xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/main.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 
22 bool rtw_disable_lps_deep_mode;
23 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
24 bool rtw_bf_support = true;
25 unsigned int rtw_debug_mask;
26 EXPORT_SYMBOL(rtw_debug_mask);
27 /* EDCCA is enabled during normal behavior. For debugging purpose in
28  * a noisy environment, it can be disabled via edcca debugfs. Because
29  * all rtw88 devices will probably be affected if environment is noisy,
30  * rtw_edcca_enabled is just declared by driver instead of by device.
31  * So, turning it off will take effect for all rtw88 devices before
32  * there is a tough reason to maintain rtw_edcca_enabled by device.
33  */
34 bool rtw_edcca_enabled = true;
35 
36 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
37 module_param_named(support_bf, rtw_bf_support, bool, 0644);
38 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
39 
40 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
41 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
42 MODULE_PARM_DESC(debug_mask, "Debugging mask");
43 
44 static struct ieee80211_channel rtw_channeltable_2g[] = {
45 	{.center_freq = 2412, .hw_value = 1,},
46 	{.center_freq = 2417, .hw_value = 2,},
47 	{.center_freq = 2422, .hw_value = 3,},
48 	{.center_freq = 2427, .hw_value = 4,},
49 	{.center_freq = 2432, .hw_value = 5,},
50 	{.center_freq = 2437, .hw_value = 6,},
51 	{.center_freq = 2442, .hw_value = 7,},
52 	{.center_freq = 2447, .hw_value = 8,},
53 	{.center_freq = 2452, .hw_value = 9,},
54 	{.center_freq = 2457, .hw_value = 10,},
55 	{.center_freq = 2462, .hw_value = 11,},
56 	{.center_freq = 2467, .hw_value = 12,},
57 	{.center_freq = 2472, .hw_value = 13,},
58 	{.center_freq = 2484, .hw_value = 14,},
59 };
60 
61 static struct ieee80211_channel rtw_channeltable_5g[] = {
62 	{.center_freq = 5180, .hw_value = 36,},
63 	{.center_freq = 5200, .hw_value = 40,},
64 	{.center_freq = 5220, .hw_value = 44,},
65 	{.center_freq = 5240, .hw_value = 48,},
66 	{.center_freq = 5260, .hw_value = 52,},
67 	{.center_freq = 5280, .hw_value = 56,},
68 	{.center_freq = 5300, .hw_value = 60,},
69 	{.center_freq = 5320, .hw_value = 64,},
70 	{.center_freq = 5500, .hw_value = 100,},
71 	{.center_freq = 5520, .hw_value = 104,},
72 	{.center_freq = 5540, .hw_value = 108,},
73 	{.center_freq = 5560, .hw_value = 112,},
74 	{.center_freq = 5580, .hw_value = 116,},
75 	{.center_freq = 5600, .hw_value = 120,},
76 	{.center_freq = 5620, .hw_value = 124,},
77 	{.center_freq = 5640, .hw_value = 128,},
78 	{.center_freq = 5660, .hw_value = 132,},
79 	{.center_freq = 5680, .hw_value = 136,},
80 	{.center_freq = 5700, .hw_value = 140,},
81 	{.center_freq = 5720, .hw_value = 144,},
82 	{.center_freq = 5745, .hw_value = 149,},
83 	{.center_freq = 5765, .hw_value = 153,},
84 	{.center_freq = 5785, .hw_value = 157,},
85 	{.center_freq = 5805, .hw_value = 161,},
86 	{.center_freq = 5825, .hw_value = 165,
87 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
88 };
89 
90 static struct ieee80211_rate rtw_ratetable[] = {
91 	{.bitrate = 10, .hw_value = 0x00,},
92 	{.bitrate = 20, .hw_value = 0x01,},
93 	{.bitrate = 55, .hw_value = 0x02,},
94 	{.bitrate = 110, .hw_value = 0x03,},
95 	{.bitrate = 60, .hw_value = 0x04,},
96 	{.bitrate = 90, .hw_value = 0x05,},
97 	{.bitrate = 120, .hw_value = 0x06,},
98 	{.bitrate = 180, .hw_value = 0x07,},
99 	{.bitrate = 240, .hw_value = 0x08,},
100 	{.bitrate = 360, .hw_value = 0x09,},
101 	{.bitrate = 480, .hw_value = 0x0a,},
102 	{.bitrate = 540, .hw_value = 0x0b,},
103 };
104 
105 u16 rtw_desc_to_bitrate(u8 desc_rate)
106 {
107 	struct ieee80211_rate rate;
108 
109 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
110 		return 0;
111 
112 	rate = rtw_ratetable[desc_rate];
113 
114 	return rate.bitrate;
115 }
116 
117 static struct ieee80211_supported_band rtw_band_2ghz = {
118 	.band = NL80211_BAND_2GHZ,
119 
120 	.channels = rtw_channeltable_2g,
121 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
122 
123 	.bitrates = rtw_ratetable,
124 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
125 
126 	.ht_cap = {0},
127 	.vht_cap = {0},
128 };
129 
130 static struct ieee80211_supported_band rtw_band_5ghz = {
131 	.band = NL80211_BAND_5GHZ,
132 
133 	.channels = rtw_channeltable_5g,
134 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
135 
136 	/* 5G has no CCK rates */
137 	.bitrates = rtw_ratetable + 4,
138 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
139 
140 	.ht_cap = {0},
141 	.vht_cap = {0},
142 };
143 
144 struct rtw_watch_dog_iter_data {
145 	struct rtw_dev *rtwdev;
146 	struct rtw_vif *rtwvif;
147 };
148 
149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
150 {
151 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
152 	u8 fix_rate_enable = 0;
153 	u8 new_csi_rate_idx;
154 
155 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
156 	    rtwvif->bfee.role != RTW_BFEE_MU)
157 		return;
158 
159 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
160 			      bf_info->cur_csi_rpt_rate,
161 			      fix_rate_enable, &new_csi_rate_idx);
162 
163 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
164 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
165 }
166 
167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
168 				   struct ieee80211_vif *vif)
169 {
170 	struct rtw_watch_dog_iter_data *iter_data = data;
171 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
172 
173 	if (vif->type == NL80211_IFTYPE_STATION)
174 		if (vif->bss_conf.assoc)
175 			iter_data->rtwvif = rtwvif;
176 
177 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
178 
179 	rtwvif->stats.tx_unicast = 0;
180 	rtwvif->stats.rx_unicast = 0;
181 	rtwvif->stats.tx_cnt = 0;
182 	rtwvif->stats.rx_cnt = 0;
183 }
184 
185 /* process TX/RX statistics periodically for hardware,
186  * the information helps hardware to enhance performance
187  */
188 static void rtw_watch_dog_work(struct work_struct *work)
189 {
190 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
191 					      watch_dog_work.work);
192 	struct rtw_traffic_stats *stats = &rtwdev->stats;
193 	struct rtw_watch_dog_iter_data data = {};
194 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
195 	bool ps_active;
196 
197 	mutex_lock(&rtwdev->mutex);
198 
199 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
200 		goto unlock;
201 
202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
203 				     RTW_WATCH_DOG_DELAY_TIME);
204 
205 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
206 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
207 	else
208 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
209 
210 	rtw_coex_wl_status_check(rtwdev);
211 	rtw_coex_query_bt_hid_list(rtwdev);
212 
213 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
214 		rtw_coex_wl_status_change_notify(rtwdev, 0);
215 
216 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
217 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
218 		ps_active = true;
219 	else
220 		ps_active = false;
221 
222 	ewma_tp_add(&stats->tx_ewma_tp,
223 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
224 	ewma_tp_add(&stats->rx_ewma_tp,
225 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
226 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
227 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
228 
229 	/* reset tx/rx statictics */
230 	stats->tx_unicast = 0;
231 	stats->rx_unicast = 0;
232 	stats->tx_cnt = 0;
233 	stats->rx_cnt = 0;
234 
235 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
236 		goto unlock;
237 
238 	/* make sure BB/RF is working for dynamic mech */
239 	rtw_leave_lps(rtwdev);
240 
241 	rtw_phy_dynamic_mechanism(rtwdev);
242 
243 	data.rtwdev = rtwdev;
244 	/* use atomic version to avoid taking local->iflist_mtx mutex */
245 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
246 
247 	/* fw supports only one station associated to enter lps, if there are
248 	 * more than two stations associated to the AP, then we can not enter
249 	 * lps, because fw does not handle the overlapped beacon interval
250 	 *
251 	 * mac80211 should iterate vifs and determine if driver can enter
252 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
253 	 * get that vif and check if device is having traffic more than the
254 	 * threshold.
255 	 */
256 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
257 	    !rtwdev->beacon_loss)
258 		rtw_enter_lps(rtwdev, data.rtwvif->port);
259 
260 	rtwdev->watch_dog_cnt++;
261 
262 unlock:
263 	mutex_unlock(&rtwdev->mutex);
264 }
265 
266 static void rtw_c2h_work(struct work_struct *work)
267 {
268 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
269 	struct sk_buff *skb, *tmp;
270 
271 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
272 		skb_unlink(skb, &rtwdev->c2h_queue);
273 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
274 		dev_kfree_skb_any(skb);
275 	}
276 }
277 
278 static void rtw_ips_work(struct work_struct *work)
279 {
280 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
281 
282 	mutex_lock(&rtwdev->mutex);
283 	rtw_enter_ips(rtwdev);
284 	mutex_unlock(&rtwdev->mutex);
285 }
286 
287 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
288 {
289 	unsigned long mac_id;
290 
291 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
292 	if (mac_id < RTW_MAX_MAC_ID_NUM)
293 		set_bit(mac_id, rtwdev->mac_id_map);
294 
295 	return mac_id;
296 }
297 
298 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
299 		struct ieee80211_vif *vif)
300 {
301 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
302 	int i;
303 
304 	si->mac_id = rtw_acquire_macid(rtwdev);
305 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
306 		return -ENOSPC;
307 
308 	si->sta = sta;
309 	si->vif = vif;
310 	si->init_ra_lv = 1;
311 	ewma_rssi_init(&si->avg_rssi);
312 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
313 		rtw_txq_init(rtwdev, sta->txq[i]);
314 
315 	rtw_update_sta_info(rtwdev, si);
316 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
317 
318 	rtwdev->sta_cnt++;
319 	rtwdev->beacon_loss = false;
320 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
321 		sta->addr, si->mac_id);
322 
323 	return 0;
324 }
325 
326 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
327 		    bool fw_exist)
328 {
329 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
330 	int i;
331 
332 	rtw_release_macid(rtwdev, si->mac_id);
333 	if (fw_exist)
334 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
335 
336 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
337 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
338 
339 	kfree(si->mask);
340 
341 	rtwdev->sta_cnt--;
342 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
343 		sta->addr, si->mac_id);
344 }
345 
346 struct rtw_fwcd_hdr {
347 	u32 item;
348 	u32 size;
349 	u32 padding1;
350 	u32 padding2;
351 } __packed;
352 
353 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
354 {
355 	struct rtw_chip_info *chip = rtwdev->chip;
356 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
357 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
358 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
359 	u8 i;
360 
361 	if (segs) {
362 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
363 
364 		for (i = 0; i < segs->num; i++)
365 			prep_size += segs->segs[i];
366 	}
367 
368 	desc->data = vmalloc(prep_size);
369 	if (!desc->data)
370 		return -ENOMEM;
371 
372 	desc->size = prep_size;
373 	desc->next = desc->data;
374 
375 	return 0;
376 }
377 
378 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
379 {
380 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
381 	struct rtw_fwcd_hdr *hdr;
382 	u8 *next;
383 
384 	if (!desc->data) {
385 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
386 		return NULL;
387 	}
388 
389 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
390 	if (next - desc->data + size > desc->size) {
391 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
392 		return NULL;
393 	}
394 
395 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
396 	hdr->item = item;
397 	hdr->size = size;
398 	hdr->padding1 = 0x01234567;
399 	hdr->padding2 = 0x89abcdef;
400 	desc->next = next + size;
401 
402 	return next;
403 }
404 
405 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
406 {
407 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
408 
409 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
410 
411 	/* Data will be freed after lifetime of device coredump. After calling
412 	 * dev_coredump, data is supposed to be handled by the device coredump
413 	 * framework. Note that a new dump will be discarded if a previous one
414 	 * hasn't been released yet.
415 	 */
416 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
417 }
418 
419 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
420 {
421 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
422 
423 	if (free_self) {
424 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
425 		vfree(desc->data);
426 	}
427 
428 	desc->data = NULL;
429 	desc->next = NULL;
430 }
431 
432 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
433 {
434 	u32 size = rtwdev->chip->fw_rxff_size;
435 	u32 *buf;
436 	u8 seq;
437 
438 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
439 	if (!buf)
440 		return -ENOMEM;
441 
442 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
443 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
444 		return -EINVAL;
445 	}
446 
447 	if (GET_FW_DUMP_LEN(buf) == 0) {
448 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
449 		return -EINVAL;
450 	}
451 
452 	seq = GET_FW_DUMP_SEQ(buf);
453 	if (seq > 0) {
454 		rtw_dbg(rtwdev, RTW_DBG_FW,
455 			"fw crash dump's seq is wrong: %d\n", seq);
456 		return -EINVAL;
457 	}
458 
459 	return 0;
460 }
461 
462 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
463 		u32 fwcd_item)
464 {
465 	u32 rxff = rtwdev->chip->fw_rxff_size;
466 	u32 dump_size, done_size = 0;
467 	u8 *buf;
468 	int ret;
469 
470 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
471 	if (!buf)
472 		return -ENOMEM;
473 
474 	while (size) {
475 		dump_size = size > rxff ? rxff : size;
476 
477 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
478 					  dump_size);
479 		if (ret) {
480 			rtw_err(rtwdev,
481 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
482 				ocp_src, done_size);
483 			return ret;
484 		}
485 
486 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
487 				       dump_size, (u32 *)(buf + done_size));
488 		if (ret) {
489 			rtw_err(rtwdev,
490 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
491 				ocp_src, done_size);
492 			return ret;
493 		}
494 
495 		size -= dump_size;
496 		done_size += dump_size;
497 	}
498 
499 	return 0;
500 }
501 EXPORT_SYMBOL(rtw_dump_fw);
502 
503 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
504 {
505 	u8 *buf;
506 	u32 i;
507 
508 	if (addr & 0x3) {
509 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
510 		return -EINVAL;
511 	}
512 
513 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
514 	if (!buf)
515 		return -ENOMEM;
516 
517 	for (i = 0; i < size; i += 4)
518 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
519 
520 	return 0;
521 }
522 EXPORT_SYMBOL(rtw_dump_reg);
523 
524 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
525 			   struct ieee80211_bss_conf *conf)
526 {
527 	if (conf && conf->assoc) {
528 		rtwvif->aid = conf->aid;
529 		rtwvif->net_type = RTW_NET_MGD_LINKED;
530 	} else {
531 		rtwvif->aid = 0;
532 		rtwvif->net_type = RTW_NET_NO_LINK;
533 	}
534 }
535 
536 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
537 			       struct ieee80211_vif *vif,
538 			       struct ieee80211_sta *sta,
539 			       struct ieee80211_key_conf *key,
540 			       void *data)
541 {
542 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
543 	struct rtw_sec_desc *sec = &rtwdev->sec;
544 
545 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
546 }
547 
548 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
549 {
550 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
551 
552 	if (rtwdev->sta_cnt == 0) {
553 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
554 		return;
555 	}
556 	rtw_sta_remove(rtwdev, sta, false);
557 }
558 
559 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
560 {
561 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
562 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
563 
564 	rtw_bf_disassoc(rtwdev, vif, NULL);
565 	rtw_vif_assoc_changed(rtwvif, NULL);
566 	rtw_txq_cleanup(rtwdev, vif->txq);
567 }
568 
569 void rtw_fw_recovery(struct rtw_dev *rtwdev)
570 {
571 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
572 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
573 }
574 
575 static void __fw_recovery_work(struct rtw_dev *rtwdev)
576 {
577 	int ret = 0;
578 
579 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
580 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
581 
582 	ret = rtw_fwcd_prep(rtwdev);
583 	if (ret)
584 		goto free;
585 	ret = rtw_fw_dump_crash_log(rtwdev);
586 	if (ret)
587 		goto free;
588 	ret = rtw_chip_dump_fw_crash(rtwdev);
589 	if (ret)
590 		goto free;
591 
592 	rtw_fwcd_dump(rtwdev);
593 free:
594 	rtw_fwcd_free(rtwdev, !!ret);
595 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
596 
597 	WARN(1, "firmware crash, start reset and recover\n");
598 
599 	rcu_read_lock();
600 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
601 	rcu_read_unlock();
602 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
603 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
604 	rtw_enter_ips(rtwdev);
605 }
606 
607 static void rtw_fw_recovery_work(struct work_struct *work)
608 {
609 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
610 					      fw_recovery_work);
611 
612 	mutex_lock(&rtwdev->mutex);
613 	__fw_recovery_work(rtwdev);
614 	mutex_unlock(&rtwdev->mutex);
615 
616 	ieee80211_restart_hw(rtwdev->hw);
617 }
618 
619 struct rtw_txq_ba_iter_data {
620 };
621 
622 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
623 {
624 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
625 	int ret;
626 	u8 tid;
627 
628 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
629 	while (tid != IEEE80211_NUM_TIDS) {
630 		clear_bit(tid, si->tid_ba);
631 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
632 		if (ret == -EINVAL) {
633 			struct ieee80211_txq *txq;
634 			struct rtw_txq *rtwtxq;
635 
636 			txq = sta->txq[tid];
637 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
638 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
639 		}
640 
641 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
642 	}
643 }
644 
645 static void rtw_txq_ba_work(struct work_struct *work)
646 {
647 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
648 	struct rtw_txq_ba_iter_data data;
649 
650 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
651 }
652 
653 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
654 {
655 	if (IS_CH_2G_BAND(channel))
656 		pkt_stat->band = NL80211_BAND_2GHZ;
657 	else if (IS_CH_5G_BAND(channel))
658 		pkt_stat->band = NL80211_BAND_5GHZ;
659 	else
660 		return;
661 
662 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
663 }
664 EXPORT_SYMBOL(rtw_set_rx_freq_band);
665 
666 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
667 			    struct rtw_channel_params *chan_params)
668 {
669 	struct ieee80211_channel *channel = chandef->chan;
670 	enum nl80211_chan_width width = chandef->width;
671 	u8 *cch_by_bw = chan_params->cch_by_bw;
672 	u32 primary_freq, center_freq;
673 	u8 center_chan;
674 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
675 	u8 primary_chan_idx = 0;
676 	u8 i;
677 
678 	center_chan = channel->hw_value;
679 	primary_freq = channel->center_freq;
680 	center_freq = chandef->center_freq1;
681 
682 	/* assign the center channel used while 20M bw is selected */
683 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
684 
685 	switch (width) {
686 	case NL80211_CHAN_WIDTH_20_NOHT:
687 	case NL80211_CHAN_WIDTH_20:
688 		bandwidth = RTW_CHANNEL_WIDTH_20;
689 		primary_chan_idx = RTW_SC_DONT_CARE;
690 		break;
691 	case NL80211_CHAN_WIDTH_40:
692 		bandwidth = RTW_CHANNEL_WIDTH_40;
693 		if (primary_freq > center_freq) {
694 			primary_chan_idx = RTW_SC_20_UPPER;
695 			center_chan -= 2;
696 		} else {
697 			primary_chan_idx = RTW_SC_20_LOWER;
698 			center_chan += 2;
699 		}
700 		break;
701 	case NL80211_CHAN_WIDTH_80:
702 		bandwidth = RTW_CHANNEL_WIDTH_80;
703 		if (primary_freq > center_freq) {
704 			if (primary_freq - center_freq == 10) {
705 				primary_chan_idx = RTW_SC_20_UPPER;
706 				center_chan -= 2;
707 			} else {
708 				primary_chan_idx = RTW_SC_20_UPMOST;
709 				center_chan -= 6;
710 			}
711 			/* assign the center channel used
712 			 * while 40M bw is selected
713 			 */
714 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
715 		} else {
716 			if (center_freq - primary_freq == 10) {
717 				primary_chan_idx = RTW_SC_20_LOWER;
718 				center_chan += 2;
719 			} else {
720 				primary_chan_idx = RTW_SC_20_LOWEST;
721 				center_chan += 6;
722 			}
723 			/* assign the center channel used
724 			 * while 40M bw is selected
725 			 */
726 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
727 		}
728 		break;
729 	default:
730 		center_chan = 0;
731 		break;
732 	}
733 
734 	chan_params->center_chan = center_chan;
735 	chan_params->bandwidth = bandwidth;
736 	chan_params->primary_chan_idx = primary_chan_idx;
737 
738 	/* assign the center channel used while current bw is selected */
739 	cch_by_bw[bandwidth] = center_chan;
740 
741 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
742 		cch_by_bw[i] = 0;
743 }
744 
745 void rtw_set_channel(struct rtw_dev *rtwdev)
746 {
747 	struct ieee80211_hw *hw = rtwdev->hw;
748 	struct rtw_hal *hal = &rtwdev->hal;
749 	struct rtw_chip_info *chip = rtwdev->chip;
750 	struct rtw_channel_params ch_param;
751 	u8 center_chan, bandwidth, primary_chan_idx;
752 	u8 i;
753 
754 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
755 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
756 		return;
757 
758 	center_chan = ch_param.center_chan;
759 	bandwidth = ch_param.bandwidth;
760 	primary_chan_idx = ch_param.primary_chan_idx;
761 
762 	hal->current_band_width = bandwidth;
763 	hal->current_channel = center_chan;
764 	hal->current_primary_channel_index = primary_chan_idx;
765 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
766 
767 	switch (center_chan) {
768 	case 1 ... 14:
769 		hal->sar_band = RTW_SAR_BAND_0;
770 		break;
771 	case 36 ... 64:
772 		hal->sar_band = RTW_SAR_BAND_1;
773 		break;
774 	case 100 ... 144:
775 		hal->sar_band = RTW_SAR_BAND_3;
776 		break;
777 	case 149 ... 177:
778 		hal->sar_band = RTW_SAR_BAND_4;
779 		break;
780 	default:
781 		WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
782 		hal->sar_band = RTW_SAR_BAND_0;
783 		break;
784 	}
785 
786 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
787 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
788 
789 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
790 
791 	if (hal->current_band_type == RTW_BAND_5G) {
792 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
793 	} else {
794 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
795 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
796 		else
797 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
798 	}
799 
800 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
801 
802 	/* if the channel isn't set for scanning, we will do RF calibration
803 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
804 	 * during scanning on each channel takes too long.
805 	 */
806 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
807 		rtwdev->need_rfk = true;
808 }
809 
810 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
811 {
812 	struct rtw_chip_info *chip = rtwdev->chip;
813 
814 	if (rtwdev->need_rfk) {
815 		rtwdev->need_rfk = false;
816 		chip->ops->phy_calibration(rtwdev);
817 	}
818 }
819 
820 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
821 {
822 	int i;
823 
824 	for (i = 0; i < ETH_ALEN; i++)
825 		rtw_write8(rtwdev, start + i, addr[i]);
826 }
827 
828 void rtw_vif_port_config(struct rtw_dev *rtwdev,
829 			 struct rtw_vif *rtwvif,
830 			 u32 config)
831 {
832 	u32 addr, mask;
833 
834 	if (config & PORT_SET_MAC_ADDR) {
835 		addr = rtwvif->conf->mac_addr.addr;
836 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
837 	}
838 	if (config & PORT_SET_BSSID) {
839 		addr = rtwvif->conf->bssid.addr;
840 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
841 	}
842 	if (config & PORT_SET_NET_TYPE) {
843 		addr = rtwvif->conf->net_type.addr;
844 		mask = rtwvif->conf->net_type.mask;
845 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
846 	}
847 	if (config & PORT_SET_AID) {
848 		addr = rtwvif->conf->aid.addr;
849 		mask = rtwvif->conf->aid.mask;
850 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
851 	}
852 	if (config & PORT_SET_BCN_CTRL) {
853 		addr = rtwvif->conf->bcn_ctrl.addr;
854 		mask = rtwvif->conf->bcn_ctrl.mask;
855 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
856 	}
857 }
858 
859 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
860 {
861 	u8 bw = 0;
862 
863 	switch (bw_cap) {
864 	case EFUSE_HW_CAP_IGNORE:
865 	case EFUSE_HW_CAP_SUPP_BW80:
866 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
867 		fallthrough;
868 	case EFUSE_HW_CAP_SUPP_BW40:
869 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
870 		fallthrough;
871 	default:
872 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
873 		break;
874 	}
875 
876 	return bw;
877 }
878 
879 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
880 {
881 	struct rtw_hal *hal = &rtwdev->hal;
882 	struct rtw_chip_info *chip = rtwdev->chip;
883 
884 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
885 	    hw_ant_num >= hal->rf_path_num)
886 		return;
887 
888 	switch (hw_ant_num) {
889 	case 1:
890 		hal->rf_type = RF_1T1R;
891 		hal->rf_path_num = 1;
892 		if (!chip->fix_rf_phy_num)
893 			hal->rf_phy_num = hal->rf_path_num;
894 		hal->antenna_tx = BB_PATH_A;
895 		hal->antenna_rx = BB_PATH_A;
896 		break;
897 	default:
898 		WARN(1, "invalid hw configuration from efuse\n");
899 		break;
900 	}
901 }
902 
903 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
904 {
905 	u64 ra_mask = 0;
906 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
907 	u8 vht_mcs_cap;
908 	int i, nss;
909 
910 	/* 4SS, every two bits for MCS7/8/9 */
911 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
912 		vht_mcs_cap = mcs_map & 0x3;
913 		switch (vht_mcs_cap) {
914 		case 2: /* MCS9 */
915 			ra_mask |= 0x3ffULL << nss;
916 			break;
917 		case 1: /* MCS8 */
918 			ra_mask |= 0x1ffULL << nss;
919 			break;
920 		case 0: /* MCS7 */
921 			ra_mask |= 0x0ffULL << nss;
922 			break;
923 		default:
924 			break;
925 		}
926 	}
927 
928 	return ra_mask;
929 }
930 
931 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
932 {
933 	u8 rate_id = 0;
934 
935 	switch (wireless_set) {
936 	case WIRELESS_CCK:
937 		rate_id = RTW_RATEID_B_20M;
938 		break;
939 	case WIRELESS_OFDM:
940 		rate_id = RTW_RATEID_G;
941 		break;
942 	case WIRELESS_CCK | WIRELESS_OFDM:
943 		rate_id = RTW_RATEID_BG;
944 		break;
945 	case WIRELESS_OFDM | WIRELESS_HT:
946 		if (tx_num == 1)
947 			rate_id = RTW_RATEID_GN_N1SS;
948 		else if (tx_num == 2)
949 			rate_id = RTW_RATEID_GN_N2SS;
950 		else if (tx_num == 3)
951 			rate_id = RTW_RATEID_ARFR5_N_3SS;
952 		break;
953 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
954 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
955 			if (tx_num == 1)
956 				rate_id = RTW_RATEID_BGN_40M_1SS;
957 			else if (tx_num == 2)
958 				rate_id = RTW_RATEID_BGN_40M_2SS;
959 			else if (tx_num == 3)
960 				rate_id = RTW_RATEID_ARFR5_N_3SS;
961 			else if (tx_num == 4)
962 				rate_id = RTW_RATEID_ARFR7_N_4SS;
963 		} else {
964 			if (tx_num == 1)
965 				rate_id = RTW_RATEID_BGN_20M_1SS;
966 			else if (tx_num == 2)
967 				rate_id = RTW_RATEID_BGN_20M_2SS;
968 			else if (tx_num == 3)
969 				rate_id = RTW_RATEID_ARFR5_N_3SS;
970 			else if (tx_num == 4)
971 				rate_id = RTW_RATEID_ARFR7_N_4SS;
972 		}
973 		break;
974 	case WIRELESS_OFDM | WIRELESS_VHT:
975 		if (tx_num == 1)
976 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
977 		else if (tx_num == 2)
978 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
979 		else if (tx_num == 3)
980 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
981 		else if (tx_num == 4)
982 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
983 		break;
984 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
985 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
986 			if (tx_num == 1)
987 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
988 			else if (tx_num == 2)
989 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
990 			else if (tx_num == 3)
991 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
992 			else if (tx_num == 4)
993 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
994 		} else {
995 			if (tx_num == 1)
996 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
997 			else if (tx_num == 2)
998 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
999 			else if (tx_num == 3)
1000 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1001 			else if (tx_num == 4)
1002 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1003 		}
1004 		break;
1005 	default:
1006 		break;
1007 	}
1008 
1009 	return rate_id;
1010 }
1011 
1012 #define RA_MASK_CCK_RATES	0x0000f
1013 #define RA_MASK_OFDM_RATES	0x00ff0
1014 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1015 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1016 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1017 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1018 				 RA_MASK_HT_RATES_2SS | \
1019 				 RA_MASK_HT_RATES_3SS)
1020 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1021 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1022 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1023 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1024 				 RA_MASK_VHT_RATES_2SS | \
1025 				 RA_MASK_VHT_RATES_3SS)
1026 #define RA_MASK_CCK_IN_BG	0x00005
1027 #define RA_MASK_CCK_IN_HT	0x00005
1028 #define RA_MASK_CCK_IN_VHT	0x00005
1029 #define RA_MASK_OFDM_IN_VHT	0x00010
1030 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1031 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1032 
1033 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1034 {
1035 	u8 rssi_level = si->rssi_level;
1036 
1037 	if (wireless_set == WIRELESS_CCK)
1038 		return 0xffffffffffffffffULL;
1039 
1040 	if (rssi_level == 0)
1041 		return 0xffffffffffffffffULL;
1042 	else if (rssi_level == 1)
1043 		return 0xfffffffffffffff0ULL;
1044 	else if (rssi_level == 2)
1045 		return 0xffffffffffffefe0ULL;
1046 	else if (rssi_level == 3)
1047 		return 0xffffffffffffcfc0ULL;
1048 	else if (rssi_level == 4)
1049 		return 0xffffffffffff8f80ULL;
1050 	else
1051 		return 0xffffffffffff0f00ULL;
1052 }
1053 
1054 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1055 {
1056 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1057 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1058 
1059 	if (ra_mask == 0)
1060 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1061 
1062 	return ra_mask;
1063 }
1064 
1065 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1066 			     u64 ra_mask, bool is_vht_enable)
1067 {
1068 	struct rtw_hal *hal = &rtwdev->hal;
1069 	const struct cfg80211_bitrate_mask *mask = si->mask;
1070 	u64 cfg_mask = GENMASK_ULL(63, 0);
1071 	u8 band;
1072 
1073 	if (!si->use_cfg_mask)
1074 		return ra_mask;
1075 
1076 	band = hal->current_band_type;
1077 	if (band == RTW_BAND_2G) {
1078 		band = NL80211_BAND_2GHZ;
1079 		cfg_mask = mask->control[band].legacy;
1080 	} else if (band == RTW_BAND_5G) {
1081 		band = NL80211_BAND_5GHZ;
1082 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1083 					   RA_MASK_OFDM_RATES);
1084 	}
1085 
1086 	if (!is_vht_enable) {
1087 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1088 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1089 						    RA_MASK_HT_RATES_1SS);
1090 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1091 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1092 						    RA_MASK_HT_RATES_2SS);
1093 	} else {
1094 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1095 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1096 						    RA_MASK_VHT_RATES_1SS);
1097 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1098 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1099 						    RA_MASK_VHT_RATES_2SS);
1100 	}
1101 
1102 	ra_mask &= cfg_mask;
1103 
1104 	return ra_mask;
1105 }
1106 
1107 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
1108 {
1109 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1110 	struct ieee80211_sta *sta = si->sta;
1111 	struct rtw_efuse *efuse = &rtwdev->efuse;
1112 	struct rtw_hal *hal = &rtwdev->hal;
1113 	u8 wireless_set;
1114 	u8 bw_mode;
1115 	u8 rate_id;
1116 	u8 rf_type = RF_1T1R;
1117 	u8 stbc_en = 0;
1118 	u8 ldpc_en = 0;
1119 	u8 tx_num = 1;
1120 	u64 ra_mask = 0;
1121 	u64 ra_mask_bak = 0;
1122 	bool is_vht_enable = false;
1123 	bool is_support_sgi = false;
1124 
1125 	if (sta->vht_cap.vht_supported) {
1126 		is_vht_enable = true;
1127 		ra_mask |= get_vht_ra_mask(sta);
1128 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1129 			stbc_en = VHT_STBC_EN;
1130 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1131 			ldpc_en = VHT_LDPC_EN;
1132 	} else if (sta->ht_cap.ht_supported) {
1133 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
1134 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
1135 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1136 			stbc_en = HT_STBC_EN;
1137 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1138 			ldpc_en = HT_LDPC_EN;
1139 	}
1140 
1141 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1142 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1143 
1144 	if (hal->current_band_type == RTW_BAND_5G) {
1145 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
1146 		ra_mask_bak = ra_mask;
1147 		if (sta->vht_cap.vht_supported) {
1148 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1149 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1150 		} else if (sta->ht_cap.ht_supported) {
1151 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1152 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1153 		} else {
1154 			wireless_set = WIRELESS_OFDM;
1155 		}
1156 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1157 	} else if (hal->current_band_type == RTW_BAND_2G) {
1158 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
1159 		ra_mask_bak = ra_mask;
1160 		if (sta->vht_cap.vht_supported) {
1161 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1162 				   RA_MASK_OFDM_IN_VHT;
1163 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1164 				       WIRELESS_HT | WIRELESS_VHT;
1165 		} else if (sta->ht_cap.ht_supported) {
1166 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1167 				   RA_MASK_OFDM_IN_HT_2G;
1168 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1169 				       WIRELESS_HT;
1170 		} else if (sta->supp_rates[0] <= 0xf) {
1171 			wireless_set = WIRELESS_CCK;
1172 		} else {
1173 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1174 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1175 		}
1176 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1177 	} else {
1178 		rtw_err(rtwdev, "Unknown band type\n");
1179 		ra_mask_bak = ra_mask;
1180 		wireless_set = 0;
1181 	}
1182 
1183 	switch (sta->bandwidth) {
1184 	case IEEE80211_STA_RX_BW_80:
1185 		bw_mode = RTW_CHANNEL_WIDTH_80;
1186 		is_support_sgi = sta->vht_cap.vht_supported &&
1187 				 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1188 		break;
1189 	case IEEE80211_STA_RX_BW_40:
1190 		bw_mode = RTW_CHANNEL_WIDTH_40;
1191 		is_support_sgi = sta->ht_cap.ht_supported &&
1192 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1193 		break;
1194 	default:
1195 		bw_mode = RTW_CHANNEL_WIDTH_20;
1196 		is_support_sgi = sta->ht_cap.ht_supported &&
1197 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1198 		break;
1199 	}
1200 
1201 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
1202 		tx_num = 2;
1203 		rf_type = RF_2T2R;
1204 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
1205 		tx_num = 2;
1206 		rf_type = RF_2T2R;
1207 	}
1208 
1209 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1210 
1211 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1212 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1213 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1214 
1215 	si->bw_mode = bw_mode;
1216 	si->stbc_en = stbc_en;
1217 	si->ldpc_en = ldpc_en;
1218 	si->rf_type = rf_type;
1219 	si->wireless_set = wireless_set;
1220 	si->sgi_enable = is_support_sgi;
1221 	si->vht_enable = is_vht_enable;
1222 	si->ra_mask = ra_mask;
1223 	si->rate_id = rate_id;
1224 
1225 	rtw_fw_send_ra_info(rtwdev, si);
1226 }
1227 
1228 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1229 {
1230 	struct rtw_chip_info *chip = rtwdev->chip;
1231 	struct rtw_fw_state *fw;
1232 
1233 	fw = &rtwdev->fw;
1234 	wait_for_completion(&fw->completion);
1235 	if (!fw->firmware)
1236 		return -EINVAL;
1237 
1238 	if (chip->wow_fw_name) {
1239 		fw = &rtwdev->wow_fw;
1240 		wait_for_completion(&fw->completion);
1241 		if (!fw->firmware)
1242 			return -EINVAL;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1249 						       struct rtw_fw_state *fw)
1250 {
1251 	struct rtw_chip_info *chip = rtwdev->chip;
1252 
1253 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1254 	    !fw->feature)
1255 		return LPS_DEEP_MODE_NONE;
1256 
1257 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1258 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1259 		return LPS_DEEP_MODE_PG;
1260 
1261 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1262 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1263 		return LPS_DEEP_MODE_LCLK;
1264 
1265 	return LPS_DEEP_MODE_NONE;
1266 }
1267 
1268 static int rtw_power_on(struct rtw_dev *rtwdev)
1269 {
1270 	struct rtw_chip_info *chip = rtwdev->chip;
1271 	struct rtw_fw_state *fw = &rtwdev->fw;
1272 	bool wifi_only;
1273 	int ret;
1274 
1275 	ret = rtw_hci_setup(rtwdev);
1276 	if (ret) {
1277 		rtw_err(rtwdev, "failed to setup hci\n");
1278 		goto err;
1279 	}
1280 
1281 	/* power on MAC before firmware downloaded */
1282 	ret = rtw_mac_power_on(rtwdev);
1283 	if (ret) {
1284 		rtw_err(rtwdev, "failed to power on mac\n");
1285 		goto err;
1286 	}
1287 
1288 	ret = rtw_wait_firmware_completion(rtwdev);
1289 	if (ret) {
1290 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1291 		goto err_off;
1292 	}
1293 
1294 	ret = rtw_download_firmware(rtwdev, fw);
1295 	if (ret) {
1296 		rtw_err(rtwdev, "failed to download firmware\n");
1297 		goto err_off;
1298 	}
1299 
1300 	/* config mac after firmware downloaded */
1301 	ret = rtw_mac_init(rtwdev);
1302 	if (ret) {
1303 		rtw_err(rtwdev, "failed to configure mac\n");
1304 		goto err_off;
1305 	}
1306 
1307 	chip->ops->phy_set_param(rtwdev);
1308 
1309 	ret = rtw_hci_start(rtwdev);
1310 	if (ret) {
1311 		rtw_err(rtwdev, "failed to start hci\n");
1312 		goto err_off;
1313 	}
1314 
1315 	/* send H2C after HCI has started */
1316 	rtw_fw_send_general_info(rtwdev);
1317 	rtw_fw_send_phydm_info(rtwdev);
1318 
1319 	wifi_only = !rtwdev->efuse.btcoex;
1320 	rtw_coex_power_on_setting(rtwdev);
1321 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1322 
1323 	return 0;
1324 
1325 err_off:
1326 	rtw_mac_power_off(rtwdev);
1327 
1328 err:
1329 	return ret;
1330 }
1331 
1332 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1333 {
1334 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1335 		return;
1336 
1337 	if (start) {
1338 		rtw_fw_scan_notify(rtwdev, true);
1339 	} else {
1340 		reinit_completion(&rtwdev->fw_scan_density);
1341 		rtw_fw_scan_notify(rtwdev, false);
1342 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1343 						 SCAN_NOTIFY_TIMEOUT))
1344 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1345 	}
1346 }
1347 
1348 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1349 			 const u8 *mac_addr, bool hw_scan)
1350 {
1351 	u32 config = 0;
1352 	int ret = 0;
1353 
1354 	rtw_leave_lps(rtwdev);
1355 
1356 	if (hw_scan && rtwvif->net_type == RTW_NET_NO_LINK) {
1357 		ret = rtw_leave_ips(rtwdev);
1358 		if (ret) {
1359 			rtw_err(rtwdev, "failed to leave idle state\n");
1360 			return;
1361 		}
1362 	}
1363 
1364 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1365 	config |= PORT_SET_MAC_ADDR;
1366 	rtw_vif_port_config(rtwdev, rtwvif, config);
1367 
1368 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1369 	rtw_core_fw_scan_notify(rtwdev, true);
1370 
1371 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1372 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1373 }
1374 
1375 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1376 			    bool hw_scan)
1377 {
1378 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
1379 	u32 config = 0;
1380 
1381 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1382 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1383 
1384 	rtw_core_fw_scan_notify(rtwdev, false);
1385 
1386 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1387 	config |= PORT_SET_MAC_ADDR;
1388 	rtw_vif_port_config(rtwdev, rtwvif, config);
1389 
1390 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1391 
1392 	if (rtwvif->net_type == RTW_NET_NO_LINK && hw_scan)
1393 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1394 }
1395 
1396 int rtw_core_start(struct rtw_dev *rtwdev)
1397 {
1398 	int ret;
1399 
1400 	ret = rtw_power_on(rtwdev);
1401 	if (ret)
1402 		return ret;
1403 
1404 	rtw_sec_enable_sec_engine(rtwdev);
1405 
1406 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1407 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1408 
1409 	/* rcr reset after powered on */
1410 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1411 
1412 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1413 				     RTW_WATCH_DOG_DELAY_TIME);
1414 
1415 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1416 
1417 	return 0;
1418 }
1419 
1420 static void rtw_power_off(struct rtw_dev *rtwdev)
1421 {
1422 	rtw_hci_stop(rtwdev);
1423 	rtw_coex_power_off_setting(rtwdev);
1424 	rtw_mac_power_off(rtwdev);
1425 }
1426 
1427 void rtw_core_stop(struct rtw_dev *rtwdev)
1428 {
1429 	struct rtw_coex *coex = &rtwdev->coex;
1430 
1431 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1432 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1433 
1434 	mutex_unlock(&rtwdev->mutex);
1435 
1436 	cancel_work_sync(&rtwdev->c2h_work);
1437 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1438 	cancel_delayed_work_sync(&coex->bt_relink_work);
1439 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1440 	cancel_delayed_work_sync(&coex->defreeze_work);
1441 	cancel_delayed_work_sync(&coex->wl_remain_work);
1442 	cancel_delayed_work_sync(&coex->bt_remain_work);
1443 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1444 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1445 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1446 
1447 	mutex_lock(&rtwdev->mutex);
1448 
1449 	rtw_power_off(rtwdev);
1450 }
1451 
1452 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1453 			    struct ieee80211_sta_ht_cap *ht_cap)
1454 {
1455 	struct rtw_efuse *efuse = &rtwdev->efuse;
1456 
1457 	ht_cap->ht_supported = true;
1458 	ht_cap->cap = 0;
1459 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1460 			IEEE80211_HT_CAP_MAX_AMSDU |
1461 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1462 
1463 	if (rtw_chip_has_rx_ldpc(rtwdev))
1464 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1465 	if (rtw_chip_has_tx_stbc(rtwdev))
1466 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1467 
1468 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1469 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1470 				IEEE80211_HT_CAP_DSSSCCK40 |
1471 				IEEE80211_HT_CAP_SGI_40;
1472 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1473 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1474 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1475 	if (efuse->hw_cap.nss > 1) {
1476 		ht_cap->mcs.rx_mask[0] = 0xFF;
1477 		ht_cap->mcs.rx_mask[1] = 0xFF;
1478 		ht_cap->mcs.rx_mask[4] = 0x01;
1479 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1480 	} else {
1481 		ht_cap->mcs.rx_mask[0] = 0xFF;
1482 		ht_cap->mcs.rx_mask[1] = 0x00;
1483 		ht_cap->mcs.rx_mask[4] = 0x01;
1484 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1485 	}
1486 }
1487 
1488 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1489 			     struct ieee80211_sta_vht_cap *vht_cap)
1490 {
1491 	struct rtw_efuse *efuse = &rtwdev->efuse;
1492 	u16 mcs_map;
1493 	__le16 highest;
1494 
1495 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1496 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1497 		return;
1498 
1499 	vht_cap->vht_supported = true;
1500 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1501 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1502 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1503 		       IEEE80211_VHT_CAP_HTC_VHT |
1504 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1505 		       0;
1506 	if (rtwdev->hal.rf_path_num > 1)
1507 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1508 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1509 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1510 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1511 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1512 
1513 	if (rtw_chip_has_rx_ldpc(rtwdev))
1514 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1515 
1516 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1517 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1518 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1519 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1520 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1521 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1522 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1523 	if (efuse->hw_cap.nss > 1) {
1524 		highest = cpu_to_le16(780);
1525 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1526 	} else {
1527 		highest = cpu_to_le16(390);
1528 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1529 	}
1530 
1531 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1532 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1533 	vht_cap->vht_mcs.rx_highest = highest;
1534 	vht_cap->vht_mcs.tx_highest = highest;
1535 }
1536 
1537 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1538 				   struct rtw_chip_info *chip)
1539 {
1540 	struct rtw_dev *rtwdev = hw->priv;
1541 	struct ieee80211_supported_band *sband;
1542 
1543 	if (chip->band & RTW_BAND_2G) {
1544 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1545 		if (!sband)
1546 			goto err_out;
1547 		if (chip->ht_supported)
1548 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1549 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1550 	}
1551 
1552 	if (chip->band & RTW_BAND_5G) {
1553 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1554 		if (!sband)
1555 			goto err_out;
1556 		if (chip->ht_supported)
1557 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1558 		if (chip->vht_supported)
1559 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1560 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1561 	}
1562 
1563 	return;
1564 
1565 err_out:
1566 	rtw_err(rtwdev, "failed to set supported band\n");
1567 }
1568 
1569 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1570 				     struct rtw_chip_info *chip)
1571 {
1572 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1573 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1574 }
1575 
1576 static void rtw_vif_smps_iter(void *data, u8 *mac,
1577 			      struct ieee80211_vif *vif)
1578 {
1579 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1580 
1581 	if (vif->type != NL80211_IFTYPE_STATION || !vif->bss_conf.assoc)
1582 		return;
1583 
1584 	if (rtwdev->hal.txrx_1ss)
1585 		ieee80211_request_smps(vif, IEEE80211_SMPS_STATIC);
1586 	else
1587 		ieee80211_request_smps(vif, IEEE80211_SMPS_OFF);
1588 }
1589 
1590 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1591 {
1592 	struct rtw_chip_info *chip = rtwdev->chip;
1593 	struct rtw_hal *hal = &rtwdev->hal;
1594 
1595 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1596 		return;
1597 
1598 	rtwdev->hal.txrx_1ss = txrx_1ss;
1599 	if (txrx_1ss)
1600 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1601 	else
1602 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1603 					    hal->antenna_rx, false);
1604 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1605 }
1606 
1607 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1608 				      struct rtw_fw_state *fw)
1609 {
1610 	u32 feature;
1611 	const struct rtw_fw_hdr *fw_hdr =
1612 				(const struct rtw_fw_hdr *)fw->firmware->data;
1613 
1614 	feature = le32_to_cpu(fw_hdr->feature);
1615 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1616 }
1617 
1618 static void __update_firmware_info(struct rtw_dev *rtwdev,
1619 				   struct rtw_fw_state *fw)
1620 {
1621 	const struct rtw_fw_hdr *fw_hdr =
1622 				(const struct rtw_fw_hdr *)fw->firmware->data;
1623 
1624 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1625 	fw->version = le16_to_cpu(fw_hdr->version);
1626 	fw->sub_version = fw_hdr->subversion;
1627 	fw->sub_index = fw_hdr->subindex;
1628 
1629 	__update_firmware_feature(rtwdev, fw);
1630 }
1631 
1632 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1633 					  struct rtw_fw_state *fw)
1634 {
1635 	struct rtw_fw_hdr_legacy *legacy =
1636 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1637 
1638 	fw->h2c_version = 0;
1639 	fw->version = le16_to_cpu(legacy->version);
1640 	fw->sub_version = legacy->subversion1;
1641 	fw->sub_index = legacy->subversion2;
1642 }
1643 
1644 static void update_firmware_info(struct rtw_dev *rtwdev,
1645 				 struct rtw_fw_state *fw)
1646 {
1647 	if (rtw_chip_wcpu_11n(rtwdev))
1648 		__update_firmware_info_legacy(rtwdev, fw);
1649 	else
1650 		__update_firmware_info(rtwdev, fw);
1651 }
1652 
1653 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1654 {
1655 	struct rtw_fw_state *fw = context;
1656 	struct rtw_dev *rtwdev = fw->rtwdev;
1657 
1658 	if (!firmware || !firmware->data) {
1659 		rtw_err(rtwdev, "failed to request firmware\n");
1660 		complete_all(&fw->completion);
1661 		return;
1662 	}
1663 
1664 	fw->firmware = firmware;
1665 	update_firmware_info(rtwdev, fw);
1666 	complete_all(&fw->completion);
1667 
1668 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1669 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1670 }
1671 
1672 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1673 {
1674 	const char *fw_name;
1675 	struct rtw_fw_state *fw;
1676 	int ret;
1677 
1678 	switch (type) {
1679 	case RTW_WOWLAN_FW:
1680 		fw = &rtwdev->wow_fw;
1681 		fw_name = rtwdev->chip->wow_fw_name;
1682 		break;
1683 
1684 	case RTW_NORMAL_FW:
1685 		fw = &rtwdev->fw;
1686 		fw_name = rtwdev->chip->fw_name;
1687 		break;
1688 
1689 	default:
1690 		rtw_warn(rtwdev, "unsupported firmware type\n");
1691 		return -ENOENT;
1692 	}
1693 
1694 	fw->rtwdev = rtwdev;
1695 	init_completion(&fw->completion);
1696 
1697 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1698 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1699 	if (ret) {
1700 		rtw_err(rtwdev, "failed to async firmware request\n");
1701 		return ret;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1708 {
1709 	struct rtw_chip_info *chip = rtwdev->chip;
1710 	struct rtw_hal *hal = &rtwdev->hal;
1711 	struct rtw_efuse *efuse = &rtwdev->efuse;
1712 
1713 	switch (rtw_hci_type(rtwdev)) {
1714 	case RTW_HCI_TYPE_PCIE:
1715 		rtwdev->hci.rpwm_addr = 0x03d9;
1716 		rtwdev->hci.cpwm_addr = 0x03da;
1717 		break;
1718 	default:
1719 		rtw_err(rtwdev, "unsupported hci type\n");
1720 		return -EINVAL;
1721 	}
1722 
1723 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1724 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1725 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1726 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1727 		hal->rf_type = RF_2T2R;
1728 		hal->rf_path_num = 2;
1729 		hal->antenna_tx = BB_PATH_AB;
1730 		hal->antenna_rx = BB_PATH_AB;
1731 	} else {
1732 		hal->rf_type = RF_1T1R;
1733 		hal->rf_path_num = 1;
1734 		hal->antenna_tx = BB_PATH_A;
1735 		hal->antenna_rx = BB_PATH_A;
1736 	}
1737 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1738 			  hal->rf_path_num;
1739 
1740 	efuse->physical_size = chip->phy_efuse_size;
1741 	efuse->logical_size = chip->log_efuse_size;
1742 	efuse->protect_size = chip->ptct_efuse_size;
1743 
1744 	/* default use ack */
1745 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1746 
1747 	hal->bfee_sts_cap = 3;
1748 
1749 	return 0;
1750 }
1751 
1752 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1753 {
1754 	struct rtw_fw_state *fw = &rtwdev->fw;
1755 	int ret;
1756 
1757 	ret = rtw_hci_setup(rtwdev);
1758 	if (ret) {
1759 		rtw_err(rtwdev, "failed to setup hci\n");
1760 		goto err;
1761 	}
1762 
1763 	ret = rtw_mac_power_on(rtwdev);
1764 	if (ret) {
1765 		rtw_err(rtwdev, "failed to power on mac\n");
1766 		goto err;
1767 	}
1768 
1769 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1770 
1771 	wait_for_completion(&fw->completion);
1772 	if (!fw->firmware) {
1773 		ret = -EINVAL;
1774 		rtw_err(rtwdev, "failed to load firmware\n");
1775 		goto err;
1776 	}
1777 
1778 	ret = rtw_download_firmware(rtwdev, fw);
1779 	if (ret) {
1780 		rtw_err(rtwdev, "failed to download firmware\n");
1781 		goto err_off;
1782 	}
1783 
1784 	return 0;
1785 
1786 err_off:
1787 	rtw_mac_power_off(rtwdev);
1788 
1789 err:
1790 	return ret;
1791 }
1792 
1793 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1794 {
1795 	struct rtw_efuse *efuse = &rtwdev->efuse;
1796 	u8 hw_feature[HW_FEATURE_LEN];
1797 	u8 id;
1798 	u8 bw;
1799 	int i;
1800 
1801 	id = rtw_read8(rtwdev, REG_C2HEVT);
1802 	if (id != C2H_HW_FEATURE_REPORT) {
1803 		rtw_err(rtwdev, "failed to read hw feature report\n");
1804 		return -EBUSY;
1805 	}
1806 
1807 	for (i = 0; i < HW_FEATURE_LEN; i++)
1808 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1809 
1810 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1811 
1812 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1813 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1814 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1815 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1816 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1817 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1818 
1819 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1820 
1821 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1822 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1823 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1824 
1825 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1826 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1827 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1828 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1829 
1830 	return 0;
1831 }
1832 
1833 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1834 {
1835 	rtw_hci_stop(rtwdev);
1836 	rtw_mac_power_off(rtwdev);
1837 }
1838 
1839 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1840 {
1841 	struct rtw_efuse *efuse = &rtwdev->efuse;
1842 	int ret;
1843 
1844 	mutex_lock(&rtwdev->mutex);
1845 
1846 	/* power on mac to read efuse */
1847 	ret = rtw_chip_efuse_enable(rtwdev);
1848 	if (ret)
1849 		goto out_unlock;
1850 
1851 	ret = rtw_parse_efuse_map(rtwdev);
1852 	if (ret)
1853 		goto out_disable;
1854 
1855 	ret = rtw_dump_hw_feature(rtwdev);
1856 	if (ret)
1857 		goto out_disable;
1858 
1859 	ret = rtw_check_supported_rfe(rtwdev);
1860 	if (ret)
1861 		goto out_disable;
1862 
1863 	if (efuse->crystal_cap == 0xff)
1864 		efuse->crystal_cap = 0;
1865 	if (efuse->pa_type_2g == 0xff)
1866 		efuse->pa_type_2g = 0;
1867 	if (efuse->pa_type_5g == 0xff)
1868 		efuse->pa_type_5g = 0;
1869 	if (efuse->lna_type_2g == 0xff)
1870 		efuse->lna_type_2g = 0;
1871 	if (efuse->lna_type_5g == 0xff)
1872 		efuse->lna_type_5g = 0;
1873 	if (efuse->channel_plan == 0xff)
1874 		efuse->channel_plan = 0x7f;
1875 	if (efuse->rf_board_option == 0xff)
1876 		efuse->rf_board_option = 0;
1877 	if (efuse->bt_setting & BIT(0))
1878 		efuse->share_ant = true;
1879 	if (efuse->regd == 0xff)
1880 		efuse->regd = 0;
1881 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1882 		efuse->tx_bb_swing_setting_2g = 0;
1883 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1884 		efuse->tx_bb_swing_setting_5g = 0;
1885 
1886 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1887 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1888 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1889 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1890 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1891 
1892 out_disable:
1893 	rtw_chip_efuse_disable(rtwdev);
1894 
1895 out_unlock:
1896 	mutex_unlock(&rtwdev->mutex);
1897 	return ret;
1898 }
1899 
1900 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1901 {
1902 	struct rtw_hal *hal = &rtwdev->hal;
1903 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1904 
1905 	if (!rfe_def)
1906 		return -ENODEV;
1907 
1908 	rtw_phy_setup_phy_cond(rtwdev, 0);
1909 
1910 	rtw_phy_init_tx_power(rtwdev);
1911 	if (rfe_def->agc_btg_tbl)
1912 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1913 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1914 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1915 	rtw_phy_tx_power_by_rate_config(hal);
1916 	rtw_phy_tx_power_limit_config(hal);
1917 
1918 	return 0;
1919 }
1920 
1921 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1922 {
1923 	int ret;
1924 
1925 	ret = rtw_chip_parameter_setup(rtwdev);
1926 	if (ret) {
1927 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1928 		goto err_out;
1929 	}
1930 
1931 	ret = rtw_chip_efuse_info_setup(rtwdev);
1932 	if (ret) {
1933 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1934 		goto err_out;
1935 	}
1936 
1937 	ret = rtw_chip_board_info_setup(rtwdev);
1938 	if (ret) {
1939 		rtw_err(rtwdev, "failed to setup chip board info\n");
1940 		goto err_out;
1941 	}
1942 
1943 	return 0;
1944 
1945 err_out:
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL(rtw_chip_info_setup);
1949 
1950 static void rtw_stats_init(struct rtw_dev *rtwdev)
1951 {
1952 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1953 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1954 	int i;
1955 
1956 	ewma_tp_init(&stats->tx_ewma_tp);
1957 	ewma_tp_init(&stats->rx_ewma_tp);
1958 
1959 	for (i = 0; i < RTW_EVM_NUM; i++)
1960 		ewma_evm_init(&dm_info->ewma_evm[i]);
1961 	for (i = 0; i < RTW_SNR_NUM; i++)
1962 		ewma_snr_init(&dm_info->ewma_snr[i]);
1963 }
1964 
1965 int rtw_core_init(struct rtw_dev *rtwdev)
1966 {
1967 	struct rtw_chip_info *chip = rtwdev->chip;
1968 	struct rtw_coex *coex = &rtwdev->coex;
1969 	int ret;
1970 
1971 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1972 	INIT_LIST_HEAD(&rtwdev->txqs);
1973 
1974 	timer_setup(&rtwdev->tx_report.purge_timer,
1975 		    rtw_tx_report_purge_timer, 0);
1976 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1977 
1978 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1979 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1980 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1981 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1982 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1983 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1984 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1985 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1986 			  rtw_coex_bt_multi_link_remain_work);
1987 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1988 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1989 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1990 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
1991 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1992 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1993 	skb_queue_head_init(&rtwdev->c2h_queue);
1994 	skb_queue_head_init(&rtwdev->coex.queue);
1995 	skb_queue_head_init(&rtwdev->tx_report.queue);
1996 
1997 	spin_lock_init(&rtwdev->rf_lock);
1998 	spin_lock_init(&rtwdev->h2c.lock);
1999 	spin_lock_init(&rtwdev->txq_lock);
2000 	spin_lock_init(&rtwdev->tx_report.q_lock);
2001 
2002 	mutex_init(&rtwdev->mutex);
2003 	mutex_init(&rtwdev->coex.mutex);
2004 	mutex_init(&rtwdev->hal.tx_power_mutex);
2005 
2006 	init_waitqueue_head(&rtwdev->coex.wait);
2007 	init_completion(&rtwdev->lps_leave_check);
2008 	init_completion(&rtwdev->fw_scan_density);
2009 
2010 	rtwdev->sec.total_cam_num = 32;
2011 	rtwdev->hal.current_channel = 1;
2012 	rtwdev->dm_info.fix_rate = U8_MAX;
2013 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2014 
2015 	rtw_stats_init(rtwdev);
2016 
2017 	/* default rx filter setting */
2018 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2019 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2020 			  BIT_AB | BIT_AM | BIT_APM;
2021 
2022 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2023 	if (ret) {
2024 		rtw_warn(rtwdev, "no firmware loaded\n");
2025 		return ret;
2026 	}
2027 
2028 	if (chip->wow_fw_name) {
2029 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2030 		if (ret) {
2031 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2032 			wait_for_completion(&rtwdev->fw.completion);
2033 			if (rtwdev->fw.firmware)
2034 				release_firmware(rtwdev->fw.firmware);
2035 			return ret;
2036 		}
2037 	}
2038 
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL(rtw_core_init);
2042 
2043 void rtw_core_deinit(struct rtw_dev *rtwdev)
2044 {
2045 	struct rtw_fw_state *fw = &rtwdev->fw;
2046 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2047 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2048 	unsigned long flags;
2049 
2050 	rtw_wait_firmware_completion(rtwdev);
2051 
2052 	if (fw->firmware)
2053 		release_firmware(fw->firmware);
2054 
2055 	if (wow_fw->firmware)
2056 		release_firmware(wow_fw->firmware);
2057 
2058 	destroy_workqueue(rtwdev->tx_wq);
2059 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2060 	skb_queue_purge(&rtwdev->tx_report.queue);
2061 	skb_queue_purge(&rtwdev->coex.queue);
2062 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2063 
2064 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2065 				 build_list) {
2066 		list_del(&rsvd_pkt->build_list);
2067 		kfree(rsvd_pkt);
2068 	}
2069 
2070 	mutex_destroy(&rtwdev->mutex);
2071 	mutex_destroy(&rtwdev->coex.mutex);
2072 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2073 }
2074 EXPORT_SYMBOL(rtw_core_deinit);
2075 
2076 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2077 {
2078 	struct rtw_hal *hal = &rtwdev->hal;
2079 	int max_tx_headroom = 0;
2080 	int ret;
2081 
2082 	/* TODO: USB & SDIO may need extra room? */
2083 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2084 
2085 	hw->extra_tx_headroom = max_tx_headroom;
2086 	hw->queues = IEEE80211_NUM_ACS;
2087 	hw->txq_data_size = sizeof(struct rtw_txq);
2088 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2089 	hw->vif_data_size = sizeof(struct rtw_vif);
2090 
2091 	ieee80211_hw_set(hw, SIGNAL_DBM);
2092 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2093 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2094 	ieee80211_hw_set(hw, MFP_CAPABLE);
2095 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2096 	ieee80211_hw_set(hw, SUPPORTS_PS);
2097 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2098 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2099 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2100 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2101 	ieee80211_hw_set(hw, TX_AMSDU);
2102 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2103 
2104 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2105 				     BIT(NL80211_IFTYPE_AP) |
2106 				     BIT(NL80211_IFTYPE_ADHOC) |
2107 				     BIT(NL80211_IFTYPE_MESH_POINT);
2108 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2109 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2110 
2111 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2112 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2113 
2114 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2115 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2116 	hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2117 
2118 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2119 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2120 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2121 
2122 #ifdef CONFIG_PM
2123 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2124 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2125 #endif
2126 	rtw_set_supported_band(hw, rtwdev->chip);
2127 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2128 
2129 	hw->wiphy->sar_capa = &rtw_sar_capa;
2130 
2131 	ret = rtw_regd_init(rtwdev);
2132 	if (ret) {
2133 		rtw_err(rtwdev, "failed to init regd\n");
2134 		return ret;
2135 	}
2136 
2137 	ret = ieee80211_register_hw(hw);
2138 	if (ret) {
2139 		rtw_err(rtwdev, "failed to register hw\n");
2140 		return ret;
2141 	}
2142 
2143 	ret = rtw_regd_hint(rtwdev);
2144 	if (ret) {
2145 		rtw_err(rtwdev, "failed to hint regd\n");
2146 		return ret;
2147 	}
2148 
2149 	rtw_debugfs_init(rtwdev);
2150 
2151 	rtwdev->bf_info.bfer_mu_cnt = 0;
2152 	rtwdev->bf_info.bfer_su_cnt = 0;
2153 
2154 	return 0;
2155 }
2156 EXPORT_SYMBOL(rtw_register_hw);
2157 
2158 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2159 {
2160 	struct rtw_chip_info *chip = rtwdev->chip;
2161 
2162 	ieee80211_unregister_hw(hw);
2163 	rtw_unset_supported_band(hw, chip);
2164 }
2165 EXPORT_SYMBOL(rtw_unregister_hw);
2166 
2167 MODULE_AUTHOR("Realtek Corporation");
2168 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2169 MODULE_LICENSE("Dual BSD/GPL");
2170