 	 * one is responsible to access PCIE configuration space to
1411 	 * follow the host settings, and another is in charge of doing
1412 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1413 	 * the host does not support it, and due to some reasons or wrong
1414 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1415 	 * loss if HW misbehaves on the link.
1416 	 *
1417 	 * Hence it's designed that driver should first check the PCIE
1418 	 * configuration space is sync'ed and enabled, then driver can turn
1419 	 * on the other module that is actually working on the mechanism.
1420 	 */
1421 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1422 	if (ret) {
1423 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1424 		return;
1425 	}
1426 
1427 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1428 		rtw_pci_clkreq_set(rtwdev, true);
1429 
1430 	rtwpci->link_ctrl = link_ctrl;
1431 }
1432 
1433 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1434 {
1435 	const struct rtw_chip_info *chip = rtwdev->chip;
1436 
1437 	switch (chip->id) {
1438 	case RTW_CHIP_TYPE_8822C:
1439 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1440 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1441 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1442 		break;
1443 	default:
1444 		break;
1445 	}
1446 }
1447 
1448 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1449 {
1450 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1451 	const struct rtw_chip_info *chip = rtwdev->chip;
1452 	struct pci_dev *pdev = rtwpci->pdev;
1453 	const struct rtw_intf_phy_para *para;
1454 	u16 cut;
1455 	u16 value;
1456 	u16 offset;
1457 	int i;
1458 	int ret;
1459 
1460 	cut = BIT(0) << rtwdev->hal.cut_version;
1461 
1462 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1463 		para = &chip->intf_table->gen1_para[i];
1464 		if (!(para->cut_mask & cut))
1465 			continue;
1466 		if (para->offset == 0xffff)
1467 			break;
1468 		offset = para->offset;
1469 		value = para->value;
1470 		if (para->ip_sel == RTW_IP_SEL_PHY)
1471 			rtw_mdio_write(rtwdev, offset, value, true);
1472 		else
1473 			rtw_dbi_write8(rtwdev, offset, value);
1474 	}
1475 
1476 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1477 		para = &chip->intf_table->gen2_para[i];
1478 		if (!(para->cut_mask & cut))
1479 			continue;
1480 		if (para->offset == 0xffff)
1481 			break;
1482 		offset = para->offset;
1483 		value = para->value;
1484 		if (para->ip_sel == RTW_IP_SEL_PHY)
1485 			rtw_mdio_write(rtwdev, offset, value, false);
1486 		else
1487 			rtw_dbi_write8(rtwdev, offset, value);
1488 	}
1489 
1490 	rtw_pci_link_cfg(rtwdev);
1491 
1492 	/* Disable 8821ce completion timeout by default */
1493 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1494 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1495 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1496 		if (ret)
1497 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1498 				ret);
1499 	}
1500 }
1501 
1502 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1503 {
1504 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1505 	struct rtw_dev *rtwdev = hw->priv;
1506 	const struct rtw_chip_info *chip = rtwdev->chip;
1507 	struct rtw_efuse *efuse = &rtwdev->efuse;
1508 
1509 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1510 		rtw_pci_clkreq_pad_low(rtwdev, true);
1511 	return 0;
1512 }
1513 
1514 static int __maybe_unused rtw_pci_resume(struct device *dev)
1515 {
1516 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1517 	struct rtw_dev *rtwdev = hw->priv;
1518 	const struct rtw_chip_info *chip = rtwdev->chip;
1519 	struct rtw_efuse *efuse = &rtwdev->efuse;
1520 
1521 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1522 		rtw_pci_clkreq_pad_low(rtwdev, false);
1523 	return 0;
1524 }
1525 
1526 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1527 EXPORT_SYMBOL(rtw_pm_ops);
1528 
1529 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1530 {
