1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "tx.h"
16 #include "debug.h"
17 #include "bf.h"
18 
19 bool rtw_disable_lps_deep_mode;
20 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
21 bool rtw_bf_support = true;
22 unsigned int rtw_debug_mask;
23 EXPORT_SYMBOL(rtw_debug_mask);
24 
25 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
26 module_param_named(support_bf, rtw_bf_support, bool, 0644);
27 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
28 
29 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
30 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
31 MODULE_PARM_DESC(debug_mask, "Debugging mask");
32 
33 static struct ieee80211_channel rtw_channeltable_2g[] = {
34 	{.center_freq = 2412, .hw_value = 1,},
35 	{.center_freq = 2417, .hw_value = 2,},
36 	{.center_freq = 2422, .hw_value = 3,},
37 	{.center_freq = 2427, .hw_value = 4,},
38 	{.center_freq = 2432, .hw_value = 5,},
39 	{.center_freq = 2437, .hw_value = 6,},
40 	{.center_freq = 2442, .hw_value = 7,},
41 	{.center_freq = 2447, .hw_value = 8,},
42 	{.center_freq = 2452, .hw_value = 9,},
43 	{.center_freq = 2457, .hw_value = 10,},
44 	{.center_freq = 2462, .hw_value = 11,},
45 	{.center_freq = 2467, .hw_value = 12,},
46 	{.center_freq = 2472, .hw_value = 13,},
47 	{.center_freq = 2484, .hw_value = 14,},
48 };
49 
50 static struct ieee80211_channel rtw_channeltable_5g[] = {
51 	{.center_freq = 5180, .hw_value = 36,},
52 	{.center_freq = 5200, .hw_value = 40,},
53 	{.center_freq = 5220, .hw_value = 44,},
54 	{.center_freq = 5240, .hw_value = 48,},
55 	{.center_freq = 5260, .hw_value = 52,},
56 	{.center_freq = 5280, .hw_value = 56,},
57 	{.center_freq = 5300, .hw_value = 60,},
58 	{.center_freq = 5320, .hw_value = 64,},
59 	{.center_freq = 5500, .hw_value = 100,},
60 	{.center_freq = 5520, .hw_value = 104,},
61 	{.center_freq = 5540, .hw_value = 108,},
62 	{.center_freq = 5560, .hw_value = 112,},
63 	{.center_freq = 5580, .hw_value = 116,},
64 	{.center_freq = 5600, .hw_value = 120,},
65 	{.center_freq = 5620, .hw_value = 124,},
66 	{.center_freq = 5640, .hw_value = 128,},
67 	{.center_freq = 5660, .hw_value = 132,},
68 	{.center_freq = 5680, .hw_value = 136,},
69 	{.center_freq = 5700, .hw_value = 140,},
70 	{.center_freq = 5720, .hw_value = 144,},
71 	{.center_freq = 5745, .hw_value = 149,},
72 	{.center_freq = 5765, .hw_value = 153,},
73 	{.center_freq = 5785, .hw_value = 157,},
74 	{.center_freq = 5805, .hw_value = 161,},
75 	{.center_freq = 5825, .hw_value = 165,
76 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
77 };
78 
79 static struct ieee80211_rate rtw_ratetable[] = {
80 	{.bitrate = 10, .hw_value = 0x00,},
81 	{.bitrate = 20, .hw_value = 0x01,},
82 	{.bitrate = 55, .hw_value = 0x02,},
83 	{.bitrate = 110, .hw_value = 0x03,},
84 	{.bitrate = 60, .hw_value = 0x04,},
85 	{.bitrate = 90, .hw_value = 0x05,},
86 	{.bitrate = 120, .hw_value = 0x06,},
87 	{.bitrate = 180, .hw_value = 0x07,},
88 	{.bitrate = 240, .hw_value = 0x08,},
89 	{.bitrate = 360, .hw_value = 0x09,},
90 	{.bitrate = 480, .hw_value = 0x0a,},
91 	{.bitrate = 540, .hw_value = 0x0b,},
92 };
93 
94 u16 rtw_desc_to_bitrate(u8 desc_rate)
95 {
96 	struct ieee80211_rate rate;
97 
98 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
99 		return 0;
100 
101 	rate = rtw_ratetable[desc_rate];
102 
103 	return rate.bitrate;
104 }
105 
106 static struct ieee80211_supported_band rtw_band_2ghz = {
107 	.band = NL80211_BAND_2GHZ,
108 
109 	.channels = rtw_channeltable_2g,
110 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
111 
112 	.bitrates = rtw_ratetable,
113 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
114 
115 	.ht_cap = {0},
116 	.vht_cap = {0},
117 };
118 
119 static struct ieee80211_supported_band rtw_band_5ghz = {
120 	.band = NL80211_BAND_5GHZ,
121 
122 	.channels = rtw_channeltable_5g,
123 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
