1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include "main.h" 8 #include "pci.h" 9 #include "reg.h" 10 #include "tx.h" 11 #include "rx.h" 12 #include "fw.h" 13 #include "ps.h" 14 #include "debug.h" 15 16 static bool rtw_disable_msi; 17 static bool rtw_pci_disable_aspm; 18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644); 19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644); 20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support"); 21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support"); 22 23 static u32 rtw_pci_tx_queue_idx_addr[] = { 24 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ, 25 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ, 26 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ, 27 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ, 28 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ, 29 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q, 30 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ, 31 }; 32 33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, 34 enum rtw_tx_queue_type queue) 35 { 36 switch (queue) { 37 case RTW_TX_QUEUE_BCN: 38 return TX_DESC_QSEL_BEACON; 39 case RTW_TX_QUEUE_H2C: 40 return TX_DESC_QSEL_H2C; 41 case RTW_TX_QUEUE_MGMT: 42 return TX_DESC_QSEL_MGMT; 43 case RTW_TX_QUEUE_HI0: 44 return TX_DESC_QSEL_HIGH; 45 default: 46 return skb->priority; 47 } 48 }; 49 50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr) 51 { 52 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 53 54 return readb(rtwpci->mmap + addr); 55 } 56 57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr) 58 { 59 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 60 61 return readw(rtwpci->mmap + addr); 62 } 63 64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr) 65 { 66 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 67 68 return readl(rtwpci->mmap + addr); 69 } 70 71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) 72 { 73 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 74 75 writeb(val, rtwpci->mmap + addr); 76 } 77 78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) 79 { 80 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 81 82 writew(val, rtwpci->mmap + addr); 83 } 84 85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) 86 { 87 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 88 89 writel(val, rtwpci->mmap + addr); 90 } 91 92 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev, 93 struct rtw_pci_tx_ring *tx_ring) 94 { 95 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 96 struct rtw_pci_tx_data *tx_data; 97 struct sk_buff *skb, *tmp; 98 dma_addr_t dma; 99 100 /* free every skb remained in tx list */ 101 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) { 102 __skb_unlink(skb, &tx_ring->queue); 103 tx_data = rtw_pci_get_tx_data(skb); 104 dma = tx_data->dma; 105 106 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE); 107 dev_kfree_skb_any(skb); 108 } 109 } 110 111 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev, 112 struct rtw_pci_tx_ring *tx_ring) 113 { 114 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 115 u8 *head = tx_ring->r.head; 116 u32 len = tx_ring->r.len; 117 int ring_sz = len * tx_ring->r.desc_size; 118 119 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 120 121 /* free the ring itself */ 122 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma); 123 tx_ring->r.head = NULL; 124 } 125 126 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev, 127 struct rtw_pci_rx_ring *rx_ring) 128 { 129 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 130 struct sk_buff *skb; 131 int buf_sz = RTK_PCI_RX_BUF_SIZE; 132 dma_addr_t dma; 133 int i; 134 135 for (i = 0; i < rx_ring->r.len; i++) { 136 skb = rx_ring->buf[i]; 137 if (!skb) 138 continue; 139 140 dma = *((dma_addr_t *)skb->cb); 141 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 142 dev_kfree_skb(skb); 143 rx_ring->buf[i] = NULL; 144 } 145 } 146 147 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev, 148 struct rtw_pci_rx_ring *rx_ring) 149 { 150 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 151 u8 *head = rx_ring->r.head; 152 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len; 153 154 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring); 155 156 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma); 157 } 158 159 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev) 160 { 161 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 162 struct rtw_pci_tx_ring *tx_ring; 163 struct rtw_pci_rx_ring *rx_ring; 164 int i; 165 166 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 167 tx_ring = &rtwpci->tx_rings[i]; 168 rtw_pci_free_tx_ring(rtwdev, tx_ring); 169 } 170 171 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) { 172 rx_ring = &rtwpci->rx_rings[i]; 173 rtw_pci_free_rx_ring(rtwdev, rx_ring); 174 } 175 } 176 177 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev, 178 struct rtw_pci_tx_ring *tx_ring, 179 u8 desc_size, u32 len) 180 { 181 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 182 int ring_sz = desc_size * len; 183 dma_addr_t dma; 184 u8 *head; 185 186 if (len > TRX_BD_IDX_MASK) { 187 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len); 188 return -EINVAL; 189 } 190 191 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 192 if (!head) { 193 rtw_err(rtwdev, "failed to allocate tx ring\n"); 194 return -ENOMEM; 195 } 196 197 skb_queue_head_init(&tx_ring->queue); 198 tx_ring->r.head = head; 199 tx_ring->r.dma = dma; 200 tx_ring->r.len = len; 201 tx_ring->r.desc_size = desc_size; 202 tx_ring->r.wp = 0; 203 tx_ring->r.rp = 0; 204 205 return 0; 206 } 207 208 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb, 209 struct rtw_pci_rx_ring *rx_ring, 210 u32 idx, u32 desc_sz) 211 { 212 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 213 struct rtw_pci_rx_buffer_desc *buf_desc; 214 int buf_sz = RTK_PCI_RX_BUF_SIZE; 215 dma_addr_t dma; 216 217 if (!skb) 218 return -EINVAL; 219 220 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); 221 if (dma_mapping_error(&pdev->dev, dma)) 222 return -EBUSY; 223 224 *((dma_addr_t *)skb->cb) = dma; 225 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 226 idx * desc_sz); 227 memset(buf_desc, 0, sizeof(*buf_desc)); 228 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 229 buf_desc->dma = cpu_to_le32(dma); 230 231 return 0; 232 } 233 234 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma, 235 struct rtw_pci_rx_ring *rx_ring, 236 u32 idx, u32 desc_sz) 237 { 238 struct device *dev = rtwdev->dev; 239 struct rtw_pci_rx_buffer_desc *buf_desc; 240 int buf_sz = RTK_PCI_RX_BUF_SIZE; 241 242 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE); 243 