xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/main.c (revision 498a1cf902c31c3af398082d65cf150b33b367e6)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->cfg.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	rtw_coex_wl_status_check(rtwdev);
211 	rtw_coex_query_bt_hid_list(rtwdev);
212 
213 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
214 		rtw_coex_wl_status_change_notify(rtwdev, 0);
215 
216 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
217 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
218 		ps_active = true;
219 	else
220 		ps_active = false;
221 
222 	ewma_tp_add(&stats->tx_ewma_tp,
223 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
224 	ewma_tp_add(&stats->rx_ewma_tp,
225 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
226 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
227 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
228 
229 	/* reset tx/rx statictics */
230 	stats->tx_unicast = 0;
231 	stats->rx_unicast = 0;
232 	stats->tx_cnt = 0;
233 	stats->rx_cnt = 0;
234 
235 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
236 		goto unlock;
237 
238 	/* make sure BB/RF is working for dynamic mech */
239 	rtw_leave_lps(rtwdev);
240 
241 	rtw_phy_dynamic_mechanism(rtwdev);
242 
243 	data.rtwdev = rtwdev;
244 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
245 	 * to avoid taking local->iflist_mtx mutex
246 	 */
247 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
248 
249 	/* fw supports only one station associated to enter lps, if there are
250 	 * more than two stations associated to the AP, then we can not enter
251 	 * lps, because fw does not handle the overlapped beacon interval
252 	 *
253 	 * mac80211 should iterate vifs and determine if driver can enter
254 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
255 	 * get that vif and check if device is having traffic more than the
256 	 * threshold.
257 	 */
258 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
259 	    !rtwdev->beacon_loss)
260 		rtw_enter_lps(rtwdev, data.rtwvif->port);
261 
262 	rtwdev->watch_dog_cnt++;
263 
264 unlock:
265 	mutex_unlock(&rtwdev->mutex);
266 }
267 
268 static void rtw_c2h_work(struct work_struct *work)
269 {
270 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
271 	struct sk_buff *skb, *tmp;
272 
273 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
274 		skb_unlink(skb, &rtwdev->c2h_queue);
275 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
276 		dev_kfree_skb_any(skb);
277 	}
278 }
279 
280 static void rtw_ips_work(struct work_struct *work)
281 {
282 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
283 
284 	mutex_lock(&rtwdev->mutex);
285 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
286 		rtw_enter_ips(rtwdev);
287 	mutex_unlock(&rtwdev->mutex);
288 }
289 
290 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
291 {
292 	unsigned long mac_id;
293 
294 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
295 	if (mac_id < RTW_MAX_MAC_ID_NUM)
296 		set_bit(mac_id, rtwdev->mac_id_map);
297 
298 	return mac_id;
299 }
300 
301 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
302 		struct ieee80211_vif *vif)
303 {
304 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
305 	int i;
306 
307 	si->mac_id = rtw_acquire_macid(rtwdev);
308 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
309 		return -ENOSPC;
310 
311 	si->sta = sta;
312 	si->vif = vif;
313 	si->init_ra_lv = 1;
314 	ewma_rssi_init(&si->avg_rssi);
315 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
316 		rtw_txq_init(rtwdev, sta->txq[i]);
317 
318 	rtw_update_sta_info(rtwdev, si, true);
319 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
320 
321 	rtwdev->sta_cnt++;
322 	rtwdev->beacon_loss = false;
323 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
324 		sta->addr, si->mac_id);
325 
326 	return 0;
327 }
328 
329 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
330 		    bool fw_exist)
331 {
332 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
333 	int i;
334 
335 	rtw_release_macid(rtwdev, si->mac_id);
336 	if (fw_exist)
337 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
338 
339 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
340 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
341 
342 	kfree(si->mask);
343 
344 	rtwdev->sta_cnt--;
345 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
346 		sta->addr, si->mac_id);
347 }
348 
349 struct rtw_fwcd_hdr {
350 	u32 item;
351 	u32 size;
352 	u32 padding1;
353 	u32 padding2;
354 } __packed;
355 
356 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
357 {
358 	const struct rtw_chip_info *chip = rtwdev->chip;
359 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
360 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
361 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
362 	u8 i;
363 
364 	if (segs) {
365 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
366 
367 		for (i = 0; i < segs->num; i++)
368 			prep_size += segs->segs[i];
369 	}
370 
371 	desc->data = vmalloc(prep_size);
372 	if (!desc->data)
373 		return -ENOMEM;
374 
375 	desc->size = prep_size;
376 	desc->next = desc->data;
377 
378 	return 0;
379 }
380 
381 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
382 {
383 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
384 	struct rtw_fwcd_hdr *hdr;
385 	u8 *next;
386 
387 	if (!desc->data) {
388 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
389 		return NULL;
390 	}
391 
392 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
393 	if (next - desc->data + size > desc->size) {
394 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
395 		return NULL;
396 	}
397 
398 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
399 	hdr->item = item;
400 	hdr->size = size;
401 	hdr->padding1 = 0x01234567;
402 	hdr->padding2 = 0x89abcdef;
403 	desc->next = next + size;
404 
405 	return next;
406 }
407 
408 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
409 {
410 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
411 
412 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
413 
414 	/* Data will be freed after lifetime of device coredump. After calling
415 	 * dev_coredump, data is supposed to be handled by the device coredump
416 	 * framework. Note that a new dump will be discarded if a previous one
417 	 * hasn't been released yet.