124 
125 	/* 5G has no CCK rates */
126 	.bitrates = rtw_ratetable + 4,
127 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
128 
129 	.ht_cap = {0},
130 	.vht_cap = {0},
131 };
132 
133 struct rtw_watch_dog_iter_data {
134 	struct rtw_dev *rtwdev;
135 	struct rtw_vif *rtwvif;
136 };
137 
138 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
139 {
140 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
141 	u8 fix_rate_enable = 0;
142 	u8 new_csi_rate_idx;
143 
144 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
145 	    rtwvif->bfee.role != RTW_BFEE_MU)
146 		return;
147 
148 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
149 			      bf_info->cur_csi_rpt_rate,
150 			      fix_rate_enable, &new_csi_rate_idx);
151 
152 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
153 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
154 }
155 
156 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
157 				   struct ieee80211_vif *vif)
158 {
159 	struct rtw_watch_dog_iter_data *iter_data = data;
160 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
161 
162 	if (vif->type == NL80211_IFTYPE_STATION)
163 		if (vif->bss_conf.assoc)
164 			iter_data->rtwvif = rtwvif;
165 
166 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
167 
168 	rtwvif->stats.tx_unicast = 0;
169 	rtwvif->stats.rx_unicast = 0;
170 	rtwvif->stats.tx_cnt = 0;
171 	rtwvif->stats.rx_cnt = 0;
172 }
173 
174 /* process TX/RX statistics periodically for hardware,
175  * the information helps hardware to enhance performance
176  */
177 static void rtw_watch_dog_work(struct work_struct *work)
178 {
179 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
180 					      watch_dog_work.work);
181 	struct rtw_traffic_stats *stats = &rtwdev->stats;
182 	struct rtw_watch_dog_iter_data data = {};
183 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
184 	bool ps_active;
185 
186 	mutex_lock(&rtwdev->mutex);
187 
188 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
189 		goto unlock;
190 
191 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
192 				     RTW_WATCH_DOG_DELAY_TIME);
193 
194 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
195 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
196 	else
197 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
198 
199 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
200 		rtw_coex_wl_status_change_notify(rtwdev, 0);
201 
202 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
203 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
204 		ps_active = true;
205 	else
206 		ps_active = false;
207 
208 	ewma_tp_add(&stats->tx_ewma_tp,
209 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
210 	ewma_tp_add(&stats->rx_ewma_tp,
211 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
212 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
213 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
214 
215 	/* reset tx/rx statictics */
216 	stats->tx_unicast = 0;
217 	stats->rx_unicast = 0;
218 	stats->tx_cnt = 0;
219 	stats->rx_cnt = 0;
220 
221 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
222 		goto unlock;
223 
224 	/* make sure BB/RF is working for dynamic mech */
225 	rtw_leave_lps(rtwdev);
226 
227 	rtw_phy_dynamic_mechanism(rtwdev);
228 
229 	data.rtwdev = rtwdev;
230 	/* use atomic version to avoid taking local->iflist_mtx mutex */
231 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
232 
233 	/* fw supports only one station associated to enter lps, if there are
234 	 * more than two stations associated to the AP, then we can not enter
235 	 * lps, because fw does not handle the overlapped beacon interval
236 	 *
237 	 * mac80211 should iterate vifs and determine if driver can enter
238 	 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
239 	 * get that vif and check if device is having traffic more than the
240 	 * threshold.
