1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "phy.h"
12 #include "reg.h"
13 #include "efuse.h"
14 #include "debug.h"
15 
16 static bool rtw_fw_support_lps;
17 unsigned int rtw_debug_mask;
18 EXPORT_SYMBOL(rtw_debug_mask);
19 
20 module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
21 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
22 
23 MODULE_PARM_DESC(support_lps, "Set Y to enable LPS support");
24 MODULE_PARM_DESC(debug_mask, "Debugging mask");
25 
26 static struct ieee80211_channel rtw_channeltable_2g[] = {
27 	{.center_freq = 2412, .hw_value = 1,},
28 	{.center_freq = 2417, .hw_value = 2,},
29 	{.center_freq = 2422, .hw_value = 3,},
30 	{.center_freq = 2427, .hw_value = 4,},
31 	{.center_freq = 2432, .hw_value = 5,},
32 	{.center_freq = 2437, .hw_value = 6,},
33 	{.center_freq = 2442, .hw_value = 7,},
34 	{.center_freq = 2447, .hw_value = 8,},
35 	{.center_freq = 2452, .hw_value = 9,},
36 	{.center_freq = 2457, .hw_value = 10,},
37 	{.center_freq = 2462, .hw_value = 11,},
38 	{.center_freq = 2467, .hw_value = 12,},
39 	{.center_freq = 2472, .hw_value = 13,},
40 	{.center_freq = 2484, .hw_value = 14,},
41 };
42 
43 static struct ieee80211_channel rtw_channeltable_5g[] = {
44 	{.center_freq = 5180, .hw_value = 36,},
45 	{.center_freq = 5200, .hw_value = 40,},
46 	{.center_freq = 5220, .hw_value = 44,},
47 	{.center_freq = 5240, .hw_value = 48,},
48 	{.center_freq = 5260, .hw_value = 52,},
49 	{.center_freq = 5280, .hw_value = 56,},
50 	{.center_freq = 5300, .hw_value = 60,},
51 	{.center_freq = 5320, .hw_value = 64,},
52 	{.center_freq = 5500, .hw_value = 100,},
53 	{.center_freq = 5520, .hw_value = 104,},
54 	{.center_freq = 5540, .hw_value = 108,},
55 	{.center_freq = 5560, .hw_value = 112,},
56 	{.center_freq = 5580, .hw_value = 116,},
57 	{.center_freq = 5600, .hw_value = 120,},
58 	{.center_freq = 5620, .hw_value = 124,},
59 	{.center_freq = 5640, .hw_value = 128,},
60 	{.center_freq = 5660, .hw_value = 132,},
61 	{.center_freq = 5680, .hw_value = 136,},
62 	{.center_freq = 5700, .hw_value = 140,},
63 	{.center_freq = 5745, .hw_value = 149,},
64 	{.center_freq = 5765, .hw_value = 153,},
65 	{.center_freq = 5785, .hw_value = 157,},
66 	{.center_freq = 5805, .hw_value = 161,},
67 	{.center_freq = 5825, .hw_value = 165,
68 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
69 };
70 
71 static struct ieee80211_rate rtw_ratetable[] = {
72 	{.bitrate = 10, .hw_value = 0x00,},
73 	{.bitrate = 20, .hw_value = 0x01,},
74 	{.bitrate = 55, .hw_value = 0x02,},
75 	{.bitrate = 110, .hw_value = 0x03,},
76 	{.bitrate = 60, .hw_value = 0x04,},
77 	{.bitrate = 90, .hw_value = 0x05,},
78 	{.bitrate = 120, .hw_value = 0x06,},
79 	{.bitrate = 180, .hw_value = 0x07,},
80 	{.bitrate = 240, .hw_value = 0x08,},
81 	{.bitrate = 360, .hw_value = 0x09,},
82 	{.bitrate = 480, .hw_value = 0x0a,},
83 	{.bitrate = 540, .hw_value = 0x0b,},
84 };
85 
86 static struct ieee80211_supported_band rtw_band_2ghz = {
87 	.band = NL80211_BAND_2GHZ,
88 
89 	.channels = rtw_channeltable_2g,
90 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
91 
92 	.bitrates = rtw_ratetable,
93 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
94 
95 	.ht_cap = {0},
96 	.vht_cap = {0},
97 };
98 
99 static struct ieee80211_supported_band rtw_band_5ghz = {
100 	.band = NL80211_BAND_5GHZ,
101 
102 	.channels = rtw_channeltable_5g,
103 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
104 
105 	/* 5G has no CCK rates */
106 	.bitrates = rtw_ratetable + 4,
107 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
108 
109 	.ht_cap = {0},
110 	.vht_cap = {0},
111 };
112 
113 struct rtw_watch_dog_iter_data {
114 	struct rtw_vif *rtwvif;
115 	bool active;
116 	u8 assoc_cnt;
117 };
118 
119 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
120 				   struct ieee80211_vif *vif)
121 {
122 	struct rtw_watch_dog_iter_data *iter_data = data;
123 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
124 
125 	if (vif->type == NL80211_IFTYPE_STATION) {
126 		if (vif->bss_conf.assoc) {
127 			iter_data->assoc_cnt++;
128 			iter_data->rtwvif = rtwvif;
129 		}
130 		if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
131 		    rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
132 			iter_data->active = true;
133 	} else {
134 		/* only STATION mode can enter lps */
135 		iter_data->active = true;
136 	}
137 
138 	rtwvif->stats.tx_unicast = 0;
139 	rtwvif->stats.rx_unicast = 0;
140 	rtwvif->stats.tx_cnt = 0;
141 	rtwvif->stats.rx_cnt = 0;
142 }
143 
144 /* process TX/RX statistics periodically for hardware,