418 	 */
419 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
420 }
421 
422 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
423 {
424 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
425 
426 	if (free_self) {
427 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
428 		vfree(desc->data);
429 	}
430 
431 	desc->data = NULL;
432 	desc->next = NULL;
433 }
434 
435 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
436 {
437 	u32 size = rtwdev->chip->fw_rxff_size;
438 	u32 *buf;
439 	u8 seq;
440 
441 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
442 	if (!buf)
443 		return -ENOMEM;
444 
445 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
446 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
447 		return -EINVAL;
448 	}
449 
450 	if (GET_FW_DUMP_LEN(buf) == 0) {
451 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
452 		return -EINVAL;
453 	}
454 
455 	seq = GET_FW_DUMP_SEQ(buf);
456 	if (seq > 0) {
457 		rtw_dbg(rtwdev, RTW_DBG_FW,
458 			"fw crash dump's seq is wrong: %d\n", seq);
459 		return -EINVAL;
460 	}
461 
462 	return 0;
463 }
464 
465 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
466 		u32 fwcd_item)
467 {
468 	u32 rxff = rtwdev->chip->fw_rxff_size;
469 	u32 dump_size, done_size = 0;
470 	u8 *buf;
471 	int ret;
472 
473 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
474 	if (!buf)
475 		return -ENOMEM;
476 
477 	while (size) {
478 		dump_size = size > rxff ? rxff : size;
479 
480 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
481 					  dump_size);
482 		if (ret) {
483 			rtw_err(rtwdev,
484 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
485 				ocp_src, done_size);
486 			return ret;
487 		}
488 
489 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
490 				       dump_size, (u32 *)(buf + done_size));
491 		if (ret) {
492 			rtw_err(rtwdev,
493 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
494 				ocp_src, done_size);
495 			return ret;
496 		}
497 
498 		size -= dump_size;
499 		done_size += dump_size;
500 	}
501 
502 	return 0;
503 }
504 EXPORT_SYMBOL(rtw_dump_fw);
505 
506 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
507 {
508 	u8 *buf;
509 	u32 i;
510 
511 	if (addr & 0x3) {
512 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
513 		return -EINVAL;
514 	}
515 
516 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
517 	if (!buf)
518 		return -ENOMEM;
519 
520 	for (i = 0; i < size; i += 4)
521 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
522 
523 	return 0;
524 }
525 EXPORT_SYMBOL(rtw_dump_reg);
526 
527 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
528 			   struct ieee80211_bss_conf *conf)
529 {
530 	struct ieee80211_vif *vif = NULL;
531 
532 	if (conf)
533 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
534 
535 	if (conf && vif->cfg.assoc) {
536 		rtwvif->aid = vif->cfg.aid;
537 		rtwvif->net_type = RTW_NET_MGD_LINKED;
538 	} else {
539 		rtwvif->aid = 0;
540 		rtwvif->net_type = RTW_NET_NO_LINK;
541 	}
542 }
543 
544 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
545 			       struct ieee80211_vif *vif,
546 			       struct ieee80211_sta *sta,
547 			       struct ieee80211_key_conf *key,
548 			       void *data)
549 {
550 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
551 	struct rtw_sec_desc *sec = &rtwdev->sec;
552 
553 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
554 }
555 
556 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
557 {
558 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
559 
560 	if (rtwdev->sta_cnt == 0) {
561 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
562 		return;
563 	}
564 	rtw_sta_remove(rtwdev, sta, false);
565 }
566 
567 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
568 {
569 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
570 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
571 
572 	rtw_bf_disassoc(rtwdev, vif, NULL);
573 	rtw_vif_assoc_changed(rtwvif, NULL);
574 	rtw_txq_cleanup(rtwdev, vif->txq);
575 }
576 
577 void rtw_fw_recovery(struct rtw_dev *rtwdev)
578 {
579 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
580 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
581 }
582 
583 static void __fw_recovery_work(struct rtw_dev *rtwdev)
584 {
585 	int ret = 0;
586 
587 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
588 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
589 
590 	ret = rtw_fwcd_prep(rtwdev);
591 	if (ret)
592 		goto free;
593 	ret = rtw_fw_dump_crash_log(rtwdev);
594 	if (ret)
595 		goto free;
596 	ret = rtw_chip_dump_fw_crash(rtwdev);
597 	if (ret)
598 		goto free;
599 
600 	rtw_fwcd_dump(rtwdev);
601 free:
602 	rtw_fwcd_free(rtwdev, !!ret);
603 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
604 
605 	WARN(1, "firmware crash, start reset and recover\n");
606 
607 	rcu_read_lock();
608 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
609 	rcu_read_unlock();
610 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
611 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
612 	rtw_enter_ips(rtwdev);
613 }
614 
615 static void rtw_fw_recovery_work(struct work_struct *work)
616 {
617 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
618 					      fw_recovery_work);
619 
620 	mutex_lock(&rtwdev->mutex);
621 	__fw_recovery_work(rtwdev);
622 	mutex_unlock(&rtwdev->mutex);
623 
624 	ieee80211_restart_hw(rtwdev->hw);
625 }
626 
627 struct rtw_txq_ba_iter_data {
628 };
629 
630 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
631 {
632 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
633 	int ret;
634 	u8 tid;
635 
636 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
637 	while (tid != IEEE80211_NUM_TIDS) {
638 		clear_bit(tid, si->tid_ba);
639 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
640 		if (ret == -EINVAL) {
641 			struct ieee80211_txq *txq;
642 			struct rtw_txq *rtwtxq;
643 
644 			txq = sta->txq[tid];
645 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
646 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
647 		}
648 
649 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
650 	}
651 }
652 
653 static void rtw_txq_ba_work(struct work_struct *work)
654 {
655 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
656 	struct rtw_txq_ba_iter_data data;
657 
658 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
659 }
660 
661 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
662 {
663 	if (IS_CH_2G_BAND(channel))
664 		pkt_stat->band = NL80211_BAND_2GHZ;
665 	else if (IS_CH_5G_BAND(channel))
666 		pkt_stat->band = NL80211_BAND_5GHZ;
667 	else
668 		return;
669 
670 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
671 }
672 EXPORT_SYMBOL(rtw_set_rx_freq_band);
673 
674 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
675 {
676 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
677 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
678 }
679 
680 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
681 			u8 primary_channel, enum rtw_supported_band band,
682 			enum rtw_bandwidth bandwidth)
683 {
684 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
685 	struct rtw_hal *hal = &rtwdev->hal;
686 	u8 *cch_by_bw = hal->cch_by_bw;
687 	u32 center_freq, primary_freq;
688 	enum rtw_sar_bands sar_band;
689 	u8 primary_channel_idx;
690 
691 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
692 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
693 
694 	/* assign the center channel used while 20M bw is selected */
695 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
696 
697 	/* assign the center channel used while current bw is selected */
698 	cch_by_bw[bandwidth] = center_channel;
699 
700 	switch (bandwidth) {
701 	case RTW_CHANNEL_WIDTH_20:
702 	default:
703 		primary_channel_idx = RTW_SC_DONT_CARE;
704 		break;
705 	case RTW_CHANNEL_WIDTH_40:
706 		if (primary_freq > center_freq)
707 			primary_channel_idx = RTW_SC_20_UPPER;
708 		else
709 			primary_channel_idx = RTW_SC_20_LOWER;
710 		break;
711 	case RTW_CHANNEL_WIDTH_80:
712 		if (primary_freq > center_freq) {
713 			if (primary_freq - center_freq == 10)
714 				primary_channel_idx = RTW_SC_20_UPPER;
715 			else
716 				primary_channel_idx = RTW_SC_20_UPMOST;
717 
718 			/* assign the center channel used
719 			 * while 40M bw is selected
720 			 */
721 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
722 		} else {
723 			if (center_freq - primary_freq == 10)
724 				primary_channel_idx = RTW_SC_20_LOWER;
725 			else
726 				primary_channel_idx = RTW_SC_20_LOWEST;
727 
728 			/* assign the center channel used
729 			 * while 40M bw is selected
730 			 */
731 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
732 		}
733 		break;
734 	}
735 
736 	switch (center_channel) {
737 	case 1 ... 14:
738 		sar_band = RTW_SAR_BAND_0;
739 		break;
740 	case 36 ... 64:
741 		sar_band = RTW_SAR_BAND_1;
742 		break;
743 	case 100 ... 144:
744 		sar_band = RTW_SAR_BAND_3;
745 		break;
746 	case 149 ... 177:
747 		sar_band = RTW_SAR_BAND_4;
748 		break;
749 	default:
750 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
751 		sar_band = RTW_SAR_BAND_0;
752 		break;
753 	}
754 
755 	hal->current_primary_channel_index = primary_channel_idx;
756 	hal->current_band_width = bandwidth;
757 	hal->primary_channel = primary_channel;
758 	hal->current_channel = center_channel;
759 	hal->current_band_type = band;
760 	hal->sar_band = sar_band;
761 }
762 
763 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
764 			    struct rtw_channel_params *chan_params)
765 {
766 	struct ieee80211_channel *channel = chandef->chan;
767 	enum nl80211_chan_width width = chandef->width;
768 	u32 primary_freq, center_freq;
769 	u8 center_chan;
770 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
771 
772 	center_chan = channel->hw_value;
773 	primary_freq = channel->center_freq;
774 	center_freq = chandef->center_freq1;
775 
776 	switch (width) {
777 	case NL80211_CHAN_WIDTH_20_NOHT:
778 	case NL80211_CHAN_WIDTH_20:
779 		bandwidth = RTW_CHANNEL_WIDTH_20;
780 		break;
781 	case NL80211_CHAN_WIDTH_40:
782 		bandwidth = RTW_CHANNEL_WIDTH_40;
783 		if (primary_freq > center_freq)
784 			center_chan -= 2;
785 		else
786 			center_chan += 2;
787 		break;
788 	case NL80211_CHAN_WIDTH_80:
789 		bandwidth = RTW_CHANNEL_WIDTH_80;
790 		if (primary_freq > center_freq) {
791 			if (primary_freq - center_freq == 10)
792 				center_chan -= 2;
793 			else
794 				center_chan -= 6;
795 		} else {
796 			if (center_freq - primary_freq == 10)
797 				center_chan += 2;
798 			else
799 				center_chan += 6;
800 		}
801 		break;
802 	default:
803 		center_chan = 0;
804 		break;
805 	}
806 
807 	chan_params->center_chan = center_chan;
808 	chan_params->bandwidth = bandwidth;
809 	chan_params->primary_chan = channel->hw_value;
810 }
811 
812 void rtw_set_channel(struct rtw_dev *rtwdev)
813 {
814 	const struct rtw_chip_info *chip = rtwdev->chip;
815 	struct ieee80211_hw *hw = rtwdev->hw;
816 	struct rtw_hal *hal = &rtwdev->hal;
817 	struct rtw_channel_params ch_param;
818 	u8 center_chan, primary_chan, bandwidth, band;
819 
820 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
821 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
822 		return;
823 
824 	center_chan = ch_param.center_chan;
825 	primary_chan = ch_param.primary_chan;
826 	bandwidth = ch_param.bandwidth;
827 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
828 
829 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
830 
831 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
832 			       hal->current_primary_channel_index);
833 
834 	if (hal->current_band_type == RTW_BAND_5G) {
835 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
836 	} else {
837 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
838 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
839 		else
840 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
841 	}
842 
843 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
844 
845 	/* if the channel isn't set for scanning, we will do RF calibration
846 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
847 	 * during scanning on each channel takes too long.
848 	 */
849 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
850 		rtwdev->need_rfk = true;
851 }
852 
853 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
854 {
855 	const struct rtw_chip_info *chip = rtwdev->chip;
856 
857 	if (rtwdev->need_rfk) {
858 		rtwdev->need_rfk = false;
859 		chip->ops->phy_calibration(rtwdev);
860 	}
861 }
862 
863 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
864 {
865 	int i;
866 
867 	for (i = 0; i < ETH_ALEN; i++)
868 		rtw_write8(rtwdev, start + i, addr[i]);
869 }
870 
871 void rtw_vif_port_config(struct rtw_dev *rtwdev,
872 			 struct rtw_vif *rtwvif,
873 			 u32 config)
874 {
875 	u32 addr, mask;
876 
877 	if (config & PORT_SET_MAC_ADDR) {
878 		addr = rtwvif->conf->mac_addr.addr;
879 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
880 	}
881 	if (config & PORT_SET_BSSID) {
882 		addr = rtwvif->conf->bssid.addr;
883 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
884 	}
885 	if (config & PORT_SET_NET_TYPE) {
886 		addr = rtwvif->conf->net_type.addr;
887 		mask = rtwvif->conf->net_type.mask;
888 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
889 	}
890 	if (config & PORT_SET_AID) {
891 		addr = rtwvif->conf->aid.addr;
892 		mask = rtwvif->conf->aid.mask;
893 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
894 	}
895 	if (config & PORT_SET_BCN_CTRL) {
896 		addr = rtwvif->conf->bcn_ctrl.addr;
897 		mask = rtwvif->conf->bcn_ctrl.mask;
898 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
899 	}
900 }
901 
902 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
903 {
904 	u8 bw = 0;
905 
906 	switch (bw_cap) {
907 	case EFUSE_HW_CAP_IGNORE:
908 	case EFUSE_HW_CAP_SUPP_BW80:
909 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
910 		fallthrough;
911 	case EFUSE_HW_CAP_SUPP_BW40:
912 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
913 		fallthrough;
914 	default:
915 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
916 		break;
917 	}
918 
919 	return bw;
920 }
921 
922 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
923 {
924 	const struct rtw_chip_info *chip = rtwdev->chip;
925 	struct rtw_hal *hal = &rtwdev->hal;
926 
927 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
928 	    hw_ant_num >= hal->rf_path_num)
929 		return;
930 
931 	switch (hw_ant_num) {
932 	case 1:
933 		hal->rf_type = RF_1T1R;
934 		hal->rf_path_num = 1;
935 		if (!chip->fix_rf_phy_num)
936 			hal->rf_phy_num = hal->rf_path_num;
937 		hal->antenna_tx = BB_PATH_A;
938 		hal->antenna_rx = BB_PATH_A;
939 		break;
940 	default:
941 		WARN(1, "invalid hw configuration from efuse\n");
942 		break;
943 	}
944 }
945 
946 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
947 {
948 	u64 ra_mask = 0;
949 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
950 	u8 vht_mcs_cap;
951 	int i, nss;
952 
953 	/* 4SS, every two bits for MCS7/8/9 */
954 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
955 		vht_mcs_cap = mcs_map & 0x3;
956 		switch (vht_mcs_cap) {
957 		case 2: /* MCS9 */
958 			ra_mask |= 0x3ffULL << nss;
959 			break;
960 		case 1: /* MCS8 */
961 			ra_mask |= 0x1ffULL << nss;
962 			break;
963 		case 0: /* MCS7 */
964 			ra_mask |= 0x0ffULL << nss;
965 			break;
966 		default:
967 			break;
968 		}
969 	}
970 
971 	return ra_mask;
972 }
973 
974 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
975 {
976 	u8 rate_id = 0;
977 
978 	switch (wireless_set) {
979 	case WIRELESS_CCK:
980 		rate_id = RTW_RATEID_B_20M;
981 		break;
982 	case WIRELESS_OFDM:
983 		rate_id = RTW_RATEID_G;
984 		break;
985 	case WIRELESS_CCK | WIRELESS_OFDM:
986 		rate_id = RTW_RATEID_BG;
987 		break;
988 	case WIRELESS_OFDM | WIRELESS_HT:
989 		if (tx_num == 1)
990 			rate_id = RTW_RATEID_GN_N1SS;
991 		else if (tx_num == 2)
992 			rate_id = RTW_RATEID_GN_N2SS;
993 		else if (tx_num == 3)
994 			rate_id = RTW_RATEID_ARFR5_N_3SS;
995 		break;
996 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
997 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
998 			if (tx_num == 1)
999 				rate_id = RTW_RATEID_BGN_40M_1SS;
1000 			else if (tx_num == 2)
1001 				rate_id = RTW_RATEID_BGN_40M_2SS;
1002 			else if (tx_num == 3)
1003 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1004 			else if (tx_num == 4)
1005 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1006 		} else {
1007 			if (tx_num == 1)
1008 				rate_id = RTW_RATEID_BGN_20M_1SS;
1009 			else if (tx_num == 2)
1010 				rate_id = RTW_RATEID_BGN_20M_2SS;
1011 			else if (tx_num == 3)
1012 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1013 			else if (tx_num == 4)
1014 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1015 		}
1016 		break;
1017 	case WIRELESS_OFDM | WIRELESS_VHT:
1018 		if (tx_num == 1)
1019 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1020 		else if (tx_num == 2)
1021 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1022 		else if (tx_num == 3)
1023 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1024 		else if (tx_num == 4)
1025 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1026 		break;
1027 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1028 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1029 			if (tx_num == 1)
1030 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1031 			else if (tx_num == 2)
1032 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1033 			else if (tx_num == 3)
1034 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1035 			else if (tx_num == 4)
1036 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1037 		} else {
1038 			if (tx_num == 1)
1039 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1040 			else if (tx_num == 2)
1041 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1042 			else if (tx_num == 3)
1043 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1044 			else if (tx_num == 4)
1045 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1046 		}
1047 		break;
1048 	default:
1049 		break;
1050 	}
1051 
1052 	return rate_id;
1053 }
1054 
1055 #define RA_MASK_CCK_RATES	0x0000f
1056 #define RA_MASK_OFDM_RATES	0x00ff0
1057 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1058 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1059 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1060 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1061 				 RA_MASK_HT_RATES_2SS | \
1062 				 RA_MASK_HT_RATES_3SS)
1063 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1064 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1065 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1066 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1067 				 RA_MASK_VHT_RATES_2SS | \
1068 				 RA_MASK_VHT_RATES_3SS)
1069 #define RA_MASK_CCK_IN_BG	0x00005
1070 #define RA_MASK_CCK_IN_HT	0x00005
1071 #define RA_MASK_CCK_IN_VHT	0x00005
1072 #define RA_MASK_OFDM_IN_VHT	0x00010
1073 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1074 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1075 
1076 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1077 {
1078 	u8 rssi_level = si->rssi_level;
1079 
1080 	if (wireless_set == WIRELESS_CCK)
1081 		return 0xffffffffffffffffULL;
1082 
1083 	if (rssi_level == 0)
1084 		return 0xffffffffffffffffULL;
1085 	else if (rssi_level == 1)
1086 		return 0xfffffffffffffff0ULL;
1087 	else if (rssi_level == 2)
1088 		return 0xffffffffffffefe0ULL;
1089 	else if (rssi_level == 3)
1090 		return 0xffffffffffffcfc0ULL;
1091 	else if (rssi_level == 4)
1092 		return 0xffffffffffff8f80ULL;
1093 	else
1094 		return 0xffffffffffff0f00ULL;
1095 }
1096 
1097 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1098 {
1099 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1100 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1101 
1102 	if (ra_mask == 0)
1103 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1104 
1105 	return ra_mask;
1106 }
1107 
1108 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1109 			     u64 ra_mask, bool is_vht_enable)
1110 {
1111 	struct rtw_hal *hal = &rtwdev->hal;
1112 	const struct cfg80211_bitrate_mask *mask = si->mask;
1113 	u64 cfg_mask = GENMASK_ULL(63, 0);
1114 	u8 band;
1115 
1116 	if (!si->use_cfg_mask)
1117 		return ra_mask;
1118 
1119 	band = hal->current_band_type;
1120 	if (band == RTW_BAND_2G) {
1121 		band = NL80211_BAND_2GHZ;
1122 		cfg_mask = mask->control[band].legacy;
1123 	} else if (band == RTW_BAND_5G) {
1124 		band = NL80211_BAND_5GHZ;
1125 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1126 					   RA_MASK_OFDM_RATES);
1127 	}
1128 
1129 	if (!is_vht_enable) {
1130 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1131 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1132 						    RA_MASK_HT_RATES_1SS);
1133 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1134 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1135 						    RA_MASK_HT_RATES_2SS);
1136 	} else {
1137 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1138 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1139 						    RA_MASK_VHT_RATES_1SS);
1140 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1141 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1142 						    RA_MASK_VHT_RATES_2SS);
1143 	}
1144 
1145 	ra_mask &= cfg_mask;
1146 
1147 	return ra_mask;
1148 }
1149 
1150 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1151 			 bool reset_ra_mask)
1152 {
1153 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1154 	struct ieee80211_sta *sta = si->sta;
1155 	struct rtw_efuse *efuse = &rtwdev->efuse;
1156 	struct rtw_hal *hal = &rtwdev->hal;
1157 	u8 wireless_set;
1158 	u8 bw_mode;
1159 	u8 rate_id;
1160 	u8 rf_type = RF_1T1R;
1161 	u8 stbc_en = 0;
1162 	u8 ldpc_en = 0;
1163 	u8 tx_num = 1;
1164 	u64 ra_mask = 0;
1165 	u64 ra_mask_bak = 0;
1166 	bool is_vht_enable = false;
1167 	bool is_support_sgi = false;
1168 
1169 	if (sta->deflink.vht_cap.vht_supported) {
1170 		is_vht_enable = true;
1171 		ra_mask |= get_vht_ra_mask(sta);
1172 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1173 			stbc_en = VHT_STBC_EN;
1174 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1175 			ldpc_en = VHT_LDPC_EN;
1176 	} else if (sta->deflink.ht_cap.ht_supported) {
1177 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1178 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1179 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1180 			stbc_en = HT_STBC_EN;
1181 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1182 			ldpc_en = HT_LDPC_EN;
1183 	}
1184 
1185 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1186 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1187 
1188 	if (hal->current_band_type == RTW_BAND_5G) {
1189 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1190 		ra_mask_bak = ra_mask;
1191 		if (sta->deflink.vht_cap.vht_supported) {
1192 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1193 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1194 		} else if (sta->deflink.ht_cap.ht_supported) {
1195 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1196 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1197 		} else {
1198 			wireless_set = WIRELESS_OFDM;
1199 		}
1200 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1201 	} else if (hal->current_band_type == RTW_BAND_2G) {
1202 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1203 		ra_mask_bak = ra_mask;
1204 		if (sta->deflink.vht_cap.vht_supported) {
1205 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1206 				   RA_MASK_OFDM_IN_VHT;
1207 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1208 				       WIRELESS_HT | WIRELESS_VHT;
1209 		} else if (sta->deflink.ht_cap.ht_supported) {
1210 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1211 				   RA_MASK_OFDM_IN_HT_2G;
1212 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1213 				       WIRELESS_HT;
1214 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1215 			wireless_set = WIRELESS_CCK;
1216 		} else {
1217 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1218 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1219 		}
1220 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1221 	} else {
1222 		rtw_err(rtwdev, "Unknown band type\n");
1223 		ra_mask_bak = ra_mask;
1224 		wireless_set = 0;
1225 	}
1226 
1227 	switch (sta->deflink.bandwidth) {
1228 	case IEEE80211_STA_RX_BW_80:
1229 		bw_mode = RTW_CHANNEL_WIDTH_80;
1230 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1231 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1232 		break;
1233 	case IEEE80211_STA_RX_BW_40:
1234 		bw_mode = RTW_CHANNEL_WIDTH_40;
1235 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1236 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1237 		break;
1238 	default:
1239 		bw_mode = RTW_CHANNEL_WIDTH_20;
1240 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1241 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1242 		break;
1243 	}
1244 
1245 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1246 		tx_num = 2;
1247 		rf_type = RF_2T2R;
1248 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1249 		tx_num = 2;
1250 		rf_type = RF_2T2R;
1251 	}
1252 
1253 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1254 
1255 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1256 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1257 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1258 
1259 	si->bw_mode = bw_mode;
1260 	si->stbc_en = stbc_en;
1261 	si->ldpc_en = ldpc_en;
1262 	si->rf_type = rf_type;
1263 	si->wireless_set = wireless_set;
1264 	si->sgi_enable = is_support_sgi;
1265 	si->vht_enable = is_vht_enable;
1266 	si->ra_mask = ra_mask;
1267 	si->rate_id = rate_id;
1268 
1269 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1270 }
1271 
1272 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1273 {
1274 	const struct rtw_chip_info *chip = rtwdev->chip;
1275 	struct rtw_fw_state *fw;
1276 
1277 	fw = &rtwdev->fw;
1278 	wait_for_completion(&fw->completion);
1279 	if (!fw->firmware)
1280 		return -EINVAL;
1281 
1282 	if (chip->wow_fw_name) {
1283 		fw = &rtwdev->wow_fw;
1284 		wait_for_completion(&fw->completion);
1285 		if (!fw->firmware)
1286 			return -EINVAL;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1293 						       struct rtw_fw_state *fw)
1294 {
1295 	const struct rtw_chip_info *chip = rtwdev->chip;
1296 
1297 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1298 	    !fw->feature)
1299 		return LPS_DEEP_MODE_NONE;
1300 
1301 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1302 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1303 		return LPS_DEEP_MODE_PG;
1304 
1305 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1306 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1307 		return LPS_DEEP_MODE_LCLK;
1308 
1309 	return LPS_DEEP_MODE_NONE;
1310 }
1311 
1312 static int rtw_power_on(struct rtw_dev *rtwdev)
1313 {
1314 	const struct rtw_chip_info *chip = rtwdev->chip;
1315 	struct rtw_fw_state *fw = &rtwdev->fw;
1316 	bool wifi_only;
1317 	int ret;
1318 
1319 	ret = rtw_hci_setup(rtwdev);
1320 	if (ret) {
1321 		rtw_err(rtwdev, "failed to setup hci\n");
1322 		goto err;
1323 	}
1324 
1325 	/* power on MAC before firmware downloaded */
1326 	ret = rtw_mac_power_on(rtwdev);
1327 	if (ret) {
1328 		rtw_err(rtwdev, "failed to power on mac\n");
1329 		goto err;
1330 	}
1331 
1332 	ret = rtw_wait_firmware_completion(rtwdev);
1333 	if (ret) {
1334 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1335 		goto err_off;
1336 	}
1337 
1338 	ret = rtw_download_firmware(rtwdev, fw);
1339 	if (ret) {
1340 		rtw_err(rtwdev, "failed to download firmware\n");
1341 		goto err_off;
1342 	}
1343 
1344 	/* config mac after firmware downloaded */
1345 	ret = rtw_mac_init(rtwdev);
1346 	if (ret) {
1347 		rtw_err(rtwdev, "failed to configure mac\n");
1348 		goto err_off;
1349 	}
1350 
1351 	chip->ops->phy_set_param(rtwdev);
1352 
1353 	ret = rtw_hci_start(rtwdev);
1354 	if (ret) {
1355 		rtw_err(rtwdev, "failed to start hci\n");
1356 		goto err_off;
1357 	}
1358 
1359 	/* send H2C after HCI has started */
1360 	rtw_fw_send_general_info(rtwdev);
1361 	rtw_fw_send_phydm_info(rtwdev);
1362 
1363 	wifi_only = !rtwdev->efuse.btcoex;
1364 	rtw_coex_power_on_setting(rtwdev);
1365 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1366 
1367 	return 0;
1368 
1369 err_off:
1370 	rtw_mac_power_off(rtwdev);
1371 
1372 err:
1373 	return ret;
1374 }
1375 
1376 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1377 {
1378 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1379 		return;
1380 
1381 	if (start) {
1382 		rtw_fw_scan_notify(rtwdev, true);
1383 	} else {
1384 		reinit_completion(&rtwdev->fw_scan_density);
1385 		rtw_fw_scan_notify(rtwdev, false);
1386 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1387 						 SCAN_NOTIFY_TIMEOUT))
1388 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1389 	}
1390 }
1391 
1392 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1393 			 const u8 *mac_addr, bool hw_scan)
1394 {
1395 	u32 config = 0;
1396 	int ret = 0;
1397 
1398 	rtw_leave_lps(rtwdev);
1399 
1400 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1401 		ret = rtw_leave_ips(rtwdev);
1402 		if (ret) {
1403 			rtw_err(rtwdev, "failed to leave idle state\n");
1404 			return;
1405 		}
1406 	}
1407 
1408 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1409 	config |= PORT_SET_MAC_ADDR;
1410 	rtw_vif_port_config(rtwdev, rtwvif, config);
1411 
1412 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1413 	rtw_core_fw_scan_notify(rtwdev, true);
1414 
1415 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1416 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1417 }
1418 
1419 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1420 			    bool hw_scan)
1421 {
1422 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1423 	u32 config = 0;
1424 
1425 	if (!rtwvif)
1426 		return;
1427 
1428 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1429 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1430 
1431 	rtw_core_fw_scan_notify(rtwdev, false);
1432 
1433 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1434 	config |= PORT_SET_MAC_ADDR;
1435 	rtw_vif_port_config(rtwdev, rtwvif, config);
1436 
1437 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1438 
1439 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1440 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1441 }
1442 
1443 int rtw_core_start(struct rtw_dev *rtwdev)
1444 {
1445 	int ret;
1446 
1447 	ret = rtw_power_on(rtwdev);
1448 	if (ret)
1449 		return ret;
1450 
1451 	rtw_sec_enable_sec_engine(rtwdev);
1452 
1453 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1454 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1455 
1456 	/* rcr reset after powered on */
1457 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1458 
1459 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1460 				     RTW_WATCH_DOG_DELAY_TIME);
1461 
1462 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1463 
1464 	return 0;
1465 }
1466 
1467 static void rtw_power_off(struct rtw_dev *rtwdev)
1468 {
1469 	rtw_hci_stop(rtwdev);
1470 	rtw_coex_power_off_setting(rtwdev);
1471 	rtw_mac_power_off(rtwdev);
1472 }
1473 
1474 void rtw_core_stop(struct rtw_dev *rtwdev)
1475 {
1476 	struct rtw_coex *coex = &rtwdev->coex;
1477 
1478 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1479 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1480 
1481 	mutex_unlock(&rtwdev->mutex);
1482 
1483 	cancel_work_sync(&rtwdev->c2h_work);
1484 	cancel_work_sync(&rtwdev->update_beacon_work);
1485 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1486 	cancel_delayed_work_sync(&coex->bt_relink_work);
1487 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1488 	cancel_delayed_work_sync(&coex->defreeze_work);
1489 	cancel_delayed_work_sync(&coex->wl_remain_work);
1490 	cancel_delayed_work_sync(&coex->bt_remain_work);
1491 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1492 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1493 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1494 
1495 	mutex_lock(&rtwdev->mutex);
1496 
1497 	rtw_power_off(rtwdev);
1498 }
1499 
1500 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1501 			    struct ieee80211_sta_ht_cap *ht_cap)
1502 {
1503 	const struct rtw_chip_info *chip = rtwdev->chip;
1504 	struct rtw_efuse *efuse = &rtwdev->efuse;
1505 
1506 	ht_cap->ht_supported = true;
1507 	ht_cap->cap = 0;
1508 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1509 			IEEE80211_HT_CAP_MAX_AMSDU |
1510 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1511 
1512 	if (rtw_chip_has_rx_ldpc(rtwdev))
1513 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1514 	if (rtw_chip_has_tx_stbc(rtwdev))
1515 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1516 
1517 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1518 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1519 				IEEE80211_HT_CAP_DSSSCCK40 |
1520 				IEEE80211_HT_CAP_SGI_40;
1521 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1522 	ht_cap->ampdu_density = chip->ampdu_density;
1523 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1524 	if (efuse->hw_cap.nss > 1) {
1525 		ht_cap->mcs.rx_mask[0] = 0xFF;
1526 		ht_cap->mcs.rx_mask[1] = 0xFF;
1527 		ht_cap->mcs.rx_mask[4] = 0x01;
1528 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1529 	} else {
1530 		ht_cap->mcs.rx_mask[0] = 0xFF;
1531 		ht_cap->mcs.rx_mask[1] = 0x00;
1532 		ht_cap->mcs.rx_mask[4] = 0x01;
1533 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1534 	}
1535 }
1536 
1537 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1538 			     struct ieee80211_sta_vht_cap *vht_cap)
1539 {
1540 	struct rtw_efuse *efuse = &rtwdev->efuse;
1541 	u16 mcs_map;
1542 	__le16 highest;
1543 
1544 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1545 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1546 		return;
1547 
1548 	vht_cap->vht_supported = true;
1549 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1550 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1551 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1552 		       IEEE80211_VHT_CAP_HTC_VHT |
1553 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1554 		       0;
1555 	if (rtwdev->hal.rf_path_num > 1)
1556 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1557 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1558 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1559 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1560 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1561 
1562 	if (rtw_chip_has_rx_ldpc(rtwdev))
1563 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1564 
1565 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1566 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1567 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1568 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1569 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1570 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1571 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1572 	if (efuse->hw_cap.nss > 1) {
1573 		highest = cpu_to_le16(780);
1574 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1575 	} else {
1576 		highest = cpu_to_le16(390);
1577 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1578 	}
1579 
1580 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1581 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1582 	vht_cap->vht_mcs.rx_highest = highest;
1583 	vht_cap->vht_mcs.tx_highest = highest;
1584 }
1585 
1586 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1587 {
1588 	u16 len;
1589 
1590 	len = rtwdev->chip->max_scan_ie_len;
1591 
1592 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1593 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1594 		len = IEEE80211_MAX_DATA_LEN;
1595 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1596 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1597 
1598 	return len;
1599 }
1600 
1601 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1602 				   const struct rtw_chip_info *chip)
1603 {
1604 	struct rtw_dev *rtwdev = hw->priv;
1605 	struct ieee80211_supported_band *sband;
1606 
1607 	if (chip->band & RTW_BAND_2G) {
1608 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1609 		if (!sband)
1610 			goto err_out;
1611 		if (chip->ht_supported)
1612 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1613 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1614 	}
1615 
1616 	if (chip->band & RTW_BAND_5G) {
1617 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1618 		if (!sband)
1619 			goto err_out;
1620 		if (chip->ht_supported)
1621 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1622 		if (chip->vht_supported)
1623 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1624 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1625 	}
1626 
1627 	return;
1628 
1629 err_out:
1630 	rtw_err(rtwdev, "failed to set supported band\n");
1631 }
1632 
1633 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1634 				     const struct rtw_chip_info *chip)
1635 {
1636 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1637 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1638 }
1639 
1640 static void rtw_vif_smps_iter(void *data, u8 *mac,
1641 			      struct ieee80211_vif *vif)
1642 {
1643 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1644 
1645 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1646 		return;
1647 
1648 	if (rtwdev->hal.txrx_1ss)
1649 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1650 	else
1651 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1652 }
1653 
1654 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1655 {
1656 	const struct rtw_chip_info *chip = rtwdev->chip;
1657 	struct rtw_hal *hal = &rtwdev->hal;
1658 
1659 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1660 		return;
1661 
1662 	rtwdev->hal.txrx_1ss = txrx_1ss;
1663 	if (txrx_1ss)
1664 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1665 	else
1666 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1667 					    hal->antenna_rx, false);
1668 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1669 }
1670 
1671 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1672 				      struct rtw_fw_state *fw)
1673 {
1674 	u32 feature;
1675 	const struct rtw_fw_hdr *fw_hdr =
1676 				(const struct rtw_fw_hdr *)fw->firmware->data;
1677 
1678 	feature = le32_to_cpu(fw_hdr->feature);
1679 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1680 
1681 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1682 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1683 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1684 }
1685 
1686 static void __update_firmware_info(struct rtw_dev *rtwdev,
1687 				   struct rtw_fw_state *fw)
1688 {
1689 	const struct rtw_fw_hdr *fw_hdr =
1690 				(const struct rtw_fw_hdr *)fw->firmware->data;
1691 
1692 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1693 	fw->version = le16_to_cpu(fw_hdr->version);
1694 	fw->sub_version = fw_hdr->subversion;
1695 	fw->sub_index = fw_hdr->subindex;
1696 
1697 	__update_firmware_feature(rtwdev, fw);
1698 }
1699 
1700 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1701 					  struct rtw_fw_state *fw)
1702 {
1703 	struct rtw_fw_hdr_legacy *legacy =
1704 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1705 
1706 	fw->h2c_version = 0;
1707 	fw->version = le16_to_cpu(legacy->version);
1708 	fw->sub_version = legacy->subversion1;
1709 	fw->sub_index = legacy->subversion2;
1710 }
1711 
1712 static void update_firmware_info(struct rtw_dev *rtwdev,
1713 				 struct rtw_fw_state *fw)
1714 {
1715 	if (rtw_chip_wcpu_11n(rtwdev))
1716 		__update_firmware_info_legacy(rtwdev, fw);
1717 	else
1718 		__update_firmware_info(rtwdev, fw);
1719 }
1720 
1721 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1722 {
1723 	struct rtw_fw_state *fw = context;
1724 	struct rtw_dev *rtwdev = fw->rtwdev;
1725 
1726 	if (!firmware || !firmware->data) {
1727 		rtw_err(rtwdev, "failed to request firmware\n");
1728 		complete_all(&fw->completion);
1729 		return;
1730 	}
1731 
1732 	fw->firmware = firmware;
1733 	update_firmware_info(rtwdev, fw);
1734 	complete_all(&fw->completion);
1735 
1736 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1737 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1738 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1739 }
1740 
1741 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1742 {
1743 	const char *fw_name;
1744 	struct rtw_fw_state *fw;
1745 	int ret;
1746 
1747 	switch (type) {
1748 	case RTW_WOWLAN_FW:
1749 		fw = &rtwdev->wow_fw;
1750 		fw_name = rtwdev->chip->wow_fw_name;
1751 		break;
1752 
1753 	case RTW_NORMAL_FW:
1754 		fw = &rtwdev->fw;
1755 		fw_name = rtwdev->chip->fw_name;
1756 		break;
1757 
1758 	default:
1759 		rtw_warn(rtwdev, "unsupported firmware type\n");
1760 		return -ENOENT;
1761 	}
1762 
1763 	fw->type = type;
1764 	fw->rtwdev = rtwdev;
1765 	init_completion(&fw->completion);
1766 
1767 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1768 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1769 	if (ret) {
1770 		rtw_err(rtwdev, "failed to async firmware request\n");
1771 		return ret;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1778 {
1779 	const struct rtw_chip_info *chip = rtwdev->chip;
1780 	struct rtw_hal *hal = &rtwdev->hal;
1781 	struct rtw_efuse *efuse = &rtwdev->efuse;
1782 
1783 	switch (rtw_hci_type(rtwdev)) {
1784 	case RTW_HCI_TYPE_PCIE:
1785 		rtwdev->hci.rpwm_addr = 0x03d9;
1786 		rtwdev->hci.cpwm_addr = 0x03da;
1787 		break;
1788 	case RTW_HCI_TYPE_USB:
1789 		rtwdev->hci.rpwm_addr = 0xfe58;
1790 		rtwdev->hci.cpwm_addr = 0xfe57;
1791 		break;
1792 	default:
1793 		rtw_err(rtwdev, "unsupported hci type\n");
1794 		return -EINVAL;
1795 	}
1796 
1797 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1798 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1799 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1800 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1801 		hal->rf_type = RF_2T2R;
1802 		hal->rf_path_num = 2;
1803 		hal->antenna_tx = BB_PATH_AB;
1804 		hal->antenna_rx = BB_PATH_AB;
1805 	} else {
1806 		hal->rf_type = RF_1T1R;
1807 		hal->rf_path_num = 1;
1808 		hal->antenna_tx = BB_PATH_A;
1809 		hal->antenna_rx = BB_PATH_A;
1810 	}
1811 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1812 			  hal->rf_path_num;
1813 
1814 	efuse->physical_size = chip->phy_efuse_size;
1815 	efuse->logical_size = chip->log_efuse_size;
1816 	efuse->protect_size = chip->ptct_efuse_size;
1817 
1818 	/* default use ack */
1819 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1820 
1821 	hal->bfee_sts_cap = 3;
1822 
1823 	return 0;
1824 }
1825 
1826 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1827 {
1828 	struct rtw_fw_state *fw = &rtwdev->fw;
1829 	int ret;
1830 
1831 	ret = rtw_hci_setup(rtwdev);
1832 	if (ret) {
1833 		rtw_err(rtwdev, "failed to setup hci\n");
1834 		goto err;
1835 	}
1836 
1837 	ret = rtw_mac_power_on(rtwdev);
1838 	if (ret) {
1839 		rtw_err(rtwdev, "failed to power on mac\n");
1840 		goto err;
1841 	}
1842 
1843 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1844 
1845 	wait_for_completion(&fw->completion);
1846 	if (!fw->firmware) {
1847 		ret = -EINVAL;
1848 		rtw_err(rtwdev, "failed to load firmware\n");
1849 		goto err;
1850 	}
1851 
1852 	ret = rtw_download_firmware(rtwdev, fw);
1853 	if (ret) {
1854 		rtw_err(rtwdev, "failed to download firmware\n");
1855 		goto err_off;
1856 	}
1857 
1858 	return 0;
1859 
1860 err_off:
1861 	rtw_mac_power_off(rtwdev);
1862 
1863 err:
1864 	return ret;
1865 }
1866 
1867 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1868 {
1869 	struct rtw_efuse *efuse = &rtwdev->efuse;
1870 	u8 hw_feature[HW_FEATURE_LEN];
1871 	u8 id;
1872 	u8 bw;
1873 	int i;
1874 
1875 	id = rtw_read8(rtwdev, REG_C2HEVT);
1876 	if (id != C2H_HW_FEATURE_REPORT) {
1877 		rtw_err(rtwdev, "failed to read hw feature report\n");
1878 		return -EBUSY;
1879 	}
1880 
1881 	for (i = 0; i < HW_FEATURE_LEN; i++)
1882 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1883 
1884 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1885 
1886 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1887 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1888 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1889 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1890 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1891 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1892 
1893 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1894 
1895 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1896 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1897 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1898 
1899 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1900 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1901 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1902 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1903 
1904 	return 0;
1905 }
1906 
1907 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1908 {
1909 	rtw_hci_stop(rtwdev);
1910 	rtw_mac_power_off(rtwdev);
1911 }
1912 
1913 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1914 {
1915 	struct rtw_efuse *efuse = &rtwdev->efuse;
1916 	int ret;
1917 
1918 	mutex_lock(&rtwdev->mutex);
1919 
1920 	/* power on mac to read efuse */
1921 	ret = rtw_chip_efuse_enable(rtwdev);
1922 	if (ret)
1923 		goto out_unlock;
1924 
1925 	ret = rtw_parse_efuse_map(rtwdev);
1926 	if (ret)
1927 		goto out_disable;
1928 
1929 	ret = rtw_dump_hw_feature(rtwdev);
1930 	if (ret)
1931 		goto out_disable;
1932 
1933 	ret = rtw_check_supported_rfe(rtwdev);
1934 	if (ret)
1935 		goto out_disable;
1936 
1937 	if (efuse->crystal_cap == 0xff)
1938 		efuse->crystal_cap = 0;
1939 	if (efuse->pa_type_2g == 0xff)
1940 		efuse->pa_type_2g = 0;
1941 	if (efuse->pa_type_5g == 0xff)
1942 		efuse->pa_type_5g = 0;
1943 	if (efuse->lna_type_2g == 0xff)
1944 		efuse->lna_type_2g = 0;
1945 	if (efuse->lna_type_5g == 0xff)
1946 		efuse->lna_type_5g = 0;
1947 	if (efuse->channel_plan == 0xff)
1948 		efuse->channel_plan = 0x7f;
1949 	if (efuse->rf_board_option == 0xff)
1950 		efuse->rf_board_option = 0;
1951 	if (efuse->bt_setting & BIT(0))
1952 		efuse->share_ant = true;
1953 	if (efuse->regd == 0xff)
1954 		efuse->regd = 0;
1955 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1956 		efuse->tx_bb_swing_setting_2g = 0;
1957 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1958 		efuse->tx_bb_swing_setting_5g = 0;
1959 
1960 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1961 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1962 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1963 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1964 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1965 
1966 out_disable:
1967 	rtw_chip_efuse_disable(rtwdev);
1968 
1969 out_unlock:
1970 	mutex_unlock(&rtwdev->mutex);
1971 	return ret;
1972 }
1973 
1974 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1975 {
1976 	struct rtw_hal *hal = &rtwdev->hal;
1977 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1978 
1979 	if (!rfe_def)
1980 		return -ENODEV;
1981 
1982 	rtw_phy_setup_phy_cond(rtwdev, 0);
1983 
1984 	rtw_phy_init_tx_power(rtwdev);
1985 	if (rfe_def->agc_btg_tbl)
1986 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1987 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1988 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1989 	rtw_phy_tx_power_by_rate_config(hal);
1990 	rtw_phy_tx_power_limit_config(hal);
1991 
1992 	return 0;
1993 }
1994 
1995 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1996 {
1997 	int ret;
1998 
1999 	ret = rtw_chip_parameter_setup(rtwdev);
2000 	if (ret) {
2001 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2002 		goto err_out;
2003 	}
2004 
2005 	ret = rtw_chip_efuse_info_setup(rtwdev);
2006 	if (ret) {
2007 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2008 		goto err_out;
2009 	}
2010 
2011 	ret = rtw_chip_board_info_setup(rtwdev);
2012 	if (ret) {
2013 		rtw_err(rtwdev, "failed to setup chip board info\n");
2014 		goto err_out;
2015 	}
2016 
2017 	return 0;
2018 
2019 err_out:
2020 	return ret;
2021 }
2022 EXPORT_SYMBOL(rtw_chip_info_setup);
2023 
2024 static void rtw_stats_init(struct rtw_dev *rtwdev)
2025 {
2026 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2027 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2028 	int i;
2029 
2030 	ewma_tp_init(&stats->tx_ewma_tp);
2031 	ewma_tp_init(&stats->rx_ewma_tp);
2032 
2033 	for (i = 0; i < RTW_EVM_NUM; i++)
2034 		ewma_evm_init(&dm_info->ewma_evm[i]);
2035 	for (i = 0; i < RTW_SNR_NUM; i++)
2036 		ewma_snr_init(&dm_info->ewma_snr[i]);
2037 }
2038 
2039 int rtw_core_init(struct rtw_dev *rtwdev)
2040 {
2041 	const struct rtw_chip_info *chip = rtwdev->chip;
2042 	struct rtw_coex *coex = &rtwdev->coex;
2043 	int ret;
2044 
2045 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2046 	INIT_LIST_HEAD(&rtwdev->txqs);
2047 
2048 	timer_setup(&rtwdev->tx_report.purge_timer,
2049 		    rtw_tx_report_purge_timer, 0);
2050 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2051 	if (!rtwdev->tx_wq) {
2052 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2053 		return -ENOMEM;
2054 	}
2055 
2056 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2057 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2058 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2059 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2060 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2061 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2062 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2063 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2064 			  rtw_coex_bt_multi_link_remain_work);
2065 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2066 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2067 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2068 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2069 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2070 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2071 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2072 	skb_queue_head_init(&rtwdev->c2h_queue);
2073 	skb_queue_head_init(&rtwdev->coex.queue);
2074 	skb_queue_head_init(&rtwdev->tx_report.queue);
2075 
2076 	spin_lock_init(&rtwdev->txq_lock);
2077 	spin_lock_init(&rtwdev->tx_report.q_lock);
2078 
2079 	mutex_init(&rtwdev->mutex);
2080 	mutex_init(&rtwdev->hal.tx_power_mutex);
2081 
2082 	init_waitqueue_head(&rtwdev->coex.wait);
2083 	init_completion(&rtwdev->lps_leave_check);
2084 	init_completion(&rtwdev->fw_scan_density);
2085 
2086 	rtwdev->sec.total_cam_num = 32;
2087 	rtwdev->hal.current_channel = 1;
2088 	rtwdev->dm_info.fix_rate = U8_MAX;
2089 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2090 
2091 	rtw_stats_init(rtwdev);
2092 
2093 	/* default rx filter setting */
2094 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2095 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2096 			  BIT_AB | BIT_AM | BIT_APM;
2097 
2098 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2099 	if (ret) {
2100 		rtw_warn(rtwdev, "no firmware loaded\n");
2101 		goto out;
2102 	}
2103 
2104 	if (chip->wow_fw_name) {
2105 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2106 		if (ret) {
2107 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2108 			wait_for_completion(&rtwdev->fw.completion);
2109 			if (rtwdev->fw.firmware)
2110 				release_firmware(rtwdev->fw.firmware);
2111 			goto out;
2112 		}
2113 	}
2114 
2115 	return 0;
2116 
2117 out:
2118 	destroy_workqueue(rtwdev->tx_wq);
2119 	return ret;
2120 }
2121 EXPORT_SYMBOL(rtw_core_init);
2122 
2123 void rtw_core_deinit(struct rtw_dev *rtwdev)
2124 {
2125 	struct rtw_fw_state *fw = &rtwdev->fw;
2126 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2127 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2128 	unsigned long flags;
2129 
2130 	rtw_wait_firmware_completion(rtwdev);
2131 
2132 	if (fw->firmware)
2133 		release_firmware(fw->firmware);
2134 
2135 	if (wow_fw->firmware)
2136 		release_firmware(wow_fw->firmware);
2137 
2138 	destroy_workqueue(rtwdev->tx_wq);
2139 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2140 	skb_queue_purge(&rtwdev->tx_report.queue);
2141 	skb_queue_purge(&rtwdev->coex.queue);
2142 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2143 
2144 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2145 				 build_list) {
2146 		list_del(&rsvd_pkt->build_list);
2147 		kfree(rsvd_pkt);
2148 	}
2149 
2150 	mutex_destroy(&rtwdev->mutex);
2151 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2152 }
2153 EXPORT_SYMBOL(rtw_core_deinit);
2154 
2155 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2156 {
2157 	struct rtw_hal *hal = &rtwdev->hal;
2158 	int max_tx_headroom = 0;
2159 	int ret;
2160 
2161 	/* TODO: USB & SDIO may need extra room? */
2162 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2163 
2164 	hw->extra_tx_headroom = max_tx_headroom;
2165 	hw->queues = IEEE80211_NUM_ACS;
2166 	hw->txq_data_size = sizeof(struct rtw_txq);
2167 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2168 	hw->vif_data_size = sizeof(struct rtw_vif);
2169 
2170 	ieee80211_hw_set(hw, SIGNAL_DBM);
2171 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2172 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2173 	ieee80211_hw_set(hw, MFP_CAPABLE);
2174 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2175 	ieee80211_hw_set(hw, SUPPORTS_PS);
2176 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2177 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2178 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2179 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2180 	ieee80211_hw_set(hw, TX_AMSDU);
2181 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2182 
2183 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2184 				     BIT(NL80211_IFTYPE_AP) |
2185 				     BIT(NL80211_IFTYPE_ADHOC) |
2186 				     BIT(NL80211_IFTYPE_MESH_POINT);
2187 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2188 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2189 
2190 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2191 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2192 
2193 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2194 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2195 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2196 
2197 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2198 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2199 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2200 
2201 #ifdef CONFIG_PM
2202 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2203 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2204 #endif
2205 	rtw_set_supported_band(hw, rtwdev->chip);
2206 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2207 
2208 	hw->wiphy->sar_capa = &rtw_sar_capa;
2209 
2210 	ret = rtw_regd_init(rtwdev);
2211 	if (ret) {
2212 		rtw_err(rtwdev, "failed to init regd\n");
2213 		return ret;
2214 	}
2215 
2216 	ret = ieee80211_register_hw(hw);
2217 	if (ret) {
2218 		rtw_err(rtwdev, "failed to register hw\n");
2219 		return ret;
2220 	}
2221 
2222 	ret = rtw_regd_hint(rtwdev);
2223 	if (ret) {
2224 		rtw_err(rtwdev, "failed to hint regd\n");
2225 		return ret;
2226 	}
2227 
2228 	rtw_debugfs_init(rtwdev);
2229 
2230 	rtwdev->bf_info.bfer_mu_cnt = 0;
2231 	rtwdev->bf_info.bfer_su_cnt = 0;
2232 
2233 	return 0;
2234 }
2235 EXPORT_SYMBOL(rtw_register_hw);
2236 
2237 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2238 {
2239 	const struct rtw_chip_info *chip = rtwdev->chip;
2240 
2241 	ieee80211_unregister_hw(hw);
2242 	rtw_unset_supported_band(hw, chip);
2243 }
2244 EXPORT_SYMBOL(rtw_unregister_hw);
2245 
2246 MODULE_AUTHOR("Realtek Corporation");
2247 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2248 MODULE_LICENSE("Dual BSD/GPL");
2249