241 	 */
242 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active)
243 		rtw_enter_lps(rtwdev, data.rtwvif->port);
244 
245 	rtwdev->watch_dog_cnt++;
246 
247 unlock:
248 	mutex_unlock(&rtwdev->mutex);
249 }
250 
251 static void rtw_c2h_work(struct work_struct *work)
252 {
253 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
254 	struct sk_buff *skb, *tmp;
255 
256 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
257 		skb_unlink(skb, &rtwdev->c2h_queue);
258 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
259 		dev_kfree_skb_any(skb);
260 	}
261 }
262 
263 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
264 {
265 	unsigned long mac_id;
266 
267 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
268 	if (mac_id < RTW_MAX_MAC_ID_NUM)
269 		set_bit(mac_id, rtwdev->mac_id_map);
270 
271 	return mac_id;
272 }
273 
274 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
275 		struct ieee80211_vif *vif)
276 {
277 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
278 	int i;
279 
280 	si->mac_id = rtw_acquire_macid(rtwdev);
281 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
282 		return -ENOSPC;
283 
284 	si->sta = sta;
285 	si->vif = vif;
286 	si->init_ra_lv = 1;
287 	ewma_rssi_init(&si->avg_rssi);
288 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
289 		rtw_txq_init(rtwdev, sta->txq[i]);
290 
291 	rtw_update_sta_info(rtwdev, si);
292 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
293 
294 	rtwdev->sta_cnt++;
295 	rtw_info(rtwdev, "sta %pM joined with macid %d\n",
296 		 sta->addr, si->mac_id);
297 
298 	return 0;
299 }
300 
301 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
302 		    bool fw_exist)
303 {
304 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
305 	int i;
306 
307 	rtw_release_macid(rtwdev, si->mac_id);
308 	if (fw_exist)
309 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
310 
311 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
312 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
313 
314 	kfree(si->mask);
315 
316 	rtwdev->sta_cnt--;
317 	rtw_info(rtwdev, "sta %pM with macid %d left\n",
318 		 sta->addr, si->mac_id);
319 }
320 
321 static bool rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
322 {
323 	u32 size = rtwdev->chip->fw_rxff_size;
324 	u32 *buf;
325 	u8 seq;
326 	bool ret = true;
327 
328 	buf = vmalloc(size);
329 	if (!buf)
330 		goto exit;
331 
332 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
333 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
334 		goto free_buf;
335 	}
336 
337 	if (GET_FW_DUMP_LEN(buf) == 0) {
338 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
339 		goto free_buf;
340 	}
341 
342 	seq = GET_FW_DUMP_SEQ(buf);
343 	if (seq > 0 && seq != (rtwdev->fw.prev_dump_seq + 1)) {
344 		rtw_dbg(rtwdev, RTW_DBG_FW,
345 			"fw crash dump's seq is wrong: %d\n", seq);
346 		goto free_buf;
347 	}
348 
349 	print_hex_dump(KERN_ERR, "rtw88 fw dump: ", DUMP_PREFIX_OFFSET, 16, 1,
350 		       buf, size, true);
351 
352 	if (GET_FW_DUMP_MORE(buf) == 1) {
353 		rtwdev->fw.prev_dump_seq = seq;
354 		ret = false;
355 	}
356 
357 free_buf:
358 	vfree(buf);
359 exit:
360 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
361 
362 	return ret;
363 }
364 
365 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
366 		const char *prefix_str)
367 {
368 	u32 rxff = rtwdev->chip->fw_rxff_size;
369 	u32 dump_size, done_size = 0;
