1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15 
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22 
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
25 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
26 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
27 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
28 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
29 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
30 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
31 };
32 
33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
34 {
35 	switch (queue) {
36 	case RTW_TX_QUEUE_BCN:
37 		return TX_DESC_QSEL_BEACON;
38 	case RTW_TX_QUEUE_H2C:
39 		return TX_DESC_QSEL_H2C;
40 	case RTW_TX_QUEUE_MGMT:
41 		return TX_DESC_QSEL_MGMT;
42 	case RTW_TX_QUEUE_HI0:
43 		return TX_DESC_QSEL_HIGH;
44 	default:
45 		return skb->priority;
46 	}
47 };
48 
49 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
50 {
51 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
52 
53 	return readb(rtwpci->mmap + addr);
54 }
55 
56 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
57 {
58 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
59 
60 	return readw(rtwpci->mmap + addr);
61 }
62 
63 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
64 {
65 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
66 
67 	return readl(rtwpci->mmap + addr);
68 }
69 
70 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
71 {
72 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
73 
74 	writeb(val, rtwpci->mmap + addr);
75 }
76 
77 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
78 {
79 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
80 
81 	writew(val, rtwpci->mmap + addr);
82 }
83 
84 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
85 {
86 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
87 
88 	writel(val, rtwpci->mmap + addr);
89 }
90 
91 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
92 {
93 	int offset = tx_ring->r.desc_size * idx;
94 
95 	return tx_ring->r.head + offset;
96 }
97 
98 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
99 				      struct rtw_pci_tx_ring *tx_ring)
100 {
101 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
102 	struct rtw_pci_tx_data *tx_data;
103 	struct sk_buff *skb, *tmp;
104 	dma_addr_t dma;
105 
106 	/* free every skb remained in tx list */
107 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
108 		__skb_unlink(skb, &tx_ring->queue);
109 		tx_data = rtw_pci_get_tx_data(skb);
110 		dma = tx_data->dma;
111 
112 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
113 		dev_kfree_skb_any(skb);
114 	}
115 }
116 
117 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
118 				 struct rtw_pci_tx_ring *tx_ring)
119 {
120 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
121 	u8 *head = tx_ring->r.head;
122 	u32 len = tx_ring->r.len;
123 	int ring_sz = len * tx_ring->r.desc_size;
124 
125 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
126 
127 	/* free the ring itself */
128 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
129 	tx_ring->r.head = NULL;
130 }
131 
132 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
133 				      struct rtw_pci_rx_ring *rx_ring)
134 {
135 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
136 	struct sk_buff *skb;
137 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
138 	dma_addr_t dma;
139 	int i;
140 
141 	for (i = 0; i < rx_ring->r.len; i++) {
142 		skb = rx_ring->buf[i];
143 		if (!skb)
144 			continue;
145 
146 		dma = *((dma_addr_t *)skb->cb);
147 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
148 		dev_kfree_skb(skb);
149 		rx_ring->buf[i] = NULL;
150 	}
151 }
152 
153 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
154 				 struct rtw_pci_rx_ring *rx_ring)
155 {
156 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
157 	u8 *head = rx_ring->r.head;
158 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
159 
160 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
161 
162 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
163 }
164 
165 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
168 	struct rtw_pci_tx_ring *tx_ring;
169 	struct rtw_pci_rx_ring *rx_ring;
170 	int i;
171 
172 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
173 		tx_ring = &rtwpci->tx_rings[i];
174 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
175 	}
176 
177 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
178 		rx_ring = &rtwpci->rx_rings[i];
179 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
180 	}
181 }
182 
183 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
184 				struct rtw_pci_tx_ring *tx_ring,
185 				u8 desc_size, u32 len)
186 {
187 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
188 	int ring_sz = desc_size * len;
189 	dma_addr_t dma;
190 	u8 *head;
191 
192 	if (len > TRX_BD_IDX_MASK) {
193 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
194 		return -EINVAL;
195 	}
196 
197 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
198 	if (!head) {
199 		rtw_err(rtwdev, "failed to allocate tx ring\n");
200 		return -ENOMEM;
201 	}
202 
203 	skb_queue_head_init(&tx_ring->queue);
204 	tx_ring->r.head = head;
205 	tx_ring->r.dma = dma;
206 	tx_ring->r.len = len;
207 	tx_ring->r.desc_size = desc_size;
208 	tx_ring->r.wp = 0;
209 	tx_ring->r.rp = 0;
210 
211 	return 0;
212 }
213 
214 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
215 				 struct rtw_pci_rx_ring *rx_ring,
216 				 u32 idx, u32 desc_sz)
217 {
218 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
219 	struct rtw_pci_rx_buffer_desc *buf_desc;
220 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
221 	dma_addr_t dma;
222 
223 	if (!skb)
224 		return -EINVAL;
225 
226 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
227 	if (dma_mapping_error(&pdev->dev, dma))
228 		return -EBUSY;
229 
230 	*((dma_addr_t *)skb->cb) = dma;
231 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
232 						     idx * desc_sz);
233 	memset(buf_desc, 0, sizeof(*buf_desc));
234 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
235 	buf_desc->dma = cpu_to_le32(dma);
236 
237 	return 0;
238 }
239 
240 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
241 					struct rtw_pci_rx_ring *rx_ring,
242 					u32 idx, u32 desc_sz)
243 {
244 	struct device *dev = rtwdev->dev;
245 	struct rtw_pci_rx_buffer_desc *buf_desc;
246 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
247 
248 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
249 
250 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
251 						     idx * desc_sz);
252 	memset(buf_desc, 0, sizeof(*buf_desc));
253 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
254 	buf_desc->dma = cpu_to_le32(dma);
255 }
256 
257 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
258 				struct rtw_pci_rx_ring *rx_ring,
259 				u8 desc_size, u32 len)
260 {
261 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
262 	struct sk_buff *skb = NULL;
263 	dma_addr_t dma;
264 	u8 *head;
265 	int ring_sz = desc_size * len;
266 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
267 	int i, allocated;
268 	int ret = 0;
269 
270 	if (len > TRX_BD_IDX_MASK) {
271 		rtw_err(rtwdev, "len %d exceeds maximum RX entries\n", len);
272 		return -EINVAL;
273 	}
274 
275 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
276 	if (!head) {
277 		rtw_err(rtwdev, "failed to allocate rx ring\n");
278 		return -ENOMEM;
279 	}
280 	rx_ring->r.head = head;
281 
282 	for (i = 0; i < len; i++) {
283 		skb = dev_alloc_skb(buf_sz);
284 		if (!skb) {
285 			allocated = i;
286 			ret = -ENOMEM;
287 			goto err_out;
288 		}
289 
290 		memset(skb->data, 0, buf_sz);
291 		rx_ring->buf[i] = skb;
292 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
293 		if (ret) {
294 			allocated = i;
295 			dev_kfree_skb_any(skb);
296 			goto err_out;
297 		}
298 	}
299 
300 	rx_ring->r.dma = dma;
301 	rx_ring->r.len = len;
302 	rx_ring->r.desc_size = desc_size;
303 	rx_ring->r.wp = 0;
304 	rx_ring->r.rp = 0;
305 
306 	return 0;
307 
308 err_out:
309 	for (i = 0; i < allocated; i++) {
310 		skb = rx_ring->buf[i];
311 		if (!skb)
312 			continue;
313 		dma = *((dma_addr_t *)skb->cb);
314 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
315 		dev_kfree_skb_any(skb);
316 		rx_ring->buf[i] = NULL;
317 	}
318 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
319 
320 	rtw_err(rtwdev, "failed to init rx buffer\n");
321 
322 	return ret;
323 }
324 
325 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
326 {
327 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
328 	struct rtw_pci_tx_ring *tx_ring;
329 	struct rtw_pci_rx_ring *rx_ring;
330 	struct rtw_chip_info *chip = rtwdev->chip;
331 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
332 	int tx_desc_size, rx_desc_size;
333 	u32 len;
334 	int ret;
335 
336 	tx_desc_size = chip->tx_buf_desc_sz;
337 
338 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
339 		tx_ring = &rtwpci->tx_rings[i];
340 		len = max_num_of_tx_queue(i);
341 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
342 		if (ret)
343 			goto out;
344 	}
345 
346 	rx_desc_size = chip->rx_buf_desc_sz;
347 
348 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
349 		rx_ring = &rtwpci->rx_rings[j];
350 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
351 					   RTK_MAX_RX_DESC_NUM);
352 		if (ret)
353 			goto out;
354 	}
355 
356 	return 0;
357 
358 out:
359 	tx_alloced = i;
360 	for (i = 0; i < tx_alloced; i++) {
361 		tx_ring = &rtwpci->tx_rings[i];
362 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
363 	}
364 
365 	rx_alloced = j;
366 	for (j = 0; j < rx_alloced; j++) {
367 		rx_ring = &rtwpci->rx_rings[j];
368 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
369 	}
370 
371 	return ret;
372 }
373 
374 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
375 {
376 	rtw_pci_free_trx_ring(rtwdev);
377 }
378 
379 static int rtw_pci_init(struct rtw_dev *rtwdev)
380 {
381 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
382 	int ret = 0;
383 
384 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
385 			      IMR_MGNTDOK |
386 			      IMR_BKDOK |
387 			      IMR_BEDOK |
388 			      IMR_VIDOK |
389 			      IMR_VODOK |
390 			      IMR_ROK |
391 			      IMR_BCNDMAINT_E |
392 			      IMR_C2HCMD |
393 			      0;
394 	rtwpci->irq_mask[1] = IMR_TXFOVW |
395 			      0;
396 	rtwpci->irq_mask[3] = IMR_H2CDOK |
397 			      0;
398 	spin_lock_init(&rtwpci->irq_lock);
399 	spin_lock_init(&rtwpci->hwirq_lock);
400 	ret = rtw_pci_init_trx_ring(rtwdev);
401 
402 	return ret;
403 }
404 
405 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
406 {
407 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
408 	u32 len;
409 	u8 tmp;
410 	dma_addr_t dma;
411 
412 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
413 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
414 
415 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
416 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
417 
418 	if (!rtw_chip_wcpu_11n(rtwdev)) {
419 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
420 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
421 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
422 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
423 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
424 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
425 	}
426 
427 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
428 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
429 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
430 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
431 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
432 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
433 
434 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
435 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
436 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
437 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
438 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
439 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
440 
441 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
442 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
443 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
444 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
445 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
446 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
447 
448 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
449 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
450 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
451 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
452 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
453 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
454 
455 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
456 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
457 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
458 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
459 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
460 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
461 
462 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
463 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
464 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
466 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
467 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
468 
469 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
470 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
471 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
472 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
473 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
474 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
475 
476 	/* reset read/write point */
477 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
478 
479 	/* reset H2C Queue index in a single write */
480 	if (rtw_chip_wcpu_11ac(rtwdev))
481 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
482 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
483 }
484 
485 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
486 {
487 	rtw_pci_reset_buf_desc(rtwdev);
488 }
489 
490 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
491 				     struct rtw_pci *rtwpci, bool exclude_rx)
492 {
493 	unsigned long flags;
494 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
495 
496 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
497 
498 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
499 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
500 	if (rtw_chip_wcpu_11ac(rtwdev))
501 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
502 
503 	rtwpci->irq_enabled = true;
504 
505 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
506 }
507 
508 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
509 				      struct rtw_pci *rtwpci)
510 {
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
514 
515 	if (!rtwpci->irq_enabled)
516 		goto out;
517 
518 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
519 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
520 	if (rtw_chip_wcpu_11ac(rtwdev))
521 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
522 
523 	rtwpci->irq_enabled = false;
524 
525 out:
526 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
527 }
528 
529 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
530 {
531 	/* reset dma and rx tag */
532 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
533 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
534 	rtwpci->rx_tag = 0;
535 }
536 
537 static int rtw_pci_setup(struct rtw_dev *rtwdev)
538 {
539 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
540 
541 	rtw_pci_reset_trx_ring(rtwdev);
542 	rtw_pci_dma_reset(rtwdev, rtwpci);
543 
544 	return 0;
545 }
546 
547 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
548 {
549 	struct rtw_pci_tx_ring *tx_ring;
550 	u8 queue;
551 
552 	rtw_pci_reset_trx_ring(rtwdev);
553 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
554 		tx_ring = &rtwpci->tx_rings[queue];
555 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
556 	}
557 }
558 
559 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
560 {
561 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
562 
563 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
564 		return;
565 
566 	napi_enable(&rtwpci->napi);
567 }
568 
569 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
570 {
571 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572 
573 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
574 		return;
575 
576 	napi_synchronize(&rtwpci->napi);
577 	napi_disable(&rtwpci->napi);
578 }
579 
580 static int rtw_pci_start(struct rtw_dev *rtwdev)
581 {
582 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
583 
584 	rtw_pci_napi_start(rtwdev);
585 
586 	spin_lock_bh(&rtwpci->irq_lock);
587 	rtwpci->running = true;
588 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
589 	spin_unlock_bh(&rtwpci->irq_lock);
590 
591 	return 0;
592 }
593 
594 static void rtw_pci_stop(struct rtw_dev *rtwdev)
595 {
596 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
597 	struct pci_dev *pdev = rtwpci->pdev;
598 
599 	spin_lock_bh(&rtwpci->irq_lock);
600 	rtwpci->running = false;
601 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
602 	spin_unlock_bh(&rtwpci->irq_lock);
603 
604 	synchronize_irq(pdev->irq);
605 	rtw_pci_napi_stop(rtwdev);
606 
607 	spin_lock_bh(&rtwpci->irq_lock);
608 	rtw_pci_dma_release(rtwdev, rtwpci);
609 	spin_unlock_bh(&rtwpci->irq_lock);
610 }
611 
612 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
613 {
614 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
615 	struct rtw_pci_tx_ring *tx_ring;
616 	bool tx_empty = true;
617 	u8 queue;
618 
619 	lockdep_assert_held(&rtwpci->irq_lock);
620 
621 	/* Deep PS state is not allowed to TX-DMA */
622 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
623 		/* BCN queue is rsvd page, does not have DMA interrupt
624 		 * H2C queue is managed by firmware
625 		 */
626 		if (queue == RTW_TX_QUEUE_BCN ||
627 		    queue == RTW_TX_QUEUE_H2C)
628 			continue;
629 
630 		tx_ring = &rtwpci->tx_rings[queue];
631 
632 		/* check if there is any skb DMAing */
633 		if (skb_queue_len(&tx_ring->queue)) {
634 			tx_empty = false;
635 			break;
636 		}
637 	}
638 
639 	if (!tx_empty) {
640 		rtw_dbg(rtwdev, RTW_DBG_PS,
641 			"TX path not empty, cannot enter deep power save state\n");
642 		return;
643 	}
644 
645 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
646 	rtw_power_mode_change(rtwdev, true);
647 }
648 
649 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
650 {
651 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
652 
653 	lockdep_assert_held(&rtwpci->irq_lock);
654 
655 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
656 		rtw_power_mode_change(rtwdev, false);
657 }
658 
659 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
660 {
661 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
662 
663 	spin_lock_bh(&rtwpci->irq_lock);
664 
665 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
666 		rtw_pci_deep_ps_enter(rtwdev);
667 
668 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
669 		rtw_pci_deep_ps_leave(rtwdev);
670 
671 	spin_unlock_bh(&rtwpci->irq_lock);
672 }
673 
674 static u8 ac_to_hwq[] = {
675 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
676 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
677 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
678 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
679 };
680 
681 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
682 
683 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
684 {
685 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
686 	__le16 fc = hdr->frame_control;
687 	u8 q_mapping = skb_get_queue_mapping(skb);
688 	u8 queue;
689 
690 	if (unlikely(ieee80211_is_beacon(fc)))
691 		queue = RTW_TX_QUEUE_BCN;
692 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
693 		queue = RTW_TX_QUEUE_MGMT;
694 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
695 		queue = ac_to_hwq[IEEE80211_AC_BE];
696 	else
697 		queue = ac_to_hwq[q_mapping];
698 
699 	return queue;
700 }
701 
702 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
703 				      struct rtw_pci_tx_ring *ring)
704 {
705 	struct sk_buff *prev = skb_dequeue(&ring->queue);
706 	struct rtw_pci_tx_data *tx_data;
707 	dma_addr_t dma;
708 
709 	if (!prev)
710 		return;
711 
712 	tx_data = rtw_pci_get_tx_data(prev);
713 	dma = tx_data->dma;
714 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
715 	dev_kfree_skb_any(prev);
716 }
717 
718 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
719 			      struct rtw_pci_rx_ring *rx_ring,
720 			      u32 idx)
721 {
722 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
723 	struct rtw_chip_info *chip = rtwdev->chip;
724 	struct rtw_pci_rx_buffer_desc *buf_desc;
725 	u32 desc_sz = chip->rx_buf_desc_sz;
726 	u16 total_pkt_size;
727 
728 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
729 						     idx * desc_sz);
730 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
731 
732 	/* rx tag mismatch, throw a warning */
733 	if (total_pkt_size != rtwpci->rx_tag)
734 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
735 
736 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
737 }
738 
739 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
740 {
741 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
742 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
743 
744 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
745 }
746 
747 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
748 {
749 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
750 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
751 	u32 cur_rp;
752 	u8 i;
753 
754 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
755 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
756 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
757 	 * polling times, so we just use for loop with udelay here.
758 	 */
759 	for (i = 0; i < 30; i++) {
760 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
761 		if (cur_rp == ring->r.wp)
762 			return;
763 
764 		udelay(1);
765 	}
766 
767 	if (!drop)
768 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
769 }
770 
771 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
772 				   bool drop)
773 {
774 	u8 q;
775 
776 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
777 		/* It may be not necessary to flush BCN and H2C tx queues. */
778 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
779 			continue;
780 
781 		if (pci_queues & BIT(q))
782 			__pci_flush_queue(rtwdev, q, drop);
783 	}
784 }
785 
786 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
787 {
788 	u32 pci_queues = 0;
789 	u8 i;
790 
791 	/* If all of the hardware queues are requested to flush,
792 	 * flush all of the pci queues.
793 	 */
794 	if (queues == BIT(rtwdev->hw->queues) - 1) {
795 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
796 	} else {
797 		for (i = 0; i < rtwdev->hw->queues; i++)
798 			if (queues & BIT(i))
799 				pci_queues |= BIT(ac_to_hwq[i]);
800 	}
801 
802 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
803 }
804 
805 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
806 {
807 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
808 	struct rtw_pci_tx_ring *ring;
809 	u32 bd_idx;
810 
811 	ring = &rtwpci->tx_rings[queue];
812 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
813 
814 	spin_lock_bh(&rtwpci->irq_lock);
815 	rtw_pci_deep_ps_leave(rtwdev);
816 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
817 	spin_unlock_bh(&rtwpci->irq_lock);
818 }
819 
820 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
821 {
822 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
823 	u8 queue;
824 
825 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
826 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
827 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
828 }
829 
830 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
831 				 struct rtw_tx_pkt_info *pkt_info,
832 				 struct sk_buff *skb, u8 queue)
833 {
834 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
835 	struct rtw_chip_info *chip = rtwdev->chip;
836 	struct rtw_pci_tx_ring *ring;
837 	struct rtw_pci_tx_data *tx_data;
838 	dma_addr_t dma;
839 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
840 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
841 	u32 size;
842 	u32 psb_len;
843 	u8 *pkt_desc;
844 	struct rtw_pci_tx_buffer_desc *buf_desc;
845 
846 	ring = &rtwpci->tx_rings[queue];
847 
848 	size = skb->len;
849 
850 	if (queue == RTW_TX_QUEUE_BCN)
851 		rtw_pci_release_rsvd_page(rtwpci, ring);
852 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
853 		return -ENOSPC;
854 
855 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
856 	memset(pkt_desc, 0, tx_pkt_desc_sz);
857 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
858 	rtw_tx_fill_tx_desc(pkt_info, skb);
859 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
860 			     DMA_TO_DEVICE);
861 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
862 		return -EBUSY;
863 
864 	/* after this we got dma mapped, there is no way back */
865 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
866 	memset(buf_desc, 0, tx_buf_desc_sz);
867 	psb_len = (skb->len - 1) / 128 + 1;
868 	if (queue == RTW_TX_QUEUE_BCN)
869 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
870 
871 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
872 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
873 	buf_desc[0].dma = cpu_to_le32(dma);
874 	buf_desc[1].buf_size = cpu_to_le16(size);
875 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
876 
877 	tx_data = rtw_pci_get_tx_data(skb);
878 	tx_data->dma = dma;
879 	tx_data->sn = pkt_info->sn;
880 
881 	spin_lock_bh(&rtwpci->irq_lock);
882 
883 	skb_queue_tail(&ring->queue, skb);
884 
885 	if (queue == RTW_TX_QUEUE_BCN)
886 		goto out_unlock;
887 
888 	/* update write-index, and kick it off later */
889 	set_bit(queue, rtwpci->tx_queued);
890 	if (++ring->r.wp >= ring->r.len)
891 		ring->r.wp = 0;
892 
893 out_unlock:
894 	spin_unlock_bh(&rtwpci->irq_lock);
895 
896 	return 0;
897 }
898 
899 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
900 					u32 size)
901 {
902 	struct sk_buff *skb;
903 	struct rtw_tx_pkt_info pkt_info = {0};
904 	u8 reg_bcn_work;
905 	int ret;
906 
907 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
908 	if (!skb)
909 		return -ENOMEM;
910 
911 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
912 	if (ret) {
913 		rtw_err(rtwdev, "failed to write rsvd page data\n");
914 		return ret;
915 	}
916 
917 	/* reserved pages go through beacon queue */
918 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
919 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
920 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
921 
922 	return 0;
923 }
924 
925 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
926 {
927 	struct sk_buff *skb;
928 	struct rtw_tx_pkt_info pkt_info = {0};
929 	int ret;
930 
931 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
932 	if (!skb)
933 		return -ENOMEM;
934 
935 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
936 	if (ret) {
937 		rtw_err(rtwdev, "failed to write h2c data\n");
938 		return ret;
939 	}
940 
941 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
942 
943 	return 0;
944 }
945 
946 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
947 			    struct rtw_tx_pkt_info *pkt_info,
948 			    struct sk_buff *skb)
949 {
950 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
951 	struct rtw_pci_tx_ring *ring;
952 	u8 queue = rtw_hw_queue_mapping(skb);
953 	int ret;
954 
955 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
956 	if (ret)
957 		return ret;
958 
959 	ring = &rtwpci->tx_rings[queue];
960 	spin_lock_bh(&rtwpci->irq_lock);
961 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
962 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
963 		ring->queue_stopped = true;
964 	}
965 	spin_unlock_bh(&rtwpci->irq_lock);
966 
967 	return 0;
968 }
969 
970 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
971 			   u8 hw_queue)
972 {
973 	struct ieee80211_hw *hw = rtwdev->hw;
974 	struct ieee80211_tx_info *info;
975 	struct rtw_pci_tx_ring *ring;
976 	struct rtw_pci_tx_data *tx_data;
977 	struct sk_buff *skb;
978 	u32 count;
979 	u32 bd_idx_addr;
980 	u32 bd_idx, cur_rp, rp_idx;
981 	u16 q_map;
982 
983 	ring = &rtwpci->tx_rings[hw_queue];
984 
985 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
986 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
987 	cur_rp = bd_idx >> 16;
988 	cur_rp &= TRX_BD_IDX_MASK;
989 	rp_idx = ring->r.rp;
990 	if (cur_rp >= ring->r.rp)
991 		count = cur_rp - ring->r.rp;
992 	else
993 		count = ring->r.len - (ring->r.rp - cur_rp);
994 
995 	while (count--) {
996 		skb = skb_dequeue(&ring->queue);
997 		if (!skb) {
998 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
999 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1000 			break;
1001 		}
1002 		tx_data = rtw_pci_get_tx_data(skb);
1003 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1004 				 DMA_TO_DEVICE);
1005 
1006 		/* just free command packets from host to card */
1007 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1008 			dev_kfree_skb_irq(skb);
1009 			continue;
1010 		}
1011 
1012 		if (ring->queue_stopped &&
1013 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1014 			q_map = skb_get_queue_mapping(skb);
1015 			ieee80211_wake_queue(hw, q_map);
1016 			ring->queue_stopped = false;
1017 		}
1018 
1019 		if (++rp_idx >= ring->r.len)
1020 			rp_idx = 0;
1021 
1022 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1023 
1024 		info = IEEE80211_SKB_CB(skb);
1025 
1026 		/* enqueue to wait for tx report */
1027 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1028 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1029 			continue;
1030 		}
1031 
1032 		/* always ACK for others, then they won't be marked as drop */
1033 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1034 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1035 		else
1036 			info->flags |= IEEE80211_TX_STAT_ACK;
1037 
1038 		ieee80211_tx_info_clear_status(info);
1039 		ieee80211_tx_status_irqsafe(hw, skb);
1040 	}
1041 
1042 	ring->r.rp = cur_rp;
1043 }
1044 
1045 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1046 {
1047 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1048 	struct napi_struct *napi = &rtwpci->napi;
1049 
1050 	napi_schedule(napi);
1051 }
1052 
1053 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1054 				     struct rtw_pci *rtwpci)
1055 {
1056 	struct rtw_pci_rx_ring *ring;
1057 	int count = 0;
1058 	u32 tmp, cur_wp;
1059 
1060 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1061 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1062 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1063 	if (cur_wp >= ring->r.wp)
1064 		count = cur_wp - ring->r.wp;
1065 	else
1066 		count = ring->r.len - (ring->r.wp - cur_wp);
1067 
1068 	return count;
1069 }
1070 
1071 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1072 			   u8 hw_queue, u32 limit)
1073 {
1074 	struct rtw_chip_info *chip = rtwdev->chip;
1075 	struct napi_struct *napi = &rtwpci->napi;
1076 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1077 	struct rtw_rx_pkt_stat pkt_stat;
1078 	struct ieee80211_rx_status rx_status;
1079 	struct sk_buff *skb, *new;
1080 	u32 cur_rp = ring->r.rp;
1081 	u32 count, rx_done = 0;
1082 	u32 pkt_offset;
1083 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1084 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1085 	u32 new_len;
1086 	u8 *rx_desc;
1087 	dma_addr_t dma;
1088 
1089 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1090 	count = min(count, limit);
1091 
1092 	while (count--) {
1093 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1094 		skb = ring->buf[cur_rp];
1095 		dma = *((dma_addr_t *)skb->cb);
1096 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1097 					DMA_FROM_DEVICE);
1098 		rx_desc = skb->data;
1099 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1100 
1101 		/* offset from rx_desc to payload */
1102 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1103 			     pkt_stat.shift;
1104 
1105 		/* allocate a new skb for this frame,
1106 		 * discard the frame if none available
1107 		 */
1108 		new_len = pkt_stat.pkt_len + pkt_offset;
1109 		new = dev_alloc_skb(new_len);
1110 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1111 			goto next_rp;
1112 
1113 		/* put the DMA data including rx_desc from phy to new skb */
1114 		skb_put_data(new, skb->data, new_len);
1115 
1116 		if (pkt_stat.is_c2h) {
1117 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1118 		} else {
1119 			/* remove rx_desc */
1120 			skb_pull(new, pkt_offset);
1121 
1122 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1123 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1124 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1125 			rx_done++;
1126 		}
1127 
1128 next_rp:
1129 		/* new skb delivered to mac80211, re-enable original skb DMA */
1130 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1131 					    buf_desc_sz);
1132 
1133 		/* host read next element in ring */
1134 		if (++cur_rp >= ring->r.len)
1135 			cur_rp = 0;
1136 	}
1137 
1138 	ring->r.rp = cur_rp;
1139 	/* 'rp', the last position we have read, is seen as previous posistion
1140 	 * of 'wp' that is used to calculate 'count' next time.
1141 	 */
1142 	ring->r.wp = cur_rp;
1143 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1144 
1145 	return rx_done;
1146 }
1147 
1148 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1149 				   struct rtw_pci *rtwpci, u32 *irq_status)
1150 {
1151 	unsigned long flags;
1152 
1153 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1154 
1155 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1156 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1157 	if (rtw_chip_wcpu_11ac(rtwdev))
1158 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1159 	else
1160 		irq_status[3] = 0;
1161 	irq_status[0] &= rtwpci->irq_mask[0];
1162 	irq_status[1] &= rtwpci->irq_mask[1];
1163 	irq_status[3] &= rtwpci->irq_mask[3];
1164 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1165 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1166 	if (rtw_chip_wcpu_11ac(rtwdev))
1167 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1168 
1169 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1170 }
1171 
1172 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1173 {
1174 	struct rtw_dev *rtwdev = dev;
1175 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1176 
1177 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1178 	 * thread function
1179 	 *
1180 	 * disable HIMR here to also avoid new HISR flag being raised before
1181 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1182 	 * are cleared, the edge-triggered interrupt will not be generated when
1183 	 * a new HISR flag is set.
1184 	 */
1185 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1186 
1187 	return IRQ_WAKE_THREAD;
1188 }
1189 
1190 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1191 {
1192 	struct rtw_dev *rtwdev = dev;
1193 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1194 	u32 irq_status[4];
1195 	bool rx = false;
1196 
1197 	spin_lock_bh(&rtwpci->irq_lock);
1198 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1199 
1200 	if (irq_status[0] & IMR_MGNTDOK)
1201 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1202 	if (irq_status[0] & IMR_HIGHDOK)
1203 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1204 	if (irq_status[0] & IMR_BEDOK)
1205 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1206 	if (irq_status[0] & IMR_BKDOK)
1207 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1208 	if (irq_status[0] & IMR_VODOK)
1209 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1210 	if (irq_status[0] & IMR_VIDOK)
1211 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1212 	if (irq_status[3] & IMR_H2CDOK)
1213 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1214 	if (irq_status[0] & IMR_ROK) {
1215 		rtw_pci_rx_isr(rtwdev);
1216 		rx = true;
1217 	}
1218 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1219 		rtw_fw_c2h_cmd_isr(rtwdev);
1220 
1221 	/* all of the jobs for this interrupt have been done */
1222 	if (rtwpci->running)
1223 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1224 	spin_unlock_bh(&rtwpci->irq_lock);
1225 
1226 	return IRQ_HANDLED;
1227 }
1228 
1229 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1230 			      struct pci_dev *pdev)
1231 {
1232 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1233 	unsigned long len;
1234 	u8 bar_id = 2;
1235 	int ret;
1236 
1237 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1238 	if (ret) {
1239 		rtw_err(rtwdev, "failed to request pci regions\n");
1240 		return ret;
1241 	}
1242 
1243 	len = pci_resource_len(pdev, bar_id);
1244 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1245 	if (!rtwpci->mmap) {
1246 		pci_release_regions(pdev);
1247 		rtw_err(rtwdev, "failed to map pci memory\n");
1248 		return -ENOMEM;
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1255 				 struct pci_dev *pdev)
1256 {
1257 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1258 
1259 	if (rtwpci->mmap) {
1260 		pci_iounmap(pdev, rtwpci->mmap);
1261 		pci_release_regions(pdev);
1262 	}
1263 }
1264 
1265 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1266 {
1267 	u16 write_addr;
1268 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1269 	u8 flag;
1270 	u8 cnt;
1271 
1272 	write_addr = addr & BITS_DBI_ADDR_MASK;
1273 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1274 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1275 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1276 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1277 
1278 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1279 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1280 		if (flag == 0)
1281 			return;
1282 
1283 		udelay(10);
1284 	}
1285 
1286 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1287 }
1288 
1289 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1290 {
1291 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1292 	u8 flag;
1293 	u8 cnt;
1294 
1295 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1296 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1297 
1298 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1299 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1300 		if (flag == 0) {
1301 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1302 			*value = rtw_read8(rtwdev, read_addr);
1303 			return 0;
1304 		}
1305 
1306 		udelay(10);
1307 	}
1308 
1309 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1310 	return -EIO;
1311 }
1312 
1313 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1314 {
1315 	u8 page;
1316 	u8 wflag;
1317 	u8 cnt;
1318 
1319 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1320 
1321 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1322 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1323 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1324 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1325 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1326 
1327 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1328 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1329 					BIT_MDIO_WFLAG_V1);
1330 		if (wflag == 0)
1331 			return;
1332 
1333 		udelay(10);
1334 	}
1335 
1336 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1337 }
1338 
1339 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1340 {
1341 	u8 value;
1342 	int ret;
1343 
1344 	if (rtw_pci_disable_aspm)
1345 		return;
1346 
1347 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1348 	if (ret) {
1349 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1350 		return;
1351 	}
1352 
1353 	if (enable)
1354 		value |= BIT_CLKREQ_SW_EN;
1355 	else
1356 		value &= ~BIT_CLKREQ_SW_EN;
1357 
1358 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1359 }
1360 
1361 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1362 {
1363 	u8 value;
1364 	int ret;
1365 
1366 	if (rtw_pci_disable_aspm)
1367 		return;
1368 
1369 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1370 	if (ret) {
1371 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1372 		return;
1373 	}
1374 
1375 	if (enable)
1376 		value |= BIT_L1_SW_EN;
1377 	else
1378 		value &= ~BIT_L1_SW_EN;
1379 
1380 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1381 }
1382 
1383 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1384 {
1385 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1386 
1387 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1388 	 * only be enabled when host supports it.
1389 	 *
1390 	 * And ASPM mechanism should be enabled when driver/firmware enters
1391 	 * power save mode, without having heavy traffic. Because we've
1392 	 * experienced some inter-operability issues that the link tends
1393 	 * to enter L1 state on the fly even when driver is having high
1394 	 * throughput. This is probably because the ASPM behavior slightly
1395 	 * varies from different SOC.
1396 	 */
1397 	if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
1398 		rtw_pci_aspm_set(rtwdev, enter);
1399 }
1400 
1401 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1402 {
1403 	struct rtw_chip_info *chip = rtwdev->chip;
1404 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1405 	struct pci_dev *pdev = rtwpci->pdev;
1406 	u16 link_ctrl;
1407 	int ret;
1408 
1409 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1410 	 * to add clock delay to cover the REFCLK timing gap.
1411 	 */
1412 	if (chip->id == RTW_CHIP_TYPE_8822C)
1413 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1414 
1415 	/* Though there is standard PCIE configuration space to set the
1416 	 * link control register, but by Realtek's design, driver should
1417 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1418 	 *
1419 	 * These functions are implemented by two HW modules associated,
1420 	 * one is responsible to access PCIE configuration space to
1421 	 * follow the host settings, and another is in charge of doing
1422 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1423 	 * the host does not support it, and due to some reasons or wrong
1424 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1425 	 * loss if HW misbehaves on the link.
1426 	 *
1427 	 * Hence it's designed that driver should first check the PCIE
1428 	 * configuration space is sync'ed and enabled, then driver can turn
1429 	 * on the other module that is actually working on the mechanism.
1430 	 */
1431 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1432 	if (ret) {
1433 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1434 		return;
1435 	}
1436 
1437 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1438 		rtw_pci_clkreq_set(rtwdev, true);
1439 
1440 	rtwpci->link_ctrl = link_ctrl;
1441 }
1442 
1443 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1444 {
1445 	struct rtw_chip_info *chip = rtwdev->chip;
1446 
1447 	switch (chip->id) {
1448 	case RTW_CHIP_TYPE_8822C:
1449 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1450 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1451 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1452 		break;
1453 	default:
1454 		break;
1455 	}
1456 }
1457 
1458 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1459 {
1460 	struct rtw_chip_info *chip = rtwdev->chip;
1461 	const struct rtw_intf_phy_para *para;
1462 	u16 cut;
1463 	u16 value;
1464 	u16 offset;
1465 	int i;
1466 
1467 	cut = BIT(0) << rtwdev->hal.cut_version;
1468 
1469 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1470 		para = &chip->intf_table->gen1_para[i];
1471 		if (!(para->cut_mask & cut))
1472 			continue;
1473 		if (para->offset == 0xffff)
1474 			break;
1475 		offset = para->offset;
1476 		value = para->value;
1477 		if (para->ip_sel == RTW_IP_SEL_PHY)
1478 			rtw_mdio_write(rtwdev, offset, value, true);
1479 		else
1480 			rtw_dbi_write8(rtwdev, offset, value);
1481 	}
1482 
1483 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1484 		para = &chip->intf_table->gen2_para[i];
1485 		if (!(para->cut_mask & cut))
1486 			continue;
1487 		if (para->offset == 0xffff)
1488 			break;
1489 		offset = para->offset;
1490 		value = para->value;
1491 		if (para->ip_sel == RTW_IP_SEL_PHY)
1492 			rtw_mdio_write(rtwdev, offset, value, false);
1493 		else
1494 			rtw_dbi_write8(rtwdev, offset, value);
1495 	}
1496 
1497 	rtw_pci_link_cfg(rtwdev);
1498 }
1499 
1500 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1501 {
1502 	return 0;
1503 }
1504 
1505 static int __maybe_unused rtw_pci_resume(struct device *dev)
1506 {
1507 	return 0;
1508 }
1509 
1510 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1511 EXPORT_SYMBOL(rtw_pm_ops);
1512 
1513 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1514 {
1515 	int ret;
1516 
1517 	ret = pci_enable_device(pdev);
1518 	if (ret) {
1519 		rtw_err(rtwdev, "failed to enable pci device\n");
1520 		return ret;
1521 	}
1522 
1523 	pci_set_master(pdev);
1524 	pci_set_drvdata(pdev, rtwdev->hw);
1525 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1526 
1527 	return 0;
1528 }
1529 
1530 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1531 {
1532 	pci_clear_master(pdev);
1533 	pci_disable_device(pdev);
1534 }
1535 
1536 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1537 {
1538 	struct rtw_pci *rtwpci;
1539 	int ret;
1540 
1541 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1542 	rtwpci->pdev = pdev;
1543 
1544 	/* after this driver can access to hw registers */
1545 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1546 	if (ret) {
1547 		rtw_err(rtwdev, "failed to request pci io region\n");
1548 		goto err_out;
1549 	}
1550 
1551 	ret = rtw_pci_init(rtwdev);
1552 	if (ret) {
1553 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1554 		goto err_io_unmap;
1555 	}
1556 
1557 	return 0;
1558 
1559 err_io_unmap:
1560 	rtw_pci_io_unmapping(rtwdev, pdev);
1561 
1562 err_out:
1563 	return ret;
1564 }
1565 
1566 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1567 {
1568 	rtw_pci_deinit(rtwdev);
1569 	rtw_pci_io_unmapping(rtwdev, pdev);
1570 }
1571 
1572 static struct rtw_hci_ops rtw_pci_ops = {
1573 	.tx_write = rtw_pci_tx_write,
1574 	.tx_kick_off = rtw_pci_tx_kick_off,
1575 	.flush_queues = rtw_pci_flush_queues,
1576 	.setup = rtw_pci_setup,
1577 	.start = rtw_pci_start,
1578 	.stop = rtw_pci_stop,
1579 	.deep_ps = rtw_pci_deep_ps,
1580 	.link_ps = rtw_pci_link_ps,
1581 	.interface_cfg = rtw_pci_interface_cfg,
1582 
1583 	.read8 = rtw_pci_read8,
1584 	.read16 = rtw_pci_read16,
1585 	.read32 = rtw_pci_read32,
1586 	.write8 = rtw_pci_write8,
1587 	.write16 = rtw_pci_write16,
1588 	.write32 = rtw_pci_write32,
1589 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1590 	.write_data_h2c = rtw_pci_write_data_h2c,
1591 };
1592 
1593 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1594 {
1595 	unsigned int flags = PCI_IRQ_LEGACY;
1596 	int ret;
1597 
1598 	if (!rtw_disable_msi)
1599 		flags |= PCI_IRQ_MSI;
1600 
1601 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1602 	if (ret < 0) {
1603 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1604 		return ret;
1605 	}
1606 
1607 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1608 					rtw_pci_interrupt_handler,
1609 					rtw_pci_interrupt_threadfn,
1610 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1611 	if (ret) {
1612 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1613 		pci_free_irq_vectors(pdev);
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1620 {
1621 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1622 	pci_free_irq_vectors(pdev);
1623 }
1624 
1625 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1626 {
1627 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1628 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1629 					      priv);
1630 	int work_done = 0;
1631 
1632 	while (work_done < budget) {
1633 		u32 work_done_once;
1634 
1635 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1636 						 budget - work_done);
1637 		if (work_done_once == 0)
1638 			break;
1639 		work_done += work_done_once;
1640 	}
1641 	if (work_done < budget) {
1642 		napi_complete_done(napi, work_done);
1643 		spin_lock_bh(&rtwpci->irq_lock);
1644 		if (rtwpci->running)
1645 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1646 		spin_unlock_bh(&rtwpci->irq_lock);
1647 		/* When ISR happens during polling and before napi_complete
1648 		 * while no further data is received. Data on the dma_ring will
1649 		 * not be processed immediately. Check whether dma ring is
1650 		 * empty and perform napi_schedule accordingly.
1651 		 */
1652 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1653 			napi_schedule(napi);
1654 	}
1655 
1656 	return work_done;
1657 }
1658 
1659 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1660 {
1661 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1662 
1663 	init_dummy_netdev(&rtwpci->netdev);
1664 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll,
1665 		       RTW_NAPI_WEIGHT_NUM);
1666 }
1667 
1668 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1669 {
1670 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1671 
1672 	rtw_pci_napi_stop(rtwdev);
1673 	netif_napi_del(&rtwpci->napi);
1674 }
1675 
1676 int rtw_pci_probe(struct pci_dev *pdev,
1677 		  const struct pci_device_id *id)
1678 {
1679 	struct ieee80211_hw *hw;
1680 	struct rtw_dev *rtwdev;
1681 	int drv_data_size;
1682 	int ret;
1683 
1684 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1685 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1686 	if (!hw) {
1687 		dev_err(&pdev->dev, "failed to allocate hw\n");
1688 		return -ENOMEM;
1689 	}
1690 
1691 	rtwdev = hw->priv;
1692 	rtwdev->hw = hw;
1693 	rtwdev->dev = &pdev->dev;
1694 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1695 	rtwdev->hci.ops = &rtw_pci_ops;
1696 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1697 
1698 	ret = rtw_core_init(rtwdev);
1699 	if (ret)
1700 		goto err_release_hw;
1701 
1702 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1703 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1704 		pdev->vendor, pdev->device, pdev->revision);
1705 
1706 	ret = rtw_pci_claim(rtwdev, pdev);
1707 	if (ret) {
1708 		rtw_err(rtwdev, "failed to claim pci device\n");
1709 		goto err_deinit_core;
1710 	}
1711 
1712 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1713 	if (ret) {
1714 		rtw_err(rtwdev, "failed to setup pci resources\n");
1715 		goto err_pci_declaim;
1716 	}
1717 
1718 	rtw_pci_napi_init(rtwdev);
1719 
1720 	ret = rtw_chip_info_setup(rtwdev);
1721 	if (ret) {
1722 		rtw_err(rtwdev, "failed to setup chip information\n");
1723 		goto err_destroy_pci;
1724 	}
1725 
1726 	rtw_pci_phy_cfg(rtwdev);
1727 
1728 	ret = rtw_register_hw(rtwdev, hw);
1729 	if (ret) {
1730 		rtw_err(rtwdev, "failed to register hw\n");
1731 		goto err_destroy_pci;
1732 	}
1733 
1734 	ret = rtw_pci_request_irq(rtwdev, pdev);
1735 	if (ret) {
1736 		ieee80211_unregister_hw(hw);
1737 		goto err_destroy_pci;
1738 	}
1739 
1740 	return 0;
1741 
1742 err_destroy_pci:
1743 	rtw_pci_napi_deinit(rtwdev);
1744 	rtw_pci_destroy(rtwdev, pdev);
1745 
1746 err_pci_declaim:
1747 	rtw_pci_declaim(rtwdev, pdev);
1748 
1749 err_deinit_core:
1750 	rtw_core_deinit(rtwdev);
1751 
1752 err_release_hw:
1753 	ieee80211_free_hw(hw);
1754 
1755 	return ret;
1756 }
1757 EXPORT_SYMBOL(rtw_pci_probe);
1758 
1759 void rtw_pci_remove(struct pci_dev *pdev)
1760 {
1761 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1762 	struct rtw_dev *rtwdev;
1763 	struct rtw_pci *rtwpci;
1764 
1765 	if (!hw)
1766 		return;
1767 
1768 	rtwdev = hw->priv;
1769 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1770 
1771 	rtw_unregister_hw(rtwdev, hw);
1772 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1773 	rtw_pci_napi_deinit(rtwdev);
1774 	rtw_pci_destroy(rtwdev, pdev);
1775 	rtw_pci_declaim(rtwdev, pdev);
1776 	rtw_pci_free_irq(rtwdev, pdev);
1777 	rtw_core_deinit(rtwdev);
1778 	ieee80211_free_hw(hw);
1779 }
1780 EXPORT_SYMBOL(rtw_pci_remove);
1781 
1782 void rtw_pci_shutdown(struct pci_dev *pdev)
1783 {
1784 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1785 	struct rtw_dev *rtwdev;
1786 	struct rtw_chip_info *chip;
1787 
1788 	if (!hw)
1789 		return;
1790 
1791 	rtwdev = hw->priv;
1792 	chip = rtwdev->chip;
1793 
1794 	if (chip->ops->shutdown)
1795 		chip->ops->shutdown(rtwdev);
1796 
1797 	pci_set_power_state(pdev, PCI_D3hot);
1798 }
1799 EXPORT_SYMBOL(rtw_pci_shutdown);
1800 
1801 MODULE_AUTHOR("Realtek Corporation");
1802 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1803 MODULE_LICENSE("Dual BSD/GPL");
1804