1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #include "main.h" 6 #include "regd.h" 7 #include "fw.h" 8 #include "ps.h" 9 #include "sec.h" 10 #include "mac.h" 11 #include "coex.h" 12 #include "phy.h" 13 #include "reg.h" 14 #include "efuse.h" 15 #include "tx.h" 16 #include "debug.h" 17 #include "bf.h" 18 19 unsigned int rtw_fw_lps_deep_mode; 20 EXPORT_SYMBOL(rtw_fw_lps_deep_mode); 21 bool rtw_bf_support = true; 22 unsigned int rtw_debug_mask; 23 EXPORT_SYMBOL(rtw_debug_mask); 24 25 module_param_named(lps_deep_mode, rtw_fw_lps_deep_mode, uint, 0644); 26 module_param_named(support_bf, rtw_bf_support, bool, 0644); 27 module_param_named(debug_mask, rtw_debug_mask, uint, 0644); 28 29 MODULE_PARM_DESC(lps_deep_mode, "Deeper PS mode. If 0, deep PS is disabled"); 30 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support"); 31 MODULE_PARM_DESC(debug_mask, "Debugging mask"); 32 33 static struct ieee80211_channel rtw_channeltable_2g[] = { 34 {.center_freq = 2412, .hw_value = 1,}, 35 {.center_freq = 2417, .hw_value = 2,}, 36 {.center_freq = 2422, .hw_value = 3,}, 37 {.center_freq = 2427, .hw_value = 4,}, 38 {.center_freq = 2432, .hw_value = 5,}, 39 {.center_freq = 2437, .hw_value = 6,}, 40 {.center_freq = 2442, .hw_value = 7,}, 41 {.center_freq = 2447, .hw_value = 8,}, 42 {.center_freq = 2452, .hw_value = 9,}, 43 {.center_freq = 2457, .hw_value = 10,}, 44 {.center_freq = 2462, .hw_value = 11,}, 45 {.center_freq = 2467, .hw_value = 12,}, 46 {.center_freq = 2472, .hw_value = 13,}, 47 {.center_freq = 2484, .hw_value = 14,}, 48 }; 49 50 static struct ieee80211_channel rtw_channeltable_5g[] = { 51 {.center_freq = 5180, .hw_value = 36,}, 52 {.center_freq = 5200, .hw_value = 40,}, 53 {.center_freq = 5220, .hw_value = 44,}, 54 {.center_freq = 5240, .hw_value = 48,}, 55 {.center_freq = 5260, .hw_value = 52,}, 56 {.center_freq = 5280, .hw_value = 56,}, 57 {.center_freq = 5300, .hw_value = 60,}, 58 {.center_freq = 5320, .hw_value = 64,}, 59 {.center_freq = 5500, .hw_value = 100,}, 60 {.center_freq = 5520, .hw_value = 104,}, 61 {.center_freq = 5540, .hw_value = 108,}, 62 {.center_freq = 5560, .hw_value = 112,}, 63 {.center_freq = 5580, .hw_value = 116,}, 64 {.center_freq = 5600, .hw_value = 120,}, 65 {.center_freq = 5620, .hw_value = 124,}, 66 {.center_freq = 5640, .hw_value = 128,}, 67 {.center_freq = 5660, .hw_value = 132,}, 68 {.center_freq = 5680, .hw_value = 136,}, 69 {.center_freq = 5700, .hw_value = 140,}, 70 {.center_freq = 5745, .hw_value = 149,}, 71 {.center_freq = 5765, .hw_value = 153,}, 72 {.center_freq = 5785, .hw_value = 157,}, 73 {.center_freq = 5805, .hw_value = 161,}, 74 {.center_freq = 5825, .hw_value = 165, 75 .flags = IEEE80211_CHAN_NO_HT40MINUS}, 76 }; 77 78 static struct ieee80211_rate rtw_ratetable[] = { 79 {.bitrate = 10, .hw_value = 0x00,}, 80 {.bitrate = 20, .hw_value = 0x01,}, 81 {.bitrate = 55, .hw_value = 0x02,}, 82 {.bitrate = 110, .hw_value = 0x03,}, 83 {.bitrate = 60, .hw_value = 0x04,}, 84 {.bitrate = 90, .hw_value = 0x05,}, 85 {.bitrate = 120, .hw_value = 0x06,}, 86 {.bitrate = 180, .hw_value = 0x07,}, 87 {.bitrate = 240, .hw_value = 0x08,}, 88 {.bitrate = 360, .hw_value = 0x09,}, 89 {.bitrate = 480, .hw_value = 0x0a,}, 90 {.bitrate = 540, .hw_value = 0x0b,}, 91 }; 92 93 u16 rtw_desc_to_bitrate(u8 desc_rate) 94 { 95 struct ieee80211_rate rate; 96 97 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n")) 98 return 0; 99 100 rate = rtw_ratetable[desc_rate]; 101 102 return rate.bitrate; 103 } 104 105 static struct ieee80211_supported_band rtw_band_2ghz = { 106 .band = NL80211_BAND_2GHZ, 107 108 .channels = rtw_channeltable_2g, 109 .n_channels = ARRAY_SIZE(rtw_channeltable_2g), 110 111 .bitrates = rtw_ratetable, 112 .n_bitrates = ARRAY_SIZE(rtw_ratetable), 113 114 .ht_cap = {0}, 115 .vht_cap = {0}, 116 }; 117 118 static struct ieee80211_supported_band rtw_band_5ghz = { 119 .band = NL80211_BAND_5GHZ, 120 121 .channels = rtw_channeltable_5g, 122 .n_channels = ARRAY_SIZE(rtw_channeltable_5g), 123 124 /* 5G has no CCK rates */ 125 .bitrates = rtw_ratetable + 4, 126 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, 127 128 .ht_cap = {0}, 129 .vht_cap = {0}, 130 }; 131 132 struct rtw_watch_dog_iter_data { 133 struct rtw_dev *rtwdev; 134 struct rtw_vif *rtwvif; 135 }; 136 137 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif) 138 { 139 struct rtw_bf_info *bf_info = &rtwdev->bf_info; 140 u8 fix_rate_enable = 0; 141 u8 new_csi_rate_idx; 142 143 if (rtwvif->bfee.role != RTW_BFEE_SU && 144 rtwvif->bfee.role != RTW_BFEE_MU) 145 return; 146 147 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi, 148 bf_info->cur_csi_rpt_rate, 149 fix_rate_enable, &new_csi_rate_idx); 150 151 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate) 152 bf_info->cur_csi_rpt_rate = new_csi_rate_idx; 153 } 154 155 static void rtw_vif_watch_dog_iter(void *data, u8 *mac, 156 struct ieee80211_vif *vif) 157 { 158 struct rtw_watch_dog_iter_data *iter_data = data; 159 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 160 161 if (vif->type == NL80211_IFTYPE_STATION) 162 if (vif->bss_conf.assoc) 163 iter_data->rtwvif = rtwvif; 164 165 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif); 166 167 rtwvif->stats.tx_unicast = 0; 168 rtwvif->stats.rx_unicast = 0; 169 rtwvif->stats.tx_cnt = 0; 170 rtwvif->stats.rx_cnt = 0; 171 } 172 173 /* process TX/RX statistics periodically for hardware, 174 * the information helps hardware to enhance performance 175 */ 176 static void rtw_watch_dog_work(struct work_struct *work) 177 { 178 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 179 watch_dog_work.work); 180 struct rtw_traffic_stats *stats = &rtwdev->stats; 181 struct rtw_watch_dog_iter_data data = {}; 182 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 183 bool ps_active; 184 185 mutex_lock(&rtwdev->mutex); 186 187 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags)) 188 goto unlock; 189 190 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 191 RTW_WATCH_DOG_DELAY_TIME); 192 193 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100) 194 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 195 else 196 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 197 198 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags)) 199 rtw_coex_wl_status_change_notify(rtwdev); 200 201 if (stats->tx_cnt > RTW_LPS_THRESHOLD || 202 stats->rx_cnt > RTW_LPS_THRESHOLD) 203 ps_active = true; 204 else 205 ps_active = false; 206 207 ewma_tp_add(&stats->tx_ewma_tp, 208 (u32)(stats->tx_unicast >> RTW_TP_SHIFT)); 209 ewma_tp_add(&stats->rx_ewma_tp, 210 (u32)(stats->rx_unicast >> RTW_TP_SHIFT)); 211 