370 	u8 *buf;
371 	int ret;
372 
373 	buf = vzalloc(size);
374 	if (!buf)
375 		return -ENOMEM;
376 
377 	while (size) {
378 		dump_size = size > rxff ? rxff : size;
379 
380 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
381 					  dump_size);
382 		if (ret) {
383 			rtw_err(rtwdev,
384 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
385 				ocp_src, done_size);
386 			goto exit;
387 		}
388 
389 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
390 				       dump_size, (u32 *)(buf + done_size));
391 		if (ret) {
392 			rtw_err(rtwdev,
393 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
394 				ocp_src, done_size);
395 			goto exit;
396 		}
397 
398 		size -= dump_size;
399 		done_size += dump_size;
400 	}
401 
402 	print_hex_dump(KERN_ERR, prefix_str, DUMP_PREFIX_OFFSET, 16, 1,
403 		       buf, done_size, true);
404 
405 exit:
406 	vfree(buf);
407 	return ret;
408 }
409 EXPORT_SYMBOL(rtw_dump_fw);
410 
411 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size,
412 		 const char *prefix_str)
413 {
414 	u8 *buf;
415 	u32 i;
416 
417 	if (addr & 0x3) {
418 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
419 		return -EINVAL;
420 	}
421 
422 	buf = vzalloc(size);
423 	if (!buf)
424 		return -ENOMEM;
425 
426 	for (i = 0; i < size; i += 4)
427 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
428 
429 	print_hex_dump(KERN_ERR, prefix_str, DUMP_PREFIX_OFFSET, 16, 4, buf,
430 		       size, true);
431 
432 	vfree(buf);
433 	return 0;
434 }
435 EXPORT_SYMBOL(rtw_dump_reg);
436 
437 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
438 			   struct ieee80211_bss_conf *conf)
439 {
440 	if (conf && conf->assoc) {
441 		rtwvif->aid = conf->aid;
442 		rtwvif->net_type = RTW_NET_MGD_LINKED;
443 	} else {
444 		rtwvif->aid = 0;
445 		rtwvif->net_type = RTW_NET_NO_LINK;
446 	}
447 }
448 
449 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
450 			       struct ieee80211_vif *vif,
451 			       struct ieee80211_sta *sta,
452 			       struct ieee80211_key_conf *key,
453 			       void *data)
454 {
455 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
456 	struct rtw_sec_desc *sec = &rtwdev->sec;
457 
458 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
459 }
460 
461 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
462 {
463 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
464 
465 	if (rtwdev->sta_cnt == 0) {
466 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
467 		return;
468 	}
469 	rtw_sta_remove(rtwdev, sta, false);
470 }
471 
472 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
473 {
474 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
475 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
476 
477 	rtw_bf_disassoc(rtwdev, vif, NULL);
478 	rtw_vif_assoc_changed(rtwvif, NULL);
479 	rtw_txq_cleanup(rtwdev, vif->txq);
480 }
481 
482 void rtw_fw_recovery(struct rtw_dev *rtwdev)
483 {
484 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
485 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
486 }
487 
488 static void __fw_recovery_work(struct rtw_dev *rtwdev)
489 {
490 
491 	/* rtw_fw_dump_crash_log() returns false indicates that there are
492 	 * still more log to dump. Driver set 0x1cf[7:0] = 0x1 to tell firmware
493 	 * to dump the remaining part of the log, and firmware will trigger an
494 	 * IMR_C2HCMD interrupt to inform driver the log is ready.
