1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include <linux/devcoredump.h> 6 7 #include "main.h" 8 #include "regd.h" 9 #include "fw.h" 10 #include "ps.h" 11 #include "sec.h" 12 #include "mac.h" 13 #include "coex.h" 14 #include "phy.h" 15 #include "reg.h" 16 #include "efuse.h" 17 #include "tx.h" 18 #include "debug.h" 19 #include "bf.h" 20 21 bool rtw_disable_lps_deep_mode; 22 EXPORT_SYMBOL(rtw_disable_lps_deep_mode); 23 bool rtw_bf_support = true; 24 unsigned int rtw_debug_mask; 25 EXPORT_SYMBOL(rtw_debug_mask); 26 27 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644); 28 module_param_named(support_bf, rtw_bf_support, bool, 0644); 29 module_param_named(debug_mask, rtw_debug_mask, uint, 0644); 30 31 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS"); 32 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support"); 33 MODULE_PARM_DESC(debug_mask, "Debugging mask"); 34 35 static struct ieee80211_channel rtw_channeltable_2g[] = { 36 {.center_freq = 2412, .hw_value = 1,}, 37 {.center_freq = 2417, .hw_value = 2,}, 38 {.center_freq = 2422, .hw_value = 3,}, 39 {.center_freq = 2427, .hw_value = 4,}, 40 {.center_freq = 2432, .hw_value = 5,}, 41 {.center_freq = 2437, .hw_value = 6,}, 42 {.center_freq = 2442, .hw_value = 7,}, 43 {.center_freq = 2447, .hw_value = 8,}, 44 {.center_freq = 2452, .hw_value = 9,}, 45 {.center_freq = 2457, .hw_value = 10,}, 46 {.center_freq = 2462, .hw_value = 11,}, 47 {.center_freq = 2467, .hw_value = 12,}, 48 {.center_freq = 2472, .hw_value = 13,}, 49 {.center_freq = 2484, .hw_value = 14,}, 50 }; 51 52 static struct ieee80211_channel rtw_channeltable_5g[] = { 53 {.center_freq = 5180, .hw_value = 36,}, 54 {.center_freq = 5200, .hw_value = 40,}, 55 {.center_freq = 5220, .hw_value = 44,}, 56 {.center_freq = 5240, .hw_value = 48,}, 57 {.center_freq = 5260, .hw_value = 52,}, 58 {.center_freq = 5280, .hw_value = 56,}, 59 {.center_freq = 5300, .hw_value = 60,}, 60 {.center_freq = 5320, .hw_value = 64,}, 61 {.center_freq = 5500, .hw_value = 100,}, 62 {.center_freq = 5520, .hw_value = 104,}, 63 {.center_freq = 5540, .hw_value = 108,}, 64 {.center_freq = 5560, .hw_value = 112,}, 65 {.center_freq = 5580, .hw_value = 116,}, 66 {.center_freq = 5600, .hw_value = 120,}, 67 {.center_freq = 5620, .hw_value = 124,}, 68 {.center_freq = 5640, .hw_value = 128,}, 69 {.center_freq = 5660, .hw_value = 132,}, 70 {.center_freq = 5680, .hw_value = 136,}, 71 {.center_freq = 5700, .hw_value = 140,}, 72 {.center_freq = 5720, .hw_value = 144,}, 73 {.center_freq = 5745, .hw_value = 149,}, 74 {.center_freq = 5765, .hw_value = 153,}, 75 {.center_freq = 5785, .hw_value = 157,}, 76 {.center_freq = 5805, .hw_value = 161,}, 77 {.center_freq = 5825, .hw_value = 165, 78 .flags = IEEE80211_CHAN_NO_HT40MINUS}, 79 }; 80 81 static struct ieee80211_rate rtw_ratetable[] = { 82 {.bitrate = 10, .hw_value = 0x00,}, 83 {.bitrate = 20, .hw_value = 0x01,}, 84 {.bitrate = 55, .hw_value = 0x02,}, 85 {.bitrate = 110, .hw_value = 0x03,}, 86 {.bitrate = 60, .hw_value = 0x04,}, 87 {.bitrate = 90, .hw_value = 0x05,}, 88 {.bitrate = 120, .hw_value = 0x06,}, 89 {.bitrate = 180, .hw_value = 0x07,}, 90 {.bitrate = 240, .hw_value = 0x08,}, 91 {.bitrate = 360, .hw_value = 0x09,}, 92 {.bitrate = 480, .hw_value = 0x0a,}, 93 {.bitrate = 540, .hw_value = 0x0b,}, 94 }; 95 96 u16 rtw_desc_to_bitrate(u8 desc_rate) 97 { 98 struct ieee80211_rate rate; 99 100 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n")) 101 return 0; 102 103 rate = rtw_ratetable[desc_rate]; 104 105 return rate.bitrate; 106 } 107 108 static struct ieee80211_supported_band rtw_band_2ghz = { 109 .band = NL80211_BAND_2GHZ, 110 111 .channels = rtw_channeltable_2g, 112 .n_channels = ARRAY_SIZE(rtw_channeltable_2g), 113 114 .bitrates = rtw_ratetable, 115 .n_bitrates = ARRAY_SIZE(rtw_ratetable), 116 117 .ht_cap = {0}, 118 .vht_cap = {0}, 119 }; 120 121 static struct ieee80211_supported_band rtw_band_5ghz = { 122 .band = NL80211_BAND_5GHZ, 123 124 .channels = rtw_channeltable_5g, 125 .n_channels = ARRAY_SIZE(rtw_channeltable_5g), 126 127 /* 5G has no CCK rates */ 128 .bitrates = rtw_ratetable + 4, 129 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, 130 131 .ht_cap = {0}, 132 .vht_cap = {0}, 133 }; 134 135 struct rtw_watch_dog_iter_data { 136 struct rtw_dev *rtwdev; 137 struct rtw_vif *rtwvif; 138 }; 139 140 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif) 141 { 142 struct rtw_bf_info *bf_info = &rtwdev->bf_info; 143 u8 fix_rate_enable = 0; 144 u8 new_csi_rate_idx; 145 146 if (rtwvif->bfee.role != RTW_BFEE_SU && 147 rtwvif->bfee.role != RTW_BFEE_MU) 148 return; 149 150 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi, 151 bf_info->cur_csi_rpt_rate, 152 fix_rate_enable, &new_csi_rate_idx); 153 154 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate) 155 bf_info->cur_csi_rpt_rate = new_csi_rate_idx; 156 } 157 158 static void rtw_vif_watch_dog_iter(void *data, u8 *mac, 159 struct ieee80211_vif *vif) 160 { 161 struct rtw_watch_dog_iter_data *iter_data = data; 162 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 163 164 if (vif->type == NL80211_IFTYPE_STATION) 165 if (vif->bss_conf.assoc) 166 iter_data->rtwvif = rtwvif; 167 168 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif); 169 170 rtwvif->stats.tx_unicast = 0; 171 rtwvif->stats.rx_unicast = 0; 172 rtwvif->stats.tx_cnt = 0; 173 rtwvif->stats.rx_cnt = 0; 174 } 175 176 /* process TX/RX statistics periodically for hardware, 177 * the information helps hardware to enhance performance 178 */ 179 static void rtw_watch_dog_work(struct work_struct *work) 180 { 181 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 182 watch_dog_work.work); 183 struct rtw_traffic_stats *stats = &rtwdev->stats; 184 struct rtw_watch_dog_iter_data data = {}; 185 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 186 bool ps_active; 187 188 mutex_lock(&rtwdev->mutex); 189 190 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags)) 191 goto unlock; 192 193 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 194 RTW_WATCH_DOG_DELAY_TIME); 195 196 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100) 197 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 198 else 199 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 200 201 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags)) 202 rtw_coex_wl_status_change_notify(rtwdev, 0); 203 204 if (stats->tx_cnt > RTW_LPS_THRESHOLD || 205 stats->rx_cnt > RTW_LPS_THRESHOLD) 206 ps_active = true; 207 else 208 ps_active = false; 209 210 ewma_tp_add(&stats->tx_ewma_tp, 211 (u32)(stats->tx_unicast >> RTW_TP_SHIFT)); 212 ewma_tp_add(&stats->rx_ewma_tp, 213 (u32)(stats->rx_unicast >> RTW_TP_SHIFT)); 214 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp); 215 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp); 216 217 /* reset tx/rx statictics */ 218 stats->tx_unicast = 0; 219 stats->rx_unicast = 0; 220 stats->tx_cnt = 0; 221 stats->rx_cnt = 0; 222 223 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 224 goto unlock; 225 226 /* make sure BB/RF is working for dynamic mech */ 227 rtw_leave_lps(rtwdev); 228 229 rtw_phy_dynamic_mechanism(rtwdev); 230 231 data.rtwdev = rtwdev; 232 /* use atomic version to avoid taking local->iflist_mtx mutex */ 233 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data); 234 235 /* fw supports only one station associated to enter lps, if there are 236 * more than two stations associated to the AP, then we can not enter 237 * lps, because fw does not handle the overlapped beacon interval 238 * 239 * mac80211 should iterate vifs and determine if driver can enter 240 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to 241 * get that vif and check if device is having traffic more than the 242 * threshold. 243 */ 244 if (rtwdev->ps_enabled && data.rtwvif && !ps_active && 245 !rtwdev->beacon_loss) 246 rtw_enter_lps(rtwdev, data.rtwvif->port); 247 248 rtwdev->watch_dog_cnt++; 249 250 unlock: 251 mutex_unlock(&rtwdev->mutex); 252 } 253 254 static void rtw_c2h_work(struct work_struct *work) 255 { 256 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); 257 struct sk_buff *skb, *tmp; 258 259 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { 260 skb_unlink(skb, &rtwdev->c2h_queue); 261 rtw_fw_c2h_cmd_handle(rtwdev, skb); 262 dev_kfree_skb_any(skb); 263 } 264 } 265 266 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev) 267 { 268 unsigned long mac_id; 269 270 mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM); 271 if (mac_id < RTW_MAX_MAC_ID_NUM) 272 set_bit(mac_id, rtwdev->mac_id_map); 273 274 return mac_id; 275 } 276 277 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 278 struct ieee80211_vif *vif) 279 { 280 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 281 int i; 282 283 si->mac_id = rtw_acquire_macid(rtwdev); 284 if (si->mac_id >= RTW_MAX_MAC_ID_NUM) 285 return -ENOSPC; 286 287 si->sta = sta; 288 si->vif = vif; 289 si->init_ra_lv = 1; 290 ewma_rssi_init(&si->avg_rssi); 291 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 292 rtw_txq_init(rtwdev, sta->txq[i]); 293 294 rtw_update_sta_info(rtwdev, si); 295 rtw_fw_media_status_report(rtwdev, si->mac_id, true); 296 297 rtwdev->sta_cnt++; 298 rtwdev->beacon_loss = false; 299 rtw_info(rtwdev, "sta %pM joined with macid %d\n", 300 sta->addr, si->mac_id); 301 302 return 0; 303 } 304 305 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 306 bool fw_exist) 307 { 308 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 309 int i; 310 311 rtw_release_macid(rtwdev, si->mac_id); 312 if (fw_exist) 313 rtw_fw_media_status_report(rtwdev, si->mac_id, false); 314 315 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 316 rtw_txq_cleanup(rtwdev, sta->txq[i]); 317 318 kfree(si->mask); 319 320 rtwdev->sta_cnt--; 321 rtw_info(rtwdev, "sta %pM with macid %d left\n", 322 sta->addr, si->mac_id); 323 } 324 325 struct rtw_fwcd_hdr { 326 u32 item; 327 u32 size; 328 u32 padding1; 329 u32 padding2; 330 } __packed; 331 332 static int rtw_fwcd_prep(struct rtw_dev *rtwdev) 333 { 334 struct rtw_chip_info *chip = rtwdev->chip; 335 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 336 const struct rtw_fwcd_segs *segs = chip->fwcd_segs; 337 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr); 338 u8 i; 339 340 if (segs) { 341 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr); 342 343 for (i = 0; i < segs->num; i++) 344 prep_size += segs->segs[i]; 345 } 346 347 desc->data = vmalloc(prep_size); 348 if (!desc->data) 349 return -ENOMEM; 350 351 desc->size = prep_size; 352 desc->next = desc->data; 353 354 return 0; 355 } 356 357 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size) 358 { 359 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 360 struct rtw_fwcd_hdr *hdr; 361 u8 *next; 362 363 if (!desc->data) { 364 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n"); 365 return NULL; 366 } 367 368 next = desc->next + sizeof(struct rtw_fwcd_hdr); 369 if (next - desc->data + size > desc->size) { 370 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n"); 371 return NULL; 372 } 373 374 hdr = (struct rtw_fwcd_hdr *)(desc->next); 375 hdr->item = item; 376 hdr->size = size; 377 hdr->padding1 = 0x01234567; 378 hdr->padding2 = 0x89abcdef; 379 desc->next = next + size; 380 381 return next; 382 } 383 384 static void rtw_fwcd_dump(struct rtw_dev *rtwdev) 385 { 386 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 387 388 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n"); 389 390 /* Data will be freed after lifetime of device coredump. After calling 391 * dev_coredump, data is supposed to be handled by the device coredump 392 * framework. Note that a new dump will be discarded if a previous one 393 * hasn't been released yet. 394 */ 395 dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL); 396 } 397 398 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self) 399 { 400 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 401 402 if (free_self) { 403 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n"); 404 vfree(desc->data); 405 } 406 407 desc->data = NULL; 408 desc->next = NULL; 409 } 410 411 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev) 412 { 413 u32 size = rtwdev->chip->fw_rxff_size; 414 u32 *buf; 415 u8 seq; 416 417 buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size); 418 if (!buf) 419 return -ENOMEM; 420 421 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) { 422 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n"); 423 return -EINVAL; 424 } 425 426 if (GET_FW_DUMP_LEN(buf) == 0) { 427 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n"); 428 return -EINVAL; 429 } 430 431 seq = GET_FW_DUMP_SEQ(buf); 432 if (seq > 0) { 433 rtw_dbg(rtwdev, RTW_DBG_FW, 434 "fw crash dump's seq is wrong: %d\n", seq); 435 return -EINVAL; 436 } 437 438 return 0; 439 } 440 441 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size, 442 u32 fwcd_item) 443 { 444 u32 rxff = rtwdev->chip->fw_rxff_size; 445 u32 dump_size, done_size = 0; 446 u8 *buf; 447 int ret; 448 449 buf = rtw_fwcd_next(rtwdev, fwcd_item, size); 450 if (!buf) 451 return -ENOMEM; 452 453 while (size) { 454 dump_size = size > rxff ? rxff : size; 455 456 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size, 457 dump_size); 458 if (ret) { 459 rtw_err(rtwdev, 460 "ddma fw 0x%x [+0x%x] to fw fifo fail\n", 461 ocp_src, done_size); 462 return ret; 463 } 464 465 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, 466 dump_size, (u32 *)(buf + done_size)); 467 if (ret) { 468 rtw_err(rtwdev, 469 "dump fw 0x%x [+0x%x] from fw fifo fail\n", 470 ocp_src, done_size); 471 return ret; 472 } 473 474 size -= dump_size; 475 done_size += dump_size; 476 } 477 478 return 0; 479 } 480 EXPORT_SYMBOL(rtw_dump_fw); 481 482 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size) 483 { 484 u8 *buf; 485 u32 i; 486 487 if (addr & 0x3) { 488 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr); 489 return -EINVAL; 490 } 491 492 buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size); 493 if (!buf) 494 return -ENOMEM; 495 496 for (i = 0; i < size; i += 4) 497 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i); 498 499 return 0; 500 } 501 EXPORT_SYMBOL(rtw_dump_reg); 502 503 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif, 504 struct ieee80211_bss_conf *conf) 505 { 506 if (conf && conf->assoc) { 507 rtwvif->aid = conf->aid; 508 rtwvif->net_type = RTW_NET_MGD_LINKED; 509 } else { 510 rtwvif->aid = 0; 511 rtwvif->net_type = RTW_NET_NO_LINK; 512 } 513 } 514 515 static void rtw_reset_key_iter(struct ieee80211_hw *hw, 516 struct ieee80211_vif *vif, 517 struct ieee80211_sta *sta, 518 struct ieee80211_key_conf *key, 519 void *data) 520 { 521 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 522 struct rtw_sec_desc *sec = &rtwdev->sec; 523 524 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx); 525 } 526 527 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta) 528 { 529 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 530 531 if (rtwdev->sta_cnt == 0) { 532 rtw_warn(rtwdev, "sta count before reset should not be 0\n"); 533 return; 534 } 535 rtw_sta_remove(rtwdev, sta, false); 536 } 537 538 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 539 { 540 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 541 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 542 543 rtw_bf_disassoc(rtwdev, vif, NULL); 544 rtw_vif_assoc_changed(rtwvif, NULL); 545 rtw_txq_cleanup(rtwdev, vif->txq); 546 } 547 548 void rtw_fw_recovery(struct rtw_dev *rtwdev) 549 { 550 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags)) 551 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work); 552 } 553 554 static void __fw_recovery_work(struct rtw_dev *rtwdev) 555 { 556 int ret = 0; 557 558 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags); 559 560 ret = rtw_fwcd_prep(rtwdev); 561 if (ret) 562 goto free; 563 ret = rtw_fw_dump_crash_log(rtwdev); 564 if (ret) 565 goto free; 566 ret = rtw_chip_dump_fw_crash(rtwdev); 567 if (ret) 568 goto free; 569 570 rtw_fwcd_dump(rtwdev); 571 free: 572 rtw_fwcd_free(rtwdev, !!ret); 573 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0); 574 575 WARN(1, "firmware crash, start reset and recover\n"); 576 577 rcu_read_lock(); 578 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev); 579 rcu_read_unlock(); 580 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev); 581 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev); 582 rtw_enter_ips(rtwdev); 583 } 584 585 static void rtw_fw_recovery_work(struct work_struct *work) 586 { 587 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 588 fw_recovery_work); 589 590 mutex_lock(&rtwdev->mutex); 591 __fw_recovery_work(rtwdev); 592 mutex_unlock(&rtwdev->mutex); 593 594 ieee80211_restart_hw(rtwdev->hw); 595 } 596 597 struct rtw_txq_ba_iter_data { 598 }; 599 600 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta) 601 { 602 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 603 int ret; 604 u8 tid; 605 606 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 607 while (tid != IEEE80211_NUM_TIDS) { 608 clear_bit(tid, si->tid_ba); 609 ret = ieee80211_start_tx_ba_session(sta, tid, 0); 610 if (ret == -EINVAL) { 611 struct ieee80211_txq *txq; 612 struct rtw_txq *rtwtxq; 613 614 txq = sta->txq[tid]; 615 rtwtxq = (struct rtw_txq *)txq->drv_priv; 616 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags); 617 } 618 619 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 620 } 621 } 622 623 static void rtw_txq_ba_work(struct work_struct *work) 624 { 625 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work); 626 struct rtw_txq_ba_iter_data data; 627 628 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data); 629 } 630 631 void rtw_get_channel_params(struct cfg80211_chan_def *chandef, 632 struct rtw_channel_params *chan_params) 633 { 634 struct ieee80211_channel *channel = chandef->chan; 635 enum nl80211_chan_width width = chandef->width; 636 u8 *cch_by_bw = chan_params->cch_by_bw; 637 u32 primary_freq, center_freq; 638 u8 center_chan; 639 u8 bandwidth = RTW_CHANNEL_WIDTH_20; 640 u8 primary_chan_idx = 0; 641 u8 i; 642 643 center_chan = channel->hw_value; 644 primary_freq = channel->center_freq; 645 center_freq = chandef->center_freq1; 646 647 /* assign the center channel used while 20M bw is selected */ 648 cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value; 649 650 switch (width) { 651 case NL80211_CHAN_WIDTH_20_NOHT: 652 case NL80211_CHAN_WIDTH_20: 653 bandwidth = RTW_CHANNEL_WIDTH_20; 654 primary_chan_idx = RTW_SC_DONT_CARE; 655 break; 656 case NL80211_CHAN_WIDTH_40: 657 bandwidth = RTW_CHANNEL_WIDTH_40; 658 if (primary_freq > center_freq) { 659 primary_chan_idx = RTW_SC_20_UPPER; 660 center_chan -= 2; 661 } else { 662 primary_chan_idx = RTW_SC_20_LOWER; 663 center_chan += 2; 664 } 665 break; 666 case NL80211_CHAN_WIDTH_80: 667 bandwidth = RTW_CHANNEL_WIDTH_80; 668 if (primary_freq > center_freq) { 669 if (primary_freq - center_freq == 10) { 670 primary_chan_idx = RTW_SC_20_UPPER; 671 center_chan -= 2; 672 } else { 673 primary_chan_idx = RTW_SC_20_UPMOST; 674 center_chan -= 6; 675 } 676 /* assign the center channel used 677 * while 40M bw is selected 678 */ 679 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4; 680 } else { 681 if (center_freq - primary_freq == 10) { 682 primary_chan_idx = RTW_SC_20_LOWER; 683 center_chan += 2; 684 } else { 685 primary_chan_idx = RTW_SC_20_LOWEST; 686 center_chan += 6; 687 } 688 /* assign the center channel used 689 * while 40M bw is selected 690 */ 691 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4; 692 } 693 break; 694 default: 695 center_chan = 0; 696 break; 697 } 698 699 chan_params->center_chan = center_chan; 700 chan_params->bandwidth = bandwidth; 701 chan_params->primary_chan_idx = primary_chan_idx; 702 703 /* assign the center channel used while current bw is selected */ 704 cch_by_bw[bandwidth] = center_chan; 705 706 for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++) 707 cch_by_bw[i] = 0; 708 } 709 710 void rtw_set_channel(struct rtw_dev *rtwdev) 711 { 712 struct ieee80211_hw *hw = rtwdev->hw; 713 struct rtw_hal *hal = &rtwdev->hal; 714 struct rtw_chip_info *chip = rtwdev->chip; 715 struct rtw_channel_params ch_param; 716 u8 center_chan, bandwidth, primary_chan_idx; 717 u8 i; 718 719 rtw_get_channel_params(&hw->conf.chandef, &ch_param); 720 if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) 721 return; 722 723 center_chan = ch_param.center_chan; 724 bandwidth = ch_param.bandwidth; 725 primary_chan_idx = ch_param.primary_chan_idx; 726 727 hal->current_band_width = bandwidth; 728 hal->current_channel = center_chan; 729 hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; 730 731 for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++) 732 hal->cch_by_bw[i] = ch_param.cch_by_bw[i]; 733 734 chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx); 735 736 if (hal->current_band_type == RTW_BAND_5G) { 737 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G); 738 } else { 739 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 740 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G); 741 else 742 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN); 743 } 744 745 rtw_phy_set_tx_power_level(rtwdev, center_chan); 746 747 /* if the channel isn't set for scanning, we will do RF calibration 748 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration 749 * during scanning on each channel takes too long. 750 */ 751 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 752 rtwdev->need_rfk = true; 753 } 754 755 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev) 756 { 757 struct rtw_chip_info *chip = rtwdev->chip; 758 759 if (rtwdev->need_rfk) { 760 rtwdev->need_rfk = false; 761 chip->ops->phy_calibration(rtwdev); 762 } 763 } 764 765 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) 766 { 767 int i; 768 769 for (i = 0; i < ETH_ALEN; i++) 770 rtw_write8(rtwdev, start + i, addr[i]); 771 } 772 773 void rtw_vif_port_config(struct rtw_dev *rtwdev, 774 struct rtw_vif *rtwvif, 775 u32 config) 776 { 777 u32 addr, mask; 778 779 if (config & PORT_SET_MAC_ADDR) { 780 addr = rtwvif->conf->mac_addr.addr; 781 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); 782 } 783 if (config & PORT_SET_BSSID) { 784 addr = rtwvif->conf->bssid.addr; 785 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); 786 } 787 if (config & PORT_SET_NET_TYPE) { 788 addr = rtwvif->conf->net_type.addr; 789 mask = rtwvif->conf->net_type.mask; 790 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); 791 } 792 if (config & PORT_SET_AID) { 793 addr = rtwvif->conf->aid.addr; 794 mask = rtwvif->conf->aid.mask; 795 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); 796 } 797 if (config & PORT_SET_BCN_CTRL) { 798 addr = rtwvif->conf->bcn_ctrl.addr; 799 mask = rtwvif->conf->bcn_ctrl.mask; 800 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl); 801 } 802 } 803 804 static u8 hw_bw_cap_to_bitamp(u8 bw_cap) 805 { 806 u8 bw = 0; 807 808 switch (bw_cap) { 809 case EFUSE_HW_CAP_IGNORE: 810 case EFUSE_HW_CAP_SUPP_BW80: 811 bw |= BIT(RTW_CHANNEL_WIDTH_80); 812 fallthrough; 813 case EFUSE_HW_CAP_SUPP_BW40: 814 bw |= BIT(RTW_CHANNEL_WIDTH_40); 815 fallthrough; 816 default: 817 bw |= BIT(RTW_CHANNEL_WIDTH_20); 818 break; 819 } 820 821 return bw; 822 } 823 824 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) 825 { 826 struct rtw_hal *hal = &rtwdev->hal; 827 struct rtw_chip_info *chip = rtwdev->chip; 828 829 if (hw_ant_num == EFUSE_HW_CAP_IGNORE || 830 hw_ant_num >= hal->rf_path_num) 831 return; 832 833 switch (hw_ant_num) { 834 case 1: 835 hal->rf_type = RF_1T1R; 836 hal->rf_path_num = 1; 837 if (!chip->fix_rf_phy_num) 838 hal->rf_phy_num = hal->rf_path_num; 839 hal->antenna_tx = BB_PATH_A; 840 hal->antenna_rx = BB_PATH_A; 841 break; 842 default: 843 WARN(1, "invalid hw configuration from efuse\n"); 844 break; 845 } 846 } 847 848 static u64 get_vht_ra_mask(struct ieee80211_sta *sta) 849 { 850 u64 ra_mask = 0; 851 u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map); 852 u8 vht_mcs_cap; 853 int i, nss; 854 855 /* 4SS, every two bits for MCS7/8/9 */ 856 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { 857 vht_mcs_cap = mcs_map & 0x3; 858 switch (vht_mcs_cap) { 859 case 2: /* MCS9 */ 860 ra_mask |= 0x3ffULL << nss; 861 break; 862 case 1: /* MCS8 */ 863 ra_mask |= 0x1ffULL << nss; 864 break; 865 case 0: /* MCS7 */ 866 ra_mask |= 0x0ffULL << nss; 867 break; 868 default: 869 break; 870 } 871 } 872 873 return ra_mask; 874 } 875 876 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) 877 { 878 u8 rate_id = 0; 879 880 switch (wireless_set) { 881 case WIRELESS_CCK: 882 rate_id = RTW_RATEID_B_20M; 883 break; 884 case WIRELESS_OFDM: 885 rate_id = RTW_RATEID_G; 886 break; 887 case WIRELESS_CCK | WIRELESS_OFDM: 888 rate_id = RTW_RATEID_BG; 889 break; 890 case WIRELESS_OFDM | WIRELESS_HT: 891 if (tx_num == 1) 892 rate_id = RTW_RATEID_GN_N1SS; 893 else if (tx_num == 2) 894 rate_id = RTW_RATEID_GN_N2SS; 895 else if (tx_num == 3) 896 rate_id = RTW_RATEID_ARFR5_N_3SS; 897 break; 898 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: 899 if (bw_mode == RTW_CHANNEL_WIDTH_40) { 900 if (tx_num == 1) 901 rate_id = RTW_RATEID_BGN_40M_1SS; 902 else if (tx_num == 2) 903 rate_id = RTW_RATEID_BGN_40M_2SS; 904 else if (tx_num == 3) 905 rate_id = RTW_RATEID_ARFR5_N_3SS; 906 else if (tx_num == 4) 907 rate_id = RTW_RATEID_ARFR7_N_4SS; 908 } else { 909 if (tx_num == 1) 910 rate_id = RTW_RATEID_BGN_20M_1SS; 911 else if (tx_num == 2) 912 rate_id = RTW_RATEID_BGN_20M_2SS; 913 else if (tx_num == 3) 914 rate_id = RTW_RATEID_ARFR5_N_3SS; 915 else if (tx_num == 4) 916 rate_id = RTW_RATEID_ARFR7_N_4SS; 917 } 918 break; 919 case WIRELESS_OFDM | WIRELESS_VHT: 920 if (tx_num == 1) 921 rate_id = RTW_RATEID_ARFR1_AC_1SS; 922 else if (tx_num == 2) 923 rate_id = RTW_RATEID_ARFR0_AC_2SS; 924 else if (tx_num == 3) 925 rate_id = RTW_RATEID_ARFR4_AC_3SS; 926 else if (tx_num == 4) 927 rate_id = RTW_RATEID_ARFR6_AC_4SS; 928 break; 929 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: 930 if (bw_mode >= RTW_CHANNEL_WIDTH_80) { 931 if (tx_num == 1) 932 rate_id = RTW_RATEID_ARFR1_AC_1SS; 933 else if (tx_num == 2) 934 rate_id = RTW_RATEID_ARFR0_AC_2SS; 935 else if (tx_num == 3) 936 rate_id = RTW_RATEID_ARFR4_AC_3SS; 937 else if (tx_num == 4) 938 rate_id = RTW_RATEID_ARFR6_AC_4SS; 939 } else { 940 if (tx_num == 1) 941 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; 942 else if (tx_num == 2) 943 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; 944 else if (tx_num == 3) 945 rate_id = RTW_RATEID_ARFR4_AC_3SS; 946 else if (tx_num == 4) 947 rate_id = RTW_RATEID_ARFR6_AC_4SS; 948 } 949 break; 950 default: 951 break; 952 } 953 954 return rate_id; 955 } 956 957 #define RA_MASK_CCK_RATES 0x0000f 958 #define RA_MASK_OFDM_RATES 0x00ff0 959 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) 960 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) 961 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) 962 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ 963 RA_MASK_HT_RATES_2SS | \ 964 RA_MASK_HT_RATES_3SS) 965 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) 966 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) 967 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) 968 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ 969 RA_MASK_VHT_RATES_2SS | \ 970 RA_MASK_VHT_RATES_3SS) 971 #define RA_MASK_CCK_IN_HT 0x00005 972 #define RA_MASK_CCK_IN_VHT 0x00005 973 #define RA_MASK_OFDM_IN_VHT 0x00010 974 #define RA_MASK_OFDM_IN_HT_2G 0x00010 975 #define RA_MASK_OFDM_IN_HT_5G 0x00030 976 977 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev, 978 struct rtw_sta_info *si, 979 u64 ra_mask, bool is_vht_enable, 980 u8 wireless_set) 981 { 982 struct rtw_hal *hal = &rtwdev->hal; 983 const struct cfg80211_bitrate_mask *mask = si->mask; 984 u64 cfg_mask = GENMASK_ULL(63, 0); 985 u8 rssi_level, band; 986 987 if (wireless_set != WIRELESS_CCK) { 988 rssi_level = si->rssi_level; 989 if (rssi_level == 0) 990 ra_mask &= 0xffffffffffffffffULL; 991 else if (rssi_level == 1) 992 ra_mask &= 0xfffffffffffffff0ULL; 993 else if (rssi_level == 2) 994 ra_mask &= 0xffffffffffffefe0ULL; 995 else if (rssi_level == 3) 996 ra_mask &= 0xffffffffffffcfc0ULL; 997 else if (rssi_level == 4) 998 ra_mask &= 0xffffffffffff8f80ULL; 999 else if (rssi_level >= 5) 1000 ra_mask &= 0xffffffffffff0f00ULL; 1001 } 1002 1003 if (!si->use_cfg_mask) 1004 return ra_mask; 1005 1006 band = hal->current_band_type; 1007 if (band == RTW_BAND_2G) { 1008 band = NL80211_BAND_2GHZ; 1009 cfg_mask = mask->control[band].legacy; 1010 } else if (band == RTW_BAND_5G) { 1011 band = NL80211_BAND_5GHZ; 1012 cfg_mask = u64_encode_bits(mask->control[band].legacy, 1013 RA_MASK_OFDM_RATES); 1014 } 1015 1016 if (!is_vht_enable) { 1017 if (ra_mask & RA_MASK_HT_RATES_1SS) 1018 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0], 1019 RA_MASK_HT_RATES_1SS); 1020 if (ra_mask & RA_MASK_HT_RATES_2SS) 1021 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1], 1022 RA_MASK_HT_RATES_2SS); 1023 } else { 1024 if (ra_mask & RA_MASK_VHT_RATES_1SS) 1025 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0], 1026 RA_MASK_VHT_RATES_1SS); 1027 if (ra_mask & RA_MASK_VHT_RATES_2SS) 1028 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1], 1029 RA_MASK_VHT_RATES_2SS); 1030 } 1031 1032 ra_mask &= cfg_mask; 1033 1034 return ra_mask; 1035 } 1036 1037 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si) 1038 { 1039 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 1040 struct ieee80211_sta *sta = si->sta; 1041 struct rtw_efuse *efuse = &rtwdev->efuse; 1042 struct rtw_hal *hal = &rtwdev->hal; 1043 u8 wireless_set; 1044 u8 bw_mode; 1045 u8 rate_id; 1046 u8 rf_type = RF_1T1R; 1047 u8 stbc_en = 0; 1048 u8 ldpc_en = 0; 1049 u8 tx_num = 1; 1050 u64 ra_mask = 0; 1051 bool is_vht_enable = false; 1052 bool is_support_sgi = false; 1053 1054 if (sta->vht_cap.vht_supported) { 1055 is_vht_enable = true; 1056 ra_mask |= get_vht_ra_mask(sta); 1057 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) 1058 stbc_en = VHT_STBC_EN; 1059 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) 1060 ldpc_en = VHT_LDPC_EN; 1061 } else if (sta->ht_cap.ht_supported) { 1062 ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) | 1063 (sta->ht_cap.mcs.rx_mask[0] << 12); 1064 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) 1065 stbc_en = HT_STBC_EN; 1066 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) 1067 ldpc_en = HT_LDPC_EN; 1068 } 1069 1070 if (efuse->hw_cap.nss == 1) 1071 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS; 1072 1073 if (hal->current_band_type == RTW_BAND_5G) { 1074 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4; 1075 if (sta->vht_cap.vht_supported) { 1076 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; 1077 wireless_set = WIRELESS_OFDM | WIRELESS_VHT; 1078 } else if (sta->ht_cap.ht_supported) { 1079 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; 1080 wireless_set = WIRELESS_OFDM | WIRELESS_HT; 1081 } else { 1082 wireless_set = WIRELESS_OFDM; 1083 } 1084 dm_info->rrsr_val_init = RRSR_INIT_5G; 1085 } else if (hal->current_band_type == RTW_BAND_2G) { 1086 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ]; 1087 if (sta->vht_cap.vht_supported) { 1088 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | 1089 RA_MASK_OFDM_IN_VHT; 1090 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 1091 WIRELESS_HT | WIRELESS_VHT; 1092 } else if (sta->ht_cap.ht_supported) { 1093 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | 1094 RA_MASK_OFDM_IN_HT_2G; 1095 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 1096 WIRELESS_HT; 1097 } else if (sta->supp_rates[0] <= 0xf) { 1098 wireless_set = WIRELESS_CCK; 1099 } else { 1100 wireless_set = WIRELESS_CCK | WIRELESS_OFDM; 1101 } 1102 dm_info->rrsr_val_init = RRSR_INIT_2G; 1103 } else { 1104 rtw_err(rtwdev, "Unknown band type\n"); 1105 wireless_set = 0; 1106 } 1107 1108 switch (sta->bandwidth) { 1109 case IEEE80211_STA_RX_BW_80: 1110 bw_mode = RTW_CHANNEL_WIDTH_80; 1111 is_support_sgi = sta->vht_cap.vht_supported && 1112 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80); 1113 break; 1114 case IEEE80211_STA_RX_BW_40: 1115 bw_mode = RTW_CHANNEL_WIDTH_40; 1116 is_support_sgi = sta->ht_cap.ht_supported && 1117 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40); 1118 break; 1119 default: 1120 bw_mode = RTW_CHANNEL_WIDTH_20; 1121 is_support_sgi = sta->ht_cap.ht_supported && 1122 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20); 1123 break; 1124 } 1125 1126 if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) { 1127 tx_num = 2; 1128 rf_type = RF_2T2R; 1129 } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) { 1130 tx_num = 2; 1131 rf_type = RF_2T2R; 1132 } 1133 1134 rate_id = get_rate_id(wireless_set, bw_mode, tx_num); 1135 1136 ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable, 1137 wireless_set); 1138 1139 si->bw_mode = bw_mode; 1140 si->stbc_en = stbc_en; 1141 si->ldpc_en = ldpc_en; 1142 si->rf_type = rf_type; 1143 si->wireless_set = wireless_set; 1144 si->sgi_enable = is_support_sgi; 1145 si->vht_enable = is_vht_enable; 1146 si->ra_mask = ra_mask; 1147 si->rate_id = rate_id; 1148 1149 rtw_fw_send_ra_info(rtwdev, si); 1150 } 1151 1152 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev) 1153 { 1154 struct rtw_chip_info *chip = rtwdev->chip; 1155 struct rtw_fw_state *fw; 1156 1157 fw = &rtwdev->fw; 1158 wait_for_completion(&fw->completion); 1159 if (!fw->firmware) 1160 return -EINVAL; 1161 1162 if (chip->wow_fw_name) { 1163 fw = &rtwdev->wow_fw; 1164 wait_for_completion(&fw->completion); 1165 if (!fw->firmware) 1166 return -EINVAL; 1167 } 1168 1169 return 0; 1170 } 1171 1172 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev, 1173 struct rtw_fw_state *fw) 1174 { 1175 struct rtw_chip_info *chip = rtwdev->chip; 1176 1177 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported || 1178 !fw->feature) 1179 return LPS_DEEP_MODE_NONE; 1180 1181 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) && 1182 rtw_fw_feature_check(fw, FW_FEATURE_PG)) 1183 return LPS_DEEP_MODE_PG; 1184 1185 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) && 1186 rtw_fw_feature_check(fw, FW_FEATURE_LCLK)) 1187 return LPS_DEEP_MODE_LCLK; 1188 1189 return LPS_DEEP_MODE_NONE; 1190 } 1191 1192 static int rtw_power_on(struct rtw_dev *rtwdev) 1193 { 1194 struct rtw_chip_info *chip = rtwdev->chip; 1195 struct rtw_fw_state *fw = &rtwdev->fw; 1196 bool wifi_only; 1197 int ret; 1198 1199 ret = rtw_hci_setup(rtwdev); 1200 if (ret) { 1201 rtw_err(rtwdev, "failed to setup hci\n"); 1202 goto err; 1203 } 1204 1205 /* power on MAC before firmware downloaded */ 1206 ret = rtw_mac_power_on(rtwdev); 1207 if (ret) { 1208 rtw_err(rtwdev, "failed to power on mac\n"); 1209 goto err; 1210 } 1211 1212 ret = rtw_wait_firmware_completion(rtwdev); 1213 if (ret) { 1214 rtw_err(rtwdev, "failed to wait firmware completion\n"); 1215 goto err_off; 1216 } 1217 1218 ret = rtw_download_firmware(rtwdev, fw); 1219 if (ret) { 1220 rtw_err(rtwdev, "failed to download firmware\n"); 1221 goto err_off; 1222 } 1223 1224 /* config mac after firmware downloaded */ 1225 ret = rtw_mac_init(rtwdev); 1226 if (ret) { 1227 rtw_err(rtwdev, "failed to configure mac\n"); 1228 goto err_off; 1229 } 1230 1231 chip->ops->phy_set_param(rtwdev); 1232 1233 ret = rtw_hci_start(rtwdev); 1234 if (ret) { 1235 rtw_err(rtwdev, "failed to start hci\n"); 1236 goto err_off; 1237 } 1238 1239 /* send H2C after HCI has started */ 1240 rtw_fw_send_general_info(rtwdev); 1241 rtw_fw_send_phydm_info(rtwdev); 1242 1243 wifi_only = !rtwdev->efuse.btcoex; 1244 rtw_coex_power_on_setting(rtwdev); 1245 rtw_coex_init_hw_config(rtwdev, wifi_only); 1246 1247 return 0; 1248 1249 err_off: 1250 rtw_mac_power_off(rtwdev); 1251 1252 err: 1253 return ret; 1254 } 1255 1256 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start) 1257 { 1258 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN)) 1259 return; 1260 1261 if (start) { 1262 rtw_fw_scan_notify(rtwdev, true); 1263 } else { 1264 reinit_completion(&rtwdev->fw_scan_density); 1265 rtw_fw_scan_notify(rtwdev, false); 1266 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density, 1267 SCAN_NOTIFY_TIMEOUT)) 1268 rtw_warn(rtwdev, "firmware failed to report density after scan\n"); 1269 } 1270 } 1271 1272 int rtw_core_start(struct rtw_dev *rtwdev) 1273 { 1274 int ret; 1275 1276 ret = rtw_power_on(rtwdev); 1277 if (ret) 1278 return ret; 1279 1280 rtw_sec_enable_sec_engine(rtwdev); 1281 1282 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw); 1283 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw); 1284 1285 /* rcr reset after powered on */ 1286 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); 1287 1288 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 1289 RTW_WATCH_DOG_DELAY_TIME); 1290 1291 set_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1292 1293 return 0; 1294 } 1295 1296 static void rtw_power_off(struct rtw_dev *rtwdev) 1297 { 1298 rtw_hci_stop(rtwdev); 1299 rtw_coex_power_off_setting(rtwdev); 1300 rtw_mac_power_off(rtwdev); 1301 } 1302 1303 void rtw_core_stop(struct rtw_dev *rtwdev) 1304 { 1305 struct rtw_coex *coex = &rtwdev->coex; 1306 1307 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1308 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags); 1309 1310 mutex_unlock(&rtwdev->mutex); 1311 1312 cancel_work_sync(&rtwdev->c2h_work); 1313 cancel_delayed_work_sync(&rtwdev->watch_dog_work); 1314 cancel_delayed_work_sync(&coex->bt_relink_work); 1315 cancel_delayed_work_sync(&coex->bt_reenable_work); 1316 cancel_delayed_work_sync(&coex->defreeze_work); 1317 cancel_delayed_work_sync(&coex->wl_remain_work); 1318 cancel_delayed_work_sync(&coex->bt_remain_work); 1319 cancel_delayed_work_sync(&coex->wl_connecting_work); 1320 cancel_delayed_work_sync(&coex->bt_multi_link_remain_work); 1321 cancel_delayed_work_sync(&coex->wl_ccklock_work); 1322 1323 mutex_lock(&rtwdev->mutex); 1324 1325 rtw_power_off(rtwdev); 1326 } 1327 1328 static void rtw_init_ht_cap(struct rtw_dev *rtwdev, 1329 struct ieee80211_sta_ht_cap *ht_cap) 1330 { 1331 struct rtw_efuse *efuse = &rtwdev->efuse; 1332 1333 ht_cap->ht_supported = true; 1334 ht_cap->cap = 0; 1335 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | 1336 IEEE80211_HT_CAP_MAX_AMSDU | 1337 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 1338 1339 if (rtw_chip_has_rx_ldpc(rtwdev)) 1340 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING; 1341 if (rtw_chip_has_tx_stbc(rtwdev)) 1342 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; 1343 1344 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) 1345 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 1346 IEEE80211_HT_CAP_DSSSCCK40 | 1347 IEEE80211_HT_CAP_SGI_40; 1348 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 1349 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; 1350 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 1351 if (efuse->hw_cap.nss > 1) { 1352 ht_cap->mcs.rx_mask[0] = 0xFF; 1353 ht_cap->mcs.rx_mask[1] = 0xFF; 1354 ht_cap->mcs.rx_mask[4] = 0x01; 1355 ht_cap->mcs.rx_highest = cpu_to_le16(300); 1356 } else { 1357 ht_cap->mcs.rx_mask[0] = 0xFF; 1358 ht_cap->mcs.rx_mask[1] = 0x00; 1359 ht_cap->mcs.rx_mask[4] = 0x01; 1360 ht_cap->mcs.rx_highest = cpu_to_le16(150); 1361 } 1362 } 1363 1364 static void rtw_init_vht_cap(struct rtw_dev *rtwdev, 1365 struct ieee80211_sta_vht_cap *vht_cap) 1366 { 1367 struct rtw_efuse *efuse = &rtwdev->efuse; 1368 u16 mcs_map; 1369 __le16 highest; 1370 1371 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && 1372 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) 1373 return; 1374 1375 vht_cap->vht_supported = true; 1376 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | 1377 IEEE80211_VHT_CAP_SHORT_GI_80 | 1378 IEEE80211_VHT_CAP_RXSTBC_1 | 1379 IEEE80211_VHT_CAP_HTC_VHT | 1380 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | 1381 0; 1382 if (rtwdev->hal.rf_path_num > 1) 1383 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 1384 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 1385 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; 1386 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap << 1387 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); 1388 1389 if (rtw_chip_has_rx_ldpc(rtwdev)) 1390 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 1391 1392 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 1393 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 1394 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 1395 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 1396 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 1397 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 1398 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; 1399 if (efuse->hw_cap.nss > 1) { 1400 highest = cpu_to_le16(780); 1401 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; 1402 } else { 1403 highest = cpu_to_le16(390); 1404 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; 1405 } 1406 1407 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 1408 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 1409 vht_cap->vht_mcs.rx_highest = highest; 1410 vht_cap->vht_mcs.tx_highest = highest; 1411 } 1412 1413 static void rtw_set_supported_band(struct ieee80211_hw *hw, 1414 struct rtw_chip_info *chip) 1415 { 1416 struct rtw_dev *rtwdev = hw->priv; 1417 struct ieee80211_supported_band *sband; 1418 1419 if (chip->band & RTW_BAND_2G) { 1420 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); 1421 if (!sband) 1422 goto err_out; 1423 if (chip->ht_supported) 1424 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1425 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; 1426 } 1427 1428 if (chip->band & RTW_BAND_5G) { 1429 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); 1430 if (!sband) 1431 goto err_out; 1432 if (chip->ht_supported) 1433 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1434 if (chip->vht_supported) 1435 rtw_init_vht_cap(rtwdev, &sband->vht_cap); 1436 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; 1437 } 1438 1439 return; 1440 1441 err_out: 1442 rtw_err(rtwdev, "failed to set supported band\n"); 1443 } 1444 1445 static void rtw_unset_supported_band(struct ieee80211_hw *hw, 1446 struct rtw_chip_info *chip) 1447 { 1448 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); 1449 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); 1450 } 1451 1452 static void __update_firmware_feature(struct rtw_dev *rtwdev, 1453 struct rtw_fw_state *fw) 1454 { 1455 u32 feature; 1456 const struct rtw_fw_hdr *fw_hdr = 1457 (const struct rtw_fw_hdr *)fw->firmware->data; 1458 1459 feature = le32_to_cpu(fw_hdr->feature); 1460 fw->feature = feature & FW_FEATURE_SIG ? feature : 0; 1461 } 1462 1463 static void __update_firmware_info(struct rtw_dev *rtwdev, 1464 struct rtw_fw_state *fw) 1465 { 1466 const struct rtw_fw_hdr *fw_hdr = 1467 (const struct rtw_fw_hdr *)fw->firmware->data; 1468 1469 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver); 1470 fw->version = le16_to_cpu(fw_hdr->version); 1471 fw->sub_version = fw_hdr->subversion; 1472 fw->sub_index = fw_hdr->subindex; 1473 1474 __update_firmware_feature(rtwdev, fw); 1475 } 1476 1477 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev, 1478 struct rtw_fw_state *fw) 1479 { 1480 struct rtw_fw_hdr_legacy *legacy = 1481 (struct rtw_fw_hdr_legacy *)fw->firmware->data; 1482 1483 fw->h2c_version = 0; 1484 fw->version = le16_to_cpu(legacy->version); 1485 fw->sub_version = legacy->subversion1; 1486 fw->sub_index = legacy->subversion2; 1487 } 1488 1489 static void update_firmware_info(struct rtw_dev *rtwdev, 1490 struct rtw_fw_state *fw) 1491 { 1492 if (rtw_chip_wcpu_11n(rtwdev)) 1493 __update_firmware_info_legacy(rtwdev, fw); 1494 else 1495 __update_firmware_info(rtwdev, fw); 1496 } 1497 1498 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) 1499 { 1500 struct rtw_fw_state *fw = context; 1501 struct rtw_dev *rtwdev = fw->rtwdev; 1502 1503 if (!firmware || !firmware->data) { 1504 rtw_err(rtwdev, "failed to request firmware\n"); 1505 complete_all(&fw->completion); 1506 return; 1507 } 1508 1509 fw->firmware = firmware; 1510 update_firmware_info(rtwdev, fw); 1511 complete_all(&fw->completion); 1512 1513 rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n", 1514 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version); 1515 } 1516 1517 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type) 1518 { 1519 const char *fw_name; 1520 struct rtw_fw_state *fw; 1521 int ret; 1522 1523 switch (type) { 1524 case RTW_WOWLAN_FW: 1525 fw = &rtwdev->wow_fw; 1526 fw_name = rtwdev->chip->wow_fw_name; 1527 break; 1528 1529 case RTW_NORMAL_FW: 1530 fw = &rtwdev->fw; 1531 fw_name = rtwdev->chip->fw_name; 1532 break; 1533 1534 default: 1535 rtw_warn(rtwdev, "unsupported firmware type\n"); 1536 return -ENOENT; 1537 } 1538 1539 fw->rtwdev = rtwdev; 1540 init_completion(&fw->completion); 1541 1542 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, 1543 GFP_KERNEL, fw, rtw_load_firmware_cb); 1544 if (ret) { 1545 rtw_err(rtwdev, "failed to async firmware request\n"); 1546 return ret; 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) 1553 { 1554 struct rtw_chip_info *chip = rtwdev->chip; 1555 struct rtw_hal *hal = &rtwdev->hal; 1556 struct rtw_efuse *efuse = &rtwdev->efuse; 1557 1558 switch (rtw_hci_type(rtwdev)) { 1559 case RTW_HCI_TYPE_PCIE: 1560 rtwdev->hci.rpwm_addr = 0x03d9; 1561 rtwdev->hci.cpwm_addr = 0x03da; 1562 break; 1563 default: 1564 rtw_err(rtwdev, "unsupported hci type\n"); 1565 return -EINVAL; 1566 } 1567 1568 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); 1569 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); 1570 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; 1571 if (hal->chip_version & BIT_RF_TYPE_ID) { 1572 hal->rf_type = RF_2T2R; 1573 hal->rf_path_num = 2; 1574 hal->antenna_tx = BB_PATH_AB; 1575 hal->antenna_rx = BB_PATH_AB; 1576 } else { 1577 hal->rf_type = RF_1T1R; 1578 hal->rf_path_num = 1; 1579 hal->antenna_tx = BB_PATH_A; 1580 hal->antenna_rx = BB_PATH_A; 1581 } 1582 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num : 1583 hal->rf_path_num; 1584 1585 efuse->physical_size = chip->phy_efuse_size; 1586 efuse->logical_size = chip->log_efuse_size; 1587 efuse->protect_size = chip->ptct_efuse_size; 1588 1589 /* default use ack */ 1590 rtwdev->hal.rcr |= BIT_VHT_DACK; 1591 1592 hal->bfee_sts_cap = 3; 1593 1594 return 0; 1595 } 1596 1597 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) 1598 { 1599 struct rtw_fw_state *fw = &rtwdev->fw; 1600 int ret; 1601 1602 ret = rtw_hci_setup(rtwdev); 1603 if (ret) { 1604 rtw_err(rtwdev, "failed to setup hci\n"); 1605 goto err; 1606 } 1607 1608 ret = rtw_mac_power_on(rtwdev); 1609 if (ret) { 1610 rtw_err(rtwdev, "failed to power on mac\n"); 1611 goto err; 1612 } 1613 1614 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); 1615 1616 wait_for_completion(&fw->completion); 1617 if (!fw->firmware) { 1618 ret = -EINVAL; 1619 rtw_err(rtwdev, "failed to load firmware\n"); 1620 goto err; 1621 } 1622 1623 ret = rtw_download_firmware(rtwdev, fw); 1624 if (ret) { 1625 rtw_err(rtwdev, "failed to download firmware\n"); 1626 goto err_off; 1627 } 1628 1629 return 0; 1630 1631 err_off: 1632 rtw_mac_power_off(rtwdev); 1633 1634 err: 1635 return ret; 1636 } 1637 1638 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) 1639 { 1640 struct rtw_efuse *efuse = &rtwdev->efuse; 1641 u8 hw_feature[HW_FEATURE_LEN]; 1642 u8 id; 1643 u8 bw; 1644 int i; 1645 1646 id = rtw_read8(rtwdev, REG_C2HEVT); 1647 if (id != C2H_HW_FEATURE_REPORT) { 1648 rtw_err(rtwdev, "failed to read hw feature report\n"); 1649 return -EBUSY; 1650 } 1651 1652 for (i = 0; i < HW_FEATURE_LEN; i++) 1653 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); 1654 1655 rtw_write8(rtwdev, REG_C2HEVT, 0); 1656 1657 bw = GET_EFUSE_HW_CAP_BW(hw_feature); 1658 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); 1659 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); 1660 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); 1661 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); 1662 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); 1663 1664 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); 1665 1666 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE || 1667 efuse->hw_cap.nss > rtwdev->hal.rf_path_num) 1668 efuse->hw_cap.nss = rtwdev->hal.rf_path_num; 1669 1670 rtw_dbg(rtwdev, RTW_DBG_EFUSE, 1671 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", 1672 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, 1673 efuse->hw_cap.ant_num, efuse->hw_cap.nss); 1674 1675 return 0; 1676 } 1677 1678 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) 1679 { 1680 rtw_hci_stop(rtwdev); 1681 rtw_mac_power_off(rtwdev); 1682 } 1683 1684 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) 1685 { 1686 struct rtw_efuse *efuse = &rtwdev->efuse; 1687 int ret; 1688 1689 mutex_lock(&rtwdev->mutex); 1690 1691 /* power on mac to read efuse */ 1692 ret = rtw_chip_efuse_enable(rtwdev); 1693 if (ret) 1694 goto out_unlock; 1695 1696 ret = rtw_parse_efuse_map(rtwdev); 1697 if (ret) 1698 goto out_disable; 1699 1700 ret = rtw_dump_hw_feature(rtwdev); 1701 if (ret) 1702 goto out_disable; 1703 1704 ret = rtw_check_supported_rfe(rtwdev); 1705 if (ret) 1706 goto out_disable; 1707 1708 if (efuse->crystal_cap == 0xff) 1709 efuse->crystal_cap = 0; 1710 if (efuse->pa_type_2g == 0xff) 1711 efuse->pa_type_2g = 0; 1712 if (efuse->pa_type_5g == 0xff) 1713 efuse->pa_type_5g = 0; 1714 if (efuse->lna_type_2g == 0xff) 1715 efuse->lna_type_2g = 0; 1716 if (efuse->lna_type_5g == 0xff) 1717 efuse->lna_type_5g = 0; 1718 if (efuse->channel_plan == 0xff) 1719 efuse->channel_plan = 0x7f; 1720 if (efuse->rf_board_option == 0xff) 1721 efuse->rf_board_option = 0; 1722 if (efuse->bt_setting & BIT(0)) 1723 efuse->share_ant = true; 1724 if (efuse->regd == 0xff) 1725 efuse->regd = 0; 1726 if (efuse->tx_bb_swing_setting_2g == 0xff) 1727 efuse->tx_bb_swing_setting_2g = 0; 1728 if (efuse->tx_bb_swing_setting_5g == 0xff) 1729 efuse->tx_bb_swing_setting_5g = 0; 1730 1731 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20; 1732 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; 1733 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; 1734 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; 1735 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0; 1736 1737 out_disable: 1738 rtw_chip_efuse_disable(rtwdev); 1739 1740 out_unlock: 1741 mutex_unlock(&rtwdev->mutex); 1742 return ret; 1743 } 1744 1745 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) 1746 { 1747 struct rtw_hal *hal = &rtwdev->hal; 1748 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 1749 1750 if (!rfe_def) 1751 return -ENODEV; 1752 1753 rtw_phy_setup_phy_cond(rtwdev, 0); 1754 1755 rtw_phy_init_tx_power(rtwdev); 1756 if (rfe_def->agc_btg_tbl) 1757 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl); 1758 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); 1759 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); 1760 rtw_phy_tx_power_by_rate_config(hal); 1761 rtw_phy_tx_power_limit_config(hal); 1762 1763 return 0; 1764 } 1765 1766 int rtw_chip_info_setup(struct rtw_dev *rtwdev) 1767 { 1768 int ret; 1769 1770 ret = rtw_chip_parameter_setup(rtwdev); 1771 if (ret) { 1772 rtw_err(rtwdev, "failed to setup chip parameters\n"); 1773 goto err_out; 1774 } 1775 1776 ret = rtw_chip_efuse_info_setup(rtwdev); 1777 if (ret) { 1778 rtw_err(rtwdev, "failed to setup chip efuse info\n"); 1779 goto err_out; 1780 } 1781 1782 ret = rtw_chip_board_info_setup(rtwdev); 1783 if (ret) { 1784 rtw_err(rtwdev, "failed to setup chip board info\n"); 1785 goto err_out; 1786 } 1787 1788 return 0; 1789 1790 err_out: 1791 return ret; 1792 } 1793 EXPORT_SYMBOL(rtw_chip_info_setup); 1794 1795 static void rtw_stats_init(struct rtw_dev *rtwdev) 1796 { 1797 struct rtw_traffic_stats *stats = &rtwdev->stats; 1798 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 1799 int i; 1800 1801 ewma_tp_init(&stats->tx_ewma_tp); 1802 ewma_tp_init(&stats->rx_ewma_tp); 1803 1804 for (i = 0; i < RTW_EVM_NUM; i++) 1805 ewma_evm_init(&dm_info->ewma_evm[i]); 1806 for (i = 0; i < RTW_SNR_NUM; i++) 1807 ewma_snr_init(&dm_info->ewma_snr[i]); 1808 } 1809 1810 int rtw_core_init(struct rtw_dev *rtwdev) 1811 { 1812 struct rtw_chip_info *chip = rtwdev->chip; 1813 struct rtw_coex *coex = &rtwdev->coex; 1814 int ret; 1815 1816 INIT_LIST_HEAD(&rtwdev->rsvd_page_list); 1817 INIT_LIST_HEAD(&rtwdev->txqs); 1818 1819 timer_setup(&rtwdev->tx_report.purge_timer, 1820 rtw_tx_report_purge_timer, 0); 1821 rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0); 1822 1823 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); 1824 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work); 1825 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work); 1826 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work); 1827 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work); 1828 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work); 1829 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work); 1830 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work, 1831 rtw_coex_bt_multi_link_remain_work); 1832 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work); 1833 INIT_WORK(&rtwdev->tx_work, rtw_tx_work); 1834 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); 1835 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work); 1836 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work); 1837 skb_queue_head_init(&rtwdev->c2h_queue); 1838 skb_queue_head_init(&rtwdev->coex.queue); 1839 skb_queue_head_init(&rtwdev->tx_report.queue); 1840 1841 spin_lock_init(&rtwdev->rf_lock); 1842 spin_lock_init(&rtwdev->h2c.lock); 1843 spin_lock_init(&rtwdev->txq_lock); 1844 spin_lock_init(&rtwdev->tx_report.q_lock); 1845 1846 mutex_init(&rtwdev->mutex); 1847 mutex_init(&rtwdev->coex.mutex); 1848 mutex_init(&rtwdev->hal.tx_power_mutex); 1849 1850 init_waitqueue_head(&rtwdev->coex.wait); 1851 init_completion(&rtwdev->lps_leave_check); 1852 init_completion(&rtwdev->fw_scan_density); 1853 1854 rtwdev->sec.total_cam_num = 32; 1855 rtwdev->hal.current_channel = 1; 1856 set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map); 1857 1858 rtw_stats_init(rtwdev); 1859 1860 /* default rx filter setting */ 1861 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | 1862 BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | 1863 BIT_AB | BIT_AM | BIT_APM; 1864 1865 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW); 1866 if (ret) { 1867 rtw_warn(rtwdev, "no firmware loaded\n"); 1868 return ret; 1869 } 1870 1871 if (chip->wow_fw_name) { 1872 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW); 1873 if (ret) { 1874 rtw_warn(rtwdev, "no wow firmware loaded\n"); 1875 wait_for_completion(&rtwdev->fw.completion); 1876 if (rtwdev->fw.firmware) 1877 release_firmware(rtwdev->fw.firmware); 1878 return ret; 1879 } 1880 } 1881 1882 return 0; 1883 } 1884 EXPORT_SYMBOL(rtw_core_init); 1885 1886 void rtw_core_deinit(struct rtw_dev *rtwdev) 1887 { 1888 struct rtw_fw_state *fw = &rtwdev->fw; 1889 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw; 1890 struct rtw_rsvd_page *rsvd_pkt, *tmp; 1891 unsigned long flags; 1892 1893 rtw_wait_firmware_completion(rtwdev); 1894 1895 if (fw->firmware) 1896 release_firmware(fw->firmware); 1897 1898 if (wow_fw->firmware) 1899 release_firmware(wow_fw->firmware); 1900 1901 destroy_workqueue(rtwdev->tx_wq); 1902 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); 1903 skb_queue_purge(&rtwdev->tx_report.queue); 1904 skb_queue_purge(&rtwdev->coex.queue); 1905 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); 1906 1907 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, 1908 build_list) { 1909 list_del(&rsvd_pkt->build_list); 1910 kfree(rsvd_pkt); 1911 } 1912 1913 mutex_destroy(&rtwdev->mutex); 1914 mutex_destroy(&rtwdev->coex.mutex); 1915 mutex_destroy(&rtwdev->hal.tx_power_mutex); 1916 } 1917 EXPORT_SYMBOL(rtw_core_deinit); 1918 1919 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 1920 { 1921 struct rtw_hal *hal = &rtwdev->hal; 1922 int max_tx_headroom = 0; 1923 int ret; 1924 1925 /* TODO: USB & SDIO may need extra room? */ 1926 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; 1927 1928 hw->extra_tx_headroom = max_tx_headroom; 1929 hw->queues = IEEE80211_NUM_ACS; 1930 hw->txq_data_size = sizeof(struct rtw_txq); 1931 hw->sta_data_size = sizeof(struct rtw_sta_info); 1932 hw->vif_data_size = sizeof(struct rtw_vif); 1933 1934 ieee80211_hw_set(hw, SIGNAL_DBM); 1935 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1936 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 1937 ieee80211_hw_set(hw, MFP_CAPABLE); 1938 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 1939 ieee80211_hw_set(hw, SUPPORTS_PS); 1940 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); 1941 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 1942 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 1943 ieee80211_hw_set(hw, HAS_RATE_CONTROL); 1944 ieee80211_hw_set(hw, TX_AMSDU); 1945 1946 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | 1947 BIT(NL80211_IFTYPE_AP) | 1948 BIT(NL80211_IFTYPE_ADHOC) | 1949 BIT(NL80211_IFTYPE_MESH_POINT); 1950 hw->wiphy->available_antennas_tx = hal->antenna_tx; 1951 hw->wiphy->available_antennas_rx = hal->antenna_rx; 1952 1953 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | 1954 WIPHY_FLAG_TDLS_EXTERNAL_SETUP; 1955 1956 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 1957 1958 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); 1959 1960 #ifdef CONFIG_PM 1961 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub; 1962 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids; 1963 #endif 1964 rtw_set_supported_band(hw, rtwdev->chip); 1965 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); 1966 1967 rtw_regd_init(rtwdev, rtw_regd_notifier); 1968 1969 ret = ieee80211_register_hw(hw); 1970 if (ret) { 1971 rtw_err(rtwdev, "failed to register hw\n"); 1972 return ret; 1973 } 1974 1975 if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2)) 1976 rtw_err(rtwdev, "regulatory_hint fail\n"); 1977 1978 rtw_debugfs_init(rtwdev); 1979 1980 rtwdev->bf_info.bfer_mu_cnt = 0; 1981 rtwdev->bf_info.bfer_su_cnt = 0; 1982 1983 return 0; 1984 } 1985 EXPORT_SYMBOL(rtw_register_hw); 1986 1987 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 1988 { 1989 struct rtw_chip_info *chip = rtwdev->chip; 1990 1991 ieee80211_unregister_hw(hw); 1992 rtw_unset_supported_band(hw, chip); 1993 } 1994 EXPORT_SYMBOL(rtw_unregister_hw); 1995 1996 MODULE_AUTHOR("Realtek Corporation"); 1997 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); 1998 MODULE_LICENSE("Dual BSD/GPL"); 1999