1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
34 {
35 	switch (queue) {
36 	case RTW_TX_QUEUE_BCN:
37 		return TX_DESC_QSEL_BEACON;
38 	case RTW_TX_QUEUE_H2C:
39 		return TX_DESC_QSEL_H2C;
40 	case RTW_TX_QUEUE_MGMT:
41 		return TX_DESC_QSEL_MGMT;
42 	case RTW_TX_QUEUE_HI0:
43 		return TX_DESC_QSEL_HIGH;
44 	default:
45 		return skb->priority;
46 	}
47 };
48 
49 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
50 {
51 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
52 
53 	return readb(rtwpci->mmap + addr);
54 }
55 
56 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
57 {
58 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
59 
60 	return readw(rtwpci->mmap + addr);
61 }
62 
63 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
64 {
65 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
66 
67 	return readl(rtwpci->mmap + addr);
68 }
69 
70 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
71 {
72 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
73 
74 	writeb(val, rtwpci->mmap + addr);
75 }
76 
77 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
78 {
79 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
80 
81 	writew(val, rtwpci->mmap + addr);
82 }
83 
84 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
85 {
86 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
87 
88 	writel(val, rtwpci->mmap + addr);
89 }
90 
91 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
92 {
93 	int offset = tx_ring->r.desc_size * idx;
94 
95 	return tx_ring->r.head + offset;
96 }
97 
98 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
99 				      struct rtw_pci_tx_ring *tx_ring)
100 {
101 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
102 	struct rtw_pci_tx_data *tx_data;
103 	struct sk_buff *skb, *tmp;
104 	dma_addr_t dma;
105 
106 	/* free every skb remained in tx list */
107 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
108 		__skb_unlink(skb, &tx_ring->queue);
109 		tx_data = rtw_pci_get_tx_data(skb);
110 		dma = tx_data->dma;
111 
112 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
113 		dev_kfree_skb_any(skb);
114 	}
115 }
116 
117 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
118 				 struct rtw_pci_tx_ring *tx_ring)
119 {
120 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
121 	u8 *head = tx_ring->r.head;
122 	u32 len = tx_ring->r.len;
123 	int ring_sz = len * tx_ring->r.desc_size;
124 
125 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
126 
127 	/* free the ring itself */
128 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
129 	tx_ring->r.head = NULL;
130 }
131 
132 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
133 				      struct rtw_pci_rx_ring *rx_ring)
134 {
135 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
136 	struct sk_buff *skb;
137 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
138 	dma_addr_t dma;
139 	int i;
140 
141 	for (i = 0; i < rx_ring->r.len; i++) {
142 		skb = rx_ring->buf[i];
143 		if (!skb)
144 			continue;
145 
146 		dma = *((dma_addr_t *)skb->cb);
147 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
148 		dev_kfree_skb(skb);
149 		rx_ring->buf[i] = NULL;
150 	}
151 }
152 
153 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
154 				 struct rtw_pci_rx_ring *rx_ring)
155 {
156 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
157 	u8 *head = rx_ring->r.head;
158 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
159 
160 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
161 
162 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
163 }
164 
165 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
168 	struct rtw_pci_tx_ring *tx_ring;
169 	struct rtw_pci_rx_ring *rx_ring;
170 	int i;
171 
172 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
173 		tx_ring = &rtwpci->tx_rings[i];
174 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
175 	}
176 
177 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
178 		rx_ring = &rtwpci->rx_rings[i];
179 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
180 	}
181 }
182 
183 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
184 				struct rtw_pci_tx_ring *tx_ring,
185 				u8 desc_size, u32 len)
186 {
187 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
188 	int ring_sz = desc_size * len;
189 	dma_addr_t dma;
190 	u8 *head;
191 
192 	if (len > TRX_BD_IDX_MASK) {
193 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
194 		return -EINVAL;
195 	}
196 
197 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
198 	if (!head) {
199 		rtw_err(rtwdev, "failed to allocate tx ring\n");
200 		return -ENOMEM;
201 	}
202 
203 	skb_queue_head_init(&tx_ring->queue);
204 	tx_ring->r.head = head;
205 	tx_ring->r.dma = dma;
206 	tx_ring->r.len = len;
207 	tx_ring->r.desc_size = desc_size;
208 	tx_ring->r.wp = 0;
209 	tx_ring->r.rp = 0;
210 
211 	return 0;
212 }
213 
214 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
215 				 struct rtw_pci_rx_ring *rx_ring,
216 				 u32 idx, u32 desc_sz)
217 {
218 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
219 	struct rtw_pci_rx_buffer_desc *buf_desc;
220 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
221 	dma_addr_t dma;
222 
223 	if (!skb)
224 		return -EINVAL;
225 
226 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
227 	if (dma_mapping_error(&pdev->dev, dma))
228 		return -EBUSY;
229 
230 	*((dma_addr_t *)skb->cb) = dma;
231 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
232 						     idx * desc_sz);
233 	memset(buf_desc, 0, sizeof(*buf_desc));
234 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
235 	buf_desc->dma = cpu_to_le32(dma);
236 
237 	return 0;
238 }
239 
240 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
241 					struct rtw_pci_rx_ring *rx_ring,
242 					u32 idx, u32 desc_sz)
243 {
244 	struct device *dev = rtwdev->dev;
245 	struct rtw_pci_rx_buffer_desc *buf_desc;
246 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
247 
248 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
249 
250 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
251 						     idx * desc_sz);
252 	memset(buf_desc, 0, sizeof(*buf_desc));
253 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
254 	buf_desc->dma = cpu_to_le32(dma);
255 }
256 
257 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
258 				struct rtw_pci_rx_ring *rx_ring,
259 				u8 desc_size, u32 len)
260 {
261 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