495 	 */
496 	if (!rtw_fw_dump_crash_log(rtwdev)) {
497 		rtw_write8(rtwdev, REG_HRCV_MSG, 1);
498 		return;
499 	}
500 	rtwdev->fw.prev_dump_seq = 0;
501 
502 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
503 	rtw_chip_dump_fw_crash(rtwdev);
504 
505 	WARN(1, "firmware crash, start reset and recover\n");
506 
507 	rcu_read_lock();
508 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
509 	rcu_read_unlock();
510 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
511 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
512 	rtw_enter_ips(rtwdev);
513 }
514 
515 static void rtw_fw_recovery_work(struct work_struct *work)
516 {
517 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
518 					      fw_recovery_work);
519 
520 	mutex_lock(&rtwdev->mutex);
521 	__fw_recovery_work(rtwdev);
522 	mutex_unlock(&rtwdev->mutex);
523 
524 	ieee80211_restart_hw(rtwdev->hw);
525 }
526 
527 struct rtw_txq_ba_iter_data {
528 };
529 
530 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
531 {
532 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
533 	int ret;
534 	u8 tid;
535 
536 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
537 	while (tid != IEEE80211_NUM_TIDS) {
538 		clear_bit(tid, si->tid_ba);
539 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
540 		if (ret == -EINVAL) {
541 			struct ieee80211_txq *txq;
542 			struct rtw_txq *rtwtxq;
543 
544 			txq = sta->txq[tid];
545 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
546 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
547 		}
548 
549 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
550 	}
551 }
552 
553 static void rtw_txq_ba_work(struct work_struct *work)
554 {
555 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
556 	struct rtw_txq_ba_iter_data data;
557 
558 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
559 }
560 
561 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
562 			    struct rtw_channel_params *chan_params)
563 {
564 	struct ieee80211_channel *channel = chandef->chan;
565 	enum nl80211_chan_width width = chandef->width;
566 	u8 *cch_by_bw = chan_params->cch_by_bw;
567 	u32 primary_freq, center_freq;
568 	u8 center_chan;
569 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
570 	u8 primary_chan_idx = 0;
571 	u8 i;
572 
573 	center_chan = channel->hw_value;
574 	primary_freq = channel->center_freq;
575 	center_freq = chandef->center_freq1;
576 
577 	/* assign the center channel used while 20M bw is selected */
578 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
579 
580 	switch (width) {
581 	case NL80211_CHAN_WIDTH_20_NOHT:
582 	case NL80211_CHAN_WIDTH_20:
583 		bandwidth = RTW_CHANNEL_WIDTH_20;
584 		primary_chan_idx = RTW_SC_DONT_CARE;
585 		break;
586 	case NL80211_CHAN_WIDTH_40:
587 		bandwidth = RTW_CHANNEL_WIDTH_40;
588 		if (primary_freq > center_freq) {
589 			primary_chan_idx = RTW_SC_20_UPPER;
590 			center_chan -= 2;
591 		} else {
592 			primary_chan_idx = RTW_SC_20_LOWER;
593 			center_chan += 2;
594 		}
595 		break;
596 	case NL80211_CHAN_WIDTH_80:
597 		bandwidth = RTW_CHANNEL_WIDTH_80;
598 		if (primary_freq > center_freq) {
599 			if (primary_freq - center_freq == 10) {
600 				primary_chan_idx = RTW_SC_20_UPPER;
601 				center_chan -= 2;
602 			} else {
603 				primary_chan_idx = RTW_SC_20_UPMOST;
604 				center_chan -= 6;
605 			}
606 			/* assign the center channel used
607 			 * while 40M bw is selected
608 			 */
609 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
610 		} else {
611 			if (center_freq - primary_freq == 10) {
612 				primary_chan_idx = RTW_SC_20_LOWER;
613 				center_chan += 2;
614 			} else {
615 				primary_chan_idx = RTW_SC_20_LOWEST;
616 				center_chan += 6;
617 			}
618 			/* assign the center channel used
619 			 * while 40M bw is selected
620 			 */
621 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
622 		}
623 		break;
624 	default:
625 		center_chan = 0;
626 		break;
627 	}
628 
629 	chan_params->center_chan = center_chan;
630 	chan_params->bandwidth = bandwidth;
631 	chan_params->primary_chan_idx = primary_chan_idx;
632 
633 	/* assign the center channel used while current bw is selected */
634 	cch_by_bw[bandwidth] = center_chan;
635 
636 	for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
637 		cch_by_bw[i] = 0;
638 }
639 
640 void rtw_set_channel(struct rtw_dev *rtwdev)
641 {
642 	struct ieee80211_hw *hw = rtwdev->hw;
643 	struct rtw_hal *hal = &rtwdev->hal;
644 	struct rtw_chip_info *chip = rtwdev->chip;
645 	struct rtw_channel_params ch_param;
646 	u8 center_chan, bandwidth, primary_chan_idx;
647 	u8 i;
648 
649 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
650 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
651 		return;
652 
653 	center_chan = ch_param.center_chan;
654 	bandwidth = ch_param.bandwidth;
655 	primary_chan_idx = ch_param.primary_chan_idx;
656 
657 	hal->current_band_width = bandwidth;
658 	hal->current_channel = center_chan;
659 	hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
660 
661 	for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
662 		hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
663 
664 	chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
665 
666 	if (hal->current_band_type == RTW_BAND_5G) {
667 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
668 	} else {
669 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
670 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
671 		else
672 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
673 	}
674 
675 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
676 
677 	/* if the channel isn't set for scanning, we will do RF calibration
678 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
679 	 * during scanning on each channel takes too long.