1531 	int ret;
1532 
1533 	ret = pci_enable_device(pdev);
1534 	if (ret) {
1535 		rtw_err(rtwdev, "failed to enable pci device\n");
1536 		return ret;
1537 	}
1538 
1539 	pci_set_master(pdev);
1540 	pci_set_drvdata(pdev, rtwdev->hw);
1541 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1542 
1543 	return 0;
1544 }
1545 
1546 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1547 {
1548 	pci_disable_device(pdev);
1549 }
1550 
1551 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1552 {
1553 	struct rtw_pci *rtwpci;
1554 	int ret;
1555 
1556 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1557 	rtwpci->pdev = pdev;
1558 
1559 	/* after this driver can access to hw registers */
1560 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1561 	if (ret) {
1562 		rtw_err(rtwdev, "failed to request pci io region\n");
1563 		goto err_out;
1564 	}
1565 
1566 	ret = rtw_pci_init(rtwdev);
1567 	if (ret) {
1568 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1569 		goto err_io_unmap;
1570 	}
1571 
1572 	return 0;
1573 
1574 err_io_unmap:
1575 	rtw_pci_io_unmapping(rtwdev, pdev);
1576 
1577 err_out:
1578 	return ret;
1579 }
1580 
1581 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1582 {
1583 	rtw_pci_deinit(rtwdev);
1584 	rtw_pci_io_unmapping(rtwdev, pdev);
1585 }
1586 
1587 static struct rtw_hci_ops rtw_pci_ops = {
1588 	.tx_write = rtw_pci_tx_write,
1589 	.tx_kick_off = rtw_pci_tx_kick_off,
1590 	.flush_queues = rtw_pci_flush_queues,
1591 	.setup = rtw_pci_setup,
1592 	.start = rtw_pci_start,
1593 	.stop = rtw_pci_stop,
1594 	.deep_ps = rtw_pci_deep_ps,
1595 	.link_ps = rtw_pci_link_ps,
1596 	.interface_cfg = rtw_pci_interface_cfg,
1597 
1598 	.read8 = rtw_pci_read8,
1599 	.read16 = rtw_pci_read16,
1600 	.read32 = rtw_pci_read32,
1601 	.write8 = rtw_pci_write8,
1602 	.write16 = rtw_pci_write16,
1603 	.write32 = rtw_pci_write32,
1604 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1605 	.write_data_h2c = rtw_pci_write_data_h2c,
1606 };
1607 
1608 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1609 {
1610 	unsigned int flags = PCI_IRQ_LEGACY;
1611 	int ret;
1612 
1613 	if (!rtw_disable_msi)
1614 		flags |= PCI_IRQ_MSI;
1615 
1616 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1617 	if (ret < 0) {
1618 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1619 		return ret;
1620 	}
1621 
1622 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1623 					rtw_pci_interrupt_handler,
1624 					rtw_pci_interrupt_threadfn,
1625 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1626 	if (ret) {
1627 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1628 		pci_free_irq_vectors(pdev);
1629 	}
1630 
1631 	return ret;
1632 }
1633 
1634 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1635 {
1636 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1637 	pci_free_irq_vectors(pdev);
1638 }
1639 
1640 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1641 {
1642 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1643 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1644 					      priv);
1645 	int work_done = 0;
1646 
1647 	if (rtwpci->rx_no_aspm)
1648 		rtw_pci_link_ps(rtwdev, false);
1649 
1650 	while (work_done < budget) {
1651 		u32 work_done_once;
1652 
1653 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1654 						 budget - work_done);
1655 		if (work_done_once == 0)
1656 			break;
1657 		work_done += work_done_once;
1658 	}
1659 	if (work_done < budget) {
1660 		napi_complete_done(napi, work_done);
1661 		spin_lock_bh(&rtwpci->irq_lock);
1662 		if (rtwpci->running)
1663 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1664 		spin_unlock_bh(&rtwpci->irq_lock);
1665 		/* When ISR happens during polling and before napi_complete
1666 		 * while no further data is received. Data on the dma_ring will
1667 		 * not be processed immediately. Check whether dma ring is
1668 		 * empty and perform napi_schedule accordingly.
1669 		 */
1670 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1671 			napi_schedule(napi);
1672 	}
1673 	if (rtwpci->rx_no_aspm)
1674 		rtw_pci_link_ps(rtwdev, true);
1675 
1676 	return work_done;
1677 }
1678 
1679 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1680 {
1681 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1682 
1683 	init_dummy_netdev(&rtwpci->netdev);
1684 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1685 }
1686 
1687 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1688 {
1689 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1690 
1691 	rtw_pci_napi_stop(rtwdev);
1692 	netif_napi_del(&rtwpci->napi);
1693 }
1694 
1695 int rtw_pci_probe(struct pci_dev *pdev,
1696 		  const struct pci_device_id *id)
1697 {
1698 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1699 	struct ieee80211_hw *hw;
1700 	struct rtw_dev *rtwdev;
1701 	struct rtw_pci *rtwpci;
1702 	int drv_data_size;
1703 	int ret;
1704 
1705 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1706 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1707 	if (!hw) {
1708 		dev_err(&pdev->dev, "failed to allocate hw\n");
1709 		return -ENOMEM;
1710 	}
1711 
1712 	rtwdev = hw->priv;
1713 	rtwdev->hw = hw;
1714 	rtwdev->dev = &pdev->dev;
1715 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1716 	rtwdev->hci.ops = &rtw_pci_ops;
1717 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1718 
1719 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1720 	atomic_set(&rtwpci->link_usage, 1);
1721 
1722 	ret = rtw_core_init(rtwdev);
1723 	if (ret)
1724 		goto err_release_hw;
1725 
1726 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1727 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1728 		pdev->vendor, pdev->device, pdev->revision);
1729 
1730 	ret = rtw_pci_claim(rtwdev, pdev);
1731 	if (ret) {
1732 		rtw_err(rtwdev, "failed to claim pci device\n");
1733 		goto err_deinit_core;
1734 	}
1735 
1736 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1737 	if (ret) {
1738 		rtw_err(rtwdev, "failed to setup pci resources\n");
1739 		goto err_pci_declaim;
1740 	}
1741 
1742 	rtw_pci_napi_init(rtwdev);
1743 
1744 	ret = rtw_chip_info_setup(rtwdev);
1745 	if (ret) {
1746 		rtw_err(rtwdev, "failed to setup chip information\n");
1747 		goto err_destroy_pci;
1748 	}
1749 
1750 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1751 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1752 		rtwpci->rx_no_aspm = true;
1753 
1754 	rtw_pci_phy_cfg(rtwdev);
1755 
1756 	ret = rtw_register_hw(rtwdev, hw);
1757 	if (ret) {
1758 		rtw_err(rtwdev, "failed to register hw\n");
1759 		goto err_destroy_pci;
1760 	}
1761 
1762 	ret = rtw_pci_request_irq(rtwdev, pdev);
1763 	if (ret) {
1764 		ieee80211_unregister_hw(hw);
1765 		goto err_destroy_pci;
1766 	}
1767 
1768 	return 0;
1769 
1770 err_destroy_pci:
1771 	rtw_pci_napi_deinit(rtwdev);
1772 	rtw_pci_destroy(rtwdev, pdev);
1773 
1774 err_pci_declaim:
1775 	rtw_pci_declaim(rtwdev, pdev);
1776 
1777 err_deinit_core:
1778 	rtw_core_deinit(rtwdev);
1779 
1780 err_release_hw:
1781 	ieee80211_free_hw(hw);
1782 
1783 	return ret;
1784 }
1785 EXPORT_SYMBOL(rtw_pci_probe);
1786 
1787 void rtw_pci_remove(struct pci_dev *pdev)
1788 {
1789 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1790 	struct rtw_dev *rtwdev;
1791 	struct rtw_pci *rtwpci;
1792 
1793 	if (!hw)
1794 		return;
1795 
1796 	rtwdev = hw->priv;
1797 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1798 
1799 	rtw_unregister_hw(rtwdev, hw);
1800 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1801 	rtw_pci_napi_deinit(rtwdev);
1802 	rtw_pci_destroy(rtwdev, pdev);
1803 	rtw_pci_declaim(rtwdev, pdev);
1804 	rtw_pci_free_irq(rtwdev, pdev);
1805 	rtw_core_deinit(rtwdev);
1806 	ieee80211_free_hw(hw);
1807 }
1808 EXPORT_SYMBOL(rtw_pci_remove);
1809 
1810 void rtw_pci_shutdown(struct pci_dev *pdev)
1811 {
1812 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1813 	struct rtw_dev *rtwdev;
1814 	const struct rtw_chip_info *chip;
1815 
1816 	if (!hw)
1817 		return;
1818 
1819 	rtwdev = hw->priv;
1820 	chip = rtwdev->chip;
1821 
1822 	if (chip->ops->shutdown)
1823 		chip->ops->shutdown(rtwdev);
1824 
1825 	pci_set_power_state(pdev, PCI_D3hot);
1826 }
1827 EXPORT_SYMBOL(rtw_pci_shutdown);
1828 
1829 MODULE_AUTHOR("Realtek Corporation");
1830 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1831 MODULE_LICENSE("Dual BSD/GPL");
1832