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp); 212 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp); 213 214 /* reset tx/rx statictics */ 215 stats->tx_unicast = 0; 216 stats->rx_unicast = 0; 217 stats->tx_cnt = 0; 218 stats->rx_cnt = 0; 219 220 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 221 goto unlock; 222 223 /* make sure BB/RF is working for dynamic mech */ 224 rtw_leave_lps(rtwdev); 225 226 rtw_phy_dynamic_mechanism(rtwdev); 227 228 data.rtwdev = rtwdev; 229 /* use atomic version to avoid taking local->iflist_mtx mutex */ 230 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data); 231 232 /* fw supports only one station associated to enter lps, if there are 233 * more than two stations associated to the AP, then we can not enter 234 * lps, because fw does not handle the overlapped beacon interval 235 * 236 * mac80211 should iterate vifs and determine if driver can enter 237 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to 238 * get that vif and check if device is having traffic more than the 239 * threshold. 240 */ 241 if (rtwdev->ps_enabled && data.rtwvif && !ps_active) 242 rtw_enter_lps(rtwdev, data.rtwvif->port); 243 244 rtwdev->watch_dog_cnt++; 245 246 unlock: 247 mutex_unlock(&rtwdev->mutex); 248 } 249 250 static void rtw_c2h_work(struct work_struct *work) 251 { 252 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); 253 struct sk_buff *skb, *tmp; 254 255 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { 256 skb_unlink(skb, &rtwdev->c2h_queue); 257 rtw_fw_c2h_cmd_handle(rtwdev, skb); 258 dev_kfree_skb_any(skb); 259 } 260 } 261 262 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev) 263 { 264 unsigned long mac_id; 265 266 mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM); 267 if (mac_id < RTW_MAX_MAC_ID_NUM) 268 set_bit(mac_id, rtwdev->mac_id_map); 269 270 return mac_id; 271 } 272 273 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 274 struct ieee80211_vif *vif) 275 { 276 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 277 int i; 278 279 si->mac_id = rtw_acquire_macid(rtwdev); 280 if (si->mac_id >= RTW_MAX_MAC_ID_NUM) 281 return -ENOSPC; 282 283 si->sta = sta; 284 si->vif = vif; 285 si->init_ra_lv = 1; 286 ewma_rssi_init(&si->avg_rssi); 287 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 288 rtw_txq_init(rtwdev, sta->txq[i]); 289 290 rtw_update_sta_info(rtwdev, si); 291 rtw_fw_media_status_report(rtwdev, si->mac_id, true); 292 293 rtwdev->sta_cnt++; 294 rtw_info(rtwdev, "sta %pM joined with macid %d\n", 295 sta->addr, si->mac_id); 296 297 return 0; 298 } 299 300 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 301 bool fw_exist) 302 { 303 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 304 int i; 305 306 rtw_release_macid(rtwdev, si->mac_id); 307 if (fw_exist) 308 rtw_fw_media_status_report(rtwdev, si->mac_id, false); 309 310 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 311 rtw_txq_cleanup(rtwdev, sta->txq[i]); 312 313 kfree(si->mask); 314 315 rtwdev->sta_cnt--; 316 rtw_info(rtwdev, "sta %pM with macid %d left\n", 317 sta->addr, si->mac_id); 318 } 319 320 static bool rtw_fw_dump_crash_log(struct rtw_dev *rtwdev) 321 { 322 u32 size = rtwdev->chip->fw_rxff_size; 323 u32 *buf; 324 u8 seq; 325 bool ret = true; 326 327 buf = vmalloc(size); 328 if (!buf) 329 goto exit; 330 331 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) { 332 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n"); 333 goto free_buf; 334 } 335 336 if (GET_FW_DUMP_LEN(buf) == 0) { 337 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n"); 338 goto free_buf; 339 } 340 341 seq = GET_FW_DUMP_SEQ(buf); 342 if (seq > 0 && seq != (rtwdev->fw.prev_dump_seq + 1)) { 343 rtw_dbg(rtwdev, RTW_DBG_FW, 344 "fw crash dump's seq is wrong: %d\n", seq); 345 goto free_buf; 346 } 347 if (seq == 0 && 348 (GET_FW_DUMP_TLV_TYPE(buf) != FW_CD_TYPE || 349 GET_FW_DUMP_TLV_LEN(buf) != FW_CD_LEN || 350 GET_FW_DUMP_TLV_VAL(buf) != FW_CD_VAL)) { 351 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's tlv is wrong\n"); 352 goto free_buf; 353 } 354 355 print_hex_dump_bytes("rtw88 fw dump: ", DUMP_PREFIX_OFFSET, buf, size); 356 357 if (GET_FW_DUMP_MORE(buf) == 1) { 358 rtwdev->fw.prev_dump_seq = seq; 359 ret = false; 360 } 361 362 free_buf: 363 vfree(buf); 364 exit: 365 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0); 366 367 return ret; 368 } 369 370 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif, 371 struct ieee80211_bss_conf *conf) 372 { 373 if (conf && conf->assoc) { 374 rtwvif->aid = conf->aid; 375 rtwvif->net_type = RTW_NET_MGD_LINKED; 376 } else { 377 rtwvif->aid = 0; 378 rtwvif->net_type = RTW_NET_NO_LINK; 379 } 380 } 381 382 static void rtw_reset_key_iter(struct ieee80211_hw *hw, 383 struct ieee80211_vif *vif, 384 struct ieee80211_sta *sta, 385 struct ieee80211_key_conf *key, 386 void *data) 387 { 388 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 389 struct rtw_sec_desc *sec = &rtwdev->sec; 390 391 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx); 392 } 393 394 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta) 395 { 396 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 397 398 if (rtwdev->sta_cnt == 0) { 399 rtw_warn(rtwdev, "sta count before reset should not be 0\n"); 400 return; 401 } 402 rtw_sta_remove(rtwdev, sta, false); 403 } 404 405 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 406 { 407 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 408 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 409 410 rtw_bf_disassoc(rtwdev, vif, NULL); 411 rtw_vif_assoc_changed(rtwvif, NULL); 412 rtw_txq_cleanup(rtwdev, vif->txq); 413 } 414 415 void rtw_fw_recovery(struct rtw_dev *rtwdev) 416 { 417 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags)) 418 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work); 419 } 420 421 static void rtw_fw_recovery_work(struct work_struct *work) 422 { 423 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 424 fw_recovery_work); 425 426 /* rtw_fw_dump_crash_log() returns false indicates that there are 427 * still more log to dump. Driver set 0x1cf[7:0] = 0x1 to tell firmware 428 * to dump the remaining part of the log, and firmware will trigger an 429 * IMR_C2HCMD interrupt to inform driver the log is ready. 430 */ 431 if (!rtw_fw_dump_crash_log(rtwdev)) { 432 rtw_write8(rtwdev, REG_HRCV_MSG, 1); 433 return; 434 } 435 rtwdev->fw.prev_dump_seq = 0; 436 437 WARN(1, "firmware crash, start reset and recover\n"); 438 439 mutex_lock(&rtwdev->mutex); 440 441 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags); 442 rcu_read_lock(); 443 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev); 444 rcu_read_unlock(); 445 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev); 446 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev); 447 rtw_enter_ips(rtwdev); 448 449 mutex_unlock(&rtwdev->mutex); 450 451 ieee80211_restart_hw(rtwdev->hw); 452 } 453 454 struct rtw_txq_ba_iter_data { 455 }; 456 457 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta) 458 { 459 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 460 int ret; 461 u8 tid; 462 463 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 464 while (tid != IEEE80211_NUM_TIDS) { 465 clear_bit(tid, si->tid_ba); 466 ret = ieee80211_start_tx_ba_session(sta, tid, 0); 467 if (ret == -EINVAL) { 468 struct ieee80211_txq *txq; 469 struct rtw_txq *rtwtxq; 470 471 txq = sta->txq[tid]; 472 rtwtxq = (struct rtw_txq *)txq->drv_priv; 473 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags); 474 } 475 476 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 477 } 478 } 479 480 static void rtw_txq_ba_work(struct work_struct *work) 481 { 482 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work); 483 struct rtw_txq_ba_iter_data data; 484 485 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data); 486 } 487 488 void rtw_get_channel_params(struct cfg80211_chan_def *chandef, 489 struct rtw_channel_params *chan_params) 490 { 491 struct ieee80211_channel *channel = chandef->chan; 492 enum nl80211_chan_width width = chandef->width; 493 u8 *cch_by_bw = chan_params->cch_by_bw; 494 u32 primary_freq, center_freq; 495 u8 center_chan; 496 u8 bandwidth = RTW_CHANNEL_WIDTH_20; 497 u8 primary_chan_idx = 0; 498 u8 i; 499 500 center_chan = channel->hw_value; 501 primary_freq = channel->center_freq; 502 center_freq = chandef->center_freq1; 503 504 /* assign the center channel used while 20M bw is selected */ 505 cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value; 506 507 switch (width) { 508 case NL80211_CHAN_WIDTH_20_NOHT: 509 case NL80211_CHAN_WIDTH_20: 510 bandwidth = RTW_CHANNEL_WIDTH_20; 511 primary_chan_idx = RTW_SC_DONT_CARE; 512 break; 513 case NL80211_CHAN_WIDTH_40: 514 bandwidth = RTW_CHANNEL_WIDTH_40; 515 if (primary_freq > center_freq) { 516 primary_chan_idx = RTW_SC_20_UPPER; 517 center_chan -= 2; 518 } else { 519 primary_chan_idx = RTW_SC_20_LOWER; 520 center_chan += 2; 521 } 522 break; 523 case NL80211_CHAN_WIDTH_80: 524 bandwidth = RTW_CHANNEL_WIDTH_80; 525 if (primary_freq > center_freq) { 526 if (primary_freq - center_freq == 10) { 527 primary_chan_idx = RTW_SC_20_UPPER; 528 center_chan -= 2; 529 } else { 530 primary_chan_idx = RTW_SC_20_UPMOST; 531 center_chan -= 6; 532 } 533 /* assign the center channel used 534 * while 40M bw is selected 535 */ 536 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4; 537 } else { 538 if (center_freq - primary_freq == 10) { 539 primary_chan_idx = RTW_SC_20_LOWER; 540 center_chan += 2; 541 } else { 542 primary_chan_idx = RTW_SC_20_LOWEST; 543 center_chan += 6; 544 } 545 /* assign the center channel used 546 * while 40M bw is selected 547 */ 548 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4; 549 } 550 break; 551 default: 552 center_chan = 0; 553 break; 554 } 555 556 chan_params->center_chan = center_chan; 557 chan_params->bandwidth = bandwidth; 558 chan_params->primary_chan_idx = primary_chan_idx; 559 560 /* assign the center channel used while current bw is selected */ 561 cch_by_bw[bandwidth] = center_chan; 562 563 for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++) 564 cch_by_bw[i] = 0; 565 } 566 567 void rtw_set_channel(struct rtw_dev *rtwdev) 568 { 569 struct ieee80211_hw *hw = rtwdev->hw; 570 struct rtw_hal *hal = &rtwdev->hal; 571 struct rtw_chip_info *chip = rtwdev->chip; 572 struct rtw_channel_params ch_param; 573 u8 center_chan, bandwidth, primary_chan_idx; 574 u8 i; 575 576 rtw_get_channel_params(&hw->conf.chandef, &ch_param); 577 if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) 578 return; 579 580 center_chan = ch_param.center_chan; 581 bandwidth = ch_param.bandwidth; 582 primary_chan_idx = ch_param.primary_chan_idx; 583 584 hal->current_band_width = bandwidth; 585 hal->current_channel = center_chan; 586 hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; 587 588 for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++) 589 hal->cch_by_bw[i] = ch_param.cch_by_bw[i]; 590 591 chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx); 592 593 if (hal->current_band_type == RTW_BAND_5G) { 594 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G); 595 } else { 596 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 597 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G); 598 else 599 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN); 600 } 601 602 rtw_phy_set_tx_power_level(rtwdev, center_chan); 603 604 /* if the channel isn't set for scanning, we will do RF calibration 605 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration 606 * during scanning on each channel takes too long. 607 */ 608 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 609 rtwdev->need_rfk = true; 610 } 611 612 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev) 613 { 614 struct rtw_chip_info *chip = rtwdev->chip; 615 616 if (rtwdev->need_rfk) { 617 rtwdev->need_rfk = false; 618 chip->ops->phy_calibration(rtwdev); 619 } 620 } 621 622 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) 623 { 624 int i; 625 626 for (i = 0; i < ETH_ALEN; i++) 627 rtw_write8(rtwdev, start + i, addr[i]); 628 } 629 630 void rtw_vif_port_config(struct rtw_dev *rtwdev, 631 struct rtw_vif *rtwvif, 632 u32 config) 633 { 634 u32 addr, mask; 635 636 if (config & PORT_SET_MAC_ADDR) { 637 addr = rtwvif->conf->mac_addr.addr; 638 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); 639 } 640 if (config & PORT_SET_BSSID) { 641 addr = rtwvif->conf->bssid.addr; 642 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); 643 } 644 if (config & PORT_SET_NET_TYPE) { 645 addr = rtwvif->conf->net_type.addr; 646 mask = rtwvif->conf->net_type.mask; 647 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); 648 } 649 if (config & PORT_SET_AID) { 650 addr = rtwvif->conf->aid.addr; 651 mask = rtwvif->conf->aid.mask; 652 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); 653 } 654 if (config & PORT_SET_BCN_CTRL) { 655 addr = rtwvif->conf->bcn_ctrl.addr; 656 mask = rtwvif->conf->bcn_ctrl.mask; 657 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl); 658 } 659 } 660 661 static u8 hw_bw_cap_to_bitamp(u8 bw_cap) 662 { 663 u8 bw = 0; 664 665 switch (bw_cap) { 666 case EFUSE_HW_CAP_IGNORE: 667 case EFUSE_HW_CAP_SUPP_BW80: 668 bw |= BIT(RTW_CHANNEL_WIDTH_80); 669 fallthrough; 670 case EFUSE_HW_CAP_SUPP_BW40: 671 bw |= BIT(RTW_CHANNEL_WIDTH_40); 672 fallthrough; 673 default: 674 bw |= BIT(RTW_CHANNEL_WIDTH_20); 675 break; 676 } 677 678 return bw; 679 } 680 681 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) 682 { 683 struct rtw_hal *hal = &rtwdev->hal; 684 struct rtw_chip_info *chip = rtwdev->chip; 685 686 if (hw_ant_num == EFUSE_HW_CAP_IGNORE || 687 hw_ant_num >= hal->rf_path_num) 688 return; 689 690 switch (hw_ant_num) { 691 case 1: 692 hal->rf_type = RF_1T1R; 693 hal->rf_path_num = 1; 694 if (!chip->fix_rf_phy_num) 695 hal->rf_phy_num = hal->rf_path_num; 696 hal->antenna_tx = BB_PATH_A; 697 hal->antenna_rx = BB_PATH_A; 698 break; 699 default: 700 WARN(1, "invalid hw configuration from efuse\n"); 701 break; 702 } 703 } 704 705 static u64 get_vht_ra_mask(struct ieee80211_sta *sta) 706 { 707 u64 ra_mask = 0; 708 u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map); 709 u8 vht_mcs_cap; 710 int i, nss; 711 712 /* 4SS, every two bits for MCS7/8/9 */ 713 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { 714 vht_mcs_cap = mcs_map & 0x3; 715 switch (vht_mcs_cap) { 716 case 2: /* MCS9 */ 717 ra_mask |= 0x3ffULL << nss; 718 break; 719 case 1: /* MCS8 */ 720 ra_mask |= 0x1ffULL << nss; 721 break; 722 case 0: /* MCS7 */ 723 ra_mask |= 0x0ffULL << nss; 724 break; 725 default: 726 break; 727 } 728 } 729 730 return ra_mask; 731 } 732 733 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) 734 { 735 u8 rate_id = 0; 736 737 switch (wireless_set) { 738 case WIRELESS_CCK: 739 rate_id = RTW_RATEID_B_20M; 740 break; 741 case WIRELESS_OFDM: 742 rate_id = RTW_RATEID_G; 743 break; 744 case WIRELESS_CCK | WIRELESS_OFDM: 745 rate_id = RTW_RATEID_BG; 746 break; 747 case WIRELESS_OFDM | WIRELESS_HT: 748 if (tx_num == 1) 749 rate_id = RTW_RATEID_GN_N1SS; 750 else if (tx_num == 2) 751 rate_id = RTW_RATEID_GN_N2SS; 752 else if (tx_num == 3) 753 rate_id = RTW_RATEID_ARFR5_N_3SS; 754 break; 755 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: 756 if (bw_mode == RTW_CHANNEL_WIDTH_40) { 757 if (tx_num == 1) 758 rate_id = RTW_RATEID_BGN_40M_1SS; 759 else if (tx_num == 2) 760 rate_id = RTW_RATEID_BGN_40M_2SS; 761 else if (tx_num == 3) 762 rate_id = RTW_RATEID_ARFR5_N_3SS; 763 else if (tx_num == 4) 764 rate_id = RTW_RATEID_ARFR7_N_4SS; 765 } else { 766 if (tx_num == 1) 767 rate_id = RTW_RATEID_BGN_20M_1SS; 768 else if (tx_num == 2) 769 rate_id = RTW_RATEID_BGN_20M_2SS; 770 else if (tx_num == 3) 771 rate_id = RTW_RATEID_ARFR5_N_3SS; 772 else if (tx_num == 4) 773 rate_id = RTW_RATEID_ARFR7_N_4SS; 774 } 775 break; 776 case WIRELESS_OFDM | WIRELESS_VHT: 777 if (tx_num == 1) 778 rate_id = RTW_RATEID_ARFR1_AC_1SS; 779 else if (tx_num == 2) 780 rate_id = RTW_RATEID_ARFR0_AC_2SS; 781 else if (tx_num == 3) 782 rate_id = RTW_RATEID_ARFR4_AC_3SS; 783 else if (tx_num == 4) 784 rate_id = RTW_RATEID_ARFR6_AC_4SS; 785 break; 786 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: 787 if (bw_mode >= RTW_CHANNEL_WIDTH_80) { 788 if (tx_num == 1) 789 rate_id = RTW_RATEID_ARFR1_AC_1SS; 790 else if (tx_num == 2) 791 rate_id = RTW_RATEID_ARFR0_AC_2SS; 792 else if (tx_num == 3) 793 rate_id = RTW_RATEID_ARFR4_AC_3SS; 794 else if (tx_num == 4) 795 rate_id = RTW_RATEID_ARFR6_AC_4SS; 796 } else { 797 if (tx_num == 1) 798 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; 799 else if (tx_num == 2) 800 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; 801 else if (tx_num == 3) 802 rate_id = RTW_RATEID_ARFR4_AC_3SS; 803 else if (tx_num == 4) 804 rate_id = RTW_RATEID_ARFR6_AC_4SS; 805 } 806 break; 807 default: 808 break; 809 } 810 811 return rate_id; 812 } 813 814 #define RA_MASK_CCK_RATES 0x0000f 815 #define RA_MASK_OFDM_RATES 0x00ff0 816 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) 817 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) 818 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) 819 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ 820 RA_MASK_HT_RATES_2SS | \ 821 RA_MASK_HT_RATES_3SS) 822 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) 823 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) 824 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) 825 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ 826 RA_MASK_VHT_RATES_2SS | \ 827 RA_MASK_VHT_RATES_3SS) 828 #define RA_MASK_CCK_IN_HT 0x00005 829 #define RA_MASK_CCK_IN_VHT 0x00005 830 #define RA_MASK_OFDM_IN_VHT 0x00010 831 #define RA_MASK_OFDM_IN_HT_2G 0x00010 832 #define RA_MASK_OFDM_IN_HT_5G 0x00030 833 834 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev, 835 struct rtw_sta_info *si, 836 u64 ra_mask, bool is_vht_enable, 837 u8 wireless_set) 838 { 839 struct rtw_hal *hal = &rtwdev->hal; 840 const struct cfg80211_bitrate_mask *mask = si->mask; 841 u64 cfg_mask = GENMASK_ULL(63, 0); 842 u8 rssi_level, band; 843 844 if (wireless_set != WIRELESS_CCK) { 845 rssi_level = si->rssi_level; 846 if (rssi_level == 0) 847 ra_mask &= 0xffffffffffffffffULL; 848 else if (rssi_level == 1) 849 ra_mask &= 0xfffffffffffffff0ULL; 850 else if (rssi_level == 2) 851 ra_mask &= 0xffffffffffffefe0ULL; 852 else if (rssi_level == 3) 853 ra_mask &= 0xffffffffffffcfc0ULL; 854 else if (rssi_level == 4) 855 ra_mask &= 0xffffffffffff8f80ULL; 856 else if (rssi_level >= 5) 857 ra_mask &= 0xffffffffffff0f00ULL; 858 } 859 860 if (!si->use_cfg_mask) 861 return ra_mask; 862 863 band = hal->current_band_type; 864 if (band == RTW_BAND_2G) { 865 band = NL80211_BAND_2GHZ; 866 cfg_mask = mask->control[band].legacy; 867 } else if (band == RTW_BAND_5G) { 868 band = NL80211_BAND_5GHZ; 869 cfg_mask = u64_encode_bits(mask->control[band].legacy, 870 RA_MASK_OFDM_RATES); 871 } 872 873 if (!is_vht_enable) { 874 if (ra_mask & RA_MASK_HT_RATES_1SS) 875 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0], 876 RA_MASK_HT_RATES_1SS); 877 if (ra_mask & RA_MASK_HT_RATES_2SS) 878 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1], 879 RA_MASK_HT_RATES_2SS); 880 } else { 881 if (ra_mask & RA_MASK_VHT_RATES_1SS) 882 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0], 883 RA_MASK_VHT_RATES_1SS); 884 if (ra_mask & RA_MASK_VHT_RATES_2SS) 885 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1], 886 RA_MASK_VHT_RATES_2SS); 887 } 888 889 ra_mask &= cfg_mask; 890 891 return ra_mask; 892 } 893 894 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si) 895 { 896 struct ieee80211_sta *sta = si->sta; 897 struct rtw_efuse *efuse = &rtwdev->efuse; 898 struct rtw_hal *hal = &rtwdev->hal; 899 u8 wireless_set; 900 u8 bw_mode; 901 u8 rate_id; 902 u8 rf_type = RF_1T1R; 903 u8 stbc_en = 0; 904 u8 ldpc_en = 0; 905 u8 tx_num = 1; 906 u64 ra_mask = 0; 907 bool is_vht_enable = false; 908 bool is_support_sgi = false; 909 910 if (sta->vht_cap.vht_supported) { 911 is_vht_enable = true; 912 ra_mask |= get_vht_ra_mask(sta); 913 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) 914 stbc_en = VHT_STBC_EN; 915 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) 916 ldpc_en = VHT_LDPC_EN; 917 } else if (sta->ht_cap.ht_supported) { 918 ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) | 919 (sta->ht_cap.mcs.rx_mask[0] << 12); 920 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) 921 stbc_en = HT_STBC_EN; 922 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) 923 ldpc_en = HT_LDPC_EN; 924 } 925 926 if (efuse->hw_cap.nss == 1) 927 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS; 928 929 if (hal->current_band_type == RTW_BAND_5G) { 930 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4; 931 if (sta->vht_cap.vht_supported) { 932 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; 933 wireless_set = WIRELESS_OFDM | WIRELESS_VHT; 934 } else if (sta->ht_cap.ht_supported) { 935 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; 936 wireless_set = WIRELESS_OFDM | WIRELESS_HT; 937 } else { 938 wireless_set = WIRELESS_OFDM; 939 } 940 } else if (hal->current_band_type == RTW_BAND_2G) { 941 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ]; 942 if (sta->vht_cap.vht_supported) { 943 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | 944 RA_MASK_OFDM_IN_VHT; 945 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 946 WIRELESS_HT | WIRELESS_VHT; 947 } else if (sta->ht_cap.ht_supported) { 948 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | 949 RA_MASK_OFDM_IN_HT_2G; 950 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 951 WIRELESS_HT; 952 } else if (sta->supp_rates[0] <= 0xf) { 953 wireless_set = WIRELESS_CCK; 954 } else { 955 wireless_set = WIRELESS_CCK | WIRELESS_OFDM; 956 } 957 } else { 958 rtw_err(rtwdev, "Unknown band type\n"); 959 wireless_set = 0; 960 } 961 962 switch (sta->bandwidth) { 963 case IEEE80211_STA_RX_BW_80: 964 bw_mode = RTW_CHANNEL_WIDTH_80; 965 is_support_sgi = sta->vht_cap.vht_supported && 966 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80); 967 break; 968 case IEEE80211_STA_RX_BW_40: 969 bw_mode = RTW_CHANNEL_WIDTH_40; 970 is_support_sgi = sta->ht_cap.ht_supported && 971 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40); 972 break; 973 default: 974 bw_mode = RTW_CHANNEL_WIDTH_20; 975 is_support_sgi = sta->ht_cap.ht_supported && 976 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20); 977 break; 978 } 979 980 if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) { 981 tx_num = 2; 982 rf_type = RF_2T2R; 983 } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) { 984 tx_num = 2; 985 rf_type = RF_2T2R; 986 } 987 988 rate_id = get_rate_id(wireless_set, bw_mode, tx_num); 989 990 ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable, 991 wireless_set); 992 993 si->bw_mode = bw_mode; 994 si->stbc_en = stbc_en; 995 si->ldpc_en = ldpc_en; 996 si->rf_type = rf_type; 997 si->wireless_set = wireless_set; 998 si->sgi_enable = is_support_sgi; 999 si->vht_enable = is_vht_enable; 1000 si->ra_mask = ra_mask; 1001 si->rate_id = rate_id; 1002 1003 rtw_fw_send_ra_info(rtwdev, si); 1004 } 1005 1006 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev) 1007 { 1008 struct rtw_chip_info *chip = rtwdev->chip; 1009 struct rtw_fw_state *fw; 1010 1011 fw = &rtwdev->fw; 1012 wait_for_completion(&fw->completion); 1013 if (!fw->firmware) 1014 return -EINVAL; 1015 1016 if (chip->wow_fw_name) { 1017 fw = &rtwdev->wow_fw; 1018 wait_for_completion(&fw->completion); 1019 if (!fw->firmware) 1020 return -EINVAL; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int rtw_power_on(struct rtw_dev *rtwdev) 1027 { 1028 struct rtw_chip_info *chip = rtwdev->chip; 1029 struct rtw_fw_state *fw = &rtwdev->fw; 1030 bool wifi_only; 1031 int ret; 1032 1033 ret = rtw_hci_setup(rtwdev); 1034 if (ret) { 1035 rtw_err(rtwdev, "failed to setup hci\n"); 1036 goto err; 1037 } 1038 1039 /* power on MAC before firmware downloaded */ 1040 ret = rtw_mac_power_on(rtwdev); 1041 if (ret) { 1042 rtw_err(rtwdev, "failed to power on mac\n"); 1043 goto err; 1044 } 1045 1046 ret = rtw_wait_firmware_completion(rtwdev); 1047 if (ret) { 1048 rtw_err(rtwdev, "failed to wait firmware completion\n"); 1049 goto err_off; 1050 } 1051 1052 ret = rtw_download_firmware(rtwdev, fw); 1053 if (ret) { 1054 rtw_err(rtwdev, "failed to download firmware\n"); 1055 goto err_off; 1056 } 1057 1058 /* config mac after firmware downloaded */ 1059 ret = rtw_mac_init(rtwdev); 1060 if (ret) { 1061 rtw_err(rtwdev, "failed to configure mac\n"); 1062 goto err_off; 1063 } 1064 1065 chip->ops->phy_set_param(rtwdev); 1066 1067 ret = rtw_hci_start(rtwdev); 1068 if (ret) { 1069 rtw_err(rtwdev, "failed to start hci\n"); 1070 goto err_off; 1071 } 1072 1073 /* send H2C after HCI has started */ 1074 rtw_fw_send_general_info(rtwdev); 1075 rtw_fw_send_phydm_info(rtwdev); 1076 1077 wifi_only = !rtwdev->efuse.btcoex; 1078 rtw_coex_power_on_setting(rtwdev); 1079 rtw_coex_init_hw_config(rtwdev, wifi_only); 1080 1081 return 0; 1082 1083 err_off: 1084 rtw_mac_power_off(rtwdev); 1085 1086 err: 1087 return ret; 1088 } 1089 1090 int rtw_core_start(struct rtw_dev *rtwdev) 1091 { 1092 int ret; 1093 1094 ret = rtw_power_on(rtwdev); 1095 if (ret) 1096 return ret; 1097 1098 rtw_sec_enable_sec_engine(rtwdev); 1099 1100 /* rcr reset after powered on */ 1101 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); 1102 1103 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 1104 RTW_WATCH_DOG_DELAY_TIME); 1105 1106 set_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1107 1108 return 0; 1109 } 1110 1111 static void rtw_power_off(struct rtw_dev *rtwdev) 1112 { 1113 rtw_hci_stop(rtwdev); 1114 rtw_mac_power_off(rtwdev); 1115 } 1116 1117 void rtw_core_stop(struct rtw_dev *rtwdev) 1118 { 1119 struct rtw_coex *coex = &rtwdev->coex; 1120 1121 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1122 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags); 1123 1124 mutex_unlock(&rtwdev->mutex); 1125 1126 cancel_work_sync(&rtwdev->c2h_work); 1127 cancel_delayed_work_sync(&rtwdev->watch_dog_work); 1128 cancel_delayed_work_sync(&coex->bt_relink_work); 1129 cancel_delayed_work_sync(&coex->bt_reenable_work); 1130 cancel_delayed_work_sync(&coex->defreeze_work); 1131 cancel_delayed_work_sync(&coex->wl_remain_work); 1132 cancel_delayed_work_sync(&coex->bt_remain_work); 1133 1134 mutex_lock(&rtwdev->mutex); 1135 1136 rtw_power_off(rtwdev); 1137 } 1138 1139 static void rtw_init_ht_cap(struct rtw_dev *rtwdev, 1140 struct ieee80211_sta_ht_cap *ht_cap) 1141 { 1142 struct rtw_efuse *efuse = &rtwdev->efuse; 1143 1144 ht_cap->ht_supported = true; 1145 ht_cap->cap = 0; 1146 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | 1147 IEEE80211_HT_CAP_MAX_AMSDU | 1148 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 1149 1150 if (rtw_chip_has_rx_ldpc(rtwdev)) 1151 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING; 1152 1153 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) 1154 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 1155 IEEE80211_HT_CAP_DSSSCCK40 | 1156 IEEE80211_HT_CAP_SGI_40; 1157 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 1158 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; 1159 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 1160 if (efuse->hw_cap.nss > 1) { 1161 ht_cap->mcs.rx_mask[0] = 0xFF; 1162 ht_cap->mcs.rx_mask[1] = 0xFF; 1163 ht_cap->mcs.rx_mask[4] = 0x01; 1164 ht_cap->mcs.rx_highest = cpu_to_le16(300); 1165 } else { 1166 ht_cap->mcs.rx_mask[0] = 0xFF; 1167 ht_cap->mcs.rx_mask[1] = 0x00; 1168 ht_cap->mcs.rx_mask[4] = 0x01; 1169 ht_cap->mcs.rx_highest = cpu_to_le16(150); 1170 } 1171 } 1172 1173 static void rtw_init_vht_cap(struct rtw_dev *rtwdev, 1174 struct ieee80211_sta_vht_cap *vht_cap) 1175 { 1176 struct rtw_efuse *efuse = &rtwdev->efuse; 1177 u16 mcs_map; 1178 __le16 highest; 1179 1180 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && 1181 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) 1182 return; 1183 1184 vht_cap->vht_supported = true; 1185 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | 1186 IEEE80211_VHT_CAP_SHORT_GI_80 | 1187 IEEE80211_VHT_CAP_RXSTBC_1 | 1188 IEEE80211_VHT_CAP_HTC_VHT | 1189 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | 1190 0; 1191 if (rtwdev->hal.rf_path_num > 1) 1192 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 1193 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 1194 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; 1195 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap << 1196 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); 1197 1198 if (rtw_chip_has_rx_ldpc(rtwdev)) 1199 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 1200 1201 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 1202 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 1203 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 1204 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 1205 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 1206 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 1207 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; 1208 if (efuse->hw_cap.nss > 1) { 1209 highest = cpu_to_le16(780); 1210 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; 1211 } else { 1212 highest = cpu_to_le16(390); 1213 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; 1214 } 1215 1216 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 1217 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 1218 vht_cap->vht_mcs.rx_highest = highest; 1219 vht_cap->vht_mcs.tx_highest = highest; 1220 } 1221 1222 static void rtw_set_supported_band(struct ieee80211_hw *hw, 1223 struct rtw_chip_info *chip) 1224 { 1225 struct rtw_dev *rtwdev = hw->priv; 1226 struct ieee80211_supported_band *sband; 1227 1228 if (chip->band & RTW_BAND_2G) { 1229 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); 1230 if (!sband) 1231 goto err_out; 1232 if (chip->ht_supported) 1233 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1234 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; 1235 } 1236 1237 if (chip->band & RTW_BAND_5G) { 1238 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); 1239 if (!sband) 1240 goto err_out; 1241 if (chip->ht_supported) 1242 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1243 if (chip->vht_supported) 1244 rtw_init_vht_cap(rtwdev, &sband->vht_cap); 1245 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; 1246 } 1247 1248 return; 1249 1250 err_out: 1251 rtw_err(rtwdev, "failed to set supported band\n"); 1252 kfree(sband); 1253 } 1254 1255 static void rtw_unset_supported_band(struct ieee80211_hw *hw, 1256 struct rtw_chip_info *chip) 1257 { 1258 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); 1259 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); 1260 } 1261 1262 static void __update_firmware_info(struct rtw_dev *rtwdev, 1263 struct rtw_fw_state *fw) 1264 { 1265 const struct rtw_fw_hdr *fw_hdr = 1266 (const struct rtw_fw_hdr *)fw->firmware->data; 1267 1268 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver); 1269 fw->version = le16_to_cpu(fw_hdr->version); 1270 fw->sub_version = fw_hdr->subversion; 1271 fw->sub_index = fw_hdr->subindex; 1272 } 1273 1274 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev, 1275 struct rtw_fw_state *fw) 1276 { 1277 struct rtw_fw_hdr_legacy *legacy = 1278 (struct rtw_fw_hdr_legacy *)fw->firmware->data; 1279 1280 fw->h2c_version = 0; 1281 fw->version = le16_to_cpu(legacy->version); 1282 fw->sub_version = legacy->subversion1; 1283 fw->sub_index = legacy->subversion2; 1284 } 1285 1286 static void update_firmware_info(struct rtw_dev *rtwdev, 1287 struct rtw_fw_state *fw) 1288 { 1289 if (rtw_chip_wcpu_11n(rtwdev)) 1290 __update_firmware_info_legacy(rtwdev, fw); 1291 else 1292 __update_firmware_info(rtwdev, fw); 1293 } 1294 1295 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) 1296 { 1297 struct rtw_fw_state *fw = context; 1298 struct rtw_dev *rtwdev = fw->rtwdev; 1299 1300 if (!firmware || !firmware->data) { 1301 rtw_err(rtwdev, "failed to request firmware\n"); 1302 complete_all(&fw->completion); 1303 return; 1304 } 1305 1306 fw->firmware = firmware; 1307 update_firmware_info(rtwdev, fw); 1308 complete_all(&fw->completion); 1309 1310 rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n", 1311 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version); 1312 } 1313 1314 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type) 1315 { 1316 const char *fw_name; 1317 struct rtw_fw_state *fw; 1318 int ret; 1319 1320 switch (type) { 1321 case RTW_WOWLAN_FW: 1322 fw = &rtwdev->wow_fw; 1323 fw_name = rtwdev->chip->wow_fw_name; 1324 break; 1325 1326 case RTW_NORMAL_FW: 1327 fw = &rtwdev->fw; 1328 fw_name = rtwdev->chip->fw_name; 1329 break; 1330 1331 default: 1332 rtw_warn(rtwdev, "unsupported firmware type\n"); 1333 return -ENOENT; 1334 } 1335 1336 fw->rtwdev = rtwdev; 1337 init_completion(&fw->completion); 1338 1339 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, 1340 GFP_KERNEL, fw, rtw_load_firmware_cb); 1341 if (ret) { 1342 rtw_err(rtwdev, "failed to async firmware request\n"); 1343 return ret; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) 1350 { 1351 struct rtw_chip_info *chip = rtwdev->chip; 1352 struct rtw_hal *hal = &rtwdev->hal; 1353 struct rtw_efuse *efuse = &rtwdev->efuse; 1354 int ret = 0; 1355 1356 switch (rtw_hci_type(rtwdev)) { 1357 case RTW_HCI_TYPE_PCIE: 1358 rtwdev->hci.rpwm_addr = 0x03d9; 1359 rtwdev->hci.cpwm_addr = 0x03da; 1360 break; 1361 default: 1362 rtw_err(rtwdev, "unsupported hci type\n"); 1363 return -EINVAL; 1364 } 1365 1366 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); 1367 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); 1368 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; 1369 if (hal->chip_version & BIT_RF_TYPE_ID) { 1370 hal->rf_type = RF_2T2R; 1371 hal->rf_path_num = 2; 1372 hal->antenna_tx = BB_PATH_AB; 1373 hal->antenna_rx = BB_PATH_AB; 1374 } else { 1375 hal->rf_type = RF_1T1R; 1376 hal->rf_path_num = 1; 1377 hal->antenna_tx = BB_PATH_A; 1378 hal->antenna_rx = BB_PATH_A; 1379 } 1380 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num : 1381 hal->rf_path_num; 1382 1383 efuse->physical_size = chip->phy_efuse_size; 1384 efuse->logical_size = chip->log_efuse_size; 1385 efuse->protect_size = chip->ptct_efuse_size; 1386 1387 /* default use ack */ 1388 rtwdev->hal.rcr |= BIT_VHT_DACK; 1389 1390 hal->bfee_sts_cap = 3; 1391 1392 return ret; 1393 } 1394 1395 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) 1396 { 1397 struct rtw_fw_state *fw = &rtwdev->fw; 1398 int ret; 1399 1400 ret = rtw_hci_setup(rtwdev); 1401 if (ret) { 1402 rtw_err(rtwdev, "failed to setup hci\n"); 1403 goto err; 1404 } 1405 1406 ret = rtw_mac_power_on(rtwdev); 1407 if (ret) { 1408 rtw_err(rtwdev, "failed to power on mac\n"); 1409 goto err; 1410 } 1411 1412 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); 1413 1414 wait_for_completion(&fw->completion); 1415 if (!fw->firmware) { 1416 ret = -EINVAL; 1417 rtw_err(rtwdev, "failed to load firmware\n"); 1418 goto err; 1419 } 1420 1421 ret = rtw_download_firmware(rtwdev, fw); 1422 if (ret) { 1423 rtw_err(rtwdev, "failed to download firmware\n"); 1424 goto err_off; 1425 } 1426 1427 return 0; 1428 1429 err_off: 1430 rtw_mac_power_off(rtwdev); 1431 1432 err: 1433 return ret; 1434 } 1435 1436 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) 1437 { 1438 struct rtw_efuse *efuse = &rtwdev->efuse; 1439 u8 hw_feature[HW_FEATURE_LEN]; 1440 u8 id; 1441 u8 bw; 1442 int i; 1443 1444 id = rtw_read8(rtwdev, REG_C2HEVT); 1445 if (id != C2H_HW_FEATURE_REPORT) { 1446 rtw_err(rtwdev, "failed to read hw feature report\n"); 1447 return -EBUSY; 1448 } 1449 1450 for (i = 0; i < HW_FEATURE_LEN; i++) 1451 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); 1452 1453 rtw_write8(rtwdev, REG_C2HEVT, 0); 1454 1455 bw = GET_EFUSE_HW_CAP_BW(hw_feature); 1456 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); 1457 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); 1458 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); 1459 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); 1460 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); 1461 1462 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); 1463 1464 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE || 1465 efuse->hw_cap.nss > rtwdev->hal.rf_path_num) 1466 efuse->hw_cap.nss = rtwdev->hal.rf_path_num; 1467 1468 rtw_dbg(rtwdev, RTW_DBG_EFUSE, 1469 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", 1470 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, 1471 efuse->hw_cap.ant_num, efuse->hw_cap.nss); 1472 1473 return 0; 1474 } 1475 1476 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) 1477 { 1478 rtw_hci_stop(rtwdev); 1479 rtw_mac_power_off(rtwdev); 1480 } 1481 1482 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) 1483 { 1484 struct rtw_efuse *efuse = &rtwdev->efuse; 1485 int ret; 1486 1487 mutex_lock(&rtwdev->mutex); 1488 1489 /* power on mac to read efuse */ 1490 ret = rtw_chip_efuse_enable(rtwdev); 1491 if (ret) 1492 goto out_unlock; 1493 1494 ret = rtw_parse_efuse_map(rtwdev); 1495 if (ret) 1496 goto out_disable; 1497 1498 ret = rtw_dump_hw_feature(rtwdev); 1499 if (ret) 1500 goto out_disable; 1501 1502 ret = rtw_check_supported_rfe(rtwdev); 1503 if (ret) 1504 goto out_disable; 1505 1506 if (efuse->crystal_cap == 0xff) 1507 efuse->crystal_cap = 0; 1508 if (efuse->pa_type_2g == 0xff) 1509 efuse->pa_type_2g = 0; 1510 if (efuse->pa_type_5g == 0xff) 1511 efuse->pa_type_5g = 0; 1512 if (efuse->lna_type_2g == 0xff) 1513 efuse->lna_type_2g = 0; 1514 if (efuse->lna_type_5g == 0xff) 1515 efuse->lna_type_5g = 0; 1516 if (efuse->channel_plan == 0xff) 1517 efuse->channel_plan = 0x7f; 1518 if (efuse->rf_board_option == 0xff) 1519 efuse->rf_board_option = 0; 1520 if (efuse->bt_setting & BIT(0)) 1521 efuse->share_ant = true; 1522 if (efuse->regd == 0xff) 1523 efuse->regd = 0; 1524 if (efuse->tx_bb_swing_setting_2g == 0xff) 1525 efuse->tx_bb_swing_setting_2g = 0; 1526 if (efuse->tx_bb_swing_setting_5g == 0xff) 1527 efuse->tx_bb_swing_setting_5g = 0; 1528 1529 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20; 1530 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; 1531 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; 1532 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; 1533 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0; 1534 1535 out_disable: 1536 rtw_chip_efuse_disable(rtwdev); 1537 1538 out_unlock: 1539 mutex_unlock(&rtwdev->mutex); 1540 return ret; 1541 } 1542 1543 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) 1544 { 1545 struct rtw_hal *hal = &rtwdev->hal; 1546 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 1547 1548 if (!rfe_def) 1549 return -ENODEV; 1550 1551 rtw_phy_setup_phy_cond(rtwdev, 0); 1552 1553 rtw_phy_init_tx_power(rtwdev); 1554 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); 1555 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); 1556 rtw_phy_tx_power_by_rate_config(hal); 1557 rtw_phy_tx_power_limit_config(hal); 1558 1559 return 0; 1560 } 1561 1562 int rtw_chip_info_setup(struct rtw_dev *rtwdev) 1563 { 1564 int ret; 1565 1566 ret = rtw_chip_parameter_setup(rtwdev); 1567 if (ret) { 1568 rtw_err(rtwdev, "failed to setup chip parameters\n"); 1569 goto err_out; 1570 } 1571 1572 ret = rtw_chip_efuse_info_setup(rtwdev); 1573 if (ret) { 1574 rtw_err(rtwdev, "failed to setup chip efuse info\n"); 1575 goto err_out; 1576 } 1577 1578 ret = rtw_chip_board_info_setup(rtwdev); 1579 if (ret) { 1580 rtw_err(rtwdev, "failed to setup chip board info\n"); 1581 goto err_out; 1582 } 1583 1584 return 0; 1585 1586 err_out: 1587 return ret; 1588 } 1589 EXPORT_SYMBOL(rtw_chip_info_setup); 1590 1591 static void rtw_stats_init(struct rtw_dev *rtwdev) 1592 { 1593 struct rtw_traffic_stats *stats = &rtwdev->stats; 1594 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 1595 int i; 1596 1597 ewma_tp_init(&stats->tx_ewma_tp); 1598 ewma_tp_init(&stats->rx_ewma_tp); 1599 1600 for (i = 0; i < RTW_EVM_NUM; i++) 1601 ewma_evm_init(&dm_info->ewma_evm[i]); 1602 for (i = 0; i < RTW_SNR_NUM; i++) 1603 ewma_snr_init(&dm_info->ewma_snr[i]); 1604 } 1605 1606 int rtw_core_init(struct rtw_dev *rtwdev) 1607 { 1608 struct rtw_chip_info *chip = rtwdev->chip; 1609 struct rtw_coex *coex = &rtwdev->coex; 1610 int ret; 1611 1612 INIT_LIST_HEAD(&rtwdev->rsvd_page_list); 1613 INIT_LIST_HEAD(&rtwdev->txqs); 1614 1615 timer_setup(&rtwdev->tx_report.purge_timer, 1616 rtw_tx_report_purge_timer, 0); 1617 tasklet_setup(&rtwdev->tx_tasklet, rtw_tx_tasklet); 1618 1619 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); 1620 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work); 1621 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work); 1622 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work); 1623 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work); 1624 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work); 1625 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); 1626 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work); 1627 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work); 1628 skb_queue_head_init(&rtwdev->c2h_queue); 1629 skb_queue_head_init(&rtwdev->coex.queue); 1630 skb_queue_head_init(&rtwdev->tx_report.queue); 1631 1632 spin_lock_init(&rtwdev->rf_lock); 1633 spin_lock_init(&rtwdev->h2c.lock); 1634 spin_lock_init(&rtwdev->txq_lock); 1635 spin_lock_init(&rtwdev->tx_report.q_lock); 1636 1637 mutex_init(&rtwdev->mutex); 1638 mutex_init(&rtwdev->coex.mutex); 1639 mutex_init(&rtwdev->hal.tx_power_mutex); 1640 1641 init_waitqueue_head(&rtwdev->coex.wait); 1642 1643 rtwdev->sec.total_cam_num = 32; 1644 rtwdev->hal.current_channel = 1; 1645 set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map); 1646 if (!(BIT(rtw_fw_lps_deep_mode) & chip->lps_deep_mode_supported)) 1647 rtwdev->lps_conf.deep_mode = LPS_DEEP_MODE_NONE; 1648 else 1649 rtwdev->lps_conf.deep_mode = rtw_fw_lps_deep_mode; 1650 1651 rtw_stats_init(rtwdev); 1652 1653 /* default rx filter setting */ 1654 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | 1655 BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | 1656 BIT_AB | BIT_AM | BIT_APM; 1657 1658 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW); 1659 if (ret) { 1660 rtw_warn(rtwdev, "no firmware loaded\n"); 1661 return ret; 1662 } 1663 1664 if (chip->wow_fw_name) { 1665 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW); 1666 if (ret) { 1667 rtw_warn(rtwdev, "no wow firmware loaded\n"); 1668 wait_for_completion(&rtwdev->fw.completion); 1669 if (rtwdev->fw.firmware) 1670 release_firmware(rtwdev->fw.firmware); 1671 return ret; 1672 } 1673 } 1674 return 0; 1675 } 1676 EXPORT_SYMBOL(rtw_core_init); 1677 1678 void rtw_core_deinit(struct rtw_dev *rtwdev) 1679 { 1680 struct rtw_fw_state *fw = &rtwdev->fw; 1681 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw; 1682 struct rtw_rsvd_page *rsvd_pkt, *tmp; 1683 unsigned long flags; 1684 1685 rtw_wait_firmware_completion(rtwdev); 1686 1687 if (fw->firmware) 1688 release_firmware(fw->firmware); 1689 1690 if (wow_fw->firmware) 1691 release_firmware(wow_fw->firmware); 1692 1693 tasklet_kill(&rtwdev->tx_tasklet); 1694 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); 1695 skb_queue_purge(&rtwdev->tx_report.queue); 1696 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); 1697 1698 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, 1699 build_list) { 1700 list_del(&rsvd_pkt->build_list); 1701 kfree(rsvd_pkt); 1702 } 1703 1704 mutex_destroy(&rtwdev->mutex); 1705 mutex_destroy(&rtwdev->coex.mutex); 1706 mutex_destroy(&rtwdev->hal.tx_power_mutex); 1707 } 1708 EXPORT_SYMBOL(rtw_core_deinit); 1709 1710 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 1711 { 1712 struct rtw_hal *hal = &rtwdev->hal; 1713 int max_tx_headroom = 0; 1714 int ret; 1715 1716 /* TODO: USB & SDIO may need extra room? */ 1717 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; 1718 1719 hw->extra_tx_headroom = max_tx_headroom; 1720 hw->queues = IEEE80211_NUM_ACS; 1721 hw->txq_data_size = sizeof(struct rtw_txq); 1722 hw->sta_data_size = sizeof(struct rtw_sta_info); 1723 hw->vif_data_size = sizeof(struct rtw_vif); 1724 1725 ieee80211_hw_set(hw, SIGNAL_DBM); 1726 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1727 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 1728 ieee80211_hw_set(hw, MFP_CAPABLE); 1729 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 1730 ieee80211_hw_set(hw, SUPPORTS_PS); 1731 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); 1732 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 1733 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 1734 ieee80211_hw_set(hw, HAS_RATE_CONTROL); 1735 ieee80211_hw_set(hw, TX_AMSDU); 1736 1737 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | 1738 BIT(NL80211_IFTYPE_AP) | 1739 BIT(NL80211_IFTYPE_ADHOC) | 1740 BIT(NL80211_IFTYPE_MESH_POINT); 1741 hw->wiphy->available_antennas_tx = hal->antenna_tx; 1742 hw->wiphy->available_antennas_rx = hal->antenna_rx; 1743 1744 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | 1745 WIPHY_FLAG_TDLS_EXTERNAL_SETUP; 1746 1747 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 1748 1749 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); 1750 1751 #ifdef CONFIG_PM 1752 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub; 1753 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids; 1754 #endif 1755 rtw_set_supported_band(hw, rtwdev->chip); 1756 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); 1757 1758 rtw_regd_init(rtwdev, rtw_regd_notifier); 1759 1760 ret = ieee80211_register_hw(hw); 1761 if (ret) { 1762 rtw_err(rtwdev, "failed to register hw\n"); 1763 return ret; 1764 } 1765 1766 if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2)) 1767 rtw_err(rtwdev, "regulatory_hint fail\n"); 1768 1769 rtw_debugfs_init(rtwdev); 1770 1771 rtwdev->bf_info.bfer_mu_cnt = 0; 1772 rtwdev->bf_info.bfer_su_cnt = 0; 1773 1774 return 0; 1775 } 1776 EXPORT_SYMBOL(rtw_register_hw); 1777 1778 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 1779 { 1780 struct rtw_chip_info *chip = rtwdev->chip; 1781 1782 ieee80211_unregister_hw(hw); 1783 rtw_unset_supported_band(hw, chip); 1784 } 1785 EXPORT_SYMBOL(rtw_unregister_hw); 1786 1787 MODULE_AUTHOR("Realtek Corporation"); 1788 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); 1789 MODULE_LICENSE("Dual BSD/GPL"); 1790