680 	 */
681 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
682 		rtwdev->need_rfk = true;
683 }
684 
685 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
686 {
687 	struct rtw_chip_info *chip = rtwdev->chip;
688 
689 	if (rtwdev->need_rfk) {
690 		rtwdev->need_rfk = false;
691 		chip->ops->phy_calibration(rtwdev);
692 	}
693 }
694 
695 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
696 {
697 	int i;
698 
699 	for (i = 0; i < ETH_ALEN; i++)
700 		rtw_write8(rtwdev, start + i, addr[i]);
701 }
702 
703 void rtw_vif_port_config(struct rtw_dev *rtwdev,
704 			 struct rtw_vif *rtwvif,
705 			 u32 config)
706 {
707 	u32 addr, mask;
708 
709 	if (config & PORT_SET_MAC_ADDR) {
710 		addr = rtwvif->conf->mac_addr.addr;
711 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
712 	}
713 	if (config & PORT_SET_BSSID) {
714 		addr = rtwvif->conf->bssid.addr;
715 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
716 	}
717 	if (config & PORT_SET_NET_TYPE) {
718 		addr = rtwvif->conf->net_type.addr;
719 		mask = rtwvif->conf->net_type.mask;
720 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
721 	}
722 	if (config & PORT_SET_AID) {
723 		addr = rtwvif->conf->aid.addr;
724 		mask = rtwvif->conf->aid.mask;
725 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
726 	}
727 	if (config & PORT_SET_BCN_CTRL) {
728 		addr = rtwvif->conf->bcn_ctrl.addr;
729 		mask = rtwvif->conf->bcn_ctrl.mask;
730 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
731 	}
732 }
733 
734 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
735 {
736 	u8 bw = 0;
737 
738 	switch (bw_cap) {
739 	case EFUSE_HW_CAP_IGNORE:
740 	case EFUSE_HW_CAP_SUPP_BW80:
741 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
742 		fallthrough;
743 	case EFUSE_HW_CAP_SUPP_BW40:
744 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
745 		fallthrough;
746 	default:
747 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
748 		break;
749 	}
750 
751 	return bw;
752 }
753 
754 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
755 {
756 	struct rtw_hal *hal = &rtwdev->hal;
757 	struct rtw_chip_info *chip = rtwdev->chip;
758 
759 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
760 	    hw_ant_num >= hal->rf_path_num)
761 		return;
762 
763 	switch (hw_ant_num) {
764 	case 1:
765 		hal->rf_type = RF_1T1R;
766 		hal->rf_path_num = 1;
767 		if (!chip->fix_rf_phy_num)
768 			hal->rf_phy_num = hal->rf_path_num;
769 		hal->antenna_tx = BB_PATH_A;
770 		hal->antenna_rx = BB_PATH_A;
771 		break;
772 	default:
773 		WARN(1, "invalid hw configuration from efuse\n");
774 		break;
775 	}
776 }
777 
778 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
779 {
780 	u64 ra_mask = 0;
781 	u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
782 	u8 vht_mcs_cap;
783 	int i, nss;
784 
785 	/* 4SS, every two bits for MCS7/8/9 */
786 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
787 		vht_mcs_cap = mcs_map & 0x3;
788 		switch (vht_mcs_cap) {
789 		case 2: /* MCS9 */
790 			ra_mask |= 0x3ffULL << nss;
791 			break;
792 		case 1: /* MCS8 */
793 			ra_mask |= 0x1ffULL << nss;
794 			break;
795 		case 0: /* MCS7 */
796 			ra_mask |= 0x0ffULL << nss;
797 			break;
798 		default:
799 			break;
800 		}
801 	}
802 
803 	return ra_mask;
804 }
805 
806 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
807 {
808 	u8 rate_id = 0;
809 
810 	switch (wireless_set) {
811 	case WIRELESS_CCK:
812 		rate_id = RTW_RATEID_B_20M;
813 		break;
814 	case WIRELESS_OFDM:
815 		rate_id = RTW_RATEID_G;
816 		break;
817 	case WIRELESS_CCK | WIRELESS_OFDM:
818 		rate_id = RTW_RATEID_BG;