262 	struct sk_buff *skb = NULL;
263 	dma_addr_t dma;
264 	u8 *head;
265 	int ring_sz = desc_size * len;
266 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
267 	int i, allocated;
268 	int ret = 0;
269 
270 	if (len > TRX_BD_IDX_MASK) {
271 		rtw_err(rtwdev, "len %d exceeds maximum RX entries\n", len);
272 		return -EINVAL;
273 	}
274 
275 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
276 	if (!head) {
277 		rtw_err(rtwdev, "failed to allocate rx ring\n");
278 		return -ENOMEM;
279 	}
280 	rx_ring->r.head = head;
281 
282 	for (i = 0; i < len; i++) {
283 		skb = dev_alloc_skb(buf_sz);
284 		if (!skb) {
285 			allocated = i;
286 			ret = -ENOMEM;
287 			goto err_out;
288 		}
289 
290 		memset(skb->data, 0, buf_sz);
291 		rx_ring->buf[i] = skb;
292 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
293 		if (ret) {
294 			allocated = i;
295 			dev_kfree_skb_any(skb);
296 			goto err_out;
297 		}
298 	}
299 
300 	rx_ring->r.dma = dma;
301 	rx_ring->r.len = len;
302 	rx_ring->r.desc_size = desc_size;
303 	rx_ring->r.wp = 0;
304 	rx_ring->r.rp = 0;
305 
306 	return 0;
307 
308 err_out:
309 	for (i = 0; i < allocated; i++) {
310 		skb = rx_ring->buf[i];
311 		if (!skb)
312 			continue;
313 		dma = *((dma_addr_t *)skb->cb);
314 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
315 		dev_kfree_skb_any(skb);
316 		rx_ring->buf[i] = NULL;
317 	}
318 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
319 
320 	rtw_err(rtwdev, "failed to init rx buffer\n");
321 
322 	return ret;
323 }
324 
325 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
326 {
327 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
328 	struct rtw_pci_tx_ring *tx_ring;
329 	struct rtw_pci_rx_ring *rx_ring;
330 	struct rtw_chip_info *chip = rtwdev->chip;
331 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
332 	int tx_desc_size, rx_desc_size;
333 	u32 len;
334 	int ret;
335 
336 	tx_desc_size = chip->tx_buf_desc_sz;
337 
338 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
339 		tx_ring = &rtwpci->tx_rings[i];
340 		len = max_num_of_tx_queue(i);
341 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
342 		if (ret)
343 			goto out;
344 	}
345 
346 	rx_desc_size = chip->rx_buf_desc_sz;
347 
348 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
349 		rx_ring = &rtwpci->rx_rings[j];
350 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
351 					   RTK_MAX_RX_DESC_NUM);
352 		if (ret)
353 			goto out;
354 	}
355 
356 	return 0;
357 
358 out:
359 	tx_alloced = i;
360 	for (i = 0; i < tx_alloced; i++) {
361 		tx_ring = &rtwpci->tx_rings[i];
362 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
363 	}
364 
365 	rx_alloced = j;
366 	for (j = 0; j < rx_alloced; j++) {
367 		rx_ring = &rtwpci->rx_rings[j];
368 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
369 	}
370 
371 	return ret;
372 }
373 
374 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
375 {
376 	rtw_pci_free_trx_ring(rtwdev);
377 }
378 
379 static int rtw_pci_init(struct rtw_dev *rtwdev)
380 {
381 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
382 	int ret = 0;
383 
384 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
385 			      IMR_MGNTDOK |
386 			      IMR_BKDOK |
387 			      IMR_BEDOK |
388 			      IMR_VIDOK |
389 			      IMR_VODOK |
390 			      IMR_ROK |
391 			      IMR_BCNDMAINT_E |
392 			      IMR_C2HCMD |
393 			      0;
394 	rtwpci->irq_mask[1] = IMR_TXFOVW |
395 			      0;
396 	rtwpci->irq_mask[3] = IMR_H2CDOK |
397 			      0;
398 	spin_lock_init(&rtwpci->irq_lock);
399 	spin_lock_init(&rtwpci->hwirq_lock);
400 	ret = rtw_pci_init_trx_ring(rtwdev);
401 
402 	return ret;
403 }
404 
405 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
406 {
407 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
408 	u32 len;
409 	u8 tmp;
410 	dma_addr_t dma;
411 
412 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
413 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
414 
415 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
416 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
417 
418 	if (!rtw_chip_wcpu_11n(rtwdev)) {
419 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
420 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
421 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
422 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
423 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
424 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
425 	}
426 
427 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
428 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
429 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
430 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
431 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
432 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
433 
434 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
435 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
436 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
437 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
438 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
439 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
440 
441 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
442 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
443 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
444 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
445 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
446 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
447 
448 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
449 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
450 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
451 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
452 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
453 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
454 
455 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
456 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
457 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
458 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
459 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
460 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
461 
462 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
463 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
464 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
466 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
467 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
468 
469 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
470 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
471 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
472 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
473 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
474 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
475 
476 	/* reset read/write point */
477 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
478 
479 	/* reset H2C Queue index in a single write */
480 	if (rtw_chip_wcpu_11ac(rtwdev))
481 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
482 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
483 }
484 
485 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
486 {
487 	rtw_pci_reset_buf_desc(rtwdev);
488 }
489 
490 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
491 				     struct rtw_pci *rtwpci, bool exclude_rx)
492 {
493 	unsigned long flags;
494 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
495 
496 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
497 
498 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
499 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
500 	if (rtw_chip_wcpu_11ac(rtwdev))
501 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
502 
503 	rtwpci->irq_enabled = true;
504 
505 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
506 }
507 
508 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
509 				      struct rtw_pci *rtwpci)
510 {
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
514 
515 	if (!rtwpci->irq_enabled)
516 		goto out;
517 
518 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
519 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
520 	if (rtw_chip_wcpu_11ac(rtwdev))
521 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
522 
523 	rtwpci->irq_enabled = false;
524 
525 out:
526 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
527 }
528 
529 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
530 {
531 	/* reset dma and rx tag */
532 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
533 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
534 	rtwpci->rx_tag = 0;
535 }
536 
537 static int rtw_pci_setup(struct rtw_dev *rtwdev)
538 {
539 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
540 
541 	rtw_pci_reset_trx_ring(rtwdev);
542 	rtw_pci_dma_reset(rtwdev, rtwpci);
543 
544 	return 0;
545 }
546 
547 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
548 {
549 	struct rtw_pci_tx_ring *tx_ring;
550 	u8 queue;
551 
552 	rtw_pci_reset_trx_ring(rtwdev);
553 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
554 		tx_ring = &rtwpci->tx_rings[queue];
555 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
556 	}
557 }
558 
559 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
560 {
561 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
562 
563 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
564 		return;
565 
566 	napi_enable(&rtwpci->napi);
567 }
568 
569 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
570 {
571 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572 
573 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
574 		return;
575 
576 	napi_synchronize(&rtwpci->napi);
577 	napi_disable(&rtwpci->napi);
578 }
579 
580 static int rtw_pci_start(struct rtw_dev *rtwdev)
581 {
582 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
583 
584 	spin_lock_bh(&rtwpci->irq_lock);
585 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
586 	spin_unlock_bh(&rtwpci->irq_lock);
587 
588 	rtw_pci_napi_start(rtwdev);
589 
590 	return 0;
591 }
592 
593 static void rtw_pci_stop(struct rtw_dev *rtwdev)
594 {
595 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
596 
597 	rtw_pci_napi_stop(rtwdev);
598 
599 	spin_lock_bh(&rtwpci->irq_lock);
600 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
601 	rtw_pci_dma_release(rtwdev, rtwpci);
602 	spin_unlock_bh(&rtwpci->irq_lock);
603 }
604 
605 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
606 {
607 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
608 	struct rtw_pci_tx_ring *tx_ring;
609 	bool tx_empty = true;
610 	u8 queue;
611 
612 	lockdep_assert_held(&rtwpci->irq_lock);
613 
614 	/* Deep PS state is not allowed to TX-DMA */
615 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
616 		/* BCN queue is rsvd page, does not have DMA interrupt
617 		 * H2C queue is managed by firmware
618 		 */
619 		if (queue == RTW_TX_QUEUE_BCN ||
620 		    queue == RTW_TX_QUEUE_H2C)
621 			continue;
622 
623 		tx_ring = &rtwpci->tx_rings[queue];
624 
625 		/* check if there is any skb DMAing */
626 		if (skb_queue_len(&tx_ring->queue)) {
627 			tx_empty = false;
628 			break;
629 		}
630 	}
631 
632 	if (!tx_empty) {
633 		rtw_dbg(rtwdev, RTW_DBG_PS,
634 			"TX path not empty, cannot enter deep power save state\n");
635 		return;
636 	}
637 
638 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
639 	rtw_power_mode_change(rtwdev, true);
640 }
641 
642 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
643 {
644 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
645 
646 	lockdep_assert_held(&rtwpci->irq_lock);
647 
648 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
649 		rtw_power_mode_change(rtwdev, false);
650 }
651 
652 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
653 {
654 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
655 
656 	spin_lock_bh(&rtwpci->irq_lock);
657 
658 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
659 		rtw_pci_deep_ps_enter(rtwdev);
660 
661 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
662 		rtw_pci_deep_ps_leave(rtwdev);
663 
664 	spin_unlock_bh(&rtwpci->irq_lock);
665 }
666 
667 static u8 ac_to_hwq[] = {
668 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
669 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
670 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
671 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
672 };
673 
674 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
675 {
676 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
677 	__le16 fc = hdr->frame_control;
678 	u8 q_mapping = skb_get_queue_mapping(skb);
679 	u8 queue;
680 
681 	if (unlikely(ieee80211_is_beacon(fc)))
682 		queue = RTW_TX_QUEUE_BCN;
683 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
684 		queue = RTW_TX_QUEUE_MGMT;
685 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
