1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "tx.h"
16 #include "debug.h"
17 #include "bf.h"
18 
19 bool rtw_disable_lps_deep_mode;
20 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
21 bool rtw_bf_support = true;
22 unsigned int rtw_debug_mask;
23 EXPORT_SYMBOL(rtw_debug_mask);
24 
25 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
26 module_param_named(support_bf, rtw_bf_support, bool, 0644);
27 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
28 
29 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
30 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
31 MODULE_PARM_DESC(debug_mask, "Debugging mask");
32 
33 static struct ieee80211_channel rtw_channeltable_2g[] = {
34 	{.center_freq = 2412, .hw_value = 1,},
35 	{.center_freq = 2417, .hw_value = 2,},
36 	{.center_freq = 2422, .hw_value = 3,},
37 	{.center_freq = 2427, .hw_value = 4,},
38 	{.center_freq = 2432, .hw_value = 5,},
39 	{.center_freq = 2437, .hw_value = 6,},
40 	{.center_freq = 2442, .hw_value = 7,},
41 	{.center_freq = 2447, .hw_value = 8,},
42 	{.center_freq = 2452, .hw_value = 9,},
43 	{.center_freq = 2457, .hw_value = 10,},
44 	{.center_freq = 2462, .hw_value = 11,},
45 	{.center_freq = 2467, .hw_value = 12,},
46 	{.center_freq = 2472, .hw_value = 13,},
47 	{.center_freq = 2484, .hw_value = 14,},
48 };
49 
50 static struct ieee80211_channel rtw_channeltable_5g[] = {
51 	{.center_freq = 5180, .hw_value = 36,},
52 	{.center_freq = 5200, .hw_value = 40,},
53 	{.center_freq = 5220, .hw_value = 44,},
54 	{.center_freq = 5240, .hw_value = 48,},
55 	{.center_freq = 5260, .hw_value = 52,},
56 	{.center_freq = 5280, .hw_value = 56,},
57 	{.center_freq = 5300, .hw_value = 60,},
58 	{.center_freq = 5320, .hw_value = 64,},
59 	{.center_freq = 5500, .hw_value = 100,},
60 	{.center_freq = 5520, .hw_value = 104,},
61 	{.center_freq = 5540, .hw_value = 108,},
62 	{.center_freq = 5560, .hw_value = 112,},
63 	{.center_freq = 5580, .hw_value = 116,},
64 	{.center_freq = 5600, .hw_value = 120,},
65 	{.center_freq = 5620, .hw_value = 124,},
66 	{.center_freq = 5640, .hw_value = 128,},
67 	{.center_freq = 5660, .hw_value = 132,},
68 	{.center_freq = 5680, .hw_value = 136,},
69 	{.center_freq = 5700, .hw_value = 140,},
70 	{.center_freq = 5745, .hw_value = 149,},
71 	{.center_freq = 5765, .hw_value = 153,},
72 	{.center_freq = 5785, .hw_value = 157,},
73 	{.center_freq = 5805, .hw_value = 161,},
74 	{.center_freq = 5825, .hw_value = 165,
75 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
76 };
77 
78 static struct ieee80211_rate rtw_ratetable[] = {
79 	{.bitrate = 10, .hw_value = 0x00,},
80 	{.bitrate = 20, .hw_value = 0x01,},
81 	{.bitrate = 55, .hw_value = 0x02,},
82 	{.bitrate = 110, .hw_value = 0x03,},
83 	{.bitrate = 60, .hw_value = 0x04,},
84 	{.bitrate = 90, .hw_value = 0x05,},
85 	{.bitrate = 120, .hw_value = 0x06,},
86 	{.bitrate = 180, .hw_value = 0x07,},
87 	{.bitrate = 240, .hw_value = 0x08,},
88 	{.bitrate = 360, .hw_value = 0x09,},
89 	{.bitrate = 480, .hw_value = 0x0a,},
90 	{.bitrate = 540, .hw_value = 0x0b,},
91 };
92 
93 u16 rtw_desc_to_bitrate(u8 desc_rate)
94 {
95 	struct ieee80211_rate rate;
96 
97 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
98 		return 0;
99 
100 	rate = rtw_ratetable[desc_rate];
101 
102 	return rate.bitrate;
103 }
104 
105 static struct ieee80211_supported_band rtw_band_2ghz = {
106 	.band = NL80211_BAND_2GHZ,
107 
108 	.channels = rtw_channeltable_2g,
109 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
110 
111 	.bitrates = rtw_ratetable,
112 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
113 
114 	.ht_cap = {0},
115 	.vht_cap = {0},
116 };
117 
118 static struct ieee80211_supported_band rtw_band_5ghz = {
119 	.band = NL80211_BAND_5GHZ,
120 
121 	.channels = rtw_channeltable_5g,
122 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
123 
124 	/* 5G has no CCK rates */
125 	.bitrates = rtw_ratetable + 4,
126 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
127 
128 	.ht_cap = {0},
129 	.vht_cap = {0},
130 };
131 
132 struct rtw_watch_dog_iter_data {
133 	struct rtw_dev *rtwdev;
134 	struct rtw_vif *rtwvif;
135 };
136 
137 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
138 {
139 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
140 	u8 fix_rate_enable = 0;
141 	u8 new_csi_rate_idx;
142 
143 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
144 	    rtwvif->bfee.role != RTW_BFEE_MU)
145 		return;
146 
147 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
148 			      bf_info->cur_csi_rpt_rate,
149 			      fix_rate_enable, &new_csi_rate_idx);
150 
151 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
152 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
153 }
154 
155 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
156 				   struct ieee80211_vif *vif)
157 {
158 	struct rtw_watch_dog_iter_data *iter_data = data;
159 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
160 
161 	if (vif->type == NL80211_IFTYPE_STATION)
162 		if (vif->bss_conf.assoc)
163 			iter_data->rtwvif = rtwvif;
164 
165 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
166 
167 	rtwvif->stats.tx_unicast = 0;
168 	rtwvif->stats.rx_unicast = 0;
169 	rtwvif->stats.tx_cnt = 0;
170 	rtwvif->stats.rx_cnt = 0;
171 }
172 
173 /* process TX/RX statistics periodically for hardware,
174  * the information helps hardware to enhance performance
175  */
176 static void rtw_watch_dog_work(struct work_struct *work)
177 {
178 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
179 					      watch_dog_work.work);
180 	struct rtw_traffic_stats *stats = &rtwdev->stats;
181 	struct rtw_watch_dog_iter_data data = {};
182 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
183 	bool ps_active;
184 
185 	mutex_lock(&rtwdev->mutex);
186 
187 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
188 		goto unlock;
189 
190 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
191 				     RTW_WATCH_DOG_DELAY_TIME);
192 
193 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
194 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	else
196 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
197 
198 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
199 		rtw_coex_wl_status_change_notify(rtwdev);
200 
201 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
202 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
203 		ps_active = true;
204 	else
205 		ps_active = false;
206 
207 	ewma_tp_add(&stats->tx_ewma_tp,
208 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
209 	ewma_tp_add(&stats->rx_ewma_tp,
210 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
211 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
212 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
213 
214 	/* reset tx/rx statictics */
215 	stats->tx_unicast = 0;
216 	stats->rx_unicast = 0;
217 	stats->tx_cnt = 0;
218 	stats->rx_cnt = 0;
219 
220 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
221 		goto unlock;
222 
223 	/* make sure BB/RF is working for dynamic mech */
224 	rtw_leave_lps(rtwdev);
225 
226 	rtw_phy_dynamic_mechanism(rtwdev);
227 
228 	data.rtwdev = rtwdev;
229 	/* use atomic version to avoid taking local->iflist_mtx mutex */
230 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
231 
232 	/* fw supports only one station associated to enter lps, if there are
233 	 * more than two stations associated to the AP, then we can not enter
234 	 * lps, because fw does not handle the overlapped beacon interval
235 	 *
236 	 * mac80211 should iterate vifs and determine if driver can enter
237 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
238 	 * get that vif and check if device is having traffic more than the
239 	 * threshold.
240 	 */
241 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active)
242 		rtw_enter_lps(rtwdev, data.rtwvif->port);
243 
244 	rtwdev->watch_dog_cnt++;
245 
246 unlock:
247 	mutex_unlock(&rtwdev->mutex);
248 }
249 
250 static void rtw_c2h_work(struct work_struct *work)
251 {
252 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
253 	struct sk_buff *skb, *tmp;
254 
255 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
256 		skb_unlink(skb, &rtwdev->c2h_queue);
257 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
258 		dev_kfree_skb_any(skb);
259 	}
260 }
261 
262 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
263 {
264 	unsigned long mac_id;
265 
266 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
267 	if (mac_id < RTW_MAX_MAC_ID_NUM)
268 		set_bit(mac_id, rtwdev->mac_id_map);
269 
270 	return mac_id;
271 }
272 
273 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
274 		struct ieee80211_vif *vif)
275 {
276 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
277 	int i;
278 
279 	si->mac_id = rtw_acquire_macid(rtwdev);
280 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
281 		return -ENOSPC;
282 
283 	si->sta = sta;
284 	si->vif = vif;
285 	si->init_ra_lv = 1;
286 	ewma_rssi_init(&si->avg_rssi);
287 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
288 		rtw_txq_init(rtwdev, sta->txq[i]);
289 
290 	rtw_update_sta_info(rtwdev, si);
291 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
292 
293 	rtwdev->sta_cnt++;
294 	rtw_info(rtwdev, "sta %pM joined with macid %d\n",
295 		 sta->addr, si->mac_id);
296 
297 	return 0;
298 }
299 
300 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
301 		    bool fw_exist)
302 {
303 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
304 	int i;
305 
306 	rtw_release_macid(rtwdev, si->mac_id);
307 	if (fw_exist)
308 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
309 
310 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
311 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
312 
313 	kfree(si->mask);
314 
315 	rtwdev->sta_cnt--;
316 	rtw_info(rtwdev, "sta %pM with macid %d left\n",
317 		 sta->addr, si->mac_id);
318 }
319 
320 static bool rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
321 {
322 	u32 size = rtwdev->chip->fw_rxff_size;
323 	u32 *buf;
324 	u8 seq;
325 	bool ret = true;
326 
327 	buf = vmalloc(size);
328 	if (!buf)
329 		goto exit;
330 
331 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
332 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
333 		goto free_buf;
334 	}
335 
336 	if (GET_FW_DUMP_LEN(buf) == 0) {
337 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
338 		goto free_buf;
339 	}
340 
341 	seq = GET_FW_DUMP_SEQ(buf);
342 	if (seq > 0 && seq != (rtwdev->fw.prev_dump_seq + 1)) {
343 		rtw_dbg(rtwdev, RTW_DBG_FW,
344 			"fw crash dump's seq is wrong: %d\n", seq);
345 		goto free_buf;
346 	}
347 	if (seq == 0 &&
348 	    (GET_FW_DUMP_TLV_TYPE(buf) != FW_CD_TYPE ||
349 	     GET_FW_DUMP_TLV_LEN(buf) != FW_CD_LEN ||
350 	     GET_FW_DUMP_TLV_VAL(buf) != FW_CD_VAL)) {
351 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's tlv is wrong\n");
352 		goto free_buf;
353 	}
354 
355 	print_hex_dump_bytes("rtw88 fw dump: ", DUMP_PREFIX_OFFSET, buf, size);
356 
357 	if (GET_FW_DUMP_MORE(buf) == 1) {
358 		rtwdev->fw.prev_dump_seq = seq;
359 		ret = false;
360 	}
361 
362 free_buf:
363 	vfree(buf);
364 exit:
365 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
366 
367 	return ret;
368 }
369 
370 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
371 			   struct ieee80211_bss_conf *conf)
372 {
373 	if (conf && conf->assoc) {
374 		rtwvif->aid = conf->aid;
375 		rtwvif->net_type = RTW_NET_MGD_LINKED;
376 	} else {
377 		rtwvif->aid = 0;
378 		rtwvif->net_type = RTW_NET_NO_LINK;
379 	}
380 }
381 
382 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
383 			       struct ieee80211_vif *vif,
384 			       struct ieee80211_sta *sta,
385 			       struct ieee80211_key_conf *key,
386 			       void *data)
387 {
388 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
389 	struct rtw_sec_desc *sec = &rtwdev->sec;
390 
391 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
392 }
393 
394 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
395 {
396 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
397 
398 	if (rtwdev->sta_cnt == 0) {
399 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
400 		return;
401 	}
402 	rtw_sta_remove(rtwdev, sta, false);
403 }
404 
405 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
406 {
407 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
408 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
409 
410 	rtw_bf_disassoc(rtwdev, vif, NULL);
411 	rtw_vif_assoc_changed(rtwvif, NULL);
412 	rtw_txq_cleanup(rtwdev, vif->txq);
413 }
414 
415 void rtw_fw_recovery(struct rtw_dev *rtwdev)
416 {
417 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
418 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
419 }
420 
421 static void rtw_fw_recovery_work(struct work_struct *work)
422 {
423 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
424 					      fw_recovery_work);
425 
426 	/* rtw_fw_dump_crash_log() returns false indicates that there are
427 	 * still more log to dump. Driver set 0x1cf[7:0] = 0x1 to tell firmware
428 	 * to dump the remaining part of the log, and firmware will trigger an
429 	 * IMR_C2HCMD interrupt to inform driver the log is ready.
430 	 */
431 	if (!rtw_fw_dump_crash_log(rtwdev)) {
432 		rtw_write8(rtwdev, REG_HRCV_MSG, 1);
433 		return;
434 	}
435 	rtwdev->fw.prev_dump_seq = 0;
436 
437 	WARN(1, "firmware crash, start reset and recover\n");
438 
439 	mutex_lock(&rtwdev->mutex);
440 
441 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
442 	rcu_read_lock();
443 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
444 	rcu_read_unlock();
445 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
446 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
447 	rtw_enter_ips(rtwdev);
448 
449 	mutex_unlock(&rtwdev->mutex);
450 
451 	ieee80211_restart_hw(rtwdev->hw);
452 }
453 
454 struct rtw_txq_ba_iter_data {
455 };
456 
457 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
458 {
459 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
460 	int ret;
461 	u8 tid;
462 
463 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
464 	while (tid != IEEE80211_NUM_TIDS) {
465 		clear_bit(tid, si->tid_ba);
466 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
467 		if (ret == -EINVAL) {
468 			struct ieee80211_txq *txq;
469 			struct rtw_txq *rtwtxq;
470 
471 			txq = sta->txq[tid];
472 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
473 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
474 		}
475 
476 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
477 	}
478 }
479 
480 static void rtw_txq_ba_work(struct work_struct *work)
481 {
482 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
483 	struct rtw_txq_ba_iter_data data;
484 
485 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
486 }
487 
488 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
489 			    struct rtw_channel_params *chan_params)
490 {
491 	struct ieee80211_channel *channel = chandef->chan;
492 	enum nl80211_chan_width width = chandef->width;
493 	u8 *cch_by_bw = chan_params->cch_by_bw;
494 	u32 primary_freq, center_freq;
495 	u8 center_chan;
496 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
497 	u8 primary_chan_idx = 0;
498 	u8 i;
499 
500 	center_chan = channel->hw_value;
501 	primary_freq = channel->center_freq;
502 	center_freq = chandef->center_freq1;
503 
504 	/* assign the center channel used while 20M bw is selected */
505 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
506 
507 	switch (width) {
508 	case NL80211_CHAN_WIDTH_20_NOHT:
509 	case NL80211_CHAN_WIDTH_20:
510 		bandwidth = RTW_CHANNEL_WIDTH_20;
511 		primary_chan_idx = RTW_SC_DONT_CARE;
512 		break;
513 	case NL80211_CHAN_WIDTH_40:
514 		bandwidth = RTW_CHANNEL_WIDTH_40;
515 		if (primary_freq > center_freq) {
516 			primary_chan_idx = RTW_SC_20_UPPER;
517 			center_chan -= 2;
518 		} else {
519 			primary_chan_idx = RTW_SC_20_LOWER;
520 			center_chan += 2;
521 		}
522 		break;
523 	case NL80211_CHAN_WIDTH_80:
524 		bandwidth = RTW_CHANNEL_WIDTH_80;
525 		if (primary_freq > center_freq) {
526 			if (primary_freq - center_freq == 10) {
527 				primary_chan_idx = RTW_SC_20_UPPER;
528 				center_chan -= 2;
529 			} else {
530 				primary_chan_idx = RTW_SC_20_UPMOST;
531 				center_chan -= 6;
532 			}
533 			/* assign the center channel used
534 			 * while 40M bw is selected
535 			 */
536 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
537 		} else {
538 			if (center_freq - primary_freq == 10) {
539 				primary_chan_idx = RTW_SC_20_LOWER;
540 				center_chan += 2;
541 			} else {
542 				primary_chan_idx = RTW_SC_20_LOWEST;
543 				center_chan += 6;
544 			}
545 			/* assign the center channel used
546 			 * while 40M bw is selected
547 			 */
548 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
549 		}
550 		break;
551 	default:
552 		center_chan = 0;
553 		break;
554 	}
555 
556 	chan_params->center_chan = center_chan;
557 	chan_params->bandwidth = bandwidth;
558 	chan_params->primary_chan_idx = primary_chan_idx;
559 
560 	/* assign the center channel used while current bw is selected */
561 	cch_by_bw[bandwidth] = center_chan;
562 
563 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
564 		cch_by_bw[i] = 0;
565 }
566 
567 void rtw_set_channel(struct rtw_dev *rtwdev)
568 {
569 	struct ieee80211_hw *hw = rtwdev->hw;
570 	struct rtw_hal *hal = &rtwdev->hal;
571 	struct rtw_chip_info *chip = rtwdev->chip;
572 	struct rtw_channel_params ch_param;
573 	u8 center_chan, bandwidth, primary_chan_idx;
574 	u8 i;
575 
576 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
577 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
578 		return;
579 
580 	center_chan = ch_param.center_chan;
581 	bandwidth = ch_param.bandwidth;
582 	primary_chan_idx = ch_param.primary_chan_idx;
583 
584 	hal->current_band_width = bandwidth;
585 	hal->current_channel = center_chan;
586 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
587 
588 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
589 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
590 
591 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
592 
593 	if (hal->current_band_type == RTW_BAND_5G) {
594 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
595 	} else {
596 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
597 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
598 		else
599 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
600 	}
601 
602 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
603 
604 	/* if the channel isn't set for scanning, we will do RF calibration
605 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
606 	 * during scanning on each channel takes too long.
607 	 */
608 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
609 		rtwdev->need_rfk = true;
610 }
611 
612 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
613 {
614 	struct rtw_chip_info *chip = rtwdev->chip;
615 
616 	if (rtwdev->need_rfk) {
617 		rtwdev->need_rfk = false;
618 		chip->ops->phy_calibration(rtwdev);
619 	}
620 }
621 
622 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
623 {
624 	int i;
625 
626 	for (i = 0; i < ETH_ALEN; i++)
627 		rtw_write8(rtwdev, start + i, addr[i]);
628 }
629 
630 void rtw_vif_port_config(struct rtw_dev *rtwdev,
631 			 struct rtw_vif *rtwvif,
632 			 u32 config)
633 {
634 	u32 addr, mask;
635 
636 	if (config & PORT_SET_MAC_ADDR) {
637 		addr = rtwvif->conf->mac_addr.addr;
638 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
639 	}
640 	if (config & PORT_SET_BSSID) {
641 		addr = rtwvif->conf->bssid.addr;
642 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
643 	}
644 	if (config & PORT_SET_NET_TYPE) {
645 		addr = rtwvif->conf->net_type.addr;
646 		mask = rtwvif->conf->net_type.mask;
647 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
648 	}
649 	if (config & PORT_SET_AID) {
650 		addr = rtwvif->conf->aid.addr;
651 		mask = rtwvif->conf->aid.mask;
652 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
653 	}
654 	if (config & PORT_SET_BCN_CTRL) {
655 		addr = rtwvif->conf->bcn_ctrl.addr;
656 		mask = rtwvif->conf->bcn_ctrl.mask;
657 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
658 	}
659 }
660 
661 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
662 {
663 	u8 bw = 0;
664 
665 	switch (bw_cap) {
666 	case EFUSE_HW_CAP_IGNORE:
667 	case EFUSE_HW_CAP_SUPP_BW80:
668 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
669 		fallthrough;
670 	case EFUSE_HW_CAP_SUPP_BW40:
671 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
672 		fallthrough;
673 	default:
674 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
675 		break;
676 	}
677 
678 	return bw;
679 }
680 
681 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
682 {
683 	struct rtw_hal *hal = &rtwdev->hal;
684 	struct rtw_chip_info *chip = rtwdev->chip;
685 
686 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
687 	    hw_ant_num >= hal->rf_path_num)
688 		return;
689 
690 	switch (hw_ant_num) {
691 	case 1:
692 		hal->rf_type = RF_1T1R;
693 		hal->rf_path_num = 1;
694 		if (!chip->fix_rf_phy_num)
695 			hal->rf_phy_num = hal->rf_path_num;
696 		hal->antenna_tx = BB_PATH_A;
697 		hal->antenna_rx = BB_PATH_A;
698 		break;
699 	default:
700 		WARN(1, "invalid hw configuration from efuse\n");
701 		break;
702 	}
703 }
704 
705 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
706 {
707 	u64 ra_mask = 0;
708 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
709 	u8 vht_mcs_cap;
710 	int i, nss;
711 
712 	/* 4SS, every two bits for MCS7/8/9 */
713 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
714 		vht_mcs_cap = mcs_map & 0x3;
715 		switch (vht_mcs_cap) {
716 		case 2: /* MCS9 */
717 			ra_mask |= 0x3ffULL << nss;
718 			break;
719 		case 1: /* MCS8 */
720 			ra_mask |= 0x1ffULL << nss;
721 			break;
722 		case 0: /* MCS7 */
723 			ra_mask |= 0x0ffULL << nss;
724 			break;
725 		default:
726 			break;
727 		}
728 	}
729 
730 	return ra_mask;
731 }
732 
733 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
734 {
735 	u8 rate_id = 0;
736 
737 	switch (wireless_set) {
738 	case WIRELESS_CCK:
739 		rate_id = RTW_RATEID_B_20M;
740 		break;
741 	case WIRELESS_OFDM:
742 		rate_id = RTW_RATEID_G;
743 		break;
744 	case WIRELESS_CCK | WIRELESS_OFDM:
745 		rate_id = RTW_RATEID_BG;
746 		break;
747 	case WIRELESS_OFDM | WIRELESS_HT:
748 		if (tx_num == 1)
749 			rate_id = RTW_RATEID_GN_N1SS;
750 		else if (tx_num == 2)
751 			rate_id = RTW_RATEID_GN_N2SS;
752 		else if (tx_num == 3)
753 			rate_id = RTW_RATEID_ARFR5_N_3SS;
754 		break;
755 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
756 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
757 			if (tx_num == 1)
758 				rate_id = RTW_RATEID_BGN_40M_1SS;
759 			else if (tx_num == 2)
760 				rate_id = RTW_RATEID_BGN_40M_2SS;
761 			else if (tx_num == 3)
762 				rate_id = RTW_RATEID_ARFR5_N_3SS;
763 			else if (tx_num == 4)
764 				rate_id = RTW_RATEID_ARFR7_N_4SS;
765 		} else {
766 			if (tx_num == 1)
767 				rate_id = RTW_RATEID_BGN_20M_1SS;
768 			else if (tx_num == 2)
769 				rate_id = RTW_RATEID_BGN_20M_2SS;
770 			else if (tx_num == 3)
771 				rate_id = RTW_RATEID_ARFR5_N_3SS;
772 			else if (tx_num == 4)
773 				rate_id = RTW_RATEID_ARFR7_N_4SS;
774 		}
775 		break;
776 	case WIRELESS_OFDM | WIRELESS_VHT:
777 		if (tx_num == 1)
778 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
779 		else if (tx_num == 2)
780 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
781 		else if (tx_num == 3)
782 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
783 		else if (tx_num == 4)
784 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
785 		break;
786 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
787 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
788 			if (tx_num == 1)
789 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
790 			else if (tx_num == 2)
791 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
792 			else if (tx_num == 3)
793 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
794 			else if (tx_num == 4)
795 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
796 		} else {
797 			if (tx_num == 1)
798 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
799 			else if (tx_num == 2)
800 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
801 			else if (tx_num == 3)
802 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
803 			else if (tx_num == 4)
804 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
805 		}
806 		break;
807 	default:
808 		break;
809 	}
810 
811 	return rate_id;
812 }
813 
814 #define RA_MASK_CCK_RATES	0x0000f
815 #define RA_MASK_OFDM_RATES	0x00ff0
816 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
817 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
818 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
819 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
820 				 RA_MASK_HT_RATES_2SS | \
821 				 RA_MASK_HT_RATES_3SS)
822 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
823 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
824 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
825 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
826 				 RA_MASK_VHT_RATES_2SS | \
827 				 RA_MASK_VHT_RATES_3SS)
828 #define RA_MASK_CCK_IN_HT	0x00005
829 #define RA_MASK_CCK_IN_VHT	0x00005
830 #define RA_MASK_OFDM_IN_VHT	0x00010
831 #define RA_MASK_OFDM_IN_HT_2G	0x00010
832 #define RA_MASK_OFDM_IN_HT_5G	0x00030
833 
834 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
835 				struct rtw_sta_info *si,
836 				u64 ra_mask, bool is_vht_enable,
837 				u8 wireless_set)
838 {
839 	struct rtw_hal *hal = &rtwdev->hal;
840 	const struct cfg80211_bitrate_mask *mask = si->mask;
841 	u64 cfg_mask = GENMASK_ULL(63, 0);
842 	u8 rssi_level, band;
843 
844 	if (wireless_set != WIRELESS_CCK) {
845 		rssi_level = si->rssi_level;
846 		if (rssi_level == 0)
847 			ra_mask &= 0xffffffffffffffffULL;
848 		else if (rssi_level == 1)
849 			ra_mask &= 0xfffffffffffffff0ULL;
850 		else if (rssi_level == 2)
851 			ra_mask &= 0xffffffffffffefe0ULL;
852 		else if (rssi_level == 3)
853 			ra_mask &= 0xffffffffffffcfc0ULL;
854 		else if (rssi_level == 4)
855 			ra_mask &= 0xffffffffffff8f80ULL;
856 		else if (rssi_level >= 5)
857 			ra_mask &= 0xffffffffffff0f00ULL;
858 	}
859 
860 	if (!si->use_cfg_mask)
861 		return ra_mask;
862 
863 	band = hal->current_band_type;
864 	if (band == RTW_BAND_2G) {
865 		band = NL80211_BAND_2GHZ;
866 		cfg_mask = mask->control[band].legacy;
867 	} else if (band == RTW_BAND_5G) {
868 		band = NL80211_BAND_5GHZ;
869 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
870 					   RA_MASK_OFDM_RATES);
871 	}
872 
873 	if (!is_vht_enable) {
874 		if (ra_mask & RA_MASK_HT_RATES_1SS)
875 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
876 						    RA_MASK_HT_RATES_1SS);
877 		if (ra_mask & RA_MASK_HT_RATES_2SS)
878 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
879 						    RA_MASK_HT_RATES_2SS);
880 	} else {
881 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
882 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
883 						    RA_MASK_VHT_RATES_1SS);
884 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
885 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
886 						    RA_MASK_VHT_RATES_2SS);
887 	}
888 
889 	ra_mask &= cfg_mask;
890 
891 	return ra_mask;
892 }
893 
894 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
895 {
896 	struct ieee80211_sta *sta = si->sta;
897 	struct rtw_efuse *efuse = &rtwdev->efuse;
898 	struct rtw_hal *hal = &rtwdev->hal;
899 	u8 wireless_set;
900 	u8 bw_mode;
901 	u8 rate_id;
902 	u8 rf_type = RF_1T1R;
903 	u8 stbc_en = 0;
904 	u8 ldpc_en = 0;
905 	u8 tx_num = 1;
906 	u64 ra_mask = 0;
907 	bool is_vht_enable = false;
908 	bool is_support_sgi = false;
909 
910 	if (sta->vht_cap.vht_supported) {
911 		is_vht_enable = true;
912 		ra_mask |= get_vht_ra_mask(sta);
913 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
914 			stbc_en = VHT_STBC_EN;
915 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
916 			ldpc_en = VHT_LDPC_EN;
917 	} else if (sta->ht_cap.ht_supported) {
918 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
919 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
920 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
921 			stbc_en = HT_STBC_EN;
922 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
923 			ldpc_en = HT_LDPC_EN;
924 	}
925 
926 	if (efuse->hw_cap.nss == 1)
927 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
928 
929 	if (hal->current_band_type == RTW_BAND_5G) {
930 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
931 		if (sta->vht_cap.vht_supported) {
932 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
933 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
934 		} else if (sta->ht_cap.ht_supported) {
935 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
936 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
937 		} else {
938 			wireless_set = WIRELESS_OFDM;
939 		}
940 	} else if (hal->current_band_type == RTW_BAND_2G) {
941 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
942 		if (sta->vht_cap.vht_supported) {
943 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
944 				   RA_MASK_OFDM_IN_VHT;
945 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
946 				       WIRELESS_HT | WIRELESS_VHT;
947 		} else if (sta->ht_cap.ht_supported) {
948 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
949 				   RA_MASK_OFDM_IN_HT_2G;
950 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
951 				       WIRELESS_HT;
952 		} else if (sta->supp_rates[0] <= 0xf) {
953 			wireless_set = WIRELESS_CCK;
954 		} else {
955 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
956 		}
957 	} else {
958 		rtw_err(rtwdev, "Unknown band type\n");
959 		wireless_set = 0;
960 	}
961 
962 	switch (sta->bandwidth) {
963 	case IEEE80211_STA_RX_BW_80:
964 		bw_mode = RTW_CHANNEL_WIDTH_80;
965 		is_support_sgi = sta->vht_cap.vht_supported &&
966 				 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
967 		break;
968 	case IEEE80211_STA_RX_BW_40:
969 		bw_mode = RTW_CHANNEL_WIDTH_40;
970 		is_support_sgi = sta->ht_cap.ht_supported &&
971 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
972 		break;
973 	default:
974 		bw_mode = RTW_CHANNEL_WIDTH_20;
975 		is_support_sgi = sta->ht_cap.ht_supported &&
976 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
977 		break;
978 	}
979 
980 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
981 		tx_num = 2;
982 		rf_type = RF_2T2R;
983 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
984 		tx_num = 2;
985 		rf_type = RF_2T2R;
986 	}
987 
988 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
989 
990 	ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
991 				       wireless_set);
992 
993 	si->bw_mode = bw_mode;
994 	si->stbc_en = stbc_en;
995 	si->ldpc_en = ldpc_en;
996 	si->rf_type = rf_type;
997 	si->wireless_set = wireless_set;
998 	si->sgi_enable = is_support_sgi;
999 	si->vht_enable = is_vht_enable;
1000 	si->ra_mask = ra_mask;
1001 	si->rate_id = rate_id;
1002 
1003 	rtw_fw_send_ra_info(rtwdev, si);
1004 }
1005 
1006 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1007 {
1008 	struct rtw_chip_info *chip = rtwdev->chip;
1009 	struct rtw_fw_state *fw;
1010 
1011 	fw = &rtwdev->fw;
1012 	wait_for_completion(&fw->completion);
1013 	if (!fw->firmware)
1014 		return -EINVAL;
1015 
1016 	if (chip->wow_fw_name) {
1017 		fw = &rtwdev->wow_fw;
1018 		wait_for_completion(&fw->completion);
1019 		if (!fw->firmware)
1020 			return -EINVAL;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1027 						       struct rtw_fw_state *fw)
1028 {
1029 	struct rtw_chip_info *chip = rtwdev->chip;
1030 
1031 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1032 	    !fw->feature)
1033 		return LPS_DEEP_MODE_NONE;
1034 
1035 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1036 	    (fw->feature & FW_FEATURE_PG))
1037 		return LPS_DEEP_MODE_PG;
1038 
1039 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1040 	    (fw->feature & FW_FEATURE_LCLK))
1041 		return LPS_DEEP_MODE_LCLK;
1042 
1043 	return LPS_DEEP_MODE_NONE;
1044 }
1045 
1046 static int rtw_power_on(struct rtw_dev *rtwdev)
1047 {
1048 	struct rtw_chip_info *chip = rtwdev->chip;
1049 	struct rtw_fw_state *fw = &rtwdev->fw;
1050 	bool wifi_only;
1051 	int ret;
1052 
1053 	ret = rtw_hci_setup(rtwdev);
1054 	if (ret) {
1055 		rtw_err(rtwdev, "failed to setup hci\n");
1056 		goto err;
1057 	}
1058 
1059 	/* power on MAC before firmware downloaded */
1060 	ret = rtw_mac_power_on(rtwdev);
1061 	if (ret) {
1062 		rtw_err(rtwdev, "failed to power on mac\n");
1063 		goto err;
1064 	}
1065 
1066 	ret = rtw_wait_firmware_completion(rtwdev);
1067 	if (ret) {
1068 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1069 		goto err_off;
1070 	}
1071 
1072 	ret = rtw_download_firmware(rtwdev, fw);
1073 	if (ret) {
1074 		rtw_err(rtwdev, "failed to download firmware\n");
1075 		goto err_off;
1076 	}
1077 
1078 	/* config mac after firmware downloaded */
1079 	ret = rtw_mac_init(rtwdev);
1080 	if (ret) {
1081 		rtw_err(rtwdev, "failed to configure mac\n");
1082 		goto err_off;
1083 	}
1084 
1085 	chip->ops->phy_set_param(rtwdev);
1086 
1087 	ret = rtw_hci_start(rtwdev);
1088 	if (ret) {
1089 		rtw_err(rtwdev, "failed to start hci\n");
1090 		goto err_off;
1091 	}
1092 
1093 	/* send H2C after HCI has started */
1094 	rtw_fw_send_general_info(rtwdev);
1095 	rtw_fw_send_phydm_info(rtwdev);
1096 
1097 	wifi_only = !rtwdev->efuse.btcoex;
1098 	rtw_coex_power_on_setting(rtwdev);
1099 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1100 
1101 	return 0;
1102 
1103 err_off:
1104 	rtw_mac_power_off(rtwdev);
1105 
1106 err:
1107 	return ret;
1108 }
1109 
1110 int rtw_core_start(struct rtw_dev *rtwdev)
1111 {
1112 	int ret;
1113 
1114 	ret = rtw_power_on(rtwdev);
1115 	if (ret)
1116 		return ret;
1117 
1118 	rtw_sec_enable_sec_engine(rtwdev);
1119 
1120 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1121 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1122 
1123 	/* rcr reset after powered on */
1124 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1125 
1126 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1127 				     RTW_WATCH_DOG_DELAY_TIME);
1128 
1129 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1130 
1131 	return 0;
1132 }
1133 
1134 static void rtw_power_off(struct rtw_dev *rtwdev)
1135 {
1136 	rtw_hci_stop(rtwdev);
1137 	rtw_mac_power_off(rtwdev);
1138 }
1139 
1140 void rtw_core_stop(struct rtw_dev *rtwdev)
1141 {
1142 	struct rtw_coex *coex = &rtwdev->coex;
1143 
1144 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1145 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1146 
1147 	mutex_unlock(&rtwdev->mutex);
1148 
1149 	cancel_work_sync(&rtwdev->c2h_work);
1150 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1151 	cancel_delayed_work_sync(&coex->bt_relink_work);
1152 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1153 	cancel_delayed_work_sync(&coex->defreeze_work);
1154 	cancel_delayed_work_sync(&coex->wl_remain_work);
1155 	cancel_delayed_work_sync(&coex->bt_remain_work);
1156 
1157 	mutex_lock(&rtwdev->mutex);
1158 
1159 	rtw_power_off(rtwdev);
1160 }
1161 
1162 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1163 			    struct ieee80211_sta_ht_cap *ht_cap)
1164 {
1165 	struct rtw_efuse *efuse = &rtwdev->efuse;
1166 
1167 	ht_cap->ht_supported = true;
1168 	ht_cap->cap = 0;
1169 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1170 			IEEE80211_HT_CAP_MAX_AMSDU |
1171 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1172 
1173 	if (rtw_chip_has_rx_ldpc(rtwdev))
1174 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1175 
1176 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1177 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1178 				IEEE80211_HT_CAP_DSSSCCK40 |
1179 				IEEE80211_HT_CAP_SGI_40;
1180 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1181 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1182 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1183 	if (efuse->hw_cap.nss > 1) {
1184 		ht_cap->mcs.rx_mask[0] = 0xFF;
1185 		ht_cap->mcs.rx_mask[1] = 0xFF;
1186 		ht_cap->mcs.rx_mask[4] = 0x01;
1187 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1188 	} else {
1189 		ht_cap->mcs.rx_mask[0] = 0xFF;
1190 		ht_cap->mcs.rx_mask[1] = 0x00;
1191 		ht_cap->mcs.rx_mask[4] = 0x01;
1192 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1193 	}
1194 }
1195 
1196 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1197 			     struct ieee80211_sta_vht_cap *vht_cap)
1198 {
1199 	struct rtw_efuse *efuse = &rtwdev->efuse;
1200 	u16 mcs_map;
1201 	__le16 highest;
1202 
1203 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1204 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1205 		return;
1206 
1207 	vht_cap->vht_supported = true;
1208 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1209 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1210 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1211 		       IEEE80211_VHT_CAP_HTC_VHT |
1212 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1213 		       0;
1214 	if (rtwdev->hal.rf_path_num > 1)
1215 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1216 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1217 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1218 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1219 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1220 
1221 	if (rtw_chip_has_rx_ldpc(rtwdev))
1222 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1223 
1224 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1225 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1226 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1227 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1228 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1229 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1230 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1231 	if (efuse->hw_cap.nss > 1) {
1232 		highest = cpu_to_le16(780);
1233 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1234 	} else {
1235 		highest = cpu_to_le16(390);
1236 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1237 	}
1238 
1239 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1240 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1241 	vht_cap->vht_mcs.rx_highest = highest;
1242 	vht_cap->vht_mcs.tx_highest = highest;
1243 }
1244 
1245 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1246 				   struct rtw_chip_info *chip)
1247 {
1248 	struct rtw_dev *rtwdev = hw->priv;
1249 	struct ieee80211_supported_band *sband;
1250 
1251 	if (chip->band & RTW_BAND_2G) {
1252 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1253 		if (!sband)
1254 			goto err_out;
1255 		if (chip->ht_supported)
1256 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1257 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1258 	}
1259 
1260 	if (chip->band & RTW_BAND_5G) {
1261 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1262 		if (!sband)
1263 			goto err_out;
1264 		if (chip->ht_supported)
1265 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1266 		if (chip->vht_supported)
1267 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1268 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1269 	}
1270 
1271 	return;
1272 
1273 err_out:
1274 	rtw_err(rtwdev, "failed to set supported band\n");
1275 	kfree(sband);
1276 }
1277 
1278 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1279 				     struct rtw_chip_info *chip)
1280 {
1281 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1282 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1283 }
1284 
1285 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1286 				      struct rtw_fw_state *fw)
1287 {
1288 	u32 feature;
1289 	const struct rtw_fw_hdr *fw_hdr =
1290 				(const struct rtw_fw_hdr *)fw->firmware->data;
1291 
1292 	feature = le32_to_cpu(fw_hdr->feature);
1293 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1294 }
1295 
1296 static void __update_firmware_info(struct rtw_dev *rtwdev,
1297 				   struct rtw_fw_state *fw)
1298 {
1299 	const struct rtw_fw_hdr *fw_hdr =
1300 				(const struct rtw_fw_hdr *)fw->firmware->data;
1301 
1302 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1303 	fw->version = le16_to_cpu(fw_hdr->version);
1304 	fw->sub_version = fw_hdr->subversion;
1305 	fw->sub_index = fw_hdr->subindex;
1306 
1307 	__update_firmware_feature(rtwdev, fw);
1308 }
1309 
1310 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1311 					  struct rtw_fw_state *fw)
1312 {
1313 	struct rtw_fw_hdr_legacy *legacy =
1314 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1315 
1316 	fw->h2c_version = 0;
1317 	fw->version = le16_to_cpu(legacy->version);
1318 	fw->sub_version = legacy->subversion1;
1319 	fw->sub_index = legacy->subversion2;
1320 }
1321 
1322 static void update_firmware_info(struct rtw_dev *rtwdev,
1323 				 struct rtw_fw_state *fw)
1324 {
1325 	if (rtw_chip_wcpu_11n(rtwdev))
1326 		__update_firmware_info_legacy(rtwdev, fw);
1327 	else
1328 		__update_firmware_info(rtwdev, fw);
1329 }
1330 
1331 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1332 {
1333 	struct rtw_fw_state *fw = context;
1334 	struct rtw_dev *rtwdev = fw->rtwdev;
1335 
1336 	if (!firmware || !firmware->data) {
1337 		rtw_err(rtwdev, "failed to request firmware\n");
1338 		complete_all(&fw->completion);
1339 		return;
1340 	}
1341 
1342 	fw->firmware = firmware;
1343 	update_firmware_info(rtwdev, fw);
1344 	complete_all(&fw->completion);
1345 
1346 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1347 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1348 }
1349 
1350 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1351 {
1352 	const char *fw_name;
1353 	struct rtw_fw_state *fw;
1354 	int ret;
1355 
1356 	switch (type) {
1357 	case RTW_WOWLAN_FW:
1358 		fw = &rtwdev->wow_fw;
1359 		fw_name = rtwdev->chip->wow_fw_name;
1360 		break;
1361 
1362 	case RTW_NORMAL_FW:
1363 		fw = &rtwdev->fw;
1364 		fw_name = rtwdev->chip->fw_name;
1365 		break;
1366 
1367 	default:
1368 		rtw_warn(rtwdev, "unsupported firmware type\n");
1369 		return -ENOENT;
1370 	}
1371 
1372 	fw->rtwdev = rtwdev;
1373 	init_completion(&fw->completion);
1374 
1375 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1376 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1377 	if (ret) {
1378 		rtw_err(rtwdev, "failed to async firmware request\n");
1379 		return ret;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1386 {
1387 	struct rtw_chip_info *chip = rtwdev->chip;
1388 	struct rtw_hal *hal = &rtwdev->hal;
1389 	struct rtw_efuse *efuse = &rtwdev->efuse;
1390 	int ret = 0;
1391 
1392 	switch (rtw_hci_type(rtwdev)) {
1393 	case RTW_HCI_TYPE_PCIE:
1394 		rtwdev->hci.rpwm_addr = 0x03d9;
1395 		rtwdev->hci.cpwm_addr = 0x03da;
1396 		break;
1397 	default:
1398 		rtw_err(rtwdev, "unsupported hci type\n");
1399 		return -EINVAL;
1400 	}
1401 
1402 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1403 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1404 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1405 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1406 		hal->rf_type = RF_2T2R;
1407 		hal->rf_path_num = 2;
1408 		hal->antenna_tx = BB_PATH_AB;
1409 		hal->antenna_rx = BB_PATH_AB;
1410 	} else {
1411 		hal->rf_type = RF_1T1R;
1412 		hal->rf_path_num = 1;
1413 		hal->antenna_tx = BB_PATH_A;
1414 		hal->antenna_rx = BB_PATH_A;
1415 	}
1416 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1417 			  hal->rf_path_num;
1418 
1419 	efuse->physical_size = chip->phy_efuse_size;
1420 	efuse->logical_size = chip->log_efuse_size;
1421 	efuse->protect_size = chip->ptct_efuse_size;
1422 
1423 	/* default use ack */
1424 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1425 
1426 	hal->bfee_sts_cap = 3;
1427 
1428 	return ret;
1429 }
1430 
1431 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1432 {
1433 	struct rtw_fw_state *fw = &rtwdev->fw;
1434 	int ret;
1435 
1436 	ret = rtw_hci_setup(rtwdev);
1437 	if (ret) {
1438 		rtw_err(rtwdev, "failed to setup hci\n");
1439 		goto err;
1440 	}
1441 
1442 	ret = rtw_mac_power_on(rtwdev);
1443 	if (ret) {
1444 		rtw_err(rtwdev, "failed to power on mac\n");
1445 		goto err;
1446 	}
1447 
1448 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1449 
1450 	wait_for_completion(&fw->completion);
1451 	if (!fw->firmware) {
1452 		ret = -EINVAL;
1453 		rtw_err(rtwdev, "failed to load firmware\n");
1454 		goto err;
1455 	}
1456 
1457 	ret = rtw_download_firmware(rtwdev, fw);
1458 	if (ret) {
1459 		rtw_err(rtwdev, "failed to download firmware\n");
1460 		goto err_off;
1461 	}
1462 
1463 	return 0;
1464 
1465 err_off:
1466 	rtw_mac_power_off(rtwdev);
1467 
1468 err:
1469 	return ret;
1470 }
1471 
1472 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1473 {
1474 	struct rtw_efuse *efuse = &rtwdev->efuse;
1475 	u8 hw_feature[HW_FEATURE_LEN];
1476 	u8 id;
1477 	u8 bw;
1478 	int i;
1479 
1480 	id = rtw_read8(rtwdev, REG_C2HEVT);
1481 	if (id != C2H_HW_FEATURE_REPORT) {
1482 		rtw_err(rtwdev, "failed to read hw feature report\n");
1483 		return -EBUSY;
1484 	}
1485 
1486 	for (i = 0; i < HW_FEATURE_LEN; i++)
1487 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1488 
1489 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1490 
1491 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1492 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1493 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1494 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1495 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1496 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1497 
1498 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1499 
1500 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1501 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1502 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1503 
1504 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1505 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1506 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1507 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1508 
1509 	return 0;
1510 }
1511 
1512 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1513 {
1514 	rtw_hci_stop(rtwdev);
1515 	rtw_mac_power_off(rtwdev);
1516 }
1517 
1518 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1519 {
1520 	struct rtw_efuse *efuse = &rtwdev->efuse;
1521 	int ret;
1522 
1523 	mutex_lock(&rtwdev->mutex);
1524 
1525 	/* power on mac to read efuse */
1526 	ret = rtw_chip_efuse_enable(rtwdev);
1527 	if (ret)
1528 		goto out_unlock;
1529 
1530 	ret = rtw_parse_efuse_map(rtwdev);
1531 	if (ret)
1532 		goto out_disable;
1533 
1534 	ret = rtw_dump_hw_feature(rtwdev);
1535 	if (ret)
1536 		goto out_disable;
1537 
1538 	ret = rtw_check_supported_rfe(rtwdev);
1539 	if (ret)
1540 		goto out_disable;
1541 
1542 	if (efuse->crystal_cap == 0xff)
1543 		efuse->crystal_cap = 0;
1544 	if (efuse->pa_type_2g == 0xff)
1545 		efuse->pa_type_2g = 0;
1546 	if (efuse->pa_type_5g == 0xff)
1547 		efuse->pa_type_5g = 0;
1548 	if (efuse->lna_type_2g == 0xff)
1549 		efuse->lna_type_2g = 0;
1550 	if (efuse->lna_type_5g == 0xff)
1551 		efuse->lna_type_5g = 0;
1552 	if (efuse->channel_plan == 0xff)
1553 		efuse->channel_plan = 0x7f;
1554 	if (efuse->rf_board_option == 0xff)
1555 		efuse->rf_board_option = 0;
1556 	if (efuse->bt_setting & BIT(0))
1557 		efuse->share_ant = true;
1558 	if (efuse->regd == 0xff)
1559 		efuse->regd = 0;
1560 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1561 		efuse->tx_bb_swing_setting_2g = 0;
1562 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1563 		efuse->tx_bb_swing_setting_5g = 0;
1564 
1565 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1566 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1567 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1568 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1569 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1570 
1571 out_disable:
1572 	rtw_chip_efuse_disable(rtwdev);
1573 
1574 out_unlock:
1575 	mutex_unlock(&rtwdev->mutex);
1576 	return ret;
1577 }
1578 
1579 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1580 {
1581 	struct rtw_hal *hal = &rtwdev->hal;
1582 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1583 
1584 	if (!rfe_def)
1585 		return -ENODEV;
1586 
1587 	rtw_phy_setup_phy_cond(rtwdev, 0);
1588 
1589 	rtw_phy_init_tx_power(rtwdev);
1590 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1591 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1592 	rtw_phy_tx_power_by_rate_config(hal);
1593 	rtw_phy_tx_power_limit_config(hal);
1594 
1595 	return 0;
1596 }
1597 
1598 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1599 {
1600 	int ret;
1601 
1602 	ret = rtw_chip_parameter_setup(rtwdev);
1603 	if (ret) {
1604 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1605 		goto err_out;
1606 	}
1607 
1608 	ret = rtw_chip_efuse_info_setup(rtwdev);
1609 	if (ret) {
1610 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1611 		goto err_out;
1612 	}
1613 
1614 	ret = rtw_chip_board_info_setup(rtwdev);
1615 	if (ret) {
1616 		rtw_err(rtwdev, "failed to setup chip board info\n");
1617 		goto err_out;
1618 	}
1619 
1620 	return 0;
1621 
1622 err_out:
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL(rtw_chip_info_setup);
1626 
1627 static void rtw_stats_init(struct rtw_dev *rtwdev)
1628 {
1629 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1630 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1631 	int i;
1632 
1633 	ewma_tp_init(&stats->tx_ewma_tp);
1634 	ewma_tp_init(&stats->rx_ewma_tp);
1635 
1636 	for (i = 0; i < RTW_EVM_NUM; i++)
1637 		ewma_evm_init(&dm_info->ewma_evm[i]);
1638 	for (i = 0; i < RTW_SNR_NUM; i++)
1639 		ewma_snr_init(&dm_info->ewma_snr[i]);
1640 }
1641 
1642 int rtw_core_init(struct rtw_dev *rtwdev)
1643 {
1644 	struct rtw_chip_info *chip = rtwdev->chip;
1645 	struct rtw_coex *coex = &rtwdev->coex;
1646 	int ret;
1647 
1648 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1649 	INIT_LIST_HEAD(&rtwdev->txqs);
1650 
1651 	timer_setup(&rtwdev->tx_report.purge_timer,
1652 		    rtw_tx_report_purge_timer, 0);
1653 	tasklet_setup(&rtwdev->tx_tasklet, rtw_tx_tasklet);
1654 
1655 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1656 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1657 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1658 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1659 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1660 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1661 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1662 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1663 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1664 	skb_queue_head_init(&rtwdev->c2h_queue);
1665 	skb_queue_head_init(&rtwdev->coex.queue);
1666 	skb_queue_head_init(&rtwdev->tx_report.queue);
1667 
1668 	spin_lock_init(&rtwdev->rf_lock);
1669 	spin_lock_init(&rtwdev->h2c.lock);
1670 	spin_lock_init(&rtwdev->txq_lock);
1671 	spin_lock_init(&rtwdev->tx_report.q_lock);
1672 
1673 	mutex_init(&rtwdev->mutex);
1674 	mutex_init(&rtwdev->coex.mutex);
1675 	mutex_init(&rtwdev->hal.tx_power_mutex);
1676 
1677 	init_waitqueue_head(&rtwdev->coex.wait);
1678 	init_completion(&rtwdev->lps_leave_check);
1679 
1680 	rtwdev->sec.total_cam_num = 32;
1681 	rtwdev->hal.current_channel = 1;
1682 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1683 
1684 	rtw_stats_init(rtwdev);
1685 
1686 	/* default rx filter setting */
1687 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1688 			  BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1689 			  BIT_AB | BIT_AM | BIT_APM;
1690 
1691 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1692 	if (ret) {
1693 		rtw_warn(rtwdev, "no firmware loaded\n");
1694 		return ret;
1695 	}
1696 
1697 	if (chip->wow_fw_name) {
1698 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1699 		if (ret) {
1700 			rtw_warn(rtwdev, "no wow firmware loaded\n");
1701 			wait_for_completion(&rtwdev->fw.completion);
1702 			if (rtwdev->fw.firmware)
1703 				release_firmware(rtwdev->fw.firmware);
1704 			return ret;
1705 		}
1706 	}
1707 
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL(rtw_core_init);
1711 
1712 void rtw_core_deinit(struct rtw_dev *rtwdev)
1713 {
1714 	struct rtw_fw_state *fw = &rtwdev->fw;
1715 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
1716 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1717 	unsigned long flags;
1718 
1719 	rtw_wait_firmware_completion(rtwdev);
1720 
1721 	if (fw->firmware)
1722 		release_firmware(fw->firmware);
1723 
1724 	if (wow_fw->firmware)
1725 		release_firmware(wow_fw->firmware);
1726 
1727 	tasklet_kill(&rtwdev->tx_tasklet);
1728 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1729 	skb_queue_purge(&rtwdev->tx_report.queue);
1730 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1731 
1732 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
1733 				 build_list) {
1734 		list_del(&rsvd_pkt->build_list);
1735 		kfree(rsvd_pkt);
1736 	}
1737 
1738 	mutex_destroy(&rtwdev->mutex);
1739 	mutex_destroy(&rtwdev->coex.mutex);
1740 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
1741 }
1742 EXPORT_SYMBOL(rtw_core_deinit);
1743 
1744 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1745 {
1746 	struct rtw_hal *hal = &rtwdev->hal;
1747 	int max_tx_headroom = 0;
1748 	int ret;
1749 
1750 	/* TODO: USB & SDIO may need extra room? */
1751 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1752 
1753 	hw->extra_tx_headroom = max_tx_headroom;
1754 	hw->queues = IEEE80211_NUM_ACS;
1755 	hw->txq_data_size = sizeof(struct rtw_txq);
1756 	hw->sta_data_size = sizeof(struct rtw_sta_info);
1757 	hw->vif_data_size = sizeof(struct rtw_vif);
1758 
1759 	ieee80211_hw_set(hw, SIGNAL_DBM);
1760 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1761 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1762 	ieee80211_hw_set(hw, MFP_CAPABLE);
1763 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1764 	ieee80211_hw_set(hw, SUPPORTS_PS);
1765 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1766 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1767 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1768 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
1769 	ieee80211_hw_set(hw, TX_AMSDU);
1770 
1771 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1772 				     BIT(NL80211_IFTYPE_AP) |
1773 				     BIT(NL80211_IFTYPE_ADHOC) |
1774 				     BIT(NL80211_IFTYPE_MESH_POINT);
1775 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
1776 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
1777 
1778 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1779 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1780 
1781 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1782 
1783 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
1784 
1785 #ifdef CONFIG_PM
1786 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
1787 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
1788 #endif
1789 	rtw_set_supported_band(hw, rtwdev->chip);
1790 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1791 
1792 	rtw_regd_init(rtwdev, rtw_regd_notifier);
1793 
1794 	ret = ieee80211_register_hw(hw);
1795 	if (ret) {
1796 		rtw_err(rtwdev, "failed to register hw\n");
1797 		return ret;
1798 	}
1799 
1800 	if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1801 		rtw_err(rtwdev, "regulatory_hint fail\n");
1802 
1803 	rtw_debugfs_init(rtwdev);
1804 
1805 	rtwdev->bf_info.bfer_mu_cnt = 0;
1806 	rtwdev->bf_info.bfer_su_cnt = 0;
1807 
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL(rtw_register_hw);
1811 
1812 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1813 {
1814 	struct rtw_chip_info *chip = rtwdev->chip;
1815 
1816 	ieee80211_unregister_hw(hw);
1817 	rtw_unset_supported_band(hw, chip);
1818 }
1819 EXPORT_SYMBOL(rtw_unregister_hw);
1820 
1821 MODULE_AUTHOR("Realtek Corporation");
1822 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1823 MODULE_LICENSE("Dual BSD/GPL");
1824