819 		break;
820 	case WIRELESS_OFDM | WIRELESS_HT:
821 		if (tx_num == 1)
822 			rate_id = RTW_RATEID_GN_N1SS;
823 		else if (tx_num == 2)
824 			rate_id = RTW_RATEID_GN_N2SS;
825 		else if (tx_num == 3)
826 			rate_id = RTW_RATEID_ARFR5_N_3SS;
827 		break;
828 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
829 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
830 			if (tx_num == 1)
831 				rate_id = RTW_RATEID_BGN_40M_1SS;
832 			else if (tx_num == 2)
833 				rate_id = RTW_RATEID_BGN_40M_2SS;
834 			else if (tx_num == 3)
835 				rate_id = RTW_RATEID_ARFR5_N_3SS;
836 			else if (tx_num == 4)
837 				rate_id = RTW_RATEID_ARFR7_N_4SS;
838 		} else {
839 			if (tx_num == 1)
840 				rate_id = RTW_RATEID_BGN_20M_1SS;
841 			else if (tx_num == 2)
842 				rate_id = RTW_RATEID_BGN_20M_2SS;
843 			else if (tx_num == 3)
844 				rate_id = RTW_RATEID_ARFR5_N_3SS;
845 			else if (tx_num == 4)
846 				rate_id = RTW_RATEID_ARFR7_N_4SS;
847 		}
848 		break;
849 	case WIRELESS_OFDM | WIRELESS_VHT:
850 		if (tx_num == 1)
851 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
852 		else if (tx_num == 2)
853 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
854 		else if (tx_num == 3)
855 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
856 		else if (tx_num == 4)
857 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
858 		break;
859 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
860 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
861 			if (tx_num == 1)
862 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
863 			else if (tx_num == 2)
864 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
865 			else if (tx_num == 3)
866 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
867 			else if (tx_num == 4)
868 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
869 		} else {
870 			if (tx_num == 1)
871 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
872 			else if (tx_num == 2)
873 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
874 			else if (tx_num == 3)
875 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
876 			else if (tx_num == 4)
877 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
878 		}
879 		break;
880 	default:
881 		break;
882 	}
883 
884 	return rate_id;
885 }
886 
887 #define RA_MASK_CCK_RATES	0x0000f
888 #define RA_MASK_OFDM_RATES	0x00ff0
889 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
890 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
891 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
892 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
893 				 RA_MASK_HT_RATES_2SS | \
894 				 RA_MASK_HT_RATES_3SS)
895 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
896 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
897 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
898 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
899 				 RA_MASK_VHT_RATES_2SS | \
900 				 RA_MASK_VHT_RATES_3SS)
901 #define RA_MASK_CCK_IN_HT	0x00005
902 #define RA_MASK_CCK_IN_VHT	0x00005
903 #define RA_MASK_OFDM_IN_VHT	0x00010
904 #define RA_MASK_OFDM_IN_HT_2G	0x00010
905 #define RA_MASK_OFDM_IN_HT_5G	0x00030
906 
907 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
908 				struct rtw_sta_info *si,
909 				u64 ra_mask, bool is_vht_enable,
910 				u8 wireless_set)
911 {
912 	struct rtw_hal *hal = &rtwdev->hal;
913 	const struct cfg80211_bitrate_mask *mask = si->mask;
914 	u64 cfg_mask = GENMASK_ULL(63, 0);
915 	u8 rssi_level, band;
916 
917 	if (wireless_set != WIRELESS_CCK) {
918 		rssi_level = si->rssi_level;
919 		if (rssi_level == 0)