686 		queue = ac_to_hwq[IEEE80211_AC_BE];
687 	else
688 		queue = ac_to_hwq[q_mapping];
689 
690 	return queue;
691 }
692 
693 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
694 				      struct rtw_pci_tx_ring *ring)
695 {
696 	struct sk_buff *prev = skb_dequeue(&ring->queue);
697 	struct rtw_pci_tx_data *tx_data;
698 	dma_addr_t dma;
699 
700 	if (!prev)
701 		return;
702 
703 	tx_data = rtw_pci_get_tx_data(prev);
704 	dma = tx_data->dma;
705 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
706 	dev_kfree_skb_any(prev);
707 }
708 
709 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
710 			      struct rtw_pci_rx_ring *rx_ring,
711 			      u32 idx)
712 {
713 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
714 	struct rtw_chip_info *chip = rtwdev->chip;
715 	struct rtw_pci_rx_buffer_desc *buf_desc;
716 	u32 desc_sz = chip->rx_buf_desc_sz;
717 	u16 total_pkt_size;
718 
719 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
720 						     idx * desc_sz);
721 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
722 
723 	/* rx tag mismatch, throw a warning */
724 	if (total_pkt_size != rtwpci->rx_tag)
725 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
726 
727 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
728 }
729 
730 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
731 {
732 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
733 	struct rtw_pci_tx_ring *ring;
734 	u32 bd_idx;
735 
736 	ring = &rtwpci->tx_rings[queue];
737 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
738 
739 	spin_lock_bh(&rtwpci->irq_lock);
740 	rtw_pci_deep_ps_leave(rtwdev);
741 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
742 	spin_unlock_bh(&rtwpci->irq_lock);
743 }
744 
745 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
746 {
747 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
748 	u8 queue;
749 
750 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
751 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
752 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
753 }
754 
755 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
756 				 struct rtw_tx_pkt_info *pkt_info,
757 				 struct sk_buff *skb, u8 queue)
758 {
759 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
760 	struct rtw_chip_info *chip = rtwdev->chip;
761 	struct rtw_pci_tx_ring *ring;
762 	struct rtw_pci_tx_data *tx_data;
763 	dma_addr_t dma;
764 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
765 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
766 	u32 size;
767 	u32 psb_len;
768 	u8 *pkt_desc;
769 	struct rtw_pci_tx_buffer_desc *buf_desc;
770 
771 	ring = &rtwpci->tx_rings[queue];
772 
773 	size = skb->len;
774 
775 	if (queue == RTW_TX_QUEUE_BCN)
776 		rtw_pci_release_rsvd_page(rtwpci, ring);
777 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
778 		return -ENOSPC;
779 
780 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
781 	memset(pkt_desc, 0, tx_pkt_desc_sz);
782 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
783 	rtw_tx_fill_tx_desc(pkt_info, skb);
784 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
785 			     DMA_TO_DEVICE);
786 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
787 		return -EBUSY;
788 
789 	/* after this we got dma mapped, there is no way back */
790 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
791 	memset(buf_desc, 0, tx_buf_desc_sz);
792 	psb_len = (skb->len - 1) / 128 + 1;
793 	if (queue == RTW_TX_QUEUE_BCN)
794 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
795 
796 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
797 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
798 	buf_desc[0].dma = cpu_to_le32(dma);
799 	buf_desc[1].buf_size = cpu_to_le16(size);
800 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
801 
802 	tx_data = rtw_pci_get_tx_data(skb);
803 	tx_data->dma = dma;
804 	tx_data->sn = pkt_info->sn;
805 
806 	spin_lock_bh(&rtwpci->irq_lock);
807 
808 	skb_queue_tail(&ring->queue, skb);
809 
810 	if (queue == RTW_TX_QUEUE_BCN)
811 		goto out_unlock;
812 
813 	/* update write-index, and kick it off later */
814 	set_bit(queue, rtwpci->tx_queued);
815 	if (++ring->r.wp >= ring->r.len)
816 		ring->r.wp = 0;
817 
818 out_unlock:
819 	spin_unlock_bh(&rtwpci->irq_lock);
820 
821 	return 0;
822 }
823 
824 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
825 					u32 size)
826 {
827 	struct sk_buff *skb;
828 	struct rtw_tx_pkt_info pkt_info = {0};
829 	u8 reg_bcn_work;
830 	int ret;
831 
832 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
833 	if (!skb)
834 		return -ENOMEM;
835 
836 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
837 	if (ret) {
838 		rtw_err(rtwdev, "failed to write rsvd page data\n");
839 		return ret;
840 	}
841 
842 	/* reserved pages go through beacon queue */
843 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
844 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
845 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
846 
847 	return 0;
848 }
849 
850 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
851 {
852 	struct sk_buff *skb;
853 	struct rtw_tx_pkt_info pkt_info = {0};
854 	int ret;
855 
856 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
857 	if (!skb)
858 		return -ENOMEM;
859 
860 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
861 	if (ret) {
862 		rtw_err(rtwdev, "failed to write h2c data\n");
863 		return ret;
864 	}
865 
866 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
867 
868 	return 0;
869 }
870 
871 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
872 			    struct rtw_tx_pkt_info *pkt_info,
873 			    struct sk_buff *skb)
874 {
875 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
876 	struct rtw_pci_tx_ring *ring;
877 	u8 queue = rtw_hw_queue_mapping(skb);
878 	int ret;
879 
880 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
881 	if (ret)
882 		return ret;
883 
884 	ring = &rtwpci->tx_rings[queue];
885 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
886 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
887 		ring->queue_stopped = true;
888 	}
889 
890 	return 0;
891 }
892 
893 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
894 			   u8 hw_queue)
895 {
896 	struct ieee80211_hw *hw = rtwdev->hw;
897 	struct ieee80211_tx_info *info;
898 	struct rtw_pci_tx_ring *ring;
899 	struct rtw_pci_tx_data *tx_data;
900 	struct sk_buff *skb;
901 	u32 count;
902 	u32 bd_idx_addr;
903 	u32 bd_idx, cur_rp;
904 	u16 q_map;
905 
906 	ring = &rtwpci->tx_rings[hw_queue];
907 
908 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
909 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
910 	cur_rp = bd_idx >> 16;
911 	cur_rp &= TRX_BD_IDX_MASK;
912 	if (cur_rp >= ring->r.rp)
913 		count = cur_rp - ring->r.rp;
914 	else
915 		count = ring->r.len - (ring->r.rp - cur_rp);
916 
917 	while (count--) {
918 		skb = skb_dequeue(&ring->queue);
919 		if (!skb) {
920 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
921 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
922 			break;
923 		}
924 		tx_data = rtw_pci_get_tx_data(skb);
925 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
926 				 DMA_TO_DEVICE);
927 
928 		/* just free command packets from host to card */
929 		if (hw_queue == RTW_TX_QUEUE_H2C) {
930 			dev_kfree_skb_irq(skb);
931 			continue;
932 		}
933 
934 		if (ring->queue_stopped &&
935 		    avail_desc(ring->r.wp, ring->r.rp, ring->r.len) > 4) {
936 			q_map = skb_get_queue_mapping(skb);
937 			ieee80211_wake_queue(hw, q_map);
938 			ring->queue_stopped = false;
939 		}
940 
941 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
942 
943 		info = IEEE80211_SKB_CB(skb);
944 
945 		/* enqueue to wait for tx report */
946 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
947 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
948 			continue;
949 		}
950 
951 		/* always ACK for others, then they won't be marked as drop */
952 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
953 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
954 		else
955 			info->flags |= IEEE80211_TX_STAT_ACK;
956 
957 		ieee80211_tx_info_clear_status(info);
958 		ieee80211_tx_status_irqsafe(hw, skb);
959 	}
960 
961 	ring->r.rp = cur_rp;
962 }
963 
964 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
965 {
966 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
967 	struct napi_struct *napi = &rtwpci->napi;
968 
969 	napi_schedule(napi);
970 }
971 
972 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
973 				     struct rtw_pci *rtwpci)
974 {
975 	struct rtw_pci_rx_ring *ring;
976 	int count = 0;
977 	u32 tmp, cur_wp;
978 
979 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
980 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
981 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
982 	if (cur_wp >= ring->r.wp)
983 		count = cur_wp - ring->r.wp;
984 	else
985 		count = ring->r.len - (ring->r.wp - cur_wp);
986 
987 	return count;
988 }
989 
990 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
991 			   u8 hw_queue, u32 limit)
992 {
993 	struct rtw_chip_info *chip = rtwdev->chip;
994 	struct napi_struct *napi = &rtwpci->napi;
995 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
996 	struct rtw_rx_pkt_stat pkt_stat;
997 	struct ieee80211_rx_status rx_status;
998 	struct sk_buff *skb, *new;
999 	u32 cur_rp = ring->r.rp;
1000 	u32 count, rx_done = 0;
1001 	u32 pkt_offset;
1002 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1003 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1004 	u32 new_len;
1005 	u8 *rx_desc;
1006 	dma_addr_t dma;
1007 
1008 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1009 	count = min(count, limit);
1010 
1011 	while (count--) {
1012 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1013 		skb = ring->buf[cur_rp];
1014 		dma = *((dma_addr_t *)skb->cb);
1015 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1016 					DMA_FROM_DEVICE);
1017 		rx_desc = skb->data;
1018 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1019 
1020 		/* offset from rx_desc to payload */
1021 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1022 			     pkt_stat.shift;
1023 
1024 		/* allocate a new skb for this frame,
1025 		 * discard the frame if none available
1026 		 */
1027 		new_len = pkt_stat.pkt_len + pkt_offset;
1028 		new = dev_alloc_skb(new_len);
1029 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1030 			goto next_rp;
1031 
1032 		/* put the DMA data including rx_desc from phy to new skb */
1033 		skb_put_data(new, skb->data, new_len);
1034 
1035 		if (pkt_stat.is_c2h) {
1036 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1037 		} else {
1038 			/* remove rx_desc */
1039 			skb_pull(new, pkt_offset);
1040 
1041 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1042 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1043 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1044 			rx_done++;
1045 		}
1046 
1047 next_rp:
1048 		/* new skb delivered to mac80211, re-enable original skb DMA */
1049 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1050 					    buf_desc_sz);
1051 
1052 		/* host read next element in ring */
1053 		if (++cur_rp >= ring->r.len)
1054 			cur_rp = 0;
1055 	}
1056 
1057 	ring->r.rp = cur_rp;
1058 	/* 'rp', the last position we have read, is seen as previous posistion
1059 	 * of 'wp' that is used to calculate 'count' next time.
1060 	 */
1061 	ring->r.wp = cur_rp;
1062 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1063 
1064 	return rx_done;
1065 }
1066 
1067 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1068 				   struct rtw_pci *rtwpci, u32 *irq_status)
1069 {
1070 	unsigned long flags;
1071 
1072 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1073 
1074 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1075 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1076 	if (rtw_chip_wcpu_11ac(rtwdev))
1077 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1078 	else
1079 		irq_status[3] = 0;
1080 	irq_status[0] &= rtwpci->irq_mask[0];
1081 	irq_status[1] &= rtwpci->irq_mask[1];
1082 	irq_status[3] &= rtwpci->irq_mask[3];
1083 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1084 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1085 	if (rtw_chip_wcpu_11ac(rtwdev))
1086 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1087 
1088 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1089 }
1090 
1091 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1092 {
1093 	struct rtw_dev *rtwdev = dev;
1094 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1095 
1096 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1097 	 * thread function
1098 	 *
1099 	 * disable HIMR here to also avoid new HISR flag being raised before
1100 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1101 	 * are cleared, the edge-triggered interrupt will not be generated when
1102 	 * a new HISR flag is set.
1103 	 */
1104 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1105 
1106 	return IRQ_WAKE_THREAD;
1107 }
1108 
1109 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1110 {
1111 	struct rtw_dev *rtwdev = dev;
1112 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1113 	u32 irq_status[4];
1114 	bool rx = false;
1115 
1116 	spin_lock_bh(&rtwpci->irq_lock);
1117 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1118 
1119 	if (irq_status[0] & IMR_MGNTDOK)
1120 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1121 	if (irq_status[0] & IMR_HIGHDOK)
1122 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1123 	if (irq_status[0] & IMR_BEDOK)
1124 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1125 	if (irq_status[0] & IMR_BKDOK)
1126 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1127 	if (irq_status[0] & IMR_VODOK)
1128 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1129 	if (irq_status[0] & IMR_VIDOK)
1130 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1131 	if (irq_status[3] & IMR_H2CDOK)
1132 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1133 	if (irq_status[0] & IMR_ROK) {
1134 		rtw_pci_rx_isr(rtwdev);
1135 		rx = true;
1136 	}
1137 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1138 		rtw_fw_c2h_cmd_isr(rtwdev);
1139 
1140 	/* all of the jobs for this interrupt have been done */
1141 	rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1142 	spin_unlock_bh(&rtwpci->irq_lock);
1143 
1144 	return IRQ_HANDLED;
1145 }
1146 
1147 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1148 			      struct pci_dev *pdev)
1149 {
1150 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1151 	unsigned long len;
1152 	u8 bar_id = 2;
1153 	int ret;
1154 
1155 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1156 	if (ret) {
1157 		rtw_err(rtwdev, "failed to request pci regions\n");
1158 		return ret;
1159 	}
1160 
1161 	len = pci_resource_len(pdev, bar_id);
1162 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1163 	if (!rtwpci->mmap) {
1164 		pci_release_regions(pdev);
1165 		rtw_err(rtwdev, "failed to map pci memory\n");
1166 		return -ENOMEM;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1173 				 struct pci_dev *pdev)
1174 {
1175 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1176 
1177 	if (rtwpci->mmap) {
1178 		pci_iounmap(pdev, rtwpci->mmap);
1179 		pci_release_regions(pdev);
1180 	}
1181 }
1182 
1183 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1184 {
1185 	u16 write_addr;
1186 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1187 	u8 flag;
1188 	u8 cnt;
1189 
1190 	write_addr = addr & BITS_DBI_ADDR_MASK;
1191 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1192 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1193 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1194 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1195 
1196 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1197 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1198 		if (flag == 0)
1199 			return;
1200 
1201 		udelay(10);
1202 	}
1203 
1204 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1205 }
1206 
1207 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1208 {
1209 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1210 	u8 flag;
1211 	u8 cnt;
1212 
1213 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1214 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1215 
1216 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1217 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1218 		if (flag == 0) {
1219 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1220 			*value = rtw_read8(rtwdev, read_addr);
1221 			return 0;
1222 		}
1223 
1224 		udelay(10);
1225 	}
1226 
1227 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1228 	return -EIO;
1229 }
1230 
1231 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1232 {
1233 	u8 page;
1234 	u8 wflag;
1235 	u8 cnt;
1236 
1237 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1238 
1239 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1240 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1241 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1242 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1243 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1244 
1245 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1246 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1247 					BIT_MDIO_WFLAG_V1);
1248 		if (wflag == 0)
1249 			return;
1250 
1251 		udelay(10);
1252 	}
1253 
1254 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1255 }
1256 
1257 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1258 {
1259 	u8 value;
1260 	int ret;
1261 
1262 	if (rtw_pci_disable_aspm)
1263 		return;
1264 
1265 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1266 	if (ret) {
1267 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1268 		return;
1269 	}
1270 
1271 	if (enable)
1272 		value |= BIT_CLKREQ_SW_EN;
1273 	else
1274 		value &= ~BIT_CLKREQ_SW_EN;
1275 
1276 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1277 }
1278 
1279 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1280 {
1281 	u8 value;
1282 	int ret;
1283 
1284 	if (rtw_pci_disable_aspm)
1285 		return;
1286 
1287 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1288 	if (ret) {
1289 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1290 		return;
1291 	}
1292 
1293 	if (enable)
1294 		value |= BIT_L1_SW_EN;
1295 	else
1296 		value &= ~BIT_L1_SW_EN;
1297 
1298 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1299 }
1300 
1301 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1302 {
1303 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1304 
1305 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1306 	 * only be enabled when host supports it.
1307 	 *
1308 	 * And ASPM mechanism should be enabled when driver/firmware enters
1309 	 * power save mode, without having heavy traffic. Because we've
1310 	 * experienced some inter-operability issues that the link tends
1311 	 * to enter L1 state on the fly even when driver is having high
1312 	 * throughput. This is probably because the ASPM behavior slightly
1313 	 * varies from different SOC.
1314 	 */
1315 	if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
1316 		rtw_pci_aspm_set(rtwdev, enter);
1317 }
1318 
1319 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1320 {
1321 	struct rtw_chip_info *chip = rtwdev->chip;
1322 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1323 	struct pci_dev *pdev = rtwpci->pdev;
1324 	u16 link_ctrl;
1325 	int ret;
1326 
1327 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1328 	 * to add clock delay to cover the REFCLK timing gap.
1329 	 */
1330 	if (chip->id == RTW_CHIP_TYPE_8822C)
1331 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1332 
1333 	/* Though there is standard PCIE configuration space to set the
1334 	 * link control register, but by Realtek's design, driver should
1335 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1336 	 *
1337 	 * These functions are implemented by two HW modules associated,
1338 	 * one is responsible to access PCIE configuration space to
1339 	 * follow the host settings, and another is in charge of doing
1340 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1341 	 * the host does not support it, and due to some reasons or wrong
1342 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1343 	 * loss if HW misbehaves on the link.
1344 	 *
1345 	 * Hence it's designed that driver should first check the PCIE
1346 	 * configuration space is sync'ed and enabled, then driver can turn
1347 	 * on the other module that is actually working on the mechanism.
1348 	 */
1349 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1350 	if (ret) {
1351 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1352 		return;
1353 	}
1354 
1355 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1356 		rtw_pci_clkreq_set(rtwdev, true);
1357 
1358 	rtwpci->link_ctrl = link_ctrl;
1359 }
1360 
1361 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1362 {
1363 	struct rtw_chip_info *chip = rtwdev->chip;
1364 
1365 	switch (chip->id) {
1366 	case RTW_CHIP_TYPE_8822C:
1367 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1368 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1369 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1370 		break;
1371 	default:
1372 		break;
1373 	}
1374 }
1375 
1376 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1377 {
1378 	struct rtw_chip_info *chip = rtwdev->chip;
1379 	const struct rtw_intf_phy_para *para;
1380 	u16 cut;
1381 	u16 value;
1382 	u16 offset;
1383 	int i;
1384 
1385 	cut = BIT(0) << rtwdev->hal.cut_version;
1386 
1387 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1388 		para = &chip->intf_table->gen1_para[i];
1389 		if (!(para->cut_mask & cut))
1390 			continue;
1391 		if (para->offset == 0xffff)
1392 			break;
1393 		offset = para->offset;
1394 		value = para->value;
1395 		if (para->ip_sel == RTW_IP_SEL_PHY)
1396 			rtw_mdio_write(rtwdev, offset, value, true);
1397 		else
1398 			rtw_dbi_write8(rtwdev, offset, value);
1399 	}
1400 
1401 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1402 		para = &chip->intf_table->gen2_para[i];
1403 		if (!(para->cut_mask & cut))
1404 			continue;
1405 		if (para->offset == 0xffff)
1406 			break;
1407 		offset = para->offset;
1408 		value = para->value;
1409 		if (para->ip_sel == RTW_IP_SEL_PHY)
1410 			rtw_mdio_write(rtwdev, offset, value, false);
1411 		else
1412 			rtw_dbi_write8(rtwdev, offset, value);
1413 	}
1414 
1415 	rtw_pci_link_cfg(rtwdev);
1416 }
1417 
1418 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1419 {
1420 	return 0;
1421 }
1422 
1423 static int __maybe_unused rtw_pci_resume(struct device *dev)
1424 {
1425 	return 0;
1426 }
1427 
1428 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1429 EXPORT_SYMBOL(rtw_pm_ops);
1430 
1431 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1432 {
1433 	int ret;
1434 
1435 	ret = pci_enable_device(pdev);
1436 	if (ret) {
1437 		rtw_err(rtwdev, "failed to enable pci device\n");
1438 		return ret;
1439 	}
1440 
1441 	pci_set_master(pdev);
1442 	pci_set_drvdata(pdev, rtwdev->hw);
1443 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1444 
1445 	return 0;
1446 }
1447 
1448 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1449 {
1450 	pci_clear_master(pdev);
1451 	pci_disable_device(pdev);
1452 }
1453 
1454 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1455 {
1456 	struct rtw_pci *rtwpci;
1457 	int ret;
1458 
1459 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1460 	rtwpci->pdev = pdev;
1461 
1462 	/* after this driver can access to hw registers */
1463 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1464 	if (ret) {
1465 		rtw_err(rtwdev, "failed to request pci io region\n");
1466 		goto err_out;
1467 	}
1468 
1469 	ret = rtw_pci_init(rtwdev);
1470 	if (ret) {
1471 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1472 		goto err_io_unmap;
1473 	}
1474 
1475 	return 0;
1476 
1477 err_io_unmap:
1478 	rtw_pci_io_unmapping(rtwdev, pdev);
1479 
1480 err_out:
1481 	return ret;
1482 }
1483 
1484 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1485 {
1486 	rtw_pci_deinit(rtwdev);
1487 	rtw_pci_io_unmapping(rtwdev, pdev);
1488 }
1489 
1490 static struct rtw_hci_ops rtw_pci_ops = {
1491 	.tx_write = rtw_pci_tx_write,
1492 	.tx_kick_off = rtw_pci_tx_kick_off,
1493 	.setup = rtw_pci_setup,
1494 	.start = rtw_pci_start,
1495 	.stop = rtw_pci_stop,
1496 	.deep_ps = rtw_pci_deep_ps,
1497 	.link_ps = rtw_pci_link_ps,
1498 	.interface_cfg = rtw_pci_interface_cfg,
1499 
1500 	.read8 = rtw_pci_read8,
1501 	.read16 = rtw_pci_read16,
1502 	.read32 = rtw_pci_read32,
1503 	.write8 = rtw_pci_write8,
1504 	.write16 = rtw_pci_write16,
1505 	.write32 = rtw_pci_write32,
1506 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1507 	.write_data_h2c = rtw_pci_write_data_h2c,
1508 };
1509 
1510 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1511 {
1512 	unsigned int flags = PCI_IRQ_LEGACY;
1513 	int ret;
1514 
1515 	if (!rtw_disable_msi)
1516 		flags |= PCI_IRQ_MSI;
1517 
1518 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1519 	if (ret < 0) {
1520 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1521 		return ret;
1522 	}
1523 
1524 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1525 					rtw_pci_interrupt_handler,
1526 					rtw_pci_interrupt_threadfn,
1527 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1528 	if (ret) {
1529 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1530 		pci_free_irq_vectors(pdev);
1531 	}
1532 
1533 	return ret;
1534 }
1535 
1536 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1537 {
1538 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1539 	pci_free_irq_vectors(pdev);
1540 }
1541 
1542 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1543 {
1544 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1545 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1546 					      priv);
1547 	int work_done = 0;
1548 
1549 	while (work_done < budget) {
1550 		u32 work_done_once;
1551 
1552 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1553 						 budget - work_done);
1554 		if (work_done_once == 0)
1555 			break;
1556 		work_done += work_done_once;
1557 	}
1558 	if (work_done < budget) {
1559 		napi_complete_done(napi, work_done);
1560 		spin_lock_bh(&rtwpci->irq_lock);
1561 		rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1562 		spin_unlock_bh(&rtwpci->irq_lock);
1563 		/* When ISR happens during polling and before napi_complete
1564 		 * while no further data is received. Data on the dma_ring will
1565 		 * not be processed immediately. Check whether dma ring is
1566 		 * empty and perform napi_schedule accordingly.
1567 		 */
1568 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1569 			napi_schedule(napi);
1570 	}
1571 
1572 	return work_done;
1573 }
1574 
1575 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1576 {
1577 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1578 
1579 	init_dummy_netdev(&rtwpci->netdev);
1580 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll,
1581 		       RTW_NAPI_WEIGHT_NUM);
1582 }
1583 
1584 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1585 {
1586 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1587 
1588 	rtw_pci_napi_stop(rtwdev);
1589 	netif_napi_del(&rtwpci->napi);
1590 }
1591 
1592 int rtw_pci_probe(struct pci_dev *pdev,
1593 		  const struct pci_device_id *id)
1594 {
1595 	struct ieee80211_hw *hw;
1596 	struct rtw_dev *rtwdev;
1597 	int drv_data_size;
1598 	int ret;
1599 
1600 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1601 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1602 	if (!hw) {
1603 		dev_err(&pdev->dev, "failed to allocate hw\n");
1604 		return -ENOMEM;
1605 	}
1606 
1607 	rtwdev = hw->priv;
1608 	rtwdev->hw = hw;
1609 	rtwdev->dev = &pdev->dev;
1610 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1611 	rtwdev->hci.ops = &rtw_pci_ops;
1612 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1613 
1614 	ret = rtw_core_init(rtwdev);
1615 	if (ret)
1616 		goto err_release_hw;
1617 
1618 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1619 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1620 		pdev->vendor, pdev->device, pdev->revision);
1621 
1622 	ret = rtw_pci_claim(rtwdev, pdev);
1623 	if (ret) {
1624 		rtw_err(rtwdev, "failed to claim pci device\n");
1625 		goto err_deinit_core;
1626 	}
1627 
1628 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1629 	if (ret) {
1630 		rtw_err(rtwdev, "failed to setup pci resources\n");
1631 		goto err_pci_declaim;
1632 	}
1633 
1634 	rtw_pci_napi_init(rtwdev);
1635 
1636 	ret = rtw_chip_info_setup(rtwdev);
1637 	if (ret) {
1638 		rtw_err(rtwdev, "failed to setup chip information\n");
1639 		goto err_destroy_pci;
1640 	}
1641 
1642 	rtw_pci_phy_cfg(rtwdev);
1643 
1644 	ret = rtw_register_hw(rtwdev, hw);
1645 	if (ret) {
1646 		rtw_err(rtwdev, "failed to register hw\n");
1647 		goto err_destroy_pci;
1648 	}
1649 
1650 	ret = rtw_pci_request_irq(rtwdev, pdev);
1651 	if (ret) {
1652 		ieee80211_unregister_hw(hw);
1653 		goto err_destroy_pci;
1654 	}
1655 
1656 	return 0;
1657 
1658 err_destroy_pci:
1659 	rtw_pci_napi_deinit(rtwdev);
1660 	rtw_pci_destroy(rtwdev, pdev);
1661 
1662 err_pci_declaim:
1663 	rtw_pci_declaim(rtwdev, pdev);
1664 
1665 err_deinit_core:
1666 	rtw_core_deinit(rtwdev);
1667 
1668 err_release_hw:
1669 	ieee80211_free_hw(hw);
1670 
1671 	return ret;
1672 }
1673 EXPORT_SYMBOL(rtw_pci_probe);
1674 
1675 void rtw_pci_remove(struct pci_dev *pdev)
1676 {
1677 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1678 	struct rtw_dev *rtwdev;
1679 	struct rtw_pci *rtwpci;
1680 
1681 	if (!hw)
1682 		return;
1683 
1684 	rtwdev = hw->priv;
1685 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1686 
1687 	rtw_unregister_hw(rtwdev, hw);
1688 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1689 	rtw_pci_napi_deinit(rtwdev);
1690 	rtw_pci_destroy(rtwdev, pdev);
1691 	rtw_pci_declaim(rtwdev, pdev);
1692 	rtw_pci_free_irq(rtwdev, pdev);
1693 	rtw_core_deinit(rtwdev);
1694 	ieee80211_free_hw(hw);
1695 }
1696 EXPORT_SYMBOL(rtw_pci_remove);
1697 
1698 void rtw_pci_shutdown(struct pci_dev *pdev)
1699 {
1700 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1701 	struct rtw_dev *rtwdev;
1702 	struct rtw_chip_info *chip;
1703 
1704 	if (!hw)
1705 		return;
1706 
1707 	rtwdev = hw->priv;
1708 	chip = rtwdev->chip;
1709 
1710 	if (chip->ops->shutdown)
1711 		chip->ops->shutdown(rtwdev);
1712 
1713 	pci_set_power_state(pdev, PCI_D3hot);
1714 }
1715 EXPORT_SYMBOL(rtw_pci_shutdown);
1716 
1717 MODULE_AUTHOR("Realtek Corporation");
1718 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1719 MODULE_LICENSE("Dual BSD/GPL");
1720