145  * the information helps hardware to enhance performance
146  */
147 static void rtw_watch_dog_work(struct work_struct *work)
148 {
149 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
150 					      watch_dog_work.work);
151 	struct rtw_watch_dog_iter_data data = {};
152 
153 	if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING))
154 		return;
155 
156 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
157 				     RTW_WATCH_DOG_DELAY_TIME);
158 
159 	/* reset tx/rx statictics */
160 	rtwdev->stats.tx_unicast = 0;
161 	rtwdev->stats.rx_unicast = 0;
162 	rtwdev->stats.tx_cnt = 0;
163 	rtwdev->stats.rx_cnt = 0;
164 
165 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
166 
167 	/* fw supports only one station associated to enter lps, if there are
168 	 * more than two stations associated to the AP, then we can not enter
169 	 * lps, because fw does not handle the overlapped beacon interval
170 	 */
171 	if (rtw_fw_support_lps &&
172 	    data.rtwvif && !data.active && data.assoc_cnt == 1)
173 		rtw_enter_lps(rtwdev, data.rtwvif);
174 
175 	if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
176 		return;
177 
178 	rtw_phy_dynamic_mechanism(rtwdev);
179 
180 	rtwdev->watch_dog_cnt++;
181 }
182 
183 static void rtw_c2h_work(struct work_struct *work)
184 {
185 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
186 	struct sk_buff *skb, *tmp;
187 
188 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
189 		skb_unlink(skb, &rtwdev->c2h_queue);
190 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
191 		dev_kfree_skb_any(skb);
192 	}
193 }
194 
195 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
196 			    struct rtw_channel_params *chan_params)
197 {
198 	struct ieee80211_channel *channel = chandef->chan;
199 	enum nl80211_chan_width width = chandef->width;
200 	u32 primary_freq, center_freq;
201 	u8 center_chan;
202 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
203 	u8 primary_chan_idx = 0;
204 
205 	center_chan = channel->hw_value;
206 	primary_freq = channel->center_freq;
207 	center_freq = chandef->center_freq1;
208 
209 	switch (width) {
210 	case NL80211_CHAN_WIDTH_20_NOHT:
211 	case NL80211_CHAN_WIDTH_20:
212 		bandwidth = RTW_CHANNEL_WIDTH_20;
213 		primary_chan_idx = 0;
214 		break;
215 	case NL80211_CHAN_WIDTH_40:
216 		bandwidth = RTW_CHANNEL_WIDTH_40;
217 		if (primary_freq > center_freq) {
218 			primary_chan_idx = 1;
219 			center_chan -= 2;
220 		} else {
221 			primary_chan_idx = 2;
222 			center_chan += 2;
223 		}
224 		break;
225 	case NL80211_CHAN_WIDTH_80:
226 		bandwidth = RTW_CHANNEL_WIDTH_80;
227 		if (primary_freq > center_freq) {
228 			if (primary_freq - center_freq == 10) {
229 				primary_chan_idx = 1;
230 				center_chan -= 2;
231 			} else {
232 				primary_chan_idx = 3;
233 				center_chan -= 6;
234 			}
235 		} else {
236 			if (center_freq - primary_freq == 10) {
237 				primary_chan_idx = 2;
238 				center_chan += 2;
239 			} else {
240 				primary_chan_idx = 4;
241 				center_chan += 6;
242 			}
243 		}
244 		break;
245 	default:
246 		center_chan = 0;
247 		break;
248 	}
249 
250 	chan_params->center_chan = center_chan;
251 	chan_params->bandwidth = bandwidth;
252 	chan_params->primary_chan_idx = primary_chan_idx;
253 }
254 
255 void rtw_set_channel(struct rtw_dev *rtwdev)
256 {
257 	struct ieee80211_hw *hw = rtwdev->hw;
258 	struct rtw_hal *hal = &rtwdev->hal;
259 	struct rtw_chip_info *chip = rtwdev->chip;
260 	struct rtw_channel_params ch_param;
261 	u8 center_chan, bandwidth, primary_chan_idx;
262 
263 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
264 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
265 		return;
266 
267 	center_chan = ch_param.center_chan;
268 	bandwidth = ch_param.bandwidth;
269 	primary_chan_idx = ch_param.primary_chan_idx;
270 
271 	hal->current_band_width = bandwidth;
272 	hal->current_channel = center_chan;
273 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
274 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
275 
276 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
277 }
278 
279 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
280 {
281 	int i;
282 
283 	for (i = 0; i < ETH_ALEN; i++)
284 		rtw_write8(rtwdev, start + i, addr[i]);
285 }
286 
287 void rtw_vif_port_config(struct rtw_dev *rtwdev,
288 			 struct rtw_vif *rtwvif,
289 			 u32 config)
290 {
291 	u32 addr, mask;
292 
293 	if (config & PORT_SET_MAC_ADDR) {
294 		addr = rtwvif->conf->mac_addr.addr;
295 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
296 	}
297 	if (config & PORT_SET_BSSID) {
298 		addr = rtwvif->conf->bssid.addr;
299 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
300 	}
301 	if (config & PORT_SET_NET_TYPE) {
302 		addr = rtwvif->conf->net_type.addr;
303 		mask = rtwvif->conf->net_type.mask;
304 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
305 	}
306 	if (config & PORT_SET_AID) {
307 		addr = rtwvif->conf->aid.addr;
308 		mask = rtwvif->conf->aid.mask;
309 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
310 	}
311 }
312 
313 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
314 {
315 	u8 bw = 0;
316 
317 	switch (bw_cap) {
318 	case EFUSE_HW_CAP_IGNORE:
319 	case EFUSE_HW_CAP_SUPP_BW80:
320 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
321 		/* fall through */
322 	case EFUSE_HW_CAP_SUPP_BW40:
323 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
324 		/* fall through */
325 	default:
326 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
327 		break;
328 	}
329 
330 	return bw;
331 }
332 
333 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
334 {
335 	struct rtw_hal *hal = &rtwdev->hal;
336 
337 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
338 	    hw_ant_num >= hal->rf_path_num)
339 		return;
340 
341 	switch (hw_ant_num) {
342 	case 1:
343 		hal->rf_type = RF_1T1R;
344 		hal->rf_path_num = 1;
345 		hal->antenna_tx = BB_PATH_A;
346 		hal->antenna_rx = BB_PATH_A;
347 		break;
348 	default:
349 		WARN(1, "invalid hw configuration from efuse\n");
350 		break;
351 	}
352 }
353 
354 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
355 {
356 	u64 ra_mask = 0;
357 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
358 	u8 vht_mcs_cap;
359 	int i, nss;
360 
361 	/* 4SS, every two bits for MCS7/8/9 */
362 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
363 		vht_mcs_cap = mcs_map & 0x3;
364 		switch (vht_mcs_cap) {
365 		case 2: /* MCS9 */
366 			ra_mask |= 0x3ffULL << nss;
367 			break;
368 		case 1: /* MCS8 */
369 			ra_mask |= 0x1ffULL << nss;
370 			break;
371 		case 0: /* MCS7 */
372 			ra_mask |= 0x0ffULL << nss;
373 			break;
374 		default:
375 			break;
376 		}
377 	}
378 
379 	return ra_mask;
380 }
381 
382 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
383 {
384 	u8 rate_id = 0;
385 
386 	switch (wireless_set) {
387 	case WIRELESS_CCK:
388 		rate_id = RTW_RATEID_B_20M;
389 		break;
390 	case WIRELESS_OFDM:
391 		rate_id = RTW_RATEID_G;
392 		break;
393 	case WIRELESS_CCK | WIRELESS_OFDM:
394 		rate_id = RTW_RATEID_BG;
395 		break;
396 	case WIRELESS_OFDM | WIRELESS_HT:
397 		if (tx_num == 1)
398 			rate_id = RTW_RATEID_GN_N1SS;
399 		else if (tx_num == 2)
400 			rate_id = RTW_RATEID_GN_N2SS;
401 		else if (tx_num == 3)
402 			rate_id = RTW_RATEID_ARFR5_N_3SS;
403 		break;
404 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
405 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
406 			if (tx_num == 1)
407 				rate_id = RTW_RATEID_BGN_40M_1SS;
408 			else if (tx_num == 2)
409 				rate_id = RTW_RATEID_BGN_40M_2SS;
410 			else if (tx_num == 3)
411 				rate_id = RTW_RATEID_ARFR5_N_3SS;
412 			else if (tx_num == 4)
413 				rate_id = RTW_RATEID_ARFR7_N_4SS;
414 		} else {
415 			if (tx_num == 1)
416 				rate_id = RTW_RATEID_BGN_20M_1SS;
417 			else if (tx_num == 2)
418 				rate_id = RTW_RATEID_BGN_20M_2SS;
419 			else if (tx_num == 3)
420 				rate_id = RTW_RATEID_ARFR5_N_3SS;
421 			else if (tx_num == 4)
422 				rate_id = RTW_RATEID_ARFR7_N_4SS;
423 		}
424 		break;
425 	case WIRELESS_OFDM | WIRELESS_VHT:
426 		if (tx_num == 1)
427 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
428 		else if (tx_num == 2)
429 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
430 		else if (tx_num == 3)
431 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
432 		else if (tx_num == 4)
433 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
434 		break;
435 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
436 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
437 			if (tx_num == 1)
438 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
439 			else if (tx_num == 2)
440 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
441 			else if (tx_num == 3)
442 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
443 			else if (tx_num == 4)
444 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
445 		} else {
446 			if (tx_num == 1)
447 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
448 			else if (tx_num == 2)
449 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
450 			else if (tx_num == 3)
451 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
452 			else if (tx_num == 4)
453 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
454 		}
455 		break;
456 	default:
457 		break;
458 	}
459 
460 	return rate_id;
461 }
462 
463 #define RA_MASK_CCK_RATES	0x0000f
464 #define RA_MASK_OFDM_RATES	0x00ff0
465 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
466 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
467 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
468 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
469 				 RA_MASK_HT_RATES_2SS | \
470 				 RA_MASK_HT_RATES_3SS)
471 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
472 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
473 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
474 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
475 				 RA_MASK_VHT_RATES_2SS | \
476 				 RA_MASK_VHT_RATES_3SS)
477 #define RA_MASK_CCK_IN_HT	0x00005
478 #define RA_MASK_CCK_IN_VHT	0x00005
479 #define RA_MASK_OFDM_IN_VHT	0x00010
480 #define RA_MASK_OFDM_IN_HT_2G	0x00010
481 #define RA_MASK_OFDM_IN_HT_5G	0x00030
482 
483 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
484 {
485 	struct ieee80211_sta *sta = si->sta;
486 	struct rtw_efuse *efuse = &rtwdev->efuse;
487 	struct rtw_hal *hal = &rtwdev->hal;
488 	u8 rssi_level;
489 	u8 wireless_set;
490 	u8 bw_mode;
491 	u8 rate_id;
492 	u8 rf_type = RF_1T1R;
493 	u8 stbc_en = 0;
494 	u8 ldpc_en = 0;
495 	u8 tx_num = 1;
496 	u64 ra_mask = 0;
497 	bool is_vht_enable = false;
498 	bool is_support_sgi = false;
499 
500 	if (sta->vht_cap.vht_supported) {
501 		is_vht_enable = true;
502 		ra_mask |= get_vht_ra_mask(sta);
503 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
504 			stbc_en = VHT_STBC_EN;
505 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
506 			ldpc_en = VHT_LDPC_EN;
507 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
508 			is_support_sgi = true;
509 	} else if (sta->ht_cap.ht_supported) {
510 		ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) |
511 			   (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12);
512 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
513 			stbc_en = HT_STBC_EN;
514 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
515 			ldpc_en = HT_LDPC_EN;
516 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
517 		    sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
518 			is_support_sgi = true;
519 	}
520 
521 	if (hal->current_band_type == RTW_BAND_5G) {
522 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
523 		if (sta->vht_cap.vht_supported) {
524 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
525 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
526 		} else if (sta->ht_cap.ht_supported) {
527 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
528 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
529 		} else {
530 			wireless_set = WIRELESS_OFDM;
531 		}
532 	} else if (hal->current_band_type == RTW_BAND_2G) {
533 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
534 		if (sta->vht_cap.vht_supported) {
535 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
536 				   RA_MASK_OFDM_IN_VHT;
537 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
538 				       WIRELESS_HT | WIRELESS_VHT;
539 		} else if (sta->ht_cap.ht_supported) {
540 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
541 				   RA_MASK_OFDM_IN_HT_2G;
542 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
543 				       WIRELESS_HT;
544 		} else if (sta->supp_rates[0] <= 0xf) {
545 			wireless_set = WIRELESS_CCK;
546 		} else {
547 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
548 		}
549 	} else {
550 		rtw_err(rtwdev, "Unknown band type\n");
551 		wireless_set = 0;
552 	}
553 
554 	if (efuse->hw_cap.nss == 1) {
555 		ra_mask &= RA_MASK_VHT_RATES_1SS;
556 		ra_mask &= RA_MASK_HT_RATES_1SS;
557 	}
558 
559 	switch (sta->bandwidth) {
560 	case IEEE80211_STA_RX_BW_80:
561 		bw_mode = RTW_CHANNEL_WIDTH_80;
562 		break;
563 	case IEEE80211_STA_RX_BW_40:
564 		bw_mode = RTW_CHANNEL_WIDTH_40;
565 		break;
566 	default:
567 		bw_mode = RTW_CHANNEL_WIDTH_20;
568 		break;
569 	}
570 
571 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
572 		tx_num = 2;
573 		rf_type = RF_2T2R;
574 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
575 		tx_num = 2;
576 		rf_type = RF_2T2R;
577 	}
578 
579 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
580 
581 	if (wireless_set != WIRELESS_CCK) {
582 		rssi_level = si->rssi_level;
583 		if (rssi_level == 0)
584 			ra_mask &= 0xffffffffffffffffULL;
585 		else if (rssi_level == 1)
586 			ra_mask &= 0xfffffffffffffff0ULL;
587 		else if (rssi_level == 2)
588 			ra_mask &= 0xffffffffffffefe0ULL;
589 		else if (rssi_level == 3)
590 			ra_mask &= 0xffffffffffffcfc0ULL;
591 		else if (rssi_level == 4)
592 			ra_mask &= 0xffffffffffff8f80ULL;
593 		else if (rssi_level >= 5)
594 			ra_mask &= 0xffffffffffff0f00ULL;
595 	}
596 
597 	si->bw_mode = bw_mode;
598 	si->stbc_en = stbc_en;
599 	si->ldpc_en = ldpc_en;
600 	si->rf_type = rf_type;
601 	si->wireless_set = wireless_set;
602 	si->sgi_enable = is_support_sgi;
603 	si->vht_enable = is_vht_enable;
604 	si->ra_mask = ra_mask;
605 	si->rate_id = rate_id;
606 
607 	rtw_fw_send_ra_info(rtwdev, si);
608 }
609 
610 static int rtw_power_on(struct rtw_dev *rtwdev)
611 {
612 	struct rtw_chip_info *chip = rtwdev->chip;
613 	struct rtw_fw_state *fw = &rtwdev->fw;
614 	int ret;
615 
616 	ret = rtw_hci_setup(rtwdev);
617 	if (ret) {
618 		rtw_err(rtwdev, "failed to setup hci\n");
619 		goto err;
620 	}
621 
622 	/* power on MAC before firmware downloaded */
623 	ret = rtw_mac_power_on(rtwdev);
624 	if (ret) {
625 		rtw_err(rtwdev, "failed to power on mac\n");
626 		goto err;
627 	}
628 
629 	wait_for_completion(&fw->completion);
630 	if (!fw->firmware) {
631 		ret = -EINVAL;
632 		rtw_err(rtwdev, "failed to load firmware\n");
633 		goto err;
634 	}
635 
636 	ret = rtw_download_firmware(rtwdev, fw);
637 	if (ret) {
638 		rtw_err(rtwdev, "failed to download firmware\n");
639 		goto err_off;
640 	}
641 
642 	/* config mac after firmware downloaded */
643 	ret = rtw_mac_init(rtwdev);
644 	if (ret) {
645 		rtw_err(rtwdev, "failed to configure mac\n");
646 		goto err_off;
647 	}
648 
649 	chip->ops->phy_set_param(rtwdev);
650 
651 	ret = rtw_hci_start(rtwdev);
652 	if (ret) {
653 		rtw_err(rtwdev, "failed to start hci\n");
654 		goto err_off;
655 	}
656 
657 	return 0;
658 
659 err_off:
660 	rtw_mac_power_off(rtwdev);
661 
662 err:
663 	return ret;
664 }
665 
666 int rtw_core_start(struct rtw_dev *rtwdev)
667 {
668 	int ret;
669 
670 	ret = rtw_power_on(rtwdev);
671 	if (ret)
672 		return ret;
673 
674 	rtw_sec_enable_sec_engine(rtwdev);
675 
676 	/* rcr reset after powered on */
677 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
678 
679 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
680 				     RTW_WATCH_DOG_DELAY_TIME);
681 
682 	rtw_flag_set(rtwdev, RTW_FLAG_RUNNING);
683 
684 	return 0;
685 }
686 
687 static void rtw_power_off(struct rtw_dev *rtwdev)
688 {
689 	rtwdev->hci.ops->stop(rtwdev);
690 	rtw_mac_power_off(rtwdev);
691 }
692 
693 void rtw_core_stop(struct rtw_dev *rtwdev)
694 {
695 	rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING);
696 	rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING);
697 
698 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
699 
700 	rtw_power_off(rtwdev);
701 }
702 
703 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
704 			    struct ieee80211_sta_ht_cap *ht_cap)
705 {
706 	struct rtw_efuse *efuse = &rtwdev->efuse;
707 
708 	ht_cap->ht_supported = true;
709 	ht_cap->cap = 0;
710 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
711 			IEEE80211_HT_CAP_MAX_AMSDU |
712 			IEEE80211_HT_CAP_LDPC_CODING |
713 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
714 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
715 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
716 				IEEE80211_HT_CAP_DSSSCCK40 |
717 				IEEE80211_HT_CAP_SGI_40;
718 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
719 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
720 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
721 	if (efuse->hw_cap.nss > 1) {
722 		ht_cap->mcs.rx_mask[0] = 0xFF;
723 		ht_cap->mcs.rx_mask[1] = 0xFF;
724 		ht_cap->mcs.rx_mask[4] = 0x01;
725 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
726 	} else {
727 		ht_cap->mcs.rx_mask[0] = 0xFF;
728 		ht_cap->mcs.rx_mask[1] = 0x00;
729 		ht_cap->mcs.rx_mask[4] = 0x01;
730 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
731 	}
732 }
733 
734 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
735 			     struct ieee80211_sta_vht_cap *vht_cap)
736 {
737 	struct rtw_efuse *efuse = &rtwdev->efuse;
738 	u16 mcs_map;
739 	__le16 highest;
740 
741 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
742 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
743 		return;
744 
745 	vht_cap->vht_supported = true;
746 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
747 		       IEEE80211_VHT_CAP_RXLDPC |
748 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
749 		       IEEE80211_VHT_CAP_TXSTBC |
750 		       IEEE80211_VHT_CAP_RXSTBC_1 |
751 		       IEEE80211_VHT_CAP_HTC_VHT |
752 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
753 		       0;
754 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
755 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
756 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
757 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
758 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
759 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
760 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
761 	if (efuse->hw_cap.nss > 1) {
762 		highest = cpu_to_le16(780);
763 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
764 	} else {
765 		highest = cpu_to_le16(390);
766 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
767 	}
768 
769 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
770 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
771 	vht_cap->vht_mcs.rx_highest = highest;
772 	vht_cap->vht_mcs.tx_highest = highest;
773 }
774 
775 static void rtw_set_supported_band(struct ieee80211_hw *hw,
776 				   struct rtw_chip_info *chip)
777 {
778 	struct rtw_dev *rtwdev = hw->priv;
779 	struct ieee80211_supported_band *sband;
780 
781 	if (chip->band & RTW_BAND_2G) {
782 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
783 		if (!sband)
784 			goto err_out;
785 		if (chip->ht_supported)
786 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
787 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
788 	}
789 
790 	if (chip->band & RTW_BAND_5G) {
791 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
792 		if (!sband)
793 			goto err_out;
794 		if (chip->ht_supported)
795 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
796 		if (chip->vht_supported)
797 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
798 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
799 	}
800 
801 	return;
802 
803 err_out:
804 	rtw_err(rtwdev, "failed to set supported band\n");
805 	kfree(sband);
806 }
807 
808 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
809 				     struct rtw_chip_info *chip)
810 {
811 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
812 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
813 }
814 
815 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
816 {
817 	struct rtw_dev *rtwdev = context;
818 	struct rtw_fw_state *fw = &rtwdev->fw;
819 
820 	if (!firmware)
821 		rtw_err(rtwdev, "failed to request firmware\n");
822 
823 	fw->firmware = firmware;
824 	complete_all(&fw->completion);
825 }
826 
827 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
828 {
829 	struct rtw_fw_state *fw = &rtwdev->fw;
830 	int ret;
831 
832 	init_completion(&fw->completion);
833 
834 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
835 				      GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
836 	if (ret) {
837 		rtw_err(rtwdev, "async firmware request failed\n");
838 		return ret;
839 	}
840 
841 	return 0;
842 }
843 
844 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
845 {
846 	struct rtw_chip_info *chip = rtwdev->chip;
847 	struct rtw_hal *hal = &rtwdev->hal;
848 	struct rtw_efuse *efuse = &rtwdev->efuse;
849 	u32 wl_bt_pwr_ctrl;
850 	int ret = 0;
851 
852 	switch (rtw_hci_type(rtwdev)) {
853 	case RTW_HCI_TYPE_PCIE:
854 		rtwdev->hci.rpwm_addr = 0x03d9;
855 		break;
856 	default:
857 		rtw_err(rtwdev, "unsupported hci type\n");
858 		return -EINVAL;
859 	}
860 
861 	wl_bt_pwr_ctrl = rtw_read32(rtwdev, REG_WL_BT_PWR_CTRL);
862 	if (wl_bt_pwr_ctrl & BIT_BT_FUNC_EN)
863 		rtwdev->efuse.btcoex = true;
864 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
865 	hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
866 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
867 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
868 	if (hal->chip_version & BIT_RF_TYPE_ID) {
869 		hal->rf_type = RF_2T2R;
870 		hal->rf_path_num = 2;
871 		hal->antenna_tx = BB_PATH_AB;
872 		hal->antenna_rx = BB_PATH_AB;
873 	} else {
874 		hal->rf_type = RF_1T1R;
875 		hal->rf_path_num = 1;
876 		hal->antenna_tx = BB_PATH_A;
877 		hal->antenna_rx = BB_PATH_A;
878 	}
879 
880 	if (hal->fab_version == 2)
881 		hal->fab_version = 1;
882 	else if (hal->fab_version == 1)
883 		hal->fab_version = 2;
884 
885 	efuse->physical_size = chip->phy_efuse_size;
886 	efuse->logical_size = chip->log_efuse_size;
887 	efuse->protect_size = chip->ptct_efuse_size;
888 
889 	/* default use ack */
890 	rtwdev->hal.rcr |= BIT_VHT_DACK;
891 
892 	return ret;
893 }
894 
895 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
896 {
897 	struct rtw_fw_state *fw = &rtwdev->fw;
898 	int ret;
899 
900 	ret = rtw_hci_setup(rtwdev);
901 	if (ret) {
902 		rtw_err(rtwdev, "failed to setup hci\n");
903 		goto err;
904 	}
905 
906 	ret = rtw_mac_power_on(rtwdev);
907 	if (ret) {
908 		rtw_err(rtwdev, "failed to power on mac\n");
909 		goto err;
910 	}
911 
912 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
913 
914 	wait_for_completion(&fw->completion);
915 	if (!fw->firmware) {
916 		ret = -EINVAL;
917 		rtw_err(rtwdev, "failed to load firmware\n");
918 		goto err;
919 	}
920 
921 	ret = rtw_download_firmware(rtwdev, fw);
922 	if (ret) {
923 		rtw_err(rtwdev, "failed to download firmware\n");
924 		goto err_off;
925 	}
926 
927 	return 0;
928 
929 err_off:
930 	rtw_mac_power_off(rtwdev);
931 
932 err:
933 	return ret;
934 }
935 
936 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
937 {
938 	struct rtw_efuse *efuse = &rtwdev->efuse;
939 	u8 hw_feature[HW_FEATURE_LEN];
940 	u8 id;
941 	u8 bw;
942 	int i;
943 
944 	id = rtw_read8(rtwdev, REG_C2HEVT);
945 	if (id != C2H_HW_FEATURE_REPORT) {
946 		rtw_err(rtwdev, "failed to read hw feature report\n");
947 		return -EBUSY;
948 	}
949 
950 	for (i = 0; i < HW_FEATURE_LEN; i++)
951 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
952 
953 	rtw_write8(rtwdev, REG_C2HEVT, 0);
954 
955 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
956 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
957 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
958 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
959 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
960 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
961 
962 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
963 
964 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE)
965 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
966 
967 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
968 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
969 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
970 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
971 
972 	return 0;
973 }
974 
975 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
976 {
977 	rtw_hci_stop(rtwdev);
978 	rtw_mac_power_off(rtwdev);
979 }
980 
981 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
982 {
983 	struct rtw_efuse *efuse = &rtwdev->efuse;
984 	int ret;
985 
986 	mutex_lock(&rtwdev->mutex);
987 
988 	/* power on mac to read efuse */
989 	ret = rtw_chip_efuse_enable(rtwdev);
990 	if (ret)
991 		goto out;
992 
993 	ret = rtw_parse_efuse_map(rtwdev);
994 	if (ret)
995 		goto out;
996 
997 	ret = rtw_dump_hw_feature(rtwdev);
998 	if (ret)
999 		goto out;
1000 
1001 	ret = rtw_check_supported_rfe(rtwdev);
1002 	if (ret)
1003 		goto out;
1004 
1005 	if (efuse->crystal_cap == 0xff)
1006 		efuse->crystal_cap = 0;
1007 	if (efuse->pa_type_2g == 0xff)
1008 		efuse->pa_type_2g = 0;
1009 	if (efuse->pa_type_5g == 0xff)
1010 		efuse->pa_type_5g = 0;
1011 	if (efuse->lna_type_2g == 0xff)
1012 		efuse->lna_type_2g = 0;
1013 	if (efuse->lna_type_5g == 0xff)
1014 		efuse->lna_type_5g = 0;
1015 	if (efuse->channel_plan == 0xff)
1016 		efuse->channel_plan = 0x7f;
1017 	if (efuse->bt_setting & BIT(0))
1018 		efuse->share_ant = true;
1019 	if (efuse->regd == 0xff)
1020 		efuse->regd = 0;
1021 
1022 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1023 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1024 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1025 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1026 
1027 	rtw_chip_efuse_disable(rtwdev);
1028 
1029 out:
1030 	mutex_unlock(&rtwdev->mutex);
1031 	return ret;
1032 }
1033 
1034 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1035 {
1036 	struct rtw_hal *hal = &rtwdev->hal;
1037 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1038 
1039 	if (!rfe_def)
1040 		return -ENODEV;
1041 
1042 	rtw_phy_setup_phy_cond(rtwdev, 0);
1043 
1044 	rtw_hw_init_tx_power(hal);
1045 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1046 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1047 	rtw_phy_tx_power_by_rate_config(hal);
1048 	rtw_phy_tx_power_limit_config(hal);
1049 
1050 	return 0;
1051 }
1052 
1053 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1054 {
1055 	int ret;
1056 
1057 	ret = rtw_chip_parameter_setup(rtwdev);
1058 	if (ret) {
1059 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1060 		goto err_out;
1061 	}
1062 
1063 	ret = rtw_chip_efuse_info_setup(rtwdev);
1064 	if (ret) {
1065 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1066 		goto err_out;
1067 	}
1068 
1069 	ret = rtw_chip_board_info_setup(rtwdev);
1070 	if (ret) {
1071 		rtw_err(rtwdev, "failed to setup chip board info\n");
1072 		goto err_out;
1073 	}
1074 
1075 	return 0;
1076 
1077 err_out:
1078 	return ret;
1079 }
1080 EXPORT_SYMBOL(rtw_chip_info_setup);
1081 
1082 int rtw_core_init(struct rtw_dev *rtwdev)
1083 {
1084 	int ret;
1085 
1086 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1087 
1088 	timer_setup(&rtwdev->tx_report.purge_timer,
1089 		    rtw_tx_report_purge_timer, 0);
1090 
1091 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1092 	INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work);
1093 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1094 	skb_queue_head_init(&rtwdev->c2h_queue);
1095 	skb_queue_head_init(&rtwdev->tx_report.queue);
1096 
1097 	spin_lock_init(&rtwdev->dm_lock);
1098 	spin_lock_init(&rtwdev->rf_lock);
1099 	spin_lock_init(&rtwdev->h2c.lock);
1100 	spin_lock_init(&rtwdev->tx_report.q_lock);
1101 
1102 	mutex_init(&rtwdev->mutex);
1103 	mutex_init(&rtwdev->hal.tx_power_mutex);
1104 
1105 	rtwdev->sec.total_cam_num = 32;
1106 	rtwdev->hal.current_channel = 1;
1107 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1108 
1109 	mutex_lock(&rtwdev->mutex);
1110 	rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1111 	mutex_unlock(&rtwdev->mutex);
1112 
1113 	/* default rx filter setting */
1114 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1115 			  BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1116 			  BIT_AB | BIT_AM | BIT_APM;
1117 
1118 	ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1119 	if (ret) {
1120 		rtw_warn(rtwdev, "no firmware loaded\n");
1121 		return ret;
1122 	}
1123 
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL(rtw_core_init);
1127 
1128 void rtw_core_deinit(struct rtw_dev *rtwdev)
1129 {
1130 	struct rtw_fw_state *fw = &rtwdev->fw;
1131 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1132 	unsigned long flags;
1133 
1134 	if (fw->firmware)
1135 		release_firmware(fw->firmware);
1136 
1137 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1138 	skb_queue_purge(&rtwdev->tx_report.queue);
1139 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1140 
1141 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1142 		list_del(&rsvd_pkt->list);
1143 		kfree(rsvd_pkt);
1144 	}
1145 
1146 	mutex_destroy(&rtwdev->mutex);
1147 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
1148 }
1149 EXPORT_SYMBOL(rtw_core_deinit);
1150 
1151 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1152 {
1153 	int max_tx_headroom = 0;
1154 	int ret;
1155 
1156 	/* TODO: USB & SDIO may need extra room? */
1157 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1158 
1159 	hw->extra_tx_headroom = max_tx_headroom;
1160 	hw->queues = IEEE80211_NUM_ACS;
1161 	hw->sta_data_size = sizeof(struct rtw_sta_info);
1162 	hw->vif_data_size = sizeof(struct rtw_vif);
1163 
1164 	ieee80211_hw_set(hw, SIGNAL_DBM);
1165 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1166 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1167 	ieee80211_hw_set(hw, MFP_CAPABLE);
1168 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1169 	ieee80211_hw_set(hw, SUPPORTS_PS);
1170 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1171 
1172 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1173 				     BIT(NL80211_IFTYPE_AP) |
1174 				     BIT(NL80211_IFTYPE_ADHOC) |
1175 				     BIT(NL80211_IFTYPE_MESH_POINT);
1176 
1177 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1178 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1179 
1180 	rtw_set_supported_band(hw, rtwdev->chip);
1181 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1182 
1183 	rtw_regd_init(rtwdev, rtw_regd_notifier);
1184 
1185 	ret = ieee80211_register_hw(hw);
1186 	if (ret) {
1187 		rtw_err(rtwdev, "failed to register hw\n");
1188 		return ret;
1189 	}
1190 
1191 	if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1192 		rtw_err(rtwdev, "regulatory_hint fail\n");
1193 
1194 	rtw_debugfs_init(rtwdev);
1195 
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL(rtw_register_hw);
1199 
1200 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1201 {
1202 	struct rtw_chip_info *chip = rtwdev->chip;
1203 
1204 	ieee80211_unregister_hw(hw);
1205 	rtw_unset_supported_band(hw, chip);
1206 }
1207 EXPORT_SYMBOL(rtw_unregister_hw);
1208 
1209 MODULE_AUTHOR("Realtek Corporation");
1210 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1211 MODULE_LICENSE("Dual BSD/GPL");
1212