920 			ra_mask &= 0xffffffffffffffffULL;
921 		else if (rssi_level == 1)
922 			ra_mask &= 0xfffffffffffffff0ULL;
923 		else if (rssi_level == 2)
924 			ra_mask &= 0xffffffffffffefe0ULL;
925 		else if (rssi_level == 3)
926 			ra_mask &= 0xffffffffffffcfc0ULL;
927 		else if (rssi_level == 4)
928 			ra_mask &= 0xffffffffffff8f80ULL;
929 		else if (rssi_level >= 5)
930 			ra_mask &= 0xffffffffffff0f00ULL;
931 	}
932 
933 	if (!si->use_cfg_mask)
934 		return ra_mask;
935 
936 	band = hal->current_band_type;
937 	if (band == RTW_BAND_2G) {
938 		band = NL80211_BAND_2GHZ;
939 		cfg_mask = mask->control[band].legacy;
940 	} else if (band == RTW_BAND_5G) {
941 		band = NL80211_BAND_5GHZ;
942 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
943 					   RA_MASK_OFDM_RATES);
944 	}
945 
946 	if (!is_vht_enable) {
947 		if (ra_mask & RA_MASK_HT_RATES_1SS)
948 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
949 						    RA_MASK_HT_RATES_1SS);
950 		if (ra_mask & RA_MASK_HT_RATES_2SS)
951 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
952 						    RA_MASK_HT_RATES_2SS);
953 	} else {
954 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
955 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
956 						    RA_MASK_VHT_RATES_1SS);
957 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
958 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
959 						    RA_MASK_VHT_RATES_2SS);
960 	}
961 
962 	ra_mask &= cfg_mask;
963 
964 	return ra_mask;
965 }
966 
967 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
968 {
969 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
970 	struct ieee80211_sta *sta = si->sta;
971 	struct rtw_efuse *efuse = &rtwdev->efuse;
972 	struct rtw_hal *hal = &rtwdev->hal;
973 	u8 wireless_set;
974 	u8 bw_mode;
975 	u8 rate_id;
976 	u8 rf_type = RF_1T1R;
977 	u8 stbc_en = 0;
978 	u8 ldpc_en = 0;
979 	u8 tx_num = 1;
980 	u64 ra_mask = 0;
981 	bool is_vht_enable = false;
982 	bool is_support_sgi = false;
983 
984 	if (sta->vht_cap.vht_supported) {
985 		is_vht_enable = true;
986 		ra_mask |= get_vht_ra_mask(sta);
987 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
988 			stbc_en = VHT_STBC_EN;
989 		if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
990 			ldpc_en = VHT_LDPC_EN;
991 	} else if (sta->ht_cap.ht_supported) {
992 		ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
993 			   (sta->ht_cap.mcs.rx_mask[0] << 12);
994 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
995 			stbc_en = HT_STBC_EN;
996 		if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
997 			ldpc_en = HT_LDPC_EN;
998 	}
999 
1000 	if (efuse->hw_cap.nss == 1)
1001 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1002 
1003 	if (hal->current_band_type == RTW_BAND_5G) {
1004 		ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
1005 		if (sta->vht_cap.vht_supported) {
1006 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1007 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1008 		} else if (sta->ht_cap.ht_supported) {
1009 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1010 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1011 		} else {
1012 			wireless_set = WIRELESS_OFDM;
1013 		}
1014 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1015 	} else if (hal->current_band_type == RTW_BAND_2G) {
1016 		ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
1017 		if (sta->vht_cap.vht_supported) {
1018 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1019 				   RA_MASK_OFDM_IN_VHT;
1020 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1021 				       WIRELESS_HT | WIