xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/main.c (revision f43e47c090dc7fe32d5410d8740c3a004eb2676f)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->cfg.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	rtw_coex_wl_status_check(rtwdev);
211 	rtw_coex_query_bt_hid_list(rtwdev);
212 
213 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
214 		rtw_coex_wl_status_change_notify(rtwdev, 0);
215 
216 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
217 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
218 		ps_active = true;
219 	else
220 		ps_active = false;
221 
222 	ewma_tp_add(&stats->tx_ewma_tp,
223 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
224 	ewma_tp_add(&stats->rx_ewma_tp,
225 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
226 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
227 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
228 
229 	/* reset tx/rx statictics */
230 	stats->tx_unicast = 0;
231 	stats->rx_unicast = 0;
232 	stats->tx_cnt = 0;
233 	stats->rx_cnt = 0;
234 
235 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
236 		goto unlock;
237 
238 	/* make sure BB/RF is working for dynamic mech */
239 	rtw_leave_lps(rtwdev);
240 
241 	rtw_phy_dynamic_mechanism(rtwdev);
242 
243 	data.rtwdev = rtwdev;
244 	/* use atomic version to avoid taking local->iflist_mtx mutex */
245 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
246 
247 	/* fw supports only one station associated to enter lps, if there are
248 	 * more than two stations associated to the AP, then we can not enter
249 	 * lps, because fw does not handle the overlapped beacon interval
250 	 *
251 	 * mac80211 should iterate vifs and determine if driver can enter
252 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
253 	 * get that vif and check if device is having traffic more than the
254 	 * threshold.
255 	 */
256 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
257 	    !rtwdev->beacon_loss)
258 		rtw_enter_lps(rtwdev, data.rtwvif->port);
259 
260 	rtwdev->watch_dog_cnt++;
261 
262 unlock:
263 	mutex_unlock(&rtwdev->mutex);
264 }
265 
266 static void rtw_c2h_work(struct work_struct *work)
267 {
268 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
269 	struct sk_buff *skb, *tmp;
270 
271 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
272 		skb_unlink(skb, &rtwdev->c2h_queue);
273 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
274 		dev_kfree_skb_any(skb);
275 	}
276 }
277 
278 static void rtw_ips_work(struct work_struct *work)
279 {
280 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
281 
282 	mutex_lock(&rtwdev->mutex);
283 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
284 		rtw_enter_ips(rtwdev);
285 	mutex_unlock(&rtwdev->mutex);
286 }
287 
288 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
289 {
290 	unsigned long mac_id;
291 
292 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
293 	if (mac_id < RTW_MAX_MAC_ID_NUM)
294 		set_bit(mac_id, rtwdev->mac_id_map);
295 
296 	return mac_id;
297 }
298 
299 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
300 		struct ieee80211_vif *vif)
301 {
302 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
303 	int i;
304 
305 	si->mac_id = rtw_acquire_macid(rtwdev);
306 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
307 		return -ENOSPC;
308 
309 	si->sta = sta;
310 	si->vif = vif;
311 	si->init_ra_lv = 1;
312 	ewma_rssi_init(&si->avg_rssi);
313 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
314 		rtw_txq_init(rtwdev, sta->txq[i]);
315 
316 	rtw_update_sta_info(rtwdev, si, true);
317 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
318 
319 	rtwdev->sta_cnt++;
320 	rtwdev->beacon_loss = false;
321 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
322 		sta->addr, si->mac_id);
323 
324 	return 0;
325 }
326 
327 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
328 		    bool fw_exist)
329 {
330 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
331 	int i;
332 
333 	rtw_release_macid(rtwdev, si->mac_id);
334 	if (fw_exist)
335 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
336 
337 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
338 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
339 
340 	kfree(si->mask);
341 
342 	rtwdev->sta_cnt--;
343 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
344 		sta->addr, si->mac_id);
345 }
346 
347 struct rtw_fwcd_hdr {
348 	u32 item;
349 	u32 size;
350 	u32 padding1;
351 	u32 padding2;
352 } __packed;
353 
354 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
355 {
356 	const struct rtw_chip_info *chip = rtwdev->chip;
357 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
358 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
359 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
360 	u8 i;
361 
362 	if (segs) {
363 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
364 
365 		for (i = 0; i < segs->num; i++)
366 			prep_size += segs->segs[i];
367 	}
368 
369 	desc->data = vmalloc(prep_size);
370 	if (!desc->data)
371 		return -ENOMEM;
372 
373 	desc->size = prep_size;
374 	desc->next = desc->data;
375 
376 	return 0;
377 }
378 
379 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
380 {
381 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
382 	struct rtw_fwcd_hdr *hdr;
383 	u8 *next;
384 
385 	if (!desc->data) {
386 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
387 		return NULL;
388 	}
389 
390 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
391 	if (next - desc->data + size > desc->size) {
392 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
393 		return NULL;
394 	}
395 
396 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
397 	hdr->item = item;
398 	hdr->size = size;
399 	hdr->padding1 = 0x01234567;
400 	hdr->padding2 = 0x89abcdef;
401 	desc->next = next + size;
402 
403 	return next;
404 }
405 
406 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
407 {
408 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
409 
410 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
411 
412 	/* Data will be freed after lifetime of device coredump. After calling
413 	 * dev_coredump, data is supposed to be handled by the device coredump
414 	 * framework. Note that a new dump will be discarded if a previous one
415 	 * hasn't been released yet.
416 	 */
417 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
418 }
419 
420 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
421 {
422 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
423 
424 	if (free_self) {
425 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
426 		vfree(desc->data);
427 	}
428 
429 	desc->data = NULL;
430 	desc->next = NULL;
431 }
432 
433 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
434 {
435 	u32 size = rtwdev->chip->fw_rxff_size;
436 	u32 *buf;
437 	u8 seq;
438 
439 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
440 	if (!buf)
441 		return -ENOMEM;
442 
443 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
444 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
445 		return -EINVAL;
446 	}
447 
448 	if (GET_FW_DUMP_LEN(buf) == 0) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
450 		return -EINVAL;
451 	}
452 
453 	seq = GET_FW_DUMP_SEQ(buf);
454 	if (seq > 0) {
455 		rtw_dbg(rtwdev, RTW_DBG_FW,
456 			"fw crash dump's seq is wrong: %d\n", seq);
457 		return -EINVAL;
458 	}
459 
460 	return 0;
461 }
462 
463 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
464 		u32 fwcd_item)
465 {
466 	u32 rxff = rtwdev->chip->fw_rxff_size;
467 	u32 dump_size, done_size = 0;
468 	u8 *buf;
469 	int ret;
470 
471 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
472 	if (!buf)
473 		return -ENOMEM;
474 
475 	while (size) {
476 		dump_size = size > rxff ? rxff : size;
477 
478 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
479 					  dump_size);
480 		if (ret) {
481 			rtw_err(rtwdev,
482 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
483 				ocp_src, done_size);
484 			return ret;
485 		}
486 
487 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
488 				       dump_size, (u32 *)(buf + done_size));
489 		if (ret) {
490 			rtw_err(rtwdev,
491 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
492 				ocp_src, done_size);
493 			return ret;
494 		}
495 
496 		size -= dump_size;
497 		done_size += dump_size;
498 	}
499 
500 	return 0;
501 }
502 EXPORT_SYMBOL(rtw_dump_fw);
503 
504 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
505 {
506 	u8 *buf;
507 	u32 i;
508 
509 	if (addr & 0x3) {
510 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
511 		return -EINVAL;
512 	}
513 
514 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
515 	if (!buf)
516 		return -ENOMEM;
517 
518 	for (i = 0; i < size; i += 4)
519 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
520 
521 	return 0;
522 }
523 EXPORT_SYMBOL(rtw_dump_reg);
524 
525 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
526 			   struct ieee80211_bss_conf *conf)
527 {
528 	struct ieee80211_vif *vif = NULL;
529 
530 	if (conf)
531 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
532 
533 	if (conf && vif->cfg.assoc) {
534 		rtwvif->aid = vif->cfg.aid;
535 		rtwvif->net_type = RTW_NET_MGD_LINKED;
536 	} else {
537 		rtwvif->aid = 0;
538 		rtwvif->net_type = RTW_NET_NO_LINK;
539 	}
540 }
541 
542 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
543 			       struct ieee80211_vif *vif,
544 			       struct ieee80211_sta *sta,
545 			       struct ieee80211_key_conf *key,
546 			       void *data)
547 {
548 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
549 	struct rtw_sec_desc *sec = &rtwdev->sec;
550 
551 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
552 }
553 
554 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
555 {
556 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
557 
558 	if (rtwdev->sta_cnt == 0) {
559 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
560 		return;
561 	}
562 	rtw_sta_remove(rtwdev, sta, false);
563 }
564 
565 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
566 {
567 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
568 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
569 
570 	rtw_bf_disassoc(rtwdev, vif, NULL);
571 	rtw_vif_assoc_changed(rtwvif, NULL);
572 	rtw_txq_cleanup(rtwdev, vif->txq);
573 }
574 
575 void rtw_fw_recovery(struct rtw_dev *rtwdev)
576 {
577 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
578 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
579 }
580 
581 static void __fw_recovery_work(struct rtw_dev *rtwdev)
582 {
583 	int ret = 0;
584 
585 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
586 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
587 
588 	ret = rtw_fwcd_prep(rtwdev);
589 	if (ret)
590 		goto free;
591 	ret = rtw_fw_dump_crash_log(rtwdev);
592 	if (ret)
593 		goto free;
594 	ret = rtw_chip_dump_fw_crash(rtwdev);
595 	if (ret)
596 		goto free;
597 
598 	rtw_fwcd_dump(rtwdev);
599 free:
600 	rtw_fwcd_free(rtwdev, !!ret);
601 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
602 
603 	WARN(1, "firmware crash, start reset and recover\n");
604 
605 	rcu_read_lock();
606 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
607 	rcu_read_unlock();
608 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
609 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
610 	rtw_enter_ips(rtwdev);
611 }
612 
613 static void rtw_fw_recovery_work(struct work_struct *work)
614 {
615 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
616 					      fw_recovery_work);
617 
618 	mutex_lock(&rtwdev->mutex);
619 	__fw_recovery_work(rtwdev);
620 	mutex_unlock(&rtwdev->mutex);
621 
622 	ieee80211_restart_hw(rtwdev->hw);
623 }
624 
625 struct rtw_txq_ba_iter_data {
626 };
627 
628 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
629 {
630 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
631 	int ret;
632 	u8 tid;
633 
634 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
635 	while (tid != IEEE80211_NUM_TIDS) {
636 		clear_bit(tid, si->tid_ba);
637 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
638 		if (ret == -EINVAL) {
639 			struct ieee80211_txq *txq;
640 			struct rtw_txq *rtwtxq;
641 
642 			txq = sta->txq[tid];
643 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
644 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
645 		}
646 
647 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
648 	}
649 }
650 
651 static void rtw_txq_ba_work(struct work_struct *work)
652 {
653 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
654 	struct rtw_txq_ba_iter_data data;
655 
656 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
657 }
658 
659 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
660 {
661 	if (IS_CH_2G_BAND(channel))
662 		pkt_stat->band = NL80211_BAND_2GHZ;
663 	else if (IS_CH_5G_BAND(channel))
664 		pkt_stat->band = NL80211_BAND_5GHZ;
665 	else
666 		return;
667 
668 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
669 }
670 EXPORT_SYMBOL(rtw_set_rx_freq_band);
671 
672 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
673 {
674 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
675 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
676 }
677 
678 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
679 			u8 primary_channel, enum rtw_supported_band band,
680 			enum rtw_bandwidth bandwidth)
681 {
682 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
683 	struct rtw_hal *hal = &rtwdev->hal;
684 	u8 *cch_by_bw = hal->cch_by_bw;
685 	u32 center_freq, primary_freq;
686 	enum rtw_sar_bands sar_band;
687 	u8 primary_channel_idx;
688 
689 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
690 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
691 
692 	/* assign the center channel used while 20M bw is selected */
693 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
694 
695 	/* assign the center channel used while current bw is selected */
696 	cch_by_bw[bandwidth] = center_channel;
697 
698 	switch (bandwidth) {
699 	case RTW_CHANNEL_WIDTH_20:
700 	default:
701 		primary_channel_idx = RTW_SC_DONT_CARE;
702 		break;
703 	case RTW_CHANNEL_WIDTH_40:
704 		if (primary_freq > center_freq)
705 			primary_channel_idx = RTW_SC_20_UPPER;
706 		else
707 			primary_channel_idx = RTW_SC_20_LOWER;
708 		break;
709 	case RTW_CHANNEL_WIDTH_80:
710 		if (primary_freq > center_freq) {
711 			if (primary_freq - center_freq == 10)
712 				primary_channel_idx = RTW_SC_20_UPPER;
713 			else
714 				primary_channel_idx = RTW_SC_20_UPMOST;
715 
716 			/* assign the center channel used
717 			 * while 40M bw is selected
718 			 */
719 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
720 		} else {
721 			if (center_freq - primary_freq == 10)
722 				primary_channel_idx = RTW_SC_20_LOWER;
723 			else
724 				primary_channel_idx = RTW_SC_20_LOWEST;
725 
726 			/* assign the center channel used
727 			 * while 40M bw is selected
728 			 */
729 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
730 		}
731 		break;
732 	}
733 
734 	switch (center_channel) {
735 	case 1 ... 14:
736 		sar_band = RTW_SAR_BAND_0;
737 		break;
738 	case 36 ... 64:
739 		sar_band = RTW_SAR_BAND_1;
740 		break;
741 	case 100 ... 144:
742 		sar_band = RTW_SAR_BAND_3;
743 		break;
744 	case 149 ... 177:
745 		sar_band = RTW_SAR_BAND_4;
746 		break;
747 	default:
748 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
749 		sar_band = RTW_SAR_BAND_0;
750 		break;
751 	}
752 
753 	hal->current_primary_channel_index = primary_channel_idx;
754 	hal->current_band_width = bandwidth;
755 	hal->primary_channel = primary_channel;
756 	hal->current_channel = center_channel;
757 	hal->current_band_type = band;
758 	hal->sar_band = sar_band;
759 }
760 
761 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
762 			    struct rtw_channel_params *chan_params)
763 {
764 	struct ieee80211_channel *channel = chandef->chan;
765 	enum nl80211_chan_width width = chandef->width;
766 	u32 primary_freq, center_freq;
767 	u8 center_chan;
768 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
769 
770 	center_chan = channel->hw_value;
771 	primary_freq = channel->center_freq;
772 	center_freq = chandef->center_freq1;
773 
774 	switch (width) {
775 	case NL80211_CHAN_WIDTH_20_NOHT:
776 	case NL80211_CHAN_WIDTH_20:
777 		bandwidth = RTW_CHANNEL_WIDTH_20;
778 		break;
779 	case NL80211_CHAN_WIDTH_40:
780 		bandwidth = RTW_CHANNEL_WIDTH_40;
781 		if (primary_freq > center_freq)
782 			center_chan -= 2;
783 		else
784 			center_chan += 2;
785 		break;
786 	case NL80211_CHAN_WIDTH_80:
787 		bandwidth = RTW_CHANNEL_WIDTH_80;
788 		if (primary_freq > center_freq) {
789 			if (primary_freq - center_freq == 10)
790 				center_chan -= 2;
791 			else
792 				center_chan -= 6;
793 		} else {
794 			if (center_freq - primary_freq == 10)
795 				center_chan += 2;
796 			else
797 				center_chan += 6;
798 		}
799 		break;
800 	default:
801 		center_chan = 0;
802 		break;
803 	}
804 
805 	chan_params->center_chan = center_chan;
806 	chan_params->bandwidth = bandwidth;
807 	chan_params->primary_chan = channel->hw_value;
808 }
809 
810 void rtw_set_channel(struct rtw_dev *rtwdev)
811 {
812 	const struct rtw_chip_info *chip = rtwdev->chip;
813 	struct ieee80211_hw *hw = rtwdev->hw;
814 	struct rtw_hal *hal = &rtwdev->hal;
815 	struct rtw_channel_params ch_param;
816 	u8 center_chan, primary_chan, bandwidth, band;
817 
818 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
819 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
820 		return;
821 
822 	center_chan = ch_param.center_chan;
823 	primary_chan = ch_param.primary_chan;
824 	bandwidth = ch_param.bandwidth;
825 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
826 
827 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
828 
829 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
830 			       hal->current_primary_channel_index);
831 
832 	if (hal->current_band_type == RTW_BAND_5G) {
833 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
834 	} else {
835 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
836 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
837 		else
838 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
839 	}
840 
841 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
842 
843 	/* if the channel isn't set for scanning, we will do RF calibration
844 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
845 	 * during scanning on each channel takes too long.
846 	 */
847 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
848 		rtwdev->need_rfk = true;
849 }
850 
851 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
852 {
853 	const struct rtw_chip_info *chip = rtwdev->chip;
854 
855 	if (rtwdev->need_rfk) {
856 		rtwdev->need_rfk = false;
857 		chip->ops->phy_calibration(rtwdev);
858 	}
859 }
860 
861 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
862 {
863 	int i;
864 
865 	for (i = 0; i < ETH_ALEN; i++)
866 		rtw_write8(rtwdev, start + i, addr[i]);
867 }
868 
869 void rtw_vif_port_config(struct rtw_dev *rtwdev,
870 			 struct rtw_vif *rtwvif,
871 			 u32 config)
872 {
873 	u32 addr, mask;
874 
875 	if (config & PORT_SET_MAC_ADDR) {
876 		addr = rtwvif->conf->mac_addr.addr;
877 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
878 	}
879 	if (config & PORT_SET_BSSID) {
880 		addr = rtwvif->conf->bssid.addr;
881 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
882 	}
883 	if (config & PORT_SET_NET_TYPE) {
884 		addr = rtwvif->conf->net_type.addr;
885 		mask = rtwvif->conf->net_type.mask;
886 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
887 	}
888 	if (config & PORT_SET_AID) {
889 		addr = rtwvif->conf->aid.addr;
890 		mask = rtwvif->conf->aid.mask;
891 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
892 	}
893 	if (config & PORT_SET_BCN_CTRL) {
894 		addr = rtwvif->conf->bcn_ctrl.addr;
895 		mask = rtwvif->conf->bcn_ctrl.mask;
896 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
897 	}
898 }
899 
900 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
901 {
902 	u8 bw = 0;
903 
904 	switch (bw_cap) {
905 	case EFUSE_HW_CAP_IGNORE:
906 	case EFUSE_HW_CAP_SUPP_BW80:
907 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
908 		fallthrough;
909 	case EFUSE_HW_CAP_SUPP_BW40:
910 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
911 		fallthrough;
912 	default:
913 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
914 		break;
915 	}
916 
917 	return bw;
918 }
919 
920 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
921 {
922 	const struct rtw_chip_info *chip = rtwdev->chip;
923 	struct rtw_hal *hal = &rtwdev->hal;
924 
925 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
926 	    hw_ant_num >= hal->rf_path_num)
927 		return;
928 
929 	switch (hw_ant_num) {
930 	case 1:
931 		hal->rf_type = RF_1T1R;
932 		hal->rf_path_num = 1;
933 		if (!chip->fix_rf_phy_num)
934 			hal->rf_phy_num = hal->rf_path_num;
935 		hal->antenna_tx = BB_PATH_A;
936 		hal->antenna_rx = BB_PATH_A;
937 		break;
938 	default:
939 		WARN(1, "invalid hw configuration from efuse\n");
940 		break;
941 	}
942 }
943 
944 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
945 {
946 	u64 ra_mask = 0;
947 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
948 	u8 vht_mcs_cap;
949 	int i, nss;
950 
951 	/* 4SS, every two bits for MCS7/8/9 */
952 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
953 		vht_mcs_cap = mcs_map & 0x3;
954 		switch (vht_mcs_cap) {
955 		case 2: /* MCS9 */
956 			ra_mask |= 0x3ffULL << nss;
957 			break;
958 		case 1: /* MCS8 */
959 			ra_mask |= 0x1ffULL << nss;
960 			break;
961 		case 0: /* MCS7 */
962 			ra_mask |= 0x0ffULL << nss;
963 			break;
964 		default:
965 			break;
966 		}
967 	}
968 
969 	return ra_mask;
970 }
971 
972 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
973 {
974 	u8 rate_id = 0;
975 
976 	switch (wireless_set) {
977 	case WIRELESS_CCK:
978 		rate_id = RTW_RATEID_B_20M;
979 		break;
980 	case WIRELESS_OFDM:
981 		rate_id = RTW_RATEID_G;
982 		break;
983 	case WIRELESS_CCK | WIRELESS_OFDM:
984 		rate_id = RTW_RATEID_BG;
985 		break;
986 	case WIRELESS_OFDM | WIRELESS_HT:
987 		if (tx_num == 1)
988 			rate_id = RTW_RATEID_GN_N1SS;
989 		else if (tx_num == 2)
990 			rate_id = RTW_RATEID_GN_N2SS;
991 		else if (tx_num == 3)
992 			rate_id = RTW_RATEID_ARFR5_N_3SS;
993 		break;
994 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
995 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
996 			if (tx_num == 1)
997 				rate_id = RTW_RATEID_BGN_40M_1SS;
998 			else if (tx_num == 2)
999 				rate_id = RTW_RATEID_BGN_40M_2SS;
1000 			else if (tx_num == 3)
1001 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1002 			else if (tx_num == 4)
1003 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1004 		} else {
1005 			if (tx_num == 1)
1006 				rate_id = RTW_RATEID_BGN_20M_1SS;
1007 			else if (tx_num == 2)
1008 				rate_id = RTW_RATEID_BGN_20M_2SS;
1009 			else if (tx_num == 3)
1010 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1011 			else if (tx_num == 4)
1012 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1013 		}
1014 		break;
1015 	case WIRELESS_OFDM | WIRELESS_VHT:
1016 		if (tx_num == 1)
1017 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1018 		else if (tx_num == 2)
1019 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1020 		else if (tx_num == 3)
1021 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1022 		else if (tx_num == 4)
1023 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1024 		break;
1025 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1026 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1027 			if (tx_num == 1)
1028 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1029 			else if (tx_num == 2)
1030 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1031 			else if (tx_num == 3)
1032 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1033 			else if (tx_num == 4)
1034 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1035 		} else {
1036 			if (tx_num == 1)
1037 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1038 			else if (tx_num == 2)
1039 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1040 			else if (tx_num == 3)
1041 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1042 			else if (tx_num == 4)
1043 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1044 		}
1045 		break;
1046 	default:
1047 		break;
1048 	}
1049 
1050 	return rate_id;
1051 }
1052 
1053 #define RA_MASK_CCK_RATES	0x0000f
1054 #define RA_MASK_OFDM_RATES	0x00ff0
1055 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1056 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1057 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1058 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1059 				 RA_MASK_HT_RATES_2SS | \
1060 				 RA_MASK_HT_RATES_3SS)
1061 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1062 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1063 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1064 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1065 				 RA_MASK_VHT_RATES_2SS | \
1066 				 RA_MASK_VHT_RATES_3SS)
1067 #define RA_MASK_CCK_IN_BG	0x00005
1068 #define RA_MASK_CCK_IN_HT	0x00005
1069 #define RA_MASK_CCK_IN_VHT	0x00005
1070 #define RA_MASK_OFDM_IN_VHT	0x00010
1071 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1072 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1073 
1074 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1075 {
1076 	u8 rssi_level = si->rssi_level;
1077 
1078 	if (wireless_set == WIRELESS_CCK)
1079 		return 0xffffffffffffffffULL;
1080 
1081 	if (rssi_level == 0)
1082 		return 0xffffffffffffffffULL;
1083 	else if (rssi_level == 1)
1084 		return 0xfffffffffffffff0ULL;
1085 	else if (rssi_level == 2)
1086 		return 0xffffffffffffefe0ULL;
1087 	else if (rssi_level == 3)
1088 		return 0xffffffffffffcfc0ULL;
1089 	else if (rssi_level == 4)
1090 		return 0xffffffffffff8f80ULL;
1091 	else
1092 		return 0xffffffffffff0f00ULL;
1093 }
1094 
1095 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1096 {
1097 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1098 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1099 
1100 	if (ra_mask == 0)
1101 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1102 
1103 	return ra_mask;
1104 }
1105 
1106 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1107 			     u64 ra_mask, bool is_vht_enable)
1108 {
1109 	struct rtw_hal *hal = &rtwdev->hal;
1110 	const struct cfg80211_bitrate_mask *mask = si->mask;
1111 	u64 cfg_mask = GENMASK_ULL(63, 0);
1112 	u8 band;
1113 
1114 	if (!si->use_cfg_mask)
1115 		return ra_mask;
1116 
1117 	band = hal->current_band_type;
1118 	if (band == RTW_BAND_2G) {
1119 		band = NL80211_BAND_2GHZ;
1120 		cfg_mask = mask->control[band].legacy;
1121 	} else if (band == RTW_BAND_5G) {
1122 		band = NL80211_BAND_5GHZ;
1123 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1124 					   RA_MASK_OFDM_RATES);
1125 	}
1126 
1127 	if (!is_vht_enable) {
1128 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1129 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1130 						    RA_MASK_HT_RATES_1SS);
1131 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1132 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1133 						    RA_MASK_HT_RATES_2SS);
1134 	} else {
1135 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1136 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1137 						    RA_MASK_VHT_RATES_1SS);
1138 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1139 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1140 						    RA_MASK_VHT_RATES_2SS);
1141 	}
1142 
1143 	ra_mask &= cfg_mask;
1144 
1145 	return ra_mask;
1146 }
1147 
1148 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1149 			 bool reset_ra_mask)
1150 {
1151 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1152 	struct ieee80211_sta *sta = si->sta;
1153 	struct rtw_efuse *efuse = &rtwdev->efuse;
1154 	struct rtw_hal *hal = &rtwdev->hal;
1155 	u8 wireless_set;
1156 	u8 bw_mode;
1157 	u8 rate_id;
1158 	u8 rf_type = RF_1T1R;
1159 	u8 stbc_en = 0;
1160 	u8 ldpc_en = 0;
1161 	u8 tx_num = 1;
1162 	u64 ra_mask = 0;
1163 	u64 ra_mask_bak = 0;
1164 	bool is_vht_enable = false;
1165 	bool is_support_sgi = false;
1166 
1167 	if (sta->deflink.vht_cap.vht_supported) {
1168 		is_vht_enable = true;
1169 		ra_mask |= get_vht_ra_mask(sta);
1170 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1171 			stbc_en = VHT_STBC_EN;
1172 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1173 			ldpc_en = VHT_LDPC_EN;
1174 	} else if (sta->deflink.ht_cap.ht_supported) {
1175 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1176 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1177 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1178 			stbc_en = HT_STBC_EN;
1179 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1180 			ldpc_en = HT_LDPC_EN;
1181 	}
1182 
1183 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1184 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1185 
1186 	if (hal->current_band_type == RTW_BAND_5G) {
1187 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1188 		ra_mask_bak = ra_mask;
1189 		if (sta->deflink.vht_cap.vht_supported) {
1190 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1191 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1192 		} else if (sta->deflink.ht_cap.ht_supported) {
1193 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1194 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1195 		} else {
1196 			wireless_set = WIRELESS_OFDM;
1197 		}
1198 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1199 	} else if (hal->current_band_type == RTW_BAND_2G) {
1200 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1201 		ra_mask_bak = ra_mask;
1202 		if (sta->deflink.vht_cap.vht_supported) {
1203 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1204 				   RA_MASK_OFDM_IN_VHT;
1205 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1206 				       WIRELESS_HT | WIRELESS_VHT;
1207 		} else if (sta->deflink.ht_cap.ht_supported) {
1208 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1209 				   RA_MASK_OFDM_IN_HT_2G;
1210 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1211 				       WIRELESS_HT;
1212 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1213 			wireless_set = WIRELESS_CCK;
1214 		} else {
1215 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1216 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1217 		}
1218 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1219 	} else {
1220 		rtw_err(rtwdev, "Unknown band type\n");
1221 		ra_mask_bak = ra_mask;
1222 		wireless_set = 0;
1223 	}
1224 
1225 	switch (sta->deflink.bandwidth) {
1226 	case IEEE80211_STA_RX_BW_80:
1227 		bw_mode = RTW_CHANNEL_WIDTH_80;
1228 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1229 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1230 		break;
1231 	case IEEE80211_STA_RX_BW_40:
1232 		bw_mode = RTW_CHANNEL_WIDTH_40;
1233 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1234 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1235 		break;
1236 	default:
1237 		bw_mode = RTW_CHANNEL_WIDTH_20;
1238 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1239 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1240 		break;
1241 	}
1242 
1243 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1244 		tx_num = 2;
1245 		rf_type = RF_2T2R;
1246 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1247 		tx_num = 2;
1248 		rf_type = RF_2T2R;
1249 	}
1250 
1251 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1252 
1253 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1254 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1255 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1256 
1257 	si->bw_mode = bw_mode;
1258 	si->stbc_en = stbc_en;
1259 	si->ldpc_en = ldpc_en;
1260 	si->rf_type = rf_type;
1261 	si->wireless_set = wireless_set;
1262 	si->sgi_enable = is_support_sgi;
1263 	si->vht_enable = is_vht_enable;
1264 	si->ra_mask = ra_mask;
1265 	si->rate_id = rate_id;
1266 
1267 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1268 }
1269 
1270 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1271 {
1272 	const struct rtw_chip_info *chip = rtwdev->chip;
1273 	struct rtw_fw_state *fw;
1274 
1275 	fw = &rtwdev->fw;
1276 	wait_for_completion(&fw->completion);
1277 	if (!fw->firmware)
1278 		return -EINVAL;
1279 
1280 	if (chip->wow_fw_name) {
1281 		fw = &rtwdev->wow_fw;
1282 		wait_for_completion(&fw->completion);
1283 		if (!fw->firmware)
1284 			return -EINVAL;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1291 						       struct rtw_fw_state *fw)
1292 {
1293 	const struct rtw_chip_info *chip = rtwdev->chip;
1294 
1295 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1296 	    !fw->feature)
1297 		return LPS_DEEP_MODE_NONE;
1298 
1299 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1300 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1301 		return LPS_DEEP_MODE_PG;
1302 
1303 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1304 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1305 		return LPS_DEEP_MODE_LCLK;
1306 
1307 	return LPS_DEEP_MODE_NONE;
1308 }
1309 
1310 static int rtw_power_on(struct rtw_dev *rtwdev)
1311 {
1312 	const struct rtw_chip_info *chip = rtwdev->chip;
1313 	struct rtw_fw_state *fw = &rtwdev->fw;
1314 	bool wifi_only;
1315 	int ret;
1316 
1317 	ret = rtw_hci_setup(rtwdev);
1318 	if (ret) {
1319 		rtw_err(rtwdev, "failed to setup hci\n");
1320 		goto err;
1321 	}
1322 
1323 	/* power on MAC before firmware downloaded */
1324 	ret = rtw_mac_power_on(rtwdev);
1325 	if (ret) {
1326 		rtw_err(rtwdev, "failed to power on mac\n");
1327 		goto err;
1328 	}
1329 
1330 	ret = rtw_wait_firmware_completion(rtwdev);
1331 	if (ret) {
1332 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1333 		goto err_off;
1334 	}
1335 
1336 	ret = rtw_download_firmware(rtwdev, fw);
1337 	if (ret) {
1338 		rtw_err(rtwdev, "failed to download firmware\n");
1339 		goto err_off;
1340 	}
1341 
1342 	/* config mac after firmware downloaded */
1343 	ret = rtw_mac_init(rtwdev);
1344 	if (ret) {
1345 		rtw_err(rtwdev, "failed to configure mac\n");
1346 		goto err_off;
1347 	}
1348 
1349 	chip->ops->phy_set_param(rtwdev);
1350 
1351 	ret = rtw_hci_start(rtwdev);
1352 	if (ret) {
1353 		rtw_err(rtwdev, "failed to start hci\n");
1354 		goto err_off;
1355 	}
1356 
1357 	/* send H2C after HCI has started */
1358 	rtw_fw_send_general_info(rtwdev);
1359 	rtw_fw_send_phydm_info(rtwdev);
1360 
1361 	wifi_only = !rtwdev->efuse.btcoex;
1362 	rtw_coex_power_on_setting(rtwdev);
1363 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1364 
1365 	return 0;
1366 
1367 err_off:
1368 	rtw_mac_power_off(rtwdev);
1369 
1370 err:
1371 	return ret;
1372 }
1373 
1374 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1375 {
1376 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1377 		return;
1378 
1379 	if (start) {
1380 		rtw_fw_scan_notify(rtwdev, true);
1381 	} else {
1382 		reinit_completion(&rtwdev->fw_scan_density);
1383 		rtw_fw_scan_notify(rtwdev, false);
1384 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1385 						 SCAN_NOTIFY_TIMEOUT))
1386 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1387 	}
1388 }
1389 
1390 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1391 			 const u8 *mac_addr, bool hw_scan)
1392 {
1393 	u32 config = 0;
1394 	int ret = 0;
1395 
1396 	rtw_leave_lps(rtwdev);
1397 
1398 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1399 		ret = rtw_leave_ips(rtwdev);
1400 		if (ret) {
1401 			rtw_err(rtwdev, "failed to leave idle state\n");
1402 			return;
1403 		}
1404 	}
1405 
1406 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1407 	config |= PORT_SET_MAC_ADDR;
1408 	rtw_vif_port_config(rtwdev, rtwvif, config);
1409 
1410 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1411 	rtw_core_fw_scan_notify(rtwdev, true);
1412 
1413 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1414 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1415 }
1416 
1417 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1418 			    bool hw_scan)
1419 {
1420 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1421 	u32 config = 0;
1422 
1423 	if (!rtwvif)
1424 		return;
1425 
1426 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1427 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1428 
1429 	rtw_core_fw_scan_notify(rtwdev, false);
1430 
1431 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1432 	config |= PORT_SET_MAC_ADDR;
1433 	rtw_vif_port_config(rtwdev, rtwvif, config);
1434 
1435 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1436 
1437 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1438 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1439 }
1440 
1441 int rtw_core_start(struct rtw_dev *rtwdev)
1442 {
1443 	int ret;
1444 
1445 	ret = rtw_power_on(rtwdev);
1446 	if (ret)
1447 		return ret;
1448 
1449 	rtw_sec_enable_sec_engine(rtwdev);
1450 
1451 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1452 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1453 
1454 	/* rcr reset after powered on */
1455 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1456 
1457 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1458 				     RTW_WATCH_DOG_DELAY_TIME);
1459 
1460 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1461 
1462 	return 0;
1463 }
1464 
1465 static void rtw_power_off(struct rtw_dev *rtwdev)
1466 {
1467 	rtw_hci_stop(rtwdev);
1468 	rtw_coex_power_off_setting(rtwdev);
1469 	rtw_mac_power_off(rtwdev);
1470 }
1471 
1472 void rtw_core_stop(struct rtw_dev *rtwdev)
1473 {
1474 	struct rtw_coex *coex = &rtwdev->coex;
1475 
1476 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1477 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1478 
1479 	mutex_unlock(&rtwdev->mutex);
1480 
1481 	cancel_work_sync(&rtwdev->c2h_work);
1482 	cancel_work_sync(&rtwdev->update_beacon_work);
1483 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1484 	cancel_delayed_work_sync(&coex->bt_relink_work);
1485 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1486 	cancel_delayed_work_sync(&coex->defreeze_work);
1487 	cancel_delayed_work_sync(&coex->wl_remain_work);
1488 	cancel_delayed_work_sync(&coex->bt_remain_work);
1489 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1490 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1491 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1492 
1493 	mutex_lock(&rtwdev->mutex);
1494 
1495 	rtw_power_off(rtwdev);
1496 }
1497 
1498 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1499 			    struct ieee80211_sta_ht_cap *ht_cap)
1500 {
1501 	const struct rtw_chip_info *chip = rtwdev->chip;
1502 	struct rtw_efuse *efuse = &rtwdev->efuse;
1503 
1504 	ht_cap->ht_supported = true;
1505 	ht_cap->cap = 0;
1506 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1507 			IEEE80211_HT_CAP_MAX_AMSDU |
1508 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1509 
1510 	if (rtw_chip_has_rx_ldpc(rtwdev))
1511 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1512 	if (rtw_chip_has_tx_stbc(rtwdev))
1513 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1514 
1515 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1516 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1517 				IEEE80211_HT_CAP_DSSSCCK40 |
1518 				IEEE80211_HT_CAP_SGI_40;
1519 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1520 	ht_cap->ampdu_density = chip->ampdu_density;
1521 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1522 	if (efuse->hw_cap.nss > 1) {
1523 		ht_cap->mcs.rx_mask[0] = 0xFF;
1524 		ht_cap->mcs.rx_mask[1] = 0xFF;
1525 		ht_cap->mcs.rx_mask[4] = 0x01;
1526 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1527 	} else {
1528 		ht_cap->mcs.rx_mask[0] = 0xFF;
1529 		ht_cap->mcs.rx_mask[1] = 0x00;
1530 		ht_cap->mcs.rx_mask[4] = 0x01;
1531 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1532 	}
1533 }
1534 
1535 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1536 			     struct ieee80211_sta_vht_cap *vht_cap)
1537 {
1538 	struct rtw_efuse *efuse = &rtwdev->efuse;
1539 	u16 mcs_map;
1540 	__le16 highest;
1541 
1542 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1543 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1544 		return;
1545 
1546 	vht_cap->vht_supported = true;
1547 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1548 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1549 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1550 		       IEEE80211_VHT_CAP_HTC_VHT |
1551 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1552 		       0;
1553 	if (rtwdev->hal.rf_path_num > 1)
1554 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1555 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1556 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1557 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1558 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1559 
1560 	if (rtw_chip_has_rx_ldpc(rtwdev))
1561 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1562 
1563 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1564 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1565 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1566 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1567 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1568 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1569 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1570 	if (efuse->hw_cap.nss > 1) {
1571 		highest = cpu_to_le16(780);
1572 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1573 	} else {
1574 		highest = cpu_to_le16(390);
1575 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1576 	}
1577 
1578 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1579 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1580 	vht_cap->vht_mcs.rx_highest = highest;
1581 	vht_cap->vht_mcs.tx_highest = highest;
1582 }
1583 
1584 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1585 {
1586 	u16 len;
1587 
1588 	len = rtwdev->chip->max_scan_ie_len;
1589 
1590 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1591 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1592 		len = IEEE80211_MAX_DATA_LEN;
1593 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1594 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1595 
1596 	return len;
1597 }
1598 
1599 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1600 				   const struct rtw_chip_info *chip)
1601 {
1602 	struct rtw_dev *rtwdev = hw->priv;
1603 	struct ieee80211_supported_band *sband;
1604 
1605 	if (chip->band & RTW_BAND_2G) {
1606 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1607 		if (!sband)
1608 			goto err_out;
1609 		if (chip->ht_supported)
1610 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1611 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1612 	}
1613 
1614 	if (chip->band & RTW_BAND_5G) {
1615 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1616 		if (!sband)
1617 			goto err_out;
1618 		if (chip->ht_supported)
1619 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1620 		if (chip->vht_supported)
1621 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1622 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1623 	}
1624 
1625 	return;
1626 
1627 err_out:
1628 	rtw_err(rtwdev, "failed to set supported band\n");
1629 }
1630 
1631 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1632 				     const struct rtw_chip_info *chip)
1633 {
1634 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1635 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1636 }
1637 
1638 static void rtw_vif_smps_iter(void *data, u8 *mac,
1639 			      struct ieee80211_vif *vif)
1640 {
1641 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1642 
1643 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1644 		return;
1645 
1646 	if (rtwdev->hal.txrx_1ss)
1647 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1648 	else
1649 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1650 }
1651 
1652 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1653 {
1654 	const struct rtw_chip_info *chip = rtwdev->chip;
1655 	struct rtw_hal *hal = &rtwdev->hal;
1656 
1657 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1658 		return;
1659 
1660 	rtwdev->hal.txrx_1ss = txrx_1ss;
1661 	if (txrx_1ss)
1662 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1663 	else
1664 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1665 					    hal->antenna_rx, false);
1666 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1667 }
1668 
1669 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1670 				      struct rtw_fw_state *fw)
1671 {
1672 	u32 feature;
1673 	const struct rtw_fw_hdr *fw_hdr =
1674 				(const struct rtw_fw_hdr *)fw->firmware->data;
1675 
1676 	feature = le32_to_cpu(fw_hdr->feature);
1677 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1678 
1679 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1680 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1681 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1682 }
1683 
1684 static void __update_firmware_info(struct rtw_dev *rtwdev,
1685 				   struct rtw_fw_state *fw)
1686 {
1687 	const struct rtw_fw_hdr *fw_hdr =
1688 				(const struct rtw_fw_hdr *)fw->firmware->data;
1689 
1690 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1691 	fw->version = le16_to_cpu(fw_hdr->version);
1692 	fw->sub_version = fw_hdr->subversion;
1693 	fw->sub_index = fw_hdr->subindex;
1694 
1695 	__update_firmware_feature(rtwdev, fw);
1696 }
1697 
1698 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1699 					  struct rtw_fw_state *fw)
1700 {
1701 	struct rtw_fw_hdr_legacy *legacy =
1702 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1703 
1704 	fw->h2c_version = 0;
1705 	fw->version = le16_to_cpu(legacy->version);
1706 	fw->sub_version = legacy->subversion1;
1707 	fw->sub_index = legacy->subversion2;
1708 }
1709 
1710 static void update_firmware_info(struct rtw_dev *rtwdev,
1711 				 struct rtw_fw_state *fw)
1712 {
1713 	if (rtw_chip_wcpu_11n(rtwdev))
1714 		__update_firmware_info_legacy(rtwdev, fw);
1715 	else
1716 		__update_firmware_info(rtwdev, fw);
1717 }
1718 
1719 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1720 {
1721 	struct rtw_fw_state *fw = context;
1722 	struct rtw_dev *rtwdev = fw->rtwdev;
1723 
1724 	if (!firmware || !firmware->data) {
1725 		rtw_err(rtwdev, "failed to request firmware\n");
1726 		complete_all(&fw->completion);
1727 		return;
1728 	}
1729 
1730 	fw->firmware = firmware;
1731 	update_firmware_info(rtwdev, fw);
1732 	complete_all(&fw->completion);
1733 
1734 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1735 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1736 }
1737 
1738 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1739 {
1740 	const char *fw_name;
1741 	struct rtw_fw_state *fw;
1742 	int ret;
1743 
1744 	switch (type) {
1745 	case RTW_WOWLAN_FW:
1746 		fw = &rtwdev->wow_fw;
1747 		fw_name = rtwdev->chip->wow_fw_name;
1748 		break;
1749 
1750 	case RTW_NORMAL_FW:
1751 		fw = &rtwdev->fw;
1752 		fw_name = rtwdev->chip->fw_name;
1753 		break;
1754 
1755 	default:
1756 		rtw_warn(rtwdev, "unsupported firmware type\n");
1757 		return -ENOENT;
1758 	}
1759 
1760 	fw->rtwdev = rtwdev;
1761 	init_completion(&fw->completion);
1762 
1763 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1764 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1765 	if (ret) {
1766 		rtw_err(rtwdev, "failed to async firmware request\n");
1767 		return ret;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1774 {
1775 	const struct rtw_chip_info *chip = rtwdev->chip;
1776 	struct rtw_hal *hal = &rtwdev->hal;
1777 	struct rtw_efuse *efuse = &rtwdev->efuse;
1778 
1779 	switch (rtw_hci_type(rtwdev)) {
1780 	case RTW_HCI_TYPE_PCIE:
1781 		rtwdev->hci.rpwm_addr = 0x03d9;
1782 		rtwdev->hci.cpwm_addr = 0x03da;
1783 		break;
1784 	default:
1785 		rtw_err(rtwdev, "unsupported hci type\n");
1786 		return -EINVAL;
1787 	}
1788 
1789 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1790 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1791 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1792 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1793 		hal->rf_type = RF_2T2R;
1794 		hal->rf_path_num = 2;
1795 		hal->antenna_tx = BB_PATH_AB;
1796 		hal->antenna_rx = BB_PATH_AB;
1797 	} else {
1798 		hal->rf_type = RF_1T1R;
1799 		hal->rf_path_num = 1;
1800 		hal->antenna_tx = BB_PATH_A;
1801 		hal->antenna_rx = BB_PATH_A;
1802 	}
1803 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1804 			  hal->rf_path_num;
1805 
1806 	efuse->physical_size = chip->phy_efuse_size;
1807 	efuse->logical_size = chip->log_efuse_size;
1808 	efuse->protect_size = chip->ptct_efuse_size;
1809 
1810 	/* default use ack */
1811 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1812 
1813 	hal->bfee_sts_cap = 3;
1814 
1815 	return 0;
1816 }
1817 
1818 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1819 {
1820 	struct rtw_fw_state *fw = &rtwdev->fw;
1821 	int ret;
1822 
1823 	ret = rtw_hci_setup(rtwdev);
1824 	if (ret) {
1825 		rtw_err(rtwdev, "failed to setup hci\n");
1826 		goto err;
1827 	}
1828 
1829 	ret = rtw_mac_power_on(rtwdev);
1830 	if (ret) {
1831 		rtw_err(rtwdev, "failed to power on mac\n");
1832 		goto err;
1833 	}
1834 
1835 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1836 
1837 	wait_for_completion(&fw->completion);
1838 	if (!fw->firmware) {
1839 		ret = -EINVAL;
1840 		rtw_err(rtwdev, "failed to load firmware\n");
1841 		goto err;
1842 	}
1843 
1844 	ret = rtw_download_firmware(rtwdev, fw);
1845 	if (ret) {
1846 		rtw_err(rtwdev, "failed to download firmware\n");
1847 		goto err_off;
1848 	}
1849 
1850 	return 0;
1851 
1852 err_off:
1853 	rtw_mac_power_off(rtwdev);
1854 
1855 err:
1856 	return ret;
1857 }
1858 
1859 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1860 {
1861 	struct rtw_efuse *efuse = &rtwdev->efuse;
1862 	u8 hw_feature[HW_FEATURE_LEN];
1863 	u8 id;
1864 	u8 bw;
1865 	int i;
1866 
1867 	id = rtw_read8(rtwdev, REG_C2HEVT);
1868 	if (id != C2H_HW_FEATURE_REPORT) {
1869 		rtw_err(rtwdev, "failed to read hw feature report\n");
1870 		return -EBUSY;
1871 	}
1872 
1873 	for (i = 0; i < HW_FEATURE_LEN; i++)
1874 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1875 
1876 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1877 
1878 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1879 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1880 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1881 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1882 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1883 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1884 
1885 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1886 
1887 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1888 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1889 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1890 
1891 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1892 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1893 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1894 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1895 
1896 	return 0;
1897 }
1898 
1899 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1900 {
1901 	rtw_hci_stop(rtwdev);
1902 	rtw_mac_power_off(rtwdev);
1903 }
1904 
1905 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1906 {
1907 	struct rtw_efuse *efuse = &rtwdev->efuse;
1908 	int ret;
1909 
1910 	mutex_lock(&rtwdev->mutex);
1911 
1912 	/* power on mac to read efuse */
1913 	ret = rtw_chip_efuse_enable(rtwdev);
1914 	if (ret)
1915 		goto out_unlock;
1916 
1917 	ret = rtw_parse_efuse_map(rtwdev);
1918 	if (ret)
1919 		goto out_disable;
1920 
1921 	ret = rtw_dump_hw_feature(rtwdev);
1922 	if (ret)
1923 		goto out_disable;
1924 
1925 	ret = rtw_check_supported_rfe(rtwdev);
1926 	if (ret)
1927 		goto out_disable;
1928 
1929 	if (efuse->crystal_cap == 0xff)
1930 		efuse->crystal_cap = 0;
1931 	if (efuse->pa_type_2g == 0xff)
1932 		efuse->pa_type_2g = 0;
1933 	if (efuse->pa_type_5g == 0xff)
1934 		efuse->pa_type_5g = 0;
1935 	if (efuse->lna_type_2g == 0xff)
1936 		efuse->lna_type_2g = 0;
1937 	if (efuse->lna_type_5g == 0xff)
1938 		efuse->lna_type_5g = 0;
1939 	if (efuse->channel_plan == 0xff)
1940 		efuse->channel_plan = 0x7f;
1941 	if (efuse->rf_board_option == 0xff)
1942 		efuse->rf_board_option = 0;
1943 	if (efuse->bt_setting & BIT(0))
1944 		efuse->share_ant = true;
1945 	if (efuse->regd == 0xff)
1946 		efuse->regd = 0;
1947 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1948 		efuse->tx_bb_swing_setting_2g = 0;
1949 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1950 		efuse->tx_bb_swing_setting_5g = 0;
1951 
1952 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1953 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1954 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1955 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1956 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1957 
1958 out_disable:
1959 	rtw_chip_efuse_disable(rtwdev);
1960 
1961 out_unlock:
1962 	mutex_unlock(&rtwdev->mutex);
1963 	return ret;
1964 }
1965 
1966 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1967 {
1968 	struct rtw_hal *hal = &rtwdev->hal;
1969 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1970 
1971 	if (!rfe_def)
1972 		return -ENODEV;
1973 
1974 	rtw_phy_setup_phy_cond(rtwdev, 0);
1975 
1976 	rtw_phy_init_tx_power(rtwdev);
1977 	if (rfe_def->agc_btg_tbl)
1978 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1979 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1980 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1981 	rtw_phy_tx_power_by_rate_config(hal);
1982 	rtw_phy_tx_power_limit_config(hal);
1983 
1984 	return 0;
1985 }
1986 
1987 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1988 {
1989 	int ret;
1990 
1991 	ret = rtw_chip_parameter_setup(rtwdev);
1992 	if (ret) {
1993 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1994 		goto err_out;
1995 	}
1996 
1997 	ret = rtw_chip_efuse_info_setup(rtwdev);
1998 	if (ret) {
1999 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2000 		goto err_out;
2001 	}
2002 
2003 	ret = rtw_chip_board_info_setup(rtwdev);
2004 	if (ret) {
2005 		rtw_err(rtwdev, "failed to setup chip board info\n");
2006 		goto err_out;
2007 	}
2008 
2009 	return 0;
2010 
2011 err_out:
2012 	return ret;
2013 }
2014 EXPORT_SYMBOL(rtw_chip_info_setup);
2015 
2016 static void rtw_stats_init(struct rtw_dev *rtwdev)
2017 {
2018 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2019 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2020 	int i;
2021 
2022 	ewma_tp_init(&stats->tx_ewma_tp);
2023 	ewma_tp_init(&stats->rx_ewma_tp);
2024 
2025 	for (i = 0; i < RTW_EVM_NUM; i++)
2026 		ewma_evm_init(&dm_info->ewma_evm[i]);
2027 	for (i = 0; i < RTW_SNR_NUM; i++)
2028 		ewma_snr_init(&dm_info->ewma_snr[i]);
2029 }
2030 
2031 int rtw_core_init(struct rtw_dev *rtwdev)
2032 {
2033 	const struct rtw_chip_info *chip = rtwdev->chip;
2034 	struct rtw_coex *coex = &rtwdev->coex;
2035 	int ret;
2036 
2037 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2038 	INIT_LIST_HEAD(&rtwdev->txqs);
2039 
2040 	timer_setup(&rtwdev->tx_report.purge_timer,
2041 		    rtw_tx_report_purge_timer, 0);
2042 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2043 	if (!rtwdev->tx_wq) {
2044 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2045 		return -ENOMEM;
2046 	}
2047 
2048 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2049 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2050 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2051 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2052 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2053 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2054 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2055 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2056 			  rtw_coex_bt_multi_link_remain_work);
2057 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2058 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2059 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2060 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2061 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2062 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2063 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2064 	skb_queue_head_init(&rtwdev->c2h_queue);
2065 	skb_queue_head_init(&rtwdev->coex.queue);
2066 	skb_queue_head_init(&rtwdev->tx_report.queue);
2067 
2068 	spin_lock_init(&rtwdev->rf_lock);
2069 	spin_lock_init(&rtwdev->h2c.lock);
2070 	spin_lock_init(&rtwdev->txq_lock);
2071 	spin_lock_init(&rtwdev->tx_report.q_lock);
2072 
2073 	mutex_init(&rtwdev->mutex);
2074 	mutex_init(&rtwdev->coex.mutex);
2075 	mutex_init(&rtwdev->hal.tx_power_mutex);
2076 
2077 	init_waitqueue_head(&rtwdev->coex.wait);
2078 	init_completion(&rtwdev->lps_leave_check);
2079 	init_completion(&rtwdev->fw_scan_density);
2080 
2081 	rtwdev->sec.total_cam_num = 32;
2082 	rtwdev->hal.current_channel = 1;
2083 	rtwdev->dm_info.fix_rate = U8_MAX;
2084 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2085 
2086 	rtw_stats_init(rtwdev);
2087 
2088 	/* default rx filter setting */
2089 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2090 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2091 			  BIT_AB | BIT_AM | BIT_APM;
2092 
2093 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2094 	if (ret) {
2095 		rtw_warn(rtwdev, "no firmware loaded\n");
2096 		goto out;
2097 	}
2098 
2099 	if (chip->wow_fw_name) {
2100 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2101 		if (ret) {
2102 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2103 			wait_for_completion(&rtwdev->fw.completion);
2104 			if (rtwdev->fw.firmware)
2105 				release_firmware(rtwdev->fw.firmware);
2106 			goto out;
2107 		}
2108 	}
2109 
2110 	return 0;
2111 
2112 out:
2113 	destroy_workqueue(rtwdev->tx_wq);
2114 	return ret;
2115 }
2116 EXPORT_SYMBOL(rtw_core_init);
2117 
2118 void rtw_core_deinit(struct rtw_dev *rtwdev)
2119 {
2120 	struct rtw_fw_state *fw = &rtwdev->fw;
2121 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2122 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2123 	unsigned long flags;
2124 
2125 	rtw_wait_firmware_completion(rtwdev);
2126 
2127 	if (fw->firmware)
2128 		release_firmware(fw->firmware);
2129 
2130 	if (wow_fw->firmware)
2131 		release_firmware(wow_fw->firmware);
2132 
2133 	destroy_workqueue(rtwdev->tx_wq);
2134 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2135 	skb_queue_purge(&rtwdev->tx_report.queue);
2136 	skb_queue_purge(&rtwdev->coex.queue);
2137 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2138 
2139 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2140 				 build_list) {
2141 		list_del(&rsvd_pkt->build_list);
2142 		kfree(rsvd_pkt);
2143 	}
2144 
2145 	mutex_destroy(&rtwdev->mutex);
2146 	mutex_destroy(&rtwdev->coex.mutex);
2147 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2148 }
2149 EXPORT_SYMBOL(rtw_core_deinit);
2150 
2151 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2152 {
2153 	struct rtw_hal *hal = &rtwdev->hal;
2154 	int max_tx_headroom = 0;
2155 	int ret;
2156 
2157 	/* TODO: USB & SDIO may need extra room? */
2158 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2159 
2160 	hw->extra_tx_headroom = max_tx_headroom;
2161 	hw->queues = IEEE80211_NUM_ACS;
2162 	hw->txq_data_size = sizeof(struct rtw_txq);
2163 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2164 	hw->vif_data_size = sizeof(struct rtw_vif);
2165 
2166 	ieee80211_hw_set(hw, SIGNAL_DBM);
2167 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2168 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2169 	ieee80211_hw_set(hw, MFP_CAPABLE);
2170 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2171 	ieee80211_hw_set(hw, SUPPORTS_PS);
2172 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2173 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2174 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2175 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2176 	ieee80211_hw_set(hw, TX_AMSDU);
2177 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2178 
2179 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2180 				     BIT(NL80211_IFTYPE_AP) |
2181 				     BIT(NL80211_IFTYPE_ADHOC) |
2182 				     BIT(NL80211_IFTYPE_MESH_POINT);
2183 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2184 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2185 
2186 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2187 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2188 
2189 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2190 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2191 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2192 
2193 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2194 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2195 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2196 
2197 #ifdef CONFIG_PM
2198 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2199 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2200 #endif
2201 	rtw_set_supported_band(hw, rtwdev->chip);
2202 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2203 
2204 	hw->wiphy->sar_capa = &rtw_sar_capa;
2205 
2206 	ret = rtw_regd_init(rtwdev);
2207 	if (ret) {
2208 		rtw_err(rtwdev, "failed to init regd\n");
2209 		return ret;
2210 	}
2211 
2212 	ret = ieee80211_register_hw(hw);
2213 	if (ret) {
2214 		rtw_err(rtwdev, "failed to register hw\n");
2215 		return ret;
2216 	}
2217 
2218 	ret = rtw_regd_hint(rtwdev);
2219 	if (ret) {
2220 		rtw_err(rtwdev, "failed to hint regd\n");
2221 		return ret;
2222 	}
2223 
2224 	rtw_debugfs_init(rtwdev);
2225 
2226 	rtwdev->bf_info.bfer_mu_cnt = 0;
2227 	rtwdev->bf_info.bfer_su_cnt = 0;
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(rtw_register_hw);
2232 
2233 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2234 {
2235 	const struct rtw_chip_info *chip = rtwdev->chip;
2236 
2237 	ieee80211_unregister_hw(hw);
2238 	rtw_unset_supported_band(hw, chip);
2239 }
2240 EXPORT_SYMBOL(rtw_unregister_hw);
2241 
2242 MODULE_AUTHOR("Realtek Corporation");
2243 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2244 MODULE_LICENSE("Dual BSD/GPL");
2245