1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->bss_conf.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
211 		rtw_coex_wl_status_change_notify(rtwdev, 0);
212 
213 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
214 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
215 		ps_active = true;
216 	else
217 		ps_active = false;
218 
219 	ewma_tp_add(&stats->tx_ewma_tp,
220 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
221 	ewma_tp_add(&stats->rx_ewma_tp,
222 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
223 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
224 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
225 
226 	/* reset tx/rx statictics */
227 	stats->tx_unicast = 0;
228 	stats->rx_unicast = 0;
229 	stats->tx_cnt = 0;
230 	stats->rx_cnt = 0;
231 
232 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
233 		goto unlock;
234 
235 	/* make sure BB/RF is working for dynamic mech */
236 	rtw_leave_lps(rtwdev);
237 
238 	rtw_phy_dynamic_mechanism(rtwdev);
239 
240 	data.rtwdev = rtwdev;
241 	/* use atomic version to avoid taking local->iflist_mtx mutex */
242 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
243 
244 	/* fw supports only one station associated to enter lps, if there are
245 	 * more than two stations associated to the AP, then we can not enter
246 	 * lps, because fw does not handle the overlapped beacon interval
247 	 *
248 	 * mac80211 should iterate vifs and determine if driver can enter
249 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
250 	 * get that vif and check if device is having traffic more than the
251 	 * threshold.
252 	 */
253 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
254 	    !rtwdev->beacon_loss)
255 		rtw_enter_lps(rtwdev, data.rtwvif->port);
256 
257 	rtwdev->watch_dog_cnt++;
258 
259 unlock:
260 	mutex_unlock(&rtwdev->mutex);
261 }
262 
263 static void rtw_c2h_work(struct work_struct *work)
264 {
265 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
266 	struct sk_buff *skb, *tmp;
267 
268 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
269 		skb_unlink(skb, &rtwdev->c2h_queue);
270 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
271 		dev_kfree_skb_any(skb);
272 	}
273 }
274 
275 static void rtw_ips_work(struct work_struct *work)
276 {
277 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
278 
279 	mutex_lock(&rtwdev->mutex);
280 	rtw_enter_ips(rtwdev);
281 	mutex_unlock(&rtwdev->mutex);
282 }
283 
284 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
285 {
286 	unsigned long mac_id;
287 
288 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
289 	if (mac_id < RTW_MAX_MAC_ID_NUM)
290 		set_bit(mac_id, rtwdev->mac_id_map);
291 
292 	return mac_id;
293 }
294 
295 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
296 		struct ieee80211_vif *vif)
297 {
298 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
299 	int i;
300 
301 	si->mac_id = rtw_acquire_macid(rtwdev);
302 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
303 		return -ENOSPC;
304 
305 	si->sta = sta;
306 	si->vif = vif;
307 	si->init_ra_lv = 1;
308 	ewma_rssi_init(&si->avg_rssi);
309 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
310 		rtw_txq_init(rtwdev, sta->txq[i]);
311 
312 	rtw_update_sta_info(rtwdev, si);
313 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
314 
315 	rtwdev->sta_cnt++;
316 	rtwdev->beacon_loss = false;
317 	rtw_info(rtwdev, "sta %pM joined with macid %d\n",
318 		 sta->addr, si->mac_id);
319 
320 	return 0;
321 }
322 
323 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
324 		    bool fw_exist)
325 {
326 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
327 	int i;
328 
329 	rtw_release_macid(rtwdev, si->mac_id);
330 	if (fw_exist)
331 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
332 
333 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
334 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
335 
336 	kfree(si->mask);
337 
338 	rtwdev->sta_cnt--;
339 	rtw_info(rtwdev, "sta %pM with macid %d left\n",
340 		 sta->addr, si->mac_id);
341 }
342 
343 struct rtw_fwcd_hdr {
344 	u32 item;
345 	u32 size;
346 	u32 padding1;
347 	u32 padding2;
348 } __packed;
349 
350 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
351 {
352 	struct rtw_chip_info *chip = rtwdev->chip;
353 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
354 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
355 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
356 	u8 i;
357 
358 	if (segs) {
359 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
360 
361 		for (i = 0; i < segs->num; i++)
362 			prep_size += segs->segs[i];
363 	}
364 
365 	desc->data = vmalloc(prep_size);
366 	if (!desc->data)
367 		return -ENOMEM;
368 
369 	desc->size = prep_size;
370 	desc->next = desc->data;
371 
372 	return 0;
373 }
374 
375 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
376 {
377 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
378 	struct rtw_fwcd_hdr *hdr;
379 	u8 *next;
380 
381 	if (!desc->data) {
382 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
383 		return NULL;
384 	}
385 
386 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
387 	if (next - desc->data + size > desc->size) {
388 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
389 		return NULL;
390 	}
391 
392 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
393 	hdr->item = item;
394 	hdr->size = size;
395 	hdr->padding1 = 0x01234567;
396 	hdr->padding2 = 0x89abcdef;
397 	desc->next = next + size;
398 
399 	return next;
400 }
401 
402 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
403 {
404 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
405 
406 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
407 
408 	/* Data will be freed after lifetime of device coredump. After calling
409 	 * dev_coredump, data is supposed to be handled by the device coredump
410 	 * framework. Note that a new dump will be discarded if a previous one
411 	 * hasn't been released yet.
412 	 */
413 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
414 }
415 
416 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
417 {
418 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
419 
420 	if (free_self) {
421 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
422 		vfree(desc->data);
423 	}
424 
425 	desc->data = NULL;
426 	desc->next = NULL;
427 }
428 
429 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
430 {
431 	u32 size = rtwdev->chip->fw_rxff_size;
432 	u32 *buf;
433 	u8 seq;
434 
435 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
436 	if (!buf)
437 		return -ENOMEM;
438 
439 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
440 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
441 		return -EINVAL;
442 	}
443 
444 	if (GET_FW_DUMP_LEN(buf) == 0) {
445 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
446 		return -EINVAL;
447 	}
448 
449 	seq = GET_FW_DUMP_SEQ(buf);
450 	if (seq > 0) {
451 		rtw_dbg(rtwdev, RTW_DBG_FW,
452 			"fw crash dump's seq is wrong: %d\n", seq);
453 		return -EINVAL;
454 	}
455 
456 	return 0;
457 }
458 
459 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
460 		u32 fwcd_item)
461 {
462 	u32 rxff = rtwdev->chip->fw_rxff_size;
463 	u32 dump_size, done_size = 0;
464 	u8 *buf;
465 	int ret;
466 
467 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
468 	if (!buf)
469 		return -ENOMEM;
470 
471 	while (size) {
472 		dump_size = size > rxff ? rxff : size;
473 
474 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
475 					  dump_size);
476 		if (ret) {
477 			rtw_err(rtwdev,
478 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
479 				ocp_src, done_size);
480 			return ret;
481 		}
482 
483 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
484 				       dump_size, (u32 *)(buf + done_size));
485 		if (ret) {
486 			rtw_err(rtwdev,
487 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
488 				ocp_src, done_size);
489 			return ret;
490 		}
491 
492 		size -= dump_size;
493 		done_size += dump_size;
494 	}
495 
496 	return 0;
497 }
498 EXPORT_SYMBOL(rtw_dump_fw);
499 
500 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
501 {
502 	u8 *buf;
503 	u32 i;
504 
505 	if (addr & 0x3) {
506 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
507 		return -EINVAL;
508 	}
509 
510 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
511 	if (!buf)
512 		return -ENOMEM;
513 
514 	for (i = 0; i < size; i += 4)
515 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
516 
517 	return 0;
518 }
519 EXPORT_SYMBOL(rtw_dump_reg);
520 
521 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
522 			   struct ieee80211_bss_conf *conf)
523 {
524 	if (conf && conf->assoc) {
525 		rtwvif->aid = conf->aid;
526 		rtwvif->net_type = RTW_NET_MGD_LINKED;
527 	} else {
528 		rtwvif->aid = 0;
529 		rtwvif->net_type = RTW_NET_NO_LINK;
530 	}
531 }
532 
533 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
534 			       struct ieee80211_vif *vif,
535 			       struct ieee80211_sta *sta,
536 			       struct ieee80211_key_conf *key,
537 			       void *data)
538 {
539 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
540 	struct rtw_sec_desc *sec = &rtwdev->sec;
541 
542 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
543 }
544 
545 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
546 {
547 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
548 
549 	if (rtwdev->sta_cnt == 0) {
550 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
551 		return;
552 	}
553 	rtw_sta_remove(rtwdev, sta, false);
554 }
555 
556 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
557 {
558 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
559 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
560 
561 	rtw_bf_disassoc(rtwdev, vif, NULL);
562 	rtw_vif_assoc_changed(rtwvif, NULL);
563 	rtw_txq_cleanup(rtwdev, vif->txq);
564 }
565 
566 void rtw_fw_recovery(struct rtw_dev *rtwdev)
567 {
568 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
569 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
570 }
571 
572 static void __fw_recovery_work(struct rtw_dev *rtwdev)
573 {
574 	int ret = 0;
575 
576 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
577 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
578 
579 	ret = rtw_fwcd_prep(rtwdev);
580 	if (ret)
581 		goto free;
582 	ret = rtw_fw_dump_crash_log(rtwdev);
583 	if (ret)
584 		goto free;
585 	ret = rtw_chip_dump_fw_crash(rtwdev);
586 	if (ret)
587 		goto free;
588 
589 	rtw_fwcd_dump(rtwdev);
590 free:
591 	rtw_fwcd_free(rtwdev, !!ret);
592 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
593 
594 	WARN(1, "firmware crash, start reset and recover\n");
595 
596 	rcu_read_lock();
597 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
598 	rcu_read_unlock();
599 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
600 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
601 	rtw_enter_ips(rtwdev);
602 }
603 
604 static void rtw_fw_recovery_work(struct work_struct *work)
605 {
606 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
607 					      fw_recovery_work);
608 
609 	mutex_lock(&rtwdev->mutex);
610 	__fw_recovery_work(rtwdev);
611 	mutex_unlock(&rtwdev->mutex);
612 
613 	ieee80211_restart_hw(rtwdev->hw);
614 }
615 
616 struct rtw_txq_ba_iter_data {
617 };
618 
619 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
620 {
621 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
622 	int ret;
623 	u8 tid;
624 
625 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
626 	while (tid != IEEE80211_NUM_TIDS) {
627 		clear_bit(tid, si->tid_ba);
628 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
629 		if (ret == -EINVAL) {
630 			struct ieee80211_txq *txq;
631 			struct rtw_txq *rtwtxq;
632 
633 			txq = sta->txq[tid];
634 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
635 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
636 		}
637 
638 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
639 	}
640 }
641 
642 static void rtw_txq_ba_work(struct work_struct *work)
643 {
644 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
645 	struct rtw_txq_ba_iter_data data;
646 
647 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
648 }
649 
650 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
651 {
652 	if (IS_CH_2G_BAND(channel))
653 		pkt_stat->band = NL80211_BAND_2GHZ;
654 	else if (IS_CH_5G_BAND(channel))
655 		pkt_stat->band = NL80211_BAND_5GHZ;
656 	else
657 		return;
658 
659 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
660 }
661 EXPORT_SYMBOL(rtw_set_rx_freq_band);
662 
663 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
664 			    struct rtw_channel_params *chan_params)
665 {
666 	struct ieee80211_channel *channel = chandef->chan;
667 	enum nl80211_chan_width width = chandef->width;
668 	u8 *cch_by_bw = chan_params->cch_by_bw;
669 	u32 primary_freq, center_freq;
670 	u8 center_chan;
671 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
672 	u8 primary_chan_idx = 0;
673 	u8 i;
674 
675 	center_chan = channel->hw_value;
676 	primary_freq = channel->center_freq;
677 	center_freq = chandef->center_freq1;
678 
679 	/* assign the center channel used while 20M bw is selected */
680 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
681 
682 	switch (width) {
683 	case NL80211_CHAN_WIDTH_20_NOHT:
684 	case NL80211_CHAN_WIDTH_20:
685 		bandwidth = RTW_CHANNEL_WIDTH_20;
686 		primary_chan_idx = RTW_SC_DONT_CARE;
687 		break;
688 	case NL80211_CHAN_WIDTH_40:
689 		bandwidth = RTW_CHANNEL_WIDTH_40;
690 		if (primary_freq > center_freq) {
691 			primary_chan_idx = RTW_SC_20_UPPER;
692 			center_chan -= 2;
693 		} else {
694 			primary_chan_idx = RTW_SC_20_LOWER;
695 			center_chan += 2;
696 		}
697 		break;
698 	case NL80211_CHAN_WIDTH_80:
699 		bandwidth = RTW_CHANNEL_WIDTH_80;
700 		if (primary_freq > center_freq) {
701 			if (primary_freq - center_freq == 10) {
702 				primary_chan_idx = RTW_SC_20_UPPER;
703 				center_chan -= 2;
704 			} else {
705 				primary_chan_idx = RTW_SC_20_UPMOST;
706 				center_chan -= 6;
707 			}
708 			/* assign the center channel used
709 			 * while 40M bw is selected
710 			 */
711 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
712 		} else {
713 			if (center_freq - primary_freq == 10) {
714 				primary_chan_idx = RTW_SC_20_LOWER;
715 				center_chan += 2;
716 			} else {
717 				primary_chan_idx = RTW_SC_20_LOWEST;
718 				center_chan += 6;
719 			}
720 			/* assign the center channel used
721 			 * while 40M bw is selected
722 			 */
723 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
724 		}
725 		break;
726 	default:
727 		center_chan = 0;
728 		break;
729 	}
730 
731 	chan_params->center_chan = center_chan;
732 	chan_params->bandwidth = bandwidth;
733 	chan_params->primary_chan_idx = primary_chan_idx;
734 
735 	/* assign the center channel used while current bw is selected */
736 	cch_by_bw[bandwidth] = center_chan;
737 
738 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
739 		cch_by_bw[i] = 0;
740 }
741 
742 void rtw_set_channel(struct rtw_dev *rtwdev)
743 {
744 	struct ieee80211_hw *hw = rtwdev->hw;
745 	struct rtw_hal *hal = &rtwdev->hal;
746 	struct rtw_chip_info *chip = rtwdev->chip;
747 	struct rtw_channel_params ch_param;
748 	u8 center_chan, bandwidth, primary_chan_idx;
749 	u8 i;
750 
751 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
752 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
753 		return;
754 
755 	center_chan = ch_param.center_chan;
756 	bandwidth = ch_param.bandwidth;
757 	primary_chan_idx = ch_param.primary_chan_idx;
758 
759 	hal->current_band_width = bandwidth;
760 	hal->current_channel = center_chan;
761 	hal->current_primary_channel_index = primary_chan_idx;
762 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
763 
764 	switch (center_chan) {
765 	case 1 ... 14:
766 		hal->sar_band = RTW_SAR_BAND_0;
767 		break;
768 	case 36 ... 64:
769 		hal->sar_band = RTW_SAR_BAND_1;
770 		break;
771 	case 100 ... 144:
772 		hal->sar_band = RTW_SAR_BAND_3;
773 		break;
774 	case 149 ... 177:
775 		hal->sar_band = RTW_SAR_BAND_4;
776 		break;
777 	default:
778 		WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
779 		hal->sar_band = RTW_SAR_BAND_0;
780 		break;
781 	}
782 
783 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
784 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
785 
786 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
787 
788 	if (hal->current_band_type == RTW_BAND_5G) {
789 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
790 	} else {
791 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
792 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
793 		else
794 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
795 	}
796 
797 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
798 
799 	/* if the channel isn't set for scanning, we will do RF calibration
800 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
801 	 * during scanning on each channel takes too long.
802 	 */
803 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
804 		rtwdev->need_rfk = true;
805 }
806 
807 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
808 {
809 	struct rtw_chip_info *chip = rtwdev->chip;
810 
811 	if (rtwdev->need_rfk) {
812 		rtwdev->need_rfk = false;
813 		chip->ops->phy_calibration(rtwdev);
814 	}
815 }
816 
817 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
818 {
819 	int i;
820 
821 	for (i = 0; i < ETH_ALEN; i++)
822 		rtw_write8(rtwdev, start + i, addr[i]);
823 }
824 
825 void rtw_vif_port_config(struct rtw_dev *rtwdev,
826 			 struct rtw_vif *rtwvif,
827 			 u32 config)
828 {
829 	u32 addr, mask;
830 
831 	if (config & PORT_SET_MAC_ADDR) {
832 		addr = rtwvif->conf->mac_addr.addr;
833 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
834 	}
835 	if (config & PORT_SET_BSSID) {
836 		addr = rtwvif->conf->bssid.addr;
837 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
838 	}
839 	if (config & PORT_SET_NET_TYPE) {
840 		addr = rtwvif->conf->net_type.addr;
841 		mask = rtwvif->conf->net_type.mask;
842 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
843 	}
844 	if (config & PORT_SET_AID) {
845 		addr = rtwvif->conf->aid.addr;
846 		mask = rtwvif->conf->aid.mask;
847 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
848 	}
849 	if (config & PORT_SET_BCN_CTRL) {
850 		addr = rtwvif->conf->bcn_ctrl.addr;
851 		mask = rtwvif->conf->bcn_ctrl.mask;
852 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
853 	}
854 }
855 
856 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
857 {
858 	u8 bw = 0;
859 
860 	switch (bw_cap) {
861 	case EFUSE_HW_CAP_IGNORE:
862 	case EFUSE_HW_CAP_SUPP_BW80:
863 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
864 		fallthrough;
865 	case EFUSE_HW_CAP_SUPP_BW40:
866 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
867 		fallthrough;
868 	default:
869 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
870 		break;
871 	}
872 
873 	return bw;
874 }
875 
876 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
877 {
878 	struct rtw_hal *hal = &rtwdev->hal;
879 	struct rtw_chip_info *chip = rtwdev->chip;
880 
881 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
882 	    hw_ant_num >= hal->rf_path_num)
883 		return;
884 
885 	switch (hw_ant_num) {
886 	case 1:
887 		hal->rf_type = RF_1T1R;
888 		hal->rf_path_num = 1;
889 		if (!chip->fix_rf_phy_num)
890 			hal->rf_phy_num = hal->rf_path_num;
891 		hal->antenna_tx = BB_PATH_A;
892 		hal->antenna_rx = BB_PATH_A;
893 		break;
894 	default:
895 		WARN(1, "invalid hw configuration from efuse\n");
896 		break;
897 	}
898 }
899 
900 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
901 {
902 	u64 ra_mask = 0;
903 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
904 	u8 vht_mcs_cap;
905 	int i, nss;
906 
907 	/* 4SS, every two bits for MCS7/8/9 */
908 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
909 		vht_mcs_cap = mcs_map & 0x3;
910 		switch (vht_mcs_cap) {
911 		case 2: /* MCS9 */
912 			ra_mask |= 0x3ffULL << nss;
913 			break;
914 		case 1: /* MCS8 */
915 			ra_mask |= 0x1ffULL << nss;
916 			break;
917 		case 0: /* MCS7 */
918 			ra_mask |= 0x0ffULL << nss;
919 			break;
920 		default:
921 			break;
922 		}
923 	}
924 
925 	return ra_mask;
926 }
927 
928 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
929 {
930 	u8 rate_id = 0;
931 
932 	switch (wireless_set) {
933 	case WIRELESS_CCK:
934 		rate_id = RTW_RATEID_B_20M;
935 		break;
936 	case WIRELESS_OFDM:
937 		rate_id = RTW_RATEID_G;
938 		break;
939 	case WIRELESS_CCK | WIRELESS_OFDM:
940 		rate_id = RTW_RATEID_BG;
941 		break;
942 	case WIRELESS_OFDM | WIRELESS_HT:
943 		if (tx_num == 1)
944 			rate_id = RTW_RATEID_GN_N1SS;
945 		else if (tx_num == 2)
946 			rate_id = RTW_RATEID_GN_N2SS;
947 		else if (tx_num == 3)
948 			rate_id = RTW_RATEID_ARFR5_N_3SS;
949 		break;
950 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
951 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
952 			if (tx_num == 1)
953 				rate_id = RTW_RATEID_BGN_40M_1SS;
954 			else if (tx_num == 2)
955 				rate_id = RTW_RATEID_BGN_40M_2SS;
956 			else if (tx_num == 3)
957 				rate_id = RTW_RATEID_ARFR5_N_3SS;
958 			else if (tx_num == 4)
959 				rate_id = RTW_RATEID_ARFR7_N_4SS;
960 		} else {
961 			if (tx_num == 1)
962 				rate_id = RTW_RATEID_BGN_20M_1SS;
963 			else if (tx_num == 2)
964 				rate_id = RTW_RATEID_BGN_20M_2SS;
965 			else if (tx_num == 3)
966 				rate_id = RTW_RATEID_ARFR5_N_3SS;
967 			else if (tx_num == 4)
968 				rate_id = RTW_RATEID_ARFR7_N_4SS;
969 		}
970 		break;
971 	case WIRELESS_OFDM | WIRELESS_VHT:
972 		if (tx_num == 1)
973 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
974 		else if (tx_num == 2)
975 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
976 		else if (tx_num == 3)
977 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
978 		else if (tx_num == 4)
979 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
980 		break;
981 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
982 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
983 			if (tx_num == 1)
984 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
985 			else if (tx_num == 2)
986 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
987 			else if (tx_num == 3)
988 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
989 			else if (tx_num == 4)
990 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
991 		} else {
992 			if (tx_num == 1)
993 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
994 			else if (tx_num == 2)
995 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
996 			else if (tx_num == 3)
997 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
998 			else if (tx_num == 4)
999 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1000 		}
1001 		break;
1002 	default:
1003 		break;
1004 	}
1005 
1006 	return rate_id;
1007 }
1008 
1009 #define RA_MASK_CCK_RATES	0x0000f
1010 #define RA_MASK_OFDM_RATES	0x00ff0
1011 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1012 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1013 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1014 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1015 				 RA_MASK_HT_RATES_2SS | \
1016 				 RA_MASK_HT_RATES_3SS)
1017 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1018 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1019 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1020 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1021 				 RA_MASK_VHT_RATES_2SS | \
1022 				 RA_MASK_VHT_RATES_3SS)
1023 #define RA_MASK_CCK_IN_BG	0x00005
1024 #define RA_MASK_CCK_IN_HT	0x00005
1025 #define RA_MASK_CCK_IN_VHT	0x00005
1026 #define RA_MASK_OFDM_IN_VHT	0x00010
1027 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1028 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1029 
1030 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1031 {
1032 	u8 rssi_level = si->rssi_level;
1033 
1034 	if (wireless_set == WIRELESS_CCK)
1035 		return 0xffffffffffffffffULL;
1036 
1037 	if (rssi_level == 0)
1038 		return 0xffffffffffffffffULL;
1039 	else if (rssi_level == 1)
1040 		return 0xfffffffffffffff0ULL;
1041 	else if (rssi_level == 2)
1042 		return 0xffffffffffffefe0ULL;
1043 	else if (rssi_level == 3)
1044 		return 0xffffffffffffcfc0ULL;
1045 	else if (rssi_level == 4)
1046 		return 0xffffffffffff8f80ULL;
1047 	else
1048 		return 0xffffffffffff0f00ULL;
1049 }
1050 
1051 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1052 {
1053 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1054 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1055 
1056 	if (ra_mask == 0)
1057 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1058 
1059 	return ra_mask;
1060 }
1061 
1062 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1063 			     u64 ra_mask, bool is_vht_enable)
1064 {
1065 	struct rtw_hal *hal = &rtwdev->hal;
1066 	const struct cfg80211_bitrate_mask *mask = si->mask;
1067 	u64 cfg_mask = GENMASK_ULL(63, 0);
1068 	u8 band;
1069 
1070 	if (!si->use_cfg_mask)
1071 		return ra_mask;
1072 
1073 	band = hal->current_band_type;
1074 	if (band == RTW_BAND_2G) {
1075 		band = NL80211_BAND_2GHZ;
1076 		cfg_mask = mask->control[band].legacy;
1077 	} else if (band == RTW_BAND_5G) {
1078 		band = NL80211_BAND_5GHZ;
1079 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1080 					   RA_MASK_OFDM_RATES);
1081 	}
1082 
1083 	if (!is_vht_enable) {
1084 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1085 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1086 						    RA_MASK_HT_RATES_1SS);
1087 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1088 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1089 						    RA_MASK_HT_RATES_2SS);
1090 	} else {
1091 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1092 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1093 						    RA_MASK_VHT_RATES_1SS);
1094 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1095 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1096 						    RA_MASK_VHT_RATES_2SS);
1097 	}
1098 
1099 	ra_mask &= cfg_mask;
1100 
1101 	return ra_mask;
1102 }
1103 
1104 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
1105 {
1106 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1107 	struct ieee80211_sta *sta = si->sta;
1108 	struct rtw_efuse *efuse = &rtwdev->efuse;
1109 	struct rtw_hal *hal = &rtwdev->hal;
1110 	u8 wireless_set;
1111 	u8 bw_mode;
1112 	u8 rate_id;
1113 	u8 rf_type = RF_1T1R;
1114 	u8 stbc_en = 0;
1115 	u8 ldpc_en = 0;
1116 	u8 tx_num = 1;
1117 	u64 ra_mask = 0;
1118 	u64 ra_mask_bak = 0;
1119 	bool is_vht_enable = false;
1120 	bool is_support_sgi = false;
1121 
1122 	if (sta->vht_cap.vht_supported) {
1123 		is_vht_enable = true;
1124 		ra_mask |= get_vht_ra_mask(sta);
1125 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1126 			stbc_en = VHT_STBC_EN;
1127 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1128 			ldpc_en = VHT_LDPC_EN;
1129 	} else if (sta->ht_cap.ht_supported) {
1130 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
1131 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
1132 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1133 			stbc_en = HT_STBC_EN;
1134 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1135 			ldpc_en = HT_LDPC_EN;
1136 	}
1137 
1138 	if (efuse->hw_cap.nss == 1)
1139 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1140 
1141 	if (hal->current_band_type == RTW_BAND_5G) {
1142 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
1143 		ra_mask_bak = ra_mask;
1144 		if (sta->vht_cap.vht_supported) {
1145 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1146 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1147 		} else if (sta->ht_cap.ht_supported) {
1148 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1149 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1150 		} else {
1151 			wireless_set = WIRELESS_OFDM;
1152 		}
1153 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1154 	} else if (hal->current_band_type == RTW_BAND_2G) {
1155 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
1156 		ra_mask_bak = ra_mask;
1157 		if (sta->vht_cap.vht_supported) {
1158 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1159 				   RA_MASK_OFDM_IN_VHT;
1160 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1161 				       WIRELESS_HT | WIRELESS_VHT;
1162 		} else if (sta->ht_cap.ht_supported) {
1163 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1164 				   RA_MASK_OFDM_IN_HT_2G;
1165 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1166 				       WIRELESS_HT;
1167 		} else if (sta->supp_rates[0] <= 0xf) {
1168 			wireless_set = WIRELESS_CCK;
1169 		} else {
1170 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1171 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1172 		}
1173 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1174 	} else {
1175 		rtw_err(rtwdev, "Unknown band type\n");
1176 		ra_mask_bak = ra_mask;
1177 		wireless_set = 0;
1178 	}
1179 
1180 	switch (sta->bandwidth) {
1181 	case IEEE80211_STA_RX_BW_80:
1182 		bw_mode = RTW_CHANNEL_WIDTH_80;
1183 		is_support_sgi = sta->vht_cap.vht_supported &&
1184 				 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1185 		break;
1186 	case IEEE80211_STA_RX_BW_40:
1187 		bw_mode = RTW_CHANNEL_WIDTH_40;
1188 		is_support_sgi = sta->ht_cap.ht_supported &&
1189 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1190 		break;
1191 	default:
1192 		bw_mode = RTW_CHANNEL_WIDTH_20;
1193 		is_support_sgi = sta->ht_cap.ht_supported &&
1194 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1195 		break;
1196 	}
1197 
1198 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
1199 		tx_num = 2;
1200 		rf_type = RF_2T2R;
1201 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
1202 		tx_num = 2;
1203 		rf_type = RF_2T2R;
1204 	}
1205 
1206 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1207 
1208 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1209 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1210 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1211 
1212 	si->bw_mode = bw_mode;
1213 	si->stbc_en = stbc_en;
1214 	si->ldpc_en = ldpc_en;
1215 	si->rf_type = rf_type;
1216 	si->wireless_set = wireless_set;
1217 	si->sgi_enable = is_support_sgi;
1218 	si->vht_enable = is_vht_enable;
1219 	si->ra_mask = ra_mask;
1220 	si->rate_id = rate_id;
1221 
1222 	rtw_fw_send_ra_info(rtwdev, si);
1223 }
1224 
1225 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1226 {
1227 	struct rtw_chip_info *chip = rtwdev->chip;
1228 	struct rtw_fw_state *fw;
1229 
1230 	fw = &rtwdev->fw;
1231 	wait_for_completion(&fw->completion);
1232 	if (!fw->firmware)
1233 		return -EINVAL;
1234 
1235 	if (chip->wow_fw_name) {
1236 		fw = &rtwdev->wow_fw;
1237 		wait_for_completion(&fw->completion);
1238 		if (!fw->firmware)
1239 			return -EINVAL;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1246 						       struct rtw_fw_state *fw)
1247 {
1248 	struct rtw_chip_info *chip = rtwdev->chip;
1249 
1250 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1251 	    !fw->feature)
1252 		return LPS_DEEP_MODE_NONE;
1253 
1254 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1255 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1256 		return LPS_DEEP_MODE_PG;
1257 
1258 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1259 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1260 		return LPS_DEEP_MODE_LCLK;
1261 
1262 	return LPS_DEEP_MODE_NONE;
1263 }
1264 
1265 static int rtw_power_on(struct rtw_dev *rtwdev)
1266 {
1267 	struct rtw_chip_info *chip = rtwdev->chip;
1268 	struct rtw_fw_state *fw = &rtwdev->fw;
1269 	bool wifi_only;
1270 	int ret;
1271 
1272 	ret = rtw_hci_setup(rtwdev);
1273 	if (ret) {
1274 		rtw_err(rtwdev, "failed to setup hci\n");
1275 		goto err;
1276 	}
1277 
1278 	/* power on MAC before firmware downloaded */
1279 	ret = rtw_mac_power_on(rtwdev);
1280 	if (ret) {
1281 		rtw_err(rtwdev, "failed to power on mac\n");
1282 		goto err;
1283 	}
1284 
1285 	ret = rtw_wait_firmware_completion(rtwdev);
1286 	if (ret) {
1287 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1288 		goto err_off;
1289 	}
1290 
1291 	ret = rtw_download_firmware(rtwdev, fw);
1292 	if (ret) {
1293 		rtw_err(rtwdev, "failed to download firmware\n");
1294 		goto err_off;
1295 	}
1296 
1297 	/* config mac after firmware downloaded */
1298 	ret = rtw_mac_init(rtwdev);
1299 	if (ret) {
1300 		rtw_err(rtwdev, "failed to configure mac\n");
1301 		goto err_off;
1302 	}
1303 
1304 	chip->ops->phy_set_param(rtwdev);
1305 
1306 	ret = rtw_hci_start(rtwdev);
1307 	if (ret) {
1308 		rtw_err(rtwdev, "failed to start hci\n");
1309 		goto err_off;
1310 	}
1311 
1312 	/* send H2C after HCI has started */
1313 	rtw_fw_send_general_info(rtwdev);
1314 	rtw_fw_send_phydm_info(rtwdev);
1315 
1316 	wifi_only = !rtwdev->efuse.btcoex;
1317 	rtw_coex_power_on_setting(rtwdev);
1318 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1319 
1320 	return 0;
1321 
1322 err_off:
1323 	rtw_mac_power_off(rtwdev);
1324 
1325 err:
1326 	return ret;
1327 }
1328 
1329 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1330 {
1331 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1332 		return;
1333 
1334 	if (start) {
1335 		rtw_fw_scan_notify(rtwdev, true);
1336 	} else {
1337 		reinit_completion(&rtwdev->fw_scan_density);
1338 		rtw_fw_scan_notify(rtwdev, false);
1339 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1340 						 SCAN_NOTIFY_TIMEOUT))
1341 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1342 	}
1343 }
1344 
1345 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1346 			 const u8 *mac_addr, bool hw_scan)
1347 {
1348 	u32 config = 0;
1349 	int ret = 0;
1350 
1351 	rtw_leave_lps(rtwdev);
1352 
1353 	if (hw_scan && rtwvif->net_type == RTW_NET_NO_LINK) {
1354 		ret = rtw_leave_ips(rtwdev);
1355 		if (ret) {
1356 			rtw_err(rtwdev, "failed to leave idle state\n");
1357 			return;
1358 		}
1359 	}
1360 
1361 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1362 	config |= PORT_SET_MAC_ADDR;
1363 	rtw_vif_port_config(rtwdev, rtwvif, config);
1364 
1365 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1366 	rtw_core_fw_scan_notify(rtwdev, true);
1367 
1368 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1369 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1370 }
1371 
1372 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1373 			    bool hw_scan)
1374 {
1375 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
1376 	u32 config = 0;
1377 
1378 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1379 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1380 
1381 	rtw_core_fw_scan_notify(rtwdev, false);
1382 
1383 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1384 	config |= PORT_SET_MAC_ADDR;
1385 	rtw_vif_port_config(rtwdev, rtwvif, config);
1386 
1387 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1388 
1389 	if (rtwvif->net_type == RTW_NET_NO_LINK && hw_scan)
1390 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1391 }
1392 
1393 int rtw_core_start(struct rtw_dev *rtwdev)
1394 {
1395 	int ret;
1396 
1397 	ret = rtw_power_on(rtwdev);
1398 	if (ret)
1399 		return ret;
1400 
1401 	rtw_sec_enable_sec_engine(rtwdev);
1402 
1403 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1404 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1405 
1406 	/* rcr reset after powered on */
1407 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1408 
1409 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1410 				     RTW_WATCH_DOG_DELAY_TIME);
1411 
1412 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1413 
1414 	return 0;
1415 }
1416 
1417 static void rtw_power_off(struct rtw_dev *rtwdev)
1418 {
1419 	rtw_hci_stop(rtwdev);
1420 	rtw_coex_power_off_setting(rtwdev);
1421 	rtw_mac_power_off(rtwdev);
1422 }
1423 
1424 void rtw_core_stop(struct rtw_dev *rtwdev)
1425 {
1426 	struct rtw_coex *coex = &rtwdev->coex;
1427 
1428 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1429 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1430 
1431 	mutex_unlock(&rtwdev->mutex);
1432 
1433 	cancel_work_sync(&rtwdev->c2h_work);
1434 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1435 	cancel_delayed_work_sync(&coex->bt_relink_work);
1436 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1437 	cancel_delayed_work_sync(&coex->defreeze_work);
1438 	cancel_delayed_work_sync(&coex->wl_remain_work);
1439 	cancel_delayed_work_sync(&coex->bt_remain_work);
1440 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1441 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1442 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1443 
1444 	mutex_lock(&rtwdev->mutex);
1445 
1446 	rtw_power_off(rtwdev);
1447 }
1448 
1449 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1450 			    struct ieee80211_sta_ht_cap *ht_cap)
1451 {
1452 	struct rtw_efuse *efuse = &rtwdev->efuse;
1453 
1454 	ht_cap->ht_supported = true;
1455 	ht_cap->cap = 0;
1456 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1457 			IEEE80211_HT_CAP_MAX_AMSDU |
1458 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1459 
1460 	if (rtw_chip_has_rx_ldpc(rtwdev))
1461 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1462 	if (rtw_chip_has_tx_stbc(rtwdev))
1463 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1464 
1465 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1466 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1467 				IEEE80211_HT_CAP_DSSSCCK40 |
1468 				IEEE80211_HT_CAP_SGI_40;
1469 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1470 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1471 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1472 	if (efuse->hw_cap.nss > 1) {
1473 		ht_cap->mcs.rx_mask[0] = 0xFF;
1474 		ht_cap->mcs.rx_mask[1] = 0xFF;
1475 		ht_cap->mcs.rx_mask[4] = 0x01;
1476 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1477 	} else {
1478 		ht_cap->mcs.rx_mask[0] = 0xFF;
1479 		ht_cap->mcs.rx_mask[1] = 0x00;
1480 		ht_cap->mcs.rx_mask[4] = 0x01;
1481 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1482 	}
1483 }
1484 
1485 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1486 			     struct ieee80211_sta_vht_cap *vht_cap)
1487 {
1488 	struct rtw_efuse *efuse = &rtwdev->efuse;
1489 	u16 mcs_map;
1490 	__le16 highest;
1491 
1492 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1493 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1494 		return;
1495 
1496 	vht_cap->vht_supported = true;
1497 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1498 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1499 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1500 		       IEEE80211_VHT_CAP_HTC_VHT |
1501 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1502 		       0;
1503 	if (rtwdev->hal.rf_path_num > 1)
1504 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1505 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1506 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1507 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1508 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1509 
1510 	if (rtw_chip_has_rx_ldpc(rtwdev))
1511 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1512 
1513 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1514 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1515 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1516 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1517 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1518 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1519 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1520 	if (efuse->hw_cap.nss > 1) {
1521 		highest = cpu_to_le16(780);
1522 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1523 	} else {
1524 		highest = cpu_to_le16(390);
1525 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1526 	}
1527 
1528 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1529 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1530 	vht_cap->vht_mcs.rx_highest = highest;
1531 	vht_cap->vht_mcs.tx_highest = highest;
1532 }
1533 
1534 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1535 				   struct rtw_chip_info *chip)
1536 {
1537 	struct rtw_dev *rtwdev = hw->priv;
1538 	struct ieee80211_supported_band *sband;
1539 
1540 	if (chip->band & RTW_BAND_2G) {
1541 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1542 		if (!sband)
1543 			goto err_out;
1544 		if (chip->ht_supported)
1545 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1546 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1547 	}
1548 
1549 	if (chip->band & RTW_BAND_5G) {
1550 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1551 		if (!sband)
1552 			goto err_out;
1553 		if (chip->ht_supported)
1554 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1555 		if (chip->vht_supported)
1556 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1557 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1558 	}
1559 
1560 	return;
1561 
1562 err_out:
1563 	rtw_err(rtwdev, "failed to set supported band\n");
1564 }
1565 
1566 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1567 				     struct rtw_chip_info *chip)
1568 {
1569 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1570 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1571 }
1572 
1573 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1574 				      struct rtw_fw_state *fw)
1575 {
1576 	u32 feature;
1577 	const struct rtw_fw_hdr *fw_hdr =
1578 				(const struct rtw_fw_hdr *)fw->firmware->data;
1579 
1580 	feature = le32_to_cpu(fw_hdr->feature);
1581 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1582 }
1583 
1584 static void __update_firmware_info(struct rtw_dev *rtwdev,
1585 				   struct rtw_fw_state *fw)
1586 {
1587 	const struct rtw_fw_hdr *fw_hdr =
1588 				(const struct rtw_fw_hdr *)fw->firmware->data;
1589 
1590 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1591 	fw->version = le16_to_cpu(fw_hdr->version);
1592 	fw->sub_version = fw_hdr->subversion;
1593 	fw->sub_index = fw_hdr->subindex;
1594 
1595 	__update_firmware_feature(rtwdev, fw);
1596 }
1597 
1598 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1599 					  struct rtw_fw_state *fw)
1600 {
1601 	struct rtw_fw_hdr_legacy *legacy =
1602 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1603 
1604 	fw->h2c_version = 0;
1605 	fw->version = le16_to_cpu(legacy->version);
1606 	fw->sub_version = legacy->subversion1;
1607 	fw->sub_index = legacy->subversion2;
1608 }
1609 
1610 static void update_firmware_info(struct rtw_dev *rtwdev,
1611 				 struct rtw_fw_state *fw)
1612 {
1613 	if (rtw_chip_wcpu_11n(rtwdev))
1614 		__update_firmware_info_legacy(rtwdev, fw);
1615 	else
1616 		__update_firmware_info(rtwdev, fw);
1617 }
1618 
1619 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1620 {
1621 	struct rtw_fw_state *fw = context;
1622 	struct rtw_dev *rtwdev = fw->rtwdev;
1623 
1624 	if (!firmware || !firmware->data) {
1625 		rtw_err(rtwdev, "failed to request firmware\n");
1626 		complete_all(&fw->completion);
1627 		return;
1628 	}
1629 
1630 	fw->firmware = firmware;
1631 	update_firmware_info(rtwdev, fw);
1632 	complete_all(&fw->completion);
1633 
1634 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1635 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1636 }
1637 
1638 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1639 {
1640 	const char *fw_name;
1641 	struct rtw_fw_state *fw;
1642 	int ret;
1643 
1644 	switch (type) {
1645 	case RTW_WOWLAN_FW:
1646 		fw = &rtwdev->wow_fw;
1647 		fw_name = rtwdev->chip->wow_fw_name;
1648 		break;
1649 
1650 	case RTW_NORMAL_FW:
1651 		fw = &rtwdev->fw;
1652 		fw_name = rtwdev->chip->fw_name;
1653 		break;
1654 
1655 	default:
1656 		rtw_warn(rtwdev, "unsupported firmware type\n");
1657 		return -ENOENT;
1658 	}
1659 
1660 	fw->rtwdev = rtwdev;
1661 	init_completion(&fw->completion);
1662 
1663 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1664 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1665 	if (ret) {
1666 		rtw_err(rtwdev, "failed to async firmware request\n");
1667 		return ret;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1674 {
1675 	struct rtw_chip_info *chip = rtwdev->chip;
1676 	struct rtw_hal *hal = &rtwdev->hal;
1677 	struct rtw_efuse *efuse = &rtwdev->efuse;
1678 
1679 	switch (rtw_hci_type(rtwdev)) {
1680 	case RTW_HCI_TYPE_PCIE:
1681 		rtwdev->hci.rpwm_addr = 0x03d9;
1682 		rtwdev->hci.cpwm_addr = 0x03da;
1683 		break;
1684 	default:
1685 		rtw_err(rtwdev, "unsupported hci type\n");
1686 		return -EINVAL;
1687 	}
1688 
1689 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1690 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1691 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1692 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1693 		hal->rf_type = RF_2T2R;
1694 		hal->rf_path_num = 2;
1695 		hal->antenna_tx = BB_PATH_AB;
1696 		hal->antenna_rx = BB_PATH_AB;
1697 	} else {
1698 		hal->rf_type = RF_1T1R;
1699 		hal->rf_path_num = 1;
1700 		hal->antenna_tx = BB_PATH_A;
1701 		hal->antenna_rx = BB_PATH_A;
1702 	}
1703 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1704 			  hal->rf_path_num;
1705 
1706 	efuse->physical_size = chip->phy_efuse_size;
1707 	efuse->logical_size = chip->log_efuse_size;
1708 	efuse->protect_size = chip->ptct_efuse_size;
1709 
1710 	/* default use ack */
1711 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1712 
1713 	hal->bfee_sts_cap = 3;
1714 
1715 	return 0;
1716 }
1717 
1718 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1719 {
1720 	struct rtw_fw_state *fw = &rtwdev->fw;
1721 	int ret;
1722 
1723 	ret = rtw_hci_setup(rtwdev);
1724 	if (ret) {
1725 		rtw_err(rtwdev, "failed to setup hci\n");
1726 		goto err;
1727 	}
1728 
1729 	ret = rtw_mac_power_on(rtwdev);
1730 	if (ret) {
1731 		rtw_err(rtwdev, "failed to power on mac\n");
1732 		goto err;
1733 	}
1734 
1735 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1736 
1737 	wait_for_completion(&fw->completion);
1738 	if (!fw->firmware) {
1739 		ret = -EINVAL;
1740 		rtw_err(rtwdev, "failed to load firmware\n");
1741 		goto err;
1742 	}
1743 
1744 	ret = rtw_download_firmware(rtwdev, fw);
1745 	if (ret) {
1746 		rtw_err(rtwdev, "failed to download firmware\n");
1747 		goto err_off;
1748 	}
1749 
1750 	return 0;
1751 
1752 err_off:
1753 	rtw_mac_power_off(rtwdev);
1754 
1755 err:
1756 	return ret;
1757 }
1758 
1759 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1760 {
1761 	struct rtw_efuse *efuse = &rtwdev->efuse;
1762 	u8 hw_feature[HW_FEATURE_LEN];
1763 	u8 id;
1764 	u8 bw;
1765 	int i;
1766 
1767 	id = rtw_read8(rtwdev, REG_C2HEVT);
1768 	if (id != C2H_HW_FEATURE_REPORT) {
1769 		rtw_err(rtwdev, "failed to read hw feature report\n");
1770 		return -EBUSY;
1771 	}
1772 
1773 	for (i = 0; i < HW_FEATURE_LEN; i++)
1774 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1775 
1776 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1777 
1778 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1779 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1780 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1781 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1782 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1783 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1784 
1785 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1786 
1787 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1788 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1789 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1790 
1791 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1792 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1793 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1794 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1795 
1796 	return 0;
1797 }
1798 
1799 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1800 {
1801 	rtw_hci_stop(rtwdev);
1802 	rtw_mac_power_off(rtwdev);
1803 }
1804 
1805 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1806 {
1807 	struct rtw_efuse *efuse = &rtwdev->efuse;
1808 	int ret;
1809 
1810 	mutex_lock(&rtwdev->mutex);
1811 
1812 	/* power on mac to read efuse */
1813 	ret = rtw_chip_efuse_enable(rtwdev);
1814 	if (ret)
1815 		goto out_unlock;
1816 
1817 	ret = rtw_parse_efuse_map(rtwdev);
1818 	if (ret)
1819 		goto out_disable;
1820 
1821 	ret = rtw_dump_hw_feature(rtwdev);
1822 	if (ret)
1823 		goto out_disable;
1824 
1825 	ret = rtw_check_supported_rfe(rtwdev);
1826 	if (ret)
1827 		goto out_disable;
1828 
1829 	if (efuse->crystal_cap == 0xff)
1830 		efuse->crystal_cap = 0;
1831 	if (efuse->pa_type_2g == 0xff)
1832 		efuse->pa_type_2g = 0;
1833 	if (efuse->pa_type_5g == 0xff)
1834 		efuse->pa_type_5g = 0;
1835 	if (efuse->lna_type_2g == 0xff)
1836 		efuse->lna_type_2g = 0;
1837 	if (efuse->lna_type_5g == 0xff)
1838 		efuse->lna_type_5g = 0;
1839 	if (efuse->channel_plan == 0xff)
1840 		efuse->channel_plan = 0x7f;
1841 	if (efuse->rf_board_option == 0xff)
1842 		efuse->rf_board_option = 0;
1843 	if (efuse->bt_setting & BIT(0))
1844 		efuse->share_ant = true;
1845 	if (efuse->regd == 0xff)
1846 		efuse->regd = 0;
1847 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1848 		efuse->tx_bb_swing_setting_2g = 0;
1849 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1850 		efuse->tx_bb_swing_setting_5g = 0;
1851 
1852 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1853 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1854 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1855 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1856 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1857 
1858 out_disable:
1859 	rtw_chip_efuse_disable(rtwdev);
1860 
1861 out_unlock:
1862 	mutex_unlock(&rtwdev->mutex);
1863 	return ret;
1864 }
1865 
1866 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1867 {
1868 	struct rtw_hal *hal = &rtwdev->hal;
1869 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1870 
1871 	if (!rfe_def)
1872 		return -ENODEV;
1873 
1874 	rtw_phy_setup_phy_cond(rtwdev, 0);
1875 
1876 	rtw_phy_init_tx_power(rtwdev);
1877 	if (rfe_def->agc_btg_tbl)
1878 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1879 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1880 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1881 	rtw_phy_tx_power_by_rate_config(hal);
1882 	rtw_phy_tx_power_limit_config(hal);
1883 
1884 	return 0;
1885 }
1886 
1887 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1888 {
1889 	int ret;
1890 
1891 	ret = rtw_chip_parameter_setup(rtwdev);
1892 	if (ret) {
1893 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1894 		goto err_out;
1895 	}
1896 
1897 	ret = rtw_chip_efuse_info_setup(rtwdev);
1898 	if (ret) {
1899 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1900 		goto err_out;
1901 	}
1902 
1903 	ret = rtw_chip_board_info_setup(rtwdev);
1904 	if (ret) {
1905 		rtw_err(rtwdev, "failed to setup chip board info\n");
1906 		goto err_out;
1907 	}
1908 
1909 	return 0;
1910 
1911 err_out:
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL(rtw_chip_info_setup);
1915 
1916 static void rtw_stats_init(struct rtw_dev *rtwdev)
1917 {
1918 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1919 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1920 	int i;
1921 
1922 	ewma_tp_init(&stats->tx_ewma_tp);
1923 	ewma_tp_init(&stats->rx_ewma_tp);
1924 
1925 	for (i = 0; i < RTW_EVM_NUM; i++)
1926 		ewma_evm_init(&dm_info->ewma_evm[i]);
1927 	for (i = 0; i < RTW_SNR_NUM; i++)
1928 		ewma_snr_init(&dm_info->ewma_snr[i]);
1929 }
1930 
1931 int rtw_core_init(struct rtw_dev *rtwdev)
1932 {
1933 	struct rtw_chip_info *chip = rtwdev->chip;
1934 	struct rtw_coex *coex = &rtwdev->coex;
1935 	int ret;
1936 
1937 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1938 	INIT_LIST_HEAD(&rtwdev->txqs);
1939 
1940 	timer_setup(&rtwdev->tx_report.purge_timer,
1941 		    rtw_tx_report_purge_timer, 0);
1942 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1943 
1944 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1945 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1946 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1947 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1948 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1949 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1950 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1951 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1952 			  rtw_coex_bt_multi_link_remain_work);
1953 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1954 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1955 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1956 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
1957 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1958 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1959 	skb_queue_head_init(&rtwdev->c2h_queue);
1960 	skb_queue_head_init(&rtwdev->coex.queue);
1961 	skb_queue_head_init(&rtwdev->tx_report.queue);
1962 
1963 	spin_lock_init(&rtwdev->rf_lock);
1964 	spin_lock_init(&rtwdev->h2c.lock);
1965 	spin_lock_init(&rtwdev->txq_lock);
1966 	spin_lock_init(&rtwdev->tx_report.q_lock);
1967 
1968 	mutex_init(&rtwdev->mutex);
1969 	mutex_init(&rtwdev->coex.mutex);
1970 	mutex_init(&rtwdev->hal.tx_power_mutex);
1971 
1972 	init_waitqueue_head(&rtwdev->coex.wait);
1973 	init_completion(&rtwdev->lps_leave_check);
1974 	init_completion(&rtwdev->fw_scan_density);
1975 
1976 	rtwdev->sec.total_cam_num = 32;
1977 	rtwdev->hal.current_channel = 1;
1978 	rtwdev->dm_info.fix_rate = U8_MAX;
1979 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1980 
1981 	rtw_stats_init(rtwdev);
1982 
1983 	/* default rx filter setting */
1984 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1985 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1986 			  BIT_AB | BIT_AM | BIT_APM;
1987 
1988 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1989 	if (ret) {
1990 		rtw_warn(rtwdev, "no firmware loaded\n");
1991 		return ret;
1992 	}
1993 
1994 	if (chip->wow_fw_name) {
1995 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1996 		if (ret) {
1997 			rtw_warn(rtwdev, "no wow firmware loaded\n");
1998 			wait_for_completion(&rtwdev->fw.completion);
1999 			if (rtwdev->fw.firmware)
2000 				release_firmware(rtwdev->fw.firmware);
2001 			return ret;
2002 		}
2003 	}
2004 
2005 	return 0;
2006 }
2007 EXPORT_SYMBOL(rtw_core_init);
2008 
2009 void rtw_core_deinit(struct rtw_dev *rtwdev)
2010 {
2011 	struct rtw_fw_state *fw = &rtwdev->fw;
2012 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2013 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2014 	unsigned long flags;
2015 
2016 	rtw_wait_firmware_completion(rtwdev);
2017 
2018 	if (fw->firmware)
2019 		release_firmware(fw->firmware);
2020 
2021 	if (wow_fw->firmware)
2022 		release_firmware(wow_fw->firmware);
2023 
2024 	destroy_workqueue(rtwdev->tx_wq);
2025 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2026 	skb_queue_purge(&rtwdev->tx_report.queue);
2027 	skb_queue_purge(&rtwdev->coex.queue);
2028 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2029 
2030 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2031 				 build_list) {
2032 		list_del(&rsvd_pkt->build_list);
2033 		kfree(rsvd_pkt);
2034 	}
2035 
2036 	mutex_destroy(&rtwdev->mutex);
2037 	mutex_destroy(&rtwdev->coex.mutex);
2038 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2039 }
2040 EXPORT_SYMBOL(rtw_core_deinit);
2041 
2042 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2043 {
2044 	struct rtw_hal *hal = &rtwdev->hal;
2045 	int max_tx_headroom = 0;
2046 	int ret;
2047 
2048 	/* TODO: USB & SDIO may need extra room? */
2049 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2050 
2051 	hw->extra_tx_headroom = max_tx_headroom;
2052 	hw->queues = IEEE80211_NUM_ACS;
2053 	hw->txq_data_size = sizeof(struct rtw_txq);
2054 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2055 	hw->vif_data_size = sizeof(struct rtw_vif);
2056 
2057 	ieee80211_hw_set(hw, SIGNAL_DBM);
2058 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2059 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2060 	ieee80211_hw_set(hw, MFP_CAPABLE);
2061 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2062 	ieee80211_hw_set(hw, SUPPORTS_PS);
2063 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2064 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2065 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2066 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2067 	ieee80211_hw_set(hw, TX_AMSDU);
2068 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2069 
2070 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2071 				     BIT(NL80211_IFTYPE_AP) |
2072 				     BIT(NL80211_IFTYPE_ADHOC) |
2073 				     BIT(NL80211_IFTYPE_MESH_POINT);
2074 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2075 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2076 
2077 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2078 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2079 
2080 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2081 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2082 	hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2083 
2084 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2085 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2086 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2087 
2088 #ifdef CONFIG_PM
2089 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2090 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2091 #endif
2092 	rtw_set_supported_band(hw, rtwdev->chip);
2093 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2094 
2095 	hw->wiphy->sar_capa = &rtw_sar_capa;
2096 
2097 	ret = rtw_regd_init(rtwdev);
2098 	if (ret) {
2099 		rtw_err(rtwdev, "failed to init regd\n");
2100 		return ret;
2101 	}
2102 
2103 	ret = ieee80211_register_hw(hw);
2104 	if (ret) {
2105 		rtw_err(rtwdev, "failed to register hw\n");
2106 		return ret;
2107 	}
2108 
2109 	ret = rtw_regd_hint(rtwdev);
2110 	if (ret) {
2111 		rtw_err(rtwdev, "failed to hint regd\n");
2112 		return ret;
2113 	}
2114 
2115 	rtw_debugfs_init(rtwdev);
2116 
2117 	rtwdev->bf_info.bfer_mu_cnt = 0;
2118 	rtwdev->bf_info.bfer_su_cnt = 0;
2119 
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(rtw_register_hw);
2123 
2124 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2125 {
2126 	struct rtw_chip_info *chip = rtwdev->chip;
2127 
2128 	ieee80211_unregister_hw(hw);
2129 	rtw_unset_supported_band(hw, chip);
2130 }
2131 EXPORT_SYMBOL(rtw_unregister_hw);
2132 
2133 MODULE_AUTHOR("Realtek Corporation");
2134 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2135 MODULE_LICENSE("Dual BSD/GPL");
2136