244 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 245 idx * desc_sz); 246 memset(buf_desc, 0, sizeof(*buf_desc)); 247 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 248 buf_desc->dma = cpu_to_le32(dma); 249 } 250 251 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev, 252 struct rtw_pci_rx_ring *rx_ring, 253 u8 desc_size, u32 len) 254 { 255 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 256 struct sk_buff *skb = NULL; 257 dma_addr_t dma; 258 u8 *head; 259 int ring_sz = desc_size * len; 260 int buf_sz = RTK_PCI_RX_BUF_SIZE; 261 int i, allocated; 262 int ret = 0; 263 264 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 265 if (!head) { 266 rtw_err(rtwdev, "failed to allocate rx ring\n"); 267 return -ENOMEM; 268 } 269 rx_ring->r.head = head; 270 271 for (i = 0; i < len; i++) { 272 skb = dev_alloc_skb(buf_sz); 273 if (!skb) { 274 allocated = i; 275 ret = -ENOMEM; 276 goto err_out; 277 } 278 279 memset(skb->data, 0, buf_sz); 280 rx_ring->buf[i] = skb; 281 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size); 282 if (ret) { 283 allocated = i; 284 dev_kfree_skb_any(skb); 285 goto err_out; 286 } 287 } 288 289 rx_ring->r.dma = dma; 290 rx_ring->r.len = len; 291 rx_ring->r.desc_size = desc_size; 292 rx_ring->r.wp = 0; 293 rx_ring->r.rp = 0; 294 295 return 0; 296 297 err_out: 298 for (i = 0; i < allocated; i++) { 299 skb = rx_ring->buf[i]; 300 if (!skb) 301 continue; 302 dma = *((dma_addr_t *)skb->cb); 303 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 304 dev_kfree_skb_any(skb); 305 rx_ring->buf[i] = NULL; 306 } 307 dma_free_coherent(&pdev->dev, ring_sz, head, dma); 308 309 rtw_err(rtwdev, "failed to init rx buffer\n"); 310 311 return ret; 312 } 313 314 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev) 315 { 316 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 317 struct rtw_pci_tx_ring *tx_ring; 318 struct rtw_pci_rx_ring *rx_ring; 319 const struct rtw_chip_info *chip = rtwdev->chip; 320 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0; 321 int tx_desc_size, rx_desc_size; 322 u32 len; 323 int ret; 324 325 tx_desc_size = chip->tx_buf_desc_sz; 326 327 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 328 tx_ring = &rtwpci->tx_rings[i]; 329 len = max_num_of_tx_queue(i); 330 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len); 331 if (ret) 332 goto out; 333 } 334 335 rx_desc_size = chip->rx_buf_desc_sz; 336 337 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) { 338 rx_ring = &rtwpci->rx_rings[j]; 339 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size, 340 RTK_MAX_RX_DESC_NUM); 341 if (ret) 342 goto out; 343 } 344 345 return 0; 346 347 out: 348 tx_alloced = i; 349 for (i = 0; i < tx_alloced; i++) { 350 tx_ring = &rtwpci->tx_rings[i]; 351 rtw_pci_free_tx_ring(rtwdev, tx_ring); 352 } 353 354 rx_alloced = j; 355 for (j = 0; j < rx_alloced; j++) { 356 rx_ring = &rtwpci->rx_rings[j]; 357 rtw_pci_free_rx_ring(rtwdev, rx_ring); 358 } 359 360 return ret; 361 } 362 363 static void rtw_pci_deinit(struct rtw_dev *rtwdev) 364 { 365 rtw_pci_free_trx_ring(rtwdev); 366 } 367 368 static int rtw_pci_init(struct rtw_dev *rtwdev) 369 { 370 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 371 int ret = 0; 372 373 rtwpci->irq_mask[0] = IMR_HIGHDOK | 374 IMR_MGNTDOK | 375 IMR_BKDOK | 376 IMR_BEDOK | 377 IMR_VIDOK | 378 IMR_VODOK | 379 IMR_ROK | 380 IMR_BCNDMAINT_E | 381 IMR_C2HCMD | 382 0; 383 rtwpci->irq_mask[1] = IMR_TXFOVW | 384 0; 385 rtwpci->irq_mask[3] = IMR_H2CDOK | 386 0; 387 spin_lock_init(&rtwpci->irq_lock); 388 spin_lock_init(&rtwpci->hwirq_lock); 389 ret = rtw_pci_init_trx_ring(rtwdev); 390 391 return ret; 392 } 393 394 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev) 395 { 396 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 397 u32 len; 398 u8 tmp; 399 dma_addr_t dma; 400 401 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3); 402 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7); 403 404 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma; 405 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma); 406 407 if (!rtw_chip_wcpu_11n(rtwdev)) { 408 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len; 409 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma; 410 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0; 411 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0; 412 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK); 413 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma); 414 } 415 416 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len; 417 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma; 418 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0; 419 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0; 420 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK); 421 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma); 422 423 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len; 424 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma; 425 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0; 426 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0; 427 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK); 428 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma); 429 430 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len; 431 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma; 432 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0; 433 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0; 434 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK); 435 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma); 436 437 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len; 438 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma; 439 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0; 440 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0; 441 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK); 442 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma); 443 444 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len; 445 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma; 446 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0; 447 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0; 448 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK); 449 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma); 450 451 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len; 452 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma; 453 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0; 454 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0; 455 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK); 456 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma); 457 458 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len; 459 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma; 460 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0; 461 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0; 462 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK); 463 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma); 464 465 /* reset read/write point */ 466 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff); 467 468 /* reset H2C Queue index in a single write */ 469 if (rtw_chip_wcpu_11ac(rtwdev)) 470 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR, 471 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX); 472 } 473 474 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev) 475 { 476 rtw_pci_reset_buf_desc(rtwdev); 477 } 478 479 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev, 480 struct rtw_pci *rtwpci, bool exclude_rx) 481 { 482 unsigned long flags; 483 u32 imr0_unmask = exclude_rx ? IMR_ROK : 0; 484 485 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 486 487 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask); 488 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]); 489 if (rtw_chip_wcpu_11ac(rtwdev)) 490 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]); 491 492 rtwpci->irq_enabled = true; 493 494 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 495 } 496 497 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev, 498 struct rtw_pci *rtwpci) 499 { 500 unsigned long flags; 501 502 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 503 504 if (!rtwpci->irq_enabled) 505 goto out; 506 507 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0); 508 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0); 509 if (rtw_chip_wcpu_11ac(rtwdev)) 510 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0); 511 512 rtwpci->irq_enabled = false; 513 514 out: 515 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 516 } 517 518 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 519 { 520 /* reset dma and rx tag */ 521 rtw_write32_set(rtwdev, RTK_PCI_CTRL, 522 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN); 523 rtwpci->rx_tag = 0; 524 } 525 526 static int rtw_pci_setup(struct rtw_dev *rtwdev) 527 { 528 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 529 530 rtw_pci_reset_trx_ring(rtwdev); 531 rtw_pci_dma_reset(rtwdev, rtwpci); 532 533 return 0; 534 } 535 536 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 537 { 538 struct rtw_pci_tx_ring *tx_ring; 539 enum rtw_tx_queue_type queue; 540 541 rtw_pci_reset_trx_ring(rtwdev); 542 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 543 tx_ring = &rtwpci->tx_rings[queue]; 544 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 545 } 546 } 547 548 static void rtw_pci_napi_start(struct rtw_dev *rtwdev) 549 { 550 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 551 552 if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) 553 return; 554 555 napi_enable(&rtwpci->napi); 556 } 557 558 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev) 559 { 560 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 561 562 if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) 563 return; 564 565 napi_synchronize(&rtwpci->napi); 566 napi_disable(&rtwpci->napi); 567 } 568 569 static int rtw_pci_start(struct rtw_dev *rtwdev) 570 { 571 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 572 573 rtw_pci_napi_start(rtwdev); 574 575 spin_lock_bh(&rtwpci->irq_lock); 576 rtwpci->running = true; 577 rtw_pci_enable_interrupt(rtwdev, rtwpci, false); 578 spin_unlock_bh(&rtwpci->irq_lock); 579 580 return 0; 581 } 582 583 static void rtw_pci_stop(struct rtw_dev *rtwdev) 584 { 585 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 586 struct pci_dev *pdev = rtwpci->pdev; 587 588 spin_lock_bh(&rtwpci->irq_lock); 589 rtwpci->running = false; 590 rtw_pci_disable_interrupt(rtwdev, rtwpci); 591 spin_unlock_bh(&rtwpci->irq_lock); 592 593 synchronize_irq(pdev->irq); 594 rtw_pci_napi_stop(rtwdev); 595 596 spin_lock_bh(&rtwpci->irq_lock); 597 rtw_pci_dma_release(rtwdev, rtwpci); 598 spin_unlock_bh(&rtwpci->irq_lock); 599 } 600 601 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev) 602 { 603 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 604 struct rtw_pci_tx_ring *tx_ring; 605 enum rtw_tx_queue_type queue; 606 bool tx_empty = true; 607 608 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) 609 goto enter_deep_ps; 610 611 lockdep_assert_held(&rtwpci->irq_lock); 612 613 /* Deep PS state is not allowed to TX-DMA */ 614 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 615 /* BCN queue is rsvd page, does not have DMA interrupt 616 * H2C queue is managed by firmware 617 */ 618 if (queue == RTW_TX_QUEUE_BCN || 619 queue == RTW_TX_QUEUE_H2C) 620 continue; 621 622 tx_ring = &rtwpci->tx_rings[queue]; 623 624 /* check if there is any skb DMAing */ 625 if (skb_queue_len(&tx_ring->queue)) { 626 tx_empty = false; 627 break; 628 } 629 } 630 631 if (!tx_empty) { 632 rtw_dbg(rtwdev, RTW_DBG_PS, 633 "TX path not empty, cannot enter deep power save state\n"); 634 return; 635 } 636 enter_deep_ps: 637 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); 638 rtw_power_mode_change(rtwdev, true); 639 } 640 641 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev) 642 { 643 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 644 645 lockdep_assert_held(&rtwpci->irq_lock); 646 647 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 648 rtw_power_mode_change(rtwdev, false); 649 } 650 651 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter) 652 { 653 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 654 655 spin_lock_bh(&rtwpci->irq_lock); 656 657 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 658 rtw_pci_deep_ps_enter(rtwdev); 659 660 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 661 rtw_pci_deep_ps_leave(rtwdev); 662 663 spin_unlock_bh(&rtwpci->irq_lock); 664 } 665 666 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci, 667 struct rtw_pci_tx_ring *ring) 668 { 669 struct sk_buff *prev = skb_dequeue(&ring->queue); 670 struct rtw_pci_tx_data *tx_data; 671 dma_addr_t dma; 672 673 if (!prev) 674 return; 675 676 tx_data = rtw_pci_get_tx_data(prev); 677 dma = tx_data->dma; 678 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE); 679 dev_kfree_skb_any(prev); 680 } 681 682 static void rtw_pci_dma_check(struct rtw_dev *rtwdev, 683 struct rtw_pci_rx_ring *rx_ring, 684 u32 idx) 685 { 686 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 687 const struct rtw_chip_info *chip = rtwdev->chip; 688 struct rtw_pci_rx_buffer_desc *buf_desc; 689 u32 desc_sz = chip->rx_buf_desc_sz; 690 u16 total_pkt_size; 691 692 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 693 idx * desc_sz); 694 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size); 695 696 /* rx tag mismatch, throw a warning */ 697 if (total_pkt_size != rtwpci->rx_tag) 698 rtw_warn(rtwdev, "pci bus timeout, check dma status\n"); 699 700 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX; 701 } 702 703 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q) 704 { 705 u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q]; 706 u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2); 707 708 return FIELD_GET(TRX_BD_IDX_MASK, bd_idx); 709 } 710 711 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop) 712 { 713 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 714 struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q]; 715 u32 cur_rp; 716 u8 i; 717 718 /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a 719 * bit dynamic, it's hard to define a reasonable fixed total timeout to 720 * use read_poll_timeout* helper. Instead, we can ensure a reasonable 721 * polling times, so we just use for loop with udelay here. 722 */ 723 for (i = 0; i < 30; i++) { 724 cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q); 725 if (cur_rp == ring->r.wp) 726 return; 727 728 udelay(1); 729 } 730 731 if (!drop) 732 rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q); 733 } 734 735 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues, 736 bool drop) 737 { 738 u8 q; 739 740 for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) { 741 /* Unnecessary to flush BCN, H2C and HI tx queues. */ 742 if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C || 743 q == RTW_TX_QUEUE_HI0) 744 continue; 745 746 if (pci_queues & BIT(q)) 747 __pci_flush_queue(rtwdev, q, drop); 748 } 749 } 750 751 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop) 752 { 753 u32 pci_queues = 0; 754 u8 i; 755 756 /* If all of the hardware queues are requested to flush, 757 * flush all of the pci queues. 758 */ 759 if (queues == BIT(rtwdev->hw->queues) - 1) { 760 pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1; 761 } else { 762 for (i = 0; i < rtwdev->hw->queues; i++) 763 if (queues & BIT(i)) 764 pci_queues |= BIT(rtw_tx_ac_to_hwq(i)); 765 } 766 767 __rtw_pci_flush_queues(rtwdev, pci_queues, drop); 768 } 769 770 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, 771 enum rtw_tx_queue_type queue) 772 { 773 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 774 struct rtw_pci_tx_ring *ring; 775 u32 bd_idx; 776 777 ring = &rtwpci->tx_rings[queue]; 778 bd_idx = rtw_pci_tx_queue_idx_addr[queue]; 779 780 spin_lock_bh(&rtwpci->irq_lock); 781 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) 782 rtw_pci_deep_ps_leave(rtwdev); 783 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK); 784 spin_unlock_bh(&rtwpci->irq_lock); 785 } 786 787 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev) 788 { 789 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 790 enum rtw_tx_queue_type queue; 791 792 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) 793 if (test_and_clear_bit(queue, rtwpci->tx_queued)) 794 rtw_pci_tx_kick_off_queue(rtwdev, queue); 795 } 796 797 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev, 798 struct rtw_tx_pkt_info *pkt_info, 799 struct sk_buff *skb, 800 enum rtw_tx_queue_type queue) 801 { 802 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 803 const struct rtw_chip_info *chip = rtwdev->chip; 804 struct rtw_pci_tx_ring *ring; 805 struct rtw_pci_tx_data *tx_data; 806 dma_addr_t dma; 807 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz; 808 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz; 809 u32 size; 810 u32 psb_len; 811 u8 *pkt_desc; 812 struct rtw_pci_tx_buffer_desc *buf_desc; 813 814 ring = &rtwpci->tx_rings[queue]; 815 816 size = skb->len; 817 818 if (queue == RTW_TX_QUEUE_BCN) 819 rtw_pci_release_rsvd_page(rtwpci, ring); 820 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len)) 821 return -ENOSPC; 822 823 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); 824 memset(pkt_desc, 0, tx_pkt_desc_sz); 825 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue); 826 rtw_tx_fill_tx_desc(pkt_info, skb); 827 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len, 828 DMA_TO_DEVICE); 829 if (dma_mapping_error(&rtwpci->pdev->dev, dma)) 830 return -EBUSY; 831 832 /* after this we got dma mapped, there is no way back */ 833 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz); 834 memset(buf_desc, 0, tx_buf_desc_sz); 835 psb_len = (skb->len - 1) / 128 + 1; 836 if (queue == RTW_TX_QUEUE_BCN) 837 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET; 838 839 buf_desc[0].psb_len = cpu_to_le16(psb_len); 840 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz); 841 buf_desc[0].dma = cpu_to_le32(dma); 842 buf_desc[1].buf_size = cpu_to_le16(size); 843 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz); 844 845 tx_data = rtw_pci_get_tx_data(skb); 846 tx_data->dma = dma; 847 tx_data->sn = pkt_info->sn; 848 849 spin_lock_bh(&rtwpci->irq_lock); 850 851 skb_queue_tail(&ring->queue, skb); 852 853 if (queue == RTW_TX_QUEUE_BCN) 854 goto out_unlock; 855 856 /* update write-index, and kick it off later */ 857 set_bit(queue, rtwpci->tx_queued); 858 if (++ring->r.wp >= ring->r.len) 859 ring->r.wp = 0; 860 861 out_unlock: 862 spin_unlock_bh(&rtwpci->irq_lock); 863 864 return 0; 865 } 866 867 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, 868 u32 size) 869 { 870 struct sk_buff *skb; 871 struct rtw_tx_pkt_info pkt_info = {0}; 872 u8 reg_bcn_work; 873 int ret; 874 875 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); 876 if (!skb) 877 return -ENOMEM; 878 879 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); 880 if (ret) { 881 rtw_err(rtwdev, "failed to write rsvd page data\n"); 882 return ret; 883 } 884 885 /* reserved pages go through beacon queue */ 886 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK); 887 reg_bcn_work |= BIT_PCI_BCNQ_FLAG; 888 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work); 889 890 return 0; 891 } 892 893 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) 894 { 895 struct sk_buff *skb; 896 struct rtw_tx_pkt_info pkt_info = {0}; 897 int ret; 898 899 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); 900 if (!skb) 901 return -ENOMEM; 902 903 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); 904 if (ret) { 905 rtw_err(rtwdev, "failed to write h2c data\n"); 906 return ret; 907 } 908 909 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C); 910 911 return 0; 912 } 913 914 static int rtw_pci_tx_write(struct rtw_dev *rtwdev, 915 struct rtw_tx_pkt_info *pkt_info, 916 struct sk_buff *skb) 917 { 918 enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb); 919 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 920 struct rtw_pci_tx_ring *ring; 921 int ret; 922 923 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue); 924 if (ret) 925 return ret; 926 927 ring = &rtwpci->tx_rings[queue]; 928 spin_lock_bh(&rtwpci->irq_lock); 929 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) { 930 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb)); 931 ring->queue_stopped = true; 932 } 933 spin_unlock_bh(&rtwpci->irq_lock); 934 935 return 0; 936 } 937 938 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 939 u8 hw_queue) 940 { 941 struct ieee80211_hw *hw = rtwdev->hw; 942 struct ieee80211_tx_info *info; 943 struct rtw_pci_tx_ring *ring; 944 struct rtw_pci_tx_data *tx_data; 945 struct sk_buff *skb; 946 u32 count; 947 u32 bd_idx_addr; 948 u32 bd_idx, cur_rp, rp_idx; 949 u16 q_map; 950 951 ring = &rtwpci->tx_rings[hw_queue]; 952 953 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue]; 954 bd_idx = rtw_read32(rtwdev, bd_idx_addr); 955 cur_rp = bd_idx >> 16; 956 cur_rp &= TRX_BD_IDX_MASK; 957 rp_idx = ring->r.rp; 958 if (cur_rp >= ring->r.rp) 959 count = cur_rp - ring->r.rp; 960 else 961 count = ring->r.len - (ring->r.rp - cur_rp); 962 963 while (count--) { 964 skb = skb_dequeue(&ring->queue); 965 if (!skb) { 966 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n", 967 count, hw_queue, bd_idx, ring->r.rp, cur_rp); 968 break; 969 } 970 tx_data = rtw_pci_get_tx_data(skb); 971 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, 972 DMA_TO_DEVICE); 973 974 /* just free command packets from host to card */ 975 if (hw_queue == RTW_TX_QUEUE_H2C) { 976 dev_kfree_skb_irq(skb); 977 continue; 978 } 979 980 if (ring->queue_stopped && 981 avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) { 982 q_map = skb_get_queue_mapping(skb); 983 ieee80211_wake_queue(hw, q_map); 984 ring->queue_stopped = false; 985 } 986 987 if (++rp_idx >= ring->r.len) 988 rp_idx = 0; 989 990 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz); 991 992 info = IEEE80211_SKB_CB(skb); 993 994 /* enqueue to wait for tx report */ 995 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 996 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); 997 continue; 998 } 999 1000 /* always ACK for others, then they won't be marked as drop */ 1001 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 1002 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 1003 else 1004 info->flags |= IEEE80211_TX_STAT_ACK; 1005 1006 ieee80211_tx_info_clear_status(info); 1007 ieee80211_tx_status_irqsafe(hw, skb); 1008 } 1009 1010 ring->r.rp = cur_rp; 1011 } 1012 1013 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev) 1014 { 1015 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1016 struct napi_struct *napi = &rtwpci->napi; 1017 1018 napi_schedule(napi); 1019 } 1020 1021 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev, 1022 struct rtw_pci *rtwpci) 1023 { 1024 struct rtw_pci_rx_ring *ring; 1025 int count = 0; 1026 u32 tmp, cur_wp; 1027 1028 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; 1029 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ); 1030 cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK); 1031 if (cur_wp >= ring->r.wp) 1032 count = cur_wp - ring->r.wp; 1033 else 1034 count = ring->r.len - (ring->r.wp - cur_wp); 1035 1036 return count; 1037 } 1038 1039 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 1040 u8 hw_queue, u32 limit) 1041 { 1042 const struct rtw_chip_info *chip = rtwdev->chip; 1043 struct napi_struct *napi = &rtwpci->napi; 1044 struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; 1045 struct rtw_rx_pkt_stat pkt_stat; 1046 struct ieee80211_rx_status rx_status; 1047 struct sk_buff *skb, *new; 1048 u32 cur_rp = ring->r.rp; 1049 u32 count, rx_done = 0; 1050 u32 pkt_offset; 1051 u32 pkt_desc_sz = chip->rx_pkt_desc_sz; 1052 u32 buf_desc_sz = chip->rx_buf_desc_sz; 1053 u32 new_len; 1054 u8 *rx_desc; 1055 dma_addr_t dma; 1056 1057 count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci); 1058 count = min(count, limit); 1059 1060 while (count--) { 1061 rtw_pci_dma_check(rtwdev, ring, cur_rp); 1062 skb = ring->buf[cur_rp]; 1063 dma = *((dma_addr_t *)skb->cb); 1064 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE, 1065 DMA_FROM_DEVICE); 1066 rx_desc = skb->data; 1067 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); 1068 1069 /* offset from rx_desc to payload */ 1070 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + 1071 pkt_stat.shift; 1072 1073 /* allocate a new skb for this frame, 1074 * discard the frame if none available 1075 */ 1076 new_len = pkt_stat.pkt_len + pkt_offset; 1077 new = dev_alloc_skb(new_len); 1078 if (WARN_ONCE(!new, "rx routine starvation\n")) 1079 goto next_rp; 1080 1081 /* put the DMA data including rx_desc from phy to new skb */ 1082 skb_put_data(new, skb->data, new_len); 1083 1084 if (pkt_stat.is_c2h) { 1085 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new); 1086 } else { 1087 /* remove rx_desc */ 1088 skb_pull(new, pkt_offset); 1089 1090 rtw_rx_stats(rtwdev, pkt_stat.vif, new); 1091 memcpy(new->cb, &rx_status, sizeof(rx_status)); 1092 ieee80211_rx_napi(rtwdev->hw, NULL, new, napi); 1093 rx_done++; 1094 } 1095 1096 next_rp: 1097 /* new skb delivered to mac80211, re-enable original skb DMA */ 1098 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp, 1099 buf_desc_sz); 1100 1101 /* host read next element in ring */ 1102 if (++cur_rp >= ring->r.len) 1103 cur_rp = 0; 1104 } 1105 1106 ring->r.rp = cur_rp; 1107 /* 'rp', the last position we have read, is seen as previous posistion 1108 * of 'wp' that is used to calculate 'count' next time. 1109 */ 1110 ring->r.wp = cur_rp; 1111 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp); 1112 1113 return rx_done; 1114 } 1115 1116 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev, 1117 struct rtw_pci *rtwpci, u32 *irq_status) 1118 { 1119 unsigned long flags; 1120 1121 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 1122 1123 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0); 1124 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1); 1125 if (rtw_chip_wcpu_11ac(rtwdev)) 1126 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3); 1127 else 1128 irq_status[3] = 0; 1129 irq_status[0] &= rtwpci->irq_mask[0]; 1130 irq_status[1] &= rtwpci->irq_mask[1]; 1131 irq_status[3] &= rtwpci->irq_mask[3]; 1132 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]); 1133 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]); 1134 if (rtw_chip_wcpu_11ac(rtwdev)) 1135 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]); 1136 1137 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 1138 } 1139 1140 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev) 1141 { 1142 struct rtw_dev *rtwdev = dev; 1143 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1144 1145 /* disable RTW PCI interrupt to avoid more interrupts before the end of 1146 * thread function 1147 * 1148 * disable HIMR here to also avoid new HISR flag being raised before 1149 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs 1150 * are cleared, the edge-triggered interrupt will not be generated when 1151 * a new HISR flag is set. 1152 */ 1153 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1154 1155 return IRQ_WAKE_THREAD; 1156 } 1157 1158 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev) 1159 { 1160 struct rtw_dev *rtwdev = dev; 1161 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1162 u32 irq_status[4]; 1163 bool rx = false; 1164 1165 spin_lock_bh(&rtwpci->irq_lock); 1166 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status); 1167 1168 if (irq_status[0] & IMR_MGNTDOK) 1169 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT); 1170 if (irq_status[0] & IMR_HIGHDOK) 1171 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0); 1172 if (irq_status[0] & IMR_BEDOK) 1173 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE); 1174 if (irq_status[0] & IMR_BKDOK) 1175 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK); 1176 if (irq_status[0] & IMR_VODOK) 1177 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO); 1178 if (irq_status[0] & IMR_VIDOK) 1179 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI); 1180 if (irq_status[3] & IMR_H2CDOK) 1181 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C); 1182 if (irq_status[0] & IMR_ROK) { 1183 rtw_pci_rx_isr(rtwdev); 1184 rx = true; 1185 } 1186 if (unlikely(irq_status[0] & IMR_C2HCMD)) 1187 rtw_fw_c2h_cmd_isr(rtwdev); 1188 1189 /* all of the jobs for this interrupt have been done */ 1190 if (rtwpci->running) 1191 rtw_pci_enable_interrupt(rtwdev, rtwpci, rx); 1192 spin_unlock_bh(&rtwpci->irq_lock); 1193 1194 return IRQ_HANDLED; 1195 } 1196 1197 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev, 1198 struct pci_dev *pdev) 1199 { 1200 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1201 unsigned long len; 1202 u8 bar_id = 2; 1203 int ret; 1204 1205 ret = pci_request_regions(pdev, KBUILD_MODNAME); 1206 if (ret) { 1207 rtw_err(rtwdev, "failed to request pci regions\n"); 1208 return ret; 1209 } 1210 1211 len = pci_resource_len(pdev, bar_id); 1212 rtwpci->mmap = pci_iomap(pdev, bar_id, len); 1213 if (!rtwpci->mmap) { 1214 pci_release_regions(pdev); 1215 rtw_err(rtwdev, "failed to map pci memory\n"); 1216 return -ENOMEM; 1217 } 1218 1219 return 0; 1220 } 1221 1222 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev, 1223 struct pci_dev *pdev) 1224 { 1225 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1226 1227 if (rtwpci->mmap) { 1228 pci_iounmap(pdev, rtwpci->mmap); 1229 pci_release_regions(pdev); 1230 } 1231 } 1232 1233 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data) 1234 { 1235 u16 write_addr; 1236 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK); 1237 u8 flag; 1238 u8 cnt; 1239 1240 write_addr = addr & BITS_DBI_ADDR_MASK; 1241 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN); 1242 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data); 1243 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr); 1244 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16); 1245 1246 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1247 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1248 if (flag == 0) 1249 return; 1250 1251 udelay(10); 1252 } 1253 1254 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr); 1255 } 1256 1257 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value) 1258 { 1259 u16 read_addr = addr & BITS_DBI_ADDR_MASK; 1260 u8 flag; 1261 u8 cnt; 1262 1263 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr); 1264 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16); 1265 1266 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1267 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1268 if (flag == 0) { 1269 read_addr = REG_DBI_RDATA_V1 + (addr & 3); 1270 *value = rtw_read8(rtwdev, read_addr); 1271 return 0; 1272 } 1273 1274 udelay(10); 1275 } 1276 1277 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr); 1278 return -EIO; 1279 } 1280 1281 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1) 1282 { 1283 u8 page; 1284 u8 wflag; 1285 u8 cnt; 1286 1287 rtw_write16(rtwdev, REG_MDIO_V1, data); 1288 1289 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1; 1290 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2; 1291 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK); 1292 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page); 1293 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1); 1294 1295 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1296 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG, 1297 BIT_MDIO_WFLAG_V1); 1298 if (wflag == 0) 1299 return; 1300 1301 udelay(10); 1302 } 1303 1304 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr); 1305 } 1306 1307 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable) 1308 { 1309 u8 value; 1310 int ret; 1311 1312 if (rtw_pci_disable_aspm) 1313 return; 1314 1315 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1316 if (ret) { 1317 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); 1318 return; 1319 } 1320 1321 if (enable) 1322 value |= BIT_CLKREQ_SW_EN; 1323 else 1324 value &= ~BIT_CLKREQ_SW_EN; 1325 1326 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1327 } 1328 1329 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable) 1330 { 1331 u8 value; 1332 int ret; 1333 1334 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1335 if (ret) { 1336 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); 1337 return; 1338 } 1339 1340 if (enable) 1341 value &= ~BIT_CLKREQ_N_PAD; 1342 else 1343 value |= BIT_CLKREQ_N_PAD; 1344 1345 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1346 } 1347 1348 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable) 1349 { 1350 u8 value; 1351 int ret; 1352 1353 if (rtw_pci_disable_aspm) 1354 return; 1355 1356 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1357 if (ret) { 1358 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret); 1359 return; 1360 } 1361 1362 if (enable) 1363 value |= BIT_L1_SW_EN; 1364 else 1365 value &= ~BIT_L1_SW_EN; 1366 1367 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1368 } 1369 1370 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter) 1371 { 1372 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1373 1374 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can 1375 * only be enabled when host supports it. 1376 * 1377 * And ASPM mechanism should be enabled when driver/firmware enters 1378 * power save mode, without having heavy traffic. Because we've 1379 * experienced some inter-operability issues that the link tends 1380 * to enter L1 state on the fly even when driver is having high 1381 * throughput. This is probably because the ASPM behavior slightly 1382 * varies from different SOC. 1383 */ 1384 if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)) 1385 return; 1386 1387 if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) || 1388 (!enter && atomic_inc_return(&rtwpci->link_usage) == 1)) 1389 rtw_pci_aspm_set(rtwdev, enter); 1390 } 1391 1392 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev) 1393 { 1394 const struct rtw_chip_info *chip = rtwdev->chip; 1395 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1396 struct pci_dev *pdev = rtwpci->pdev; 1397 u16 link_ctrl; 1398 int ret; 1399 1400 /* RTL8822CE has enabled REFCLK auto calibration, it does not need 1401 * to add clock delay to cover the REFCLK timing gap. 1402 */ 1403 if (chip->id == RTW_CHIP_TYPE_8822C) 1404 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0); 1405 1406 /* Though there is standard PCIE configuration space to set the 1407 * link control register, but by Realtek's design, driver should 1408 * check if host supports CLKREQ/ASPM to enable the HW module. 1409 * 1410 * These functions are implemented by two HW modules associated, 1411 * one is responsible to access PCIE configuration space to 1412 * follow the host settings, and another is in charge of doing 1413 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes 1414 * the host does not support it, and due to some reasons or wrong 1415 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device 1416 * loss if HW misbehaves on the link. 1417 * 1418 * Hence it's designed that driver should first check the PCIE 1419 * configuration space is sync'ed and enabled, then driver can turn 1420 * on the other module that is actually working on the mechanism. 1421 */ 1422 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); 1423 if (ret) { 1424 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); 1425 return; 1426 } 1427 1428 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) 1429 rtw_pci_clkreq_set(rtwdev, true); 1430 1431 rtwpci->link_ctrl = link_ctrl; 1432 } 1433 1434 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev) 1435 { 1436 const struct rtw_chip_info *chip = rtwdev->chip; 1437 1438 switch (chip->id) { 1439 case RTW_CHIP_TYPE_8822C: 1440 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D) 1441 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG, 1442 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1); 1443 break; 1444 default: 1445 break; 1446 } 1447 } 1448 1449 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev) 1450 { 1451 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1452 const struct rtw_chip_info *chip = rtwdev->chip; 1453 struct pci_dev *pdev = rtwpci->pdev; 1454 const struct rtw_intf_phy_para *para; 1455 u16 cut; 1456 u16 value; 1457 u16 offset; 1458 int i; 1459 int ret; 1460 1461 cut = BIT(0) << rtwdev->hal.cut_version; 1462 1463 for (i = 0; i < chip->intf_table->n_gen1_para; i++) { 1464 para = &chip->intf_table->gen1_para[i]; 1465 if (!(para->cut_mask & cut)) 1466 continue; 1467 if (para->offset == 0xffff) 1468 break; 1469 offset = para->offset; 1470 value = para->value; 1471 if (para->ip_sel == RTW_IP_SEL_PHY) 1472 rtw_mdio_write(rtwdev, offset, value, true); 1473 else 1474 rtw_dbi_write8(rtwdev, offset, value); 1475 } 1476 1477 for (i = 0; i < chip->intf_table->n_gen2_para; i++) { 1478 para = &chip->intf_table->gen2_para[i]; 1479 if (!(para->cut_mask & cut)) 1480 continue; 1481 if (para->offset == 0xffff) 1482 break; 1483 offset = para->offset; 1484 value = para->value; 1485 if (para->ip_sel == RTW_IP_SEL_PHY) 1486 rtw_mdio_write(rtwdev, offset, value, false); 1487 else 1488 rtw_dbi_write8(rtwdev, offset, value); 1489 } 1490 1491 rtw_pci_link_cfg(rtwdev); 1492 1493 /* Disable 8821ce completion timeout by default */ 1494 if (chip->id == RTW_CHIP_TYPE_8821C) { 1495 ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2, 1496 PCI_EXP_DEVCTL2_COMP_TMOUT_DIS); 1497 if (ret) 1498 rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n", 1499 ret); 1500 } 1501 } 1502 1503 static int __maybe_unused rtw_pci_suspend(struct device *dev) 1504 { 1505 struct ieee80211_hw *hw = dev_get_drvdata(dev); 1506 struct rtw_dev *rtwdev = hw->priv; 1507 const struct rtw_chip_info *chip = rtwdev->chip; 1508 struct rtw_efuse *efuse = &rtwdev->efuse; 1509 1510 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) 1511 rtw_pci_clkreq_pad_low(rtwdev, true); 1512 return 0; 1513 } 1514 1515 static int __maybe_unused rtw_pci_resume(struct device *dev) 1516 { 1517 struct ieee80211_hw *hw = dev_get_drvdata(dev); 1518 struct rtw_dev *rtwdev = hw->priv; 1519 const struct rtw_chip_info *chip = rtwdev->chip; 1520 struct rtw_efuse *efuse = &rtwdev->efuse; 1521 1522 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) 1523 rtw_pci_clkreq_pad_low(rtwdev, false); 1524 return 0; 1525 } 1526 1527 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume); 1528 EXPORT_SYMBOL(rtw_pm_ops); 1529 1530 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1531 { 1532 int ret; 1533 1534 ret = pci_enable_device(pdev); 1535 if (ret) { 1536 rtw_err(rtwdev, "failed to enable pci device\n"); 1537 return ret; 1538 } 1539 1540 pci_set_master(pdev); 1541 pci_set_drvdata(pdev, rtwdev->hw); 1542 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); 1543 1544 return 0; 1545 } 1546 1547 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1548 { 1549 pci_disable_device(pdev); 1550 } 1551 1552 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1553 { 1554 struct rtw_pci *rtwpci; 1555 int ret; 1556 1557 rtwpci = (struct rtw_pci *)rtwdev->priv; 1558 rtwpci->pdev = pdev; 1559 1560 /* after this driver can access to hw registers */ 1561 ret = rtw_pci_io_mapping(rtwdev, pdev); 1562 if (ret) { 1563 rtw_err(rtwdev, "failed to request pci io region\n"); 1564 goto err_out; 1565 } 1566 1567 ret = rtw_pci_init(rtwdev); 1568 if (ret) { 1569 rtw_err(rtwdev, "failed to allocate pci resources\n"); 1570 goto err_io_unmap; 1571 } 1572 1573 return 0; 1574 1575 err_io_unmap: 1576 rtw_pci_io_unmapping(rtwdev, pdev); 1577 1578 err_out: 1579 return ret; 1580 } 1581 1582 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1583 { 1584 rtw_pci_deinit(rtwdev); 1585 rtw_pci_io_unmapping(rtwdev, pdev); 1586 } 1587 1588 static struct rtw_hci_ops rtw_pci_ops = { 1589 .tx_write = rtw_pci_tx_write, 1590 .tx_kick_off = rtw_pci_tx_kick_off, 1591 .flush_queues = rtw_pci_flush_queues, 1592 .setup = rtw_pci_setup, 1593 .start = rtw_pci_start, 1594 .stop = rtw_pci_stop, 1595 .deep_ps = rtw_pci_deep_ps, 1596 .link_ps = rtw_pci_link_ps, 1597 .interface_cfg = rtw_pci_interface_cfg, 1598 1599 .read8 = rtw_pci_read8, 1600 .read16 = rtw_pci_read16, 1601 .read32 = rtw_pci_read32, 1602 .write8 = rtw_pci_write8, 1603 .write16 = rtw_pci_write16, 1604 .write32 = rtw_pci_write32, 1605 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page, 1606 .write_data_h2c = rtw_pci_write_data_h2c, 1607 }; 1608 1609 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1610 { 1611 unsigned int flags = PCI_IRQ_LEGACY; 1612 int ret; 1613 1614 if (!rtw_disable_msi) 1615 flags |= PCI_IRQ_MSI; 1616 1617 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); 1618 if (ret < 0) { 1619 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n"); 1620 return ret; 1621 } 1622 1623 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, 1624 rtw_pci_interrupt_handler, 1625 rtw_pci_interrupt_threadfn, 1626 IRQF_SHARED, KBUILD_MODNAME, rtwdev); 1627 if (ret) { 1628 rtw_err(rtwdev, "failed to request irq %d\n", ret); 1629 pci_free_irq_vectors(pdev); 1630 } 1631 1632 return ret; 1633 } 1634 1635 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1636 { 1637 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); 1638 pci_free_irq_vectors(pdev); 1639 } 1640 1641 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget) 1642 { 1643 struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi); 1644 struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev, 1645 priv); 1646 int work_done = 0; 1647 1648 if (rtwpci->rx_no_aspm) 1649 rtw_pci_link_ps(rtwdev, false); 1650 1651 while (work_done < budget) { 1652 u32 work_done_once; 1653 1654 work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU, 1655 budget - work_done); 1656 if (work_done_once == 0) 1657 break; 1658 work_done += work_done_once; 1659 } 1660 if (work_done < budget) { 1661 napi_complete_done(napi, work_done); 1662 spin_lock_bh(&rtwpci->irq_lock); 1663 if (rtwpci->running) 1664 rtw_pci_enable_interrupt(rtwdev, rtwpci, false); 1665 spin_unlock_bh(&rtwpci->irq_lock); 1666 /* When ISR happens during polling and before napi_complete 1667 * while no further data is received. Data on the dma_ring will 1668 * not be processed immediately. Check whether dma ring is 1669 * empty and perform napi_schedule accordingly. 1670 */ 1671 if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci)) 1672 napi_schedule(napi); 1673 } 1674 if (rtwpci->rx_no_aspm) 1675 rtw_pci_link_ps(rtwdev, true); 1676 1677 return work_done; 1678 } 1679 1680 static void rtw_pci_napi_init(struct rtw_dev *rtwdev) 1681 { 1682 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1683 1684 init_dummy_netdev(&rtwpci->netdev); 1685 netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll); 1686 } 1687 1688 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev) 1689 { 1690 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1691 1692 rtw_pci_napi_stop(rtwdev); 1693 netif_napi_del(&rtwpci->napi); 1694 } 1695 1696 int rtw_pci_probe(struct pci_dev *pdev, 1697 const struct pci_device_id *id) 1698 { 1699 struct pci_dev *bridge = pci_upstream_bridge(pdev); 1700 struct ieee80211_hw *hw; 1701 struct rtw_dev *rtwdev; 1702 struct rtw_pci *rtwpci; 1703 int drv_data_size; 1704 int ret; 1705 1706 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci); 1707 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); 1708 if (!hw) { 1709 dev_err(&pdev->dev, "failed to allocate hw\n"); 1710 return -ENOMEM; 1711 } 1712 1713 rtwdev = hw->priv; 1714 rtwdev->hw = hw; 1715 rtwdev->dev = &pdev->dev; 1716 rtwdev->chip = (struct rtw_chip_info *)id->driver_data; 1717 rtwdev->hci.ops = &rtw_pci_ops; 1718 rtwdev->hci.type = RTW_HCI_TYPE_PCIE; 1719 1720 rtwpci = (struct rtw_pci *)rtwdev->priv; 1721 atomic_set(&rtwpci->link_usage, 1); 1722 1723 ret = rtw_core_init(rtwdev); 1724 if (ret) 1725 goto err_release_hw; 1726 1727 rtw_dbg(rtwdev, RTW_DBG_PCI, 1728 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n", 1729 pdev->vendor, pdev->device, pdev->revision); 1730 1731 ret = rtw_pci_claim(rtwdev, pdev); 1732 if (ret) { 1733 rtw_err(rtwdev, "failed to claim pci device\n"); 1734 goto err_deinit_core; 1735 } 1736 1737 ret = rtw_pci_setup_resource(rtwdev, pdev); 1738 if (ret) { 1739 rtw_err(rtwdev, "failed to setup pci resources\n"); 1740 goto err_pci_declaim; 1741 } 1742 1743 rtw_pci_napi_init(rtwdev); 1744 1745 ret = rtw_chip_info_setup(rtwdev); 1746 if (ret) { 1747 rtw_err(rtwdev, "failed to setup chip information\n"); 1748 goto err_destroy_pci; 1749 } 1750 1751 /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */ 1752 if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL) 1753 rtwpci->rx_no_aspm = true; 1754 1755 rtw_pci_phy_cfg(rtwdev); 1756 1757 ret = rtw_register_hw(rtwdev, hw); 1758 if (ret) { 1759 rtw_err(rtwdev, "failed to register hw\n"); 1760 goto err_destroy_pci; 1761 } 1762 1763 ret = rtw_pci_request_irq(rtwdev, pdev); 1764 if (ret) { 1765 ieee80211_unregister_hw(hw); 1766 goto err_destroy_pci; 1767 } 1768 1769 return 0; 1770 1771 err_destroy_pci: 1772 rtw_pci_napi_deinit(rtwdev); 1773 rtw_pci_destroy(rtwdev, pdev); 1774 1775 err_pci_declaim: 1776 rtw_pci_declaim(rtwdev, pdev); 1777 1778 err_deinit_core: 1779 rtw_core_deinit(rtwdev); 1780 1781 err_release_hw: 1782 ieee80211_free_hw(hw); 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL(rtw_pci_probe); 1787 1788 void rtw_pci_remove(struct pci_dev *pdev) 1789 { 1790 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1791 struct rtw_dev *rtwdev; 1792 struct rtw_pci *rtwpci; 1793 1794 if (!hw) 1795 return; 1796 1797 rtwdev = hw->priv; 1798 rtwpci = (struct rtw_pci *)rtwdev->priv; 1799 1800 rtw_unregister_hw(rtwdev, hw); 1801 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1802 rtw_pci_napi_deinit(rtwdev); 1803 rtw_pci_destroy(rtwdev, pdev); 1804 rtw_pci_declaim(rtwdev, pdev); 1805 rtw_pci_free_irq(rtwdev, pdev); 1806 rtw_core_deinit(rtwdev); 1807 ieee80211_free_hw(hw); 1808 } 1809 EXPORT_SYMBOL(rtw_pci_remove); 1810 1811 void rtw_pci_shutdown(struct pci_dev *pdev) 1812 { 1813 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1814 struct rtw_dev *rtwdev; 1815 const struct rtw_chip_info *chip; 1816 1817 if (!hw) 1818 return; 1819 1820 rtwdev = hw->priv; 1821 chip = rtwdev->chip; 1822 1823 if (chip->ops->shutdown) 1824 chip->ops->shutdown(rtwdev); 1825 1826 pci_set_power_state(pdev, PCI_D3hot); 1827 } 1828 EXPORT_SYMBOL(rtw_pci_shutdown); 1829 1830 MODULE_AUTHOR("Realtek Corporation"); 1831 MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver"); 1832 MODULE_LICENSE("Dual BSD/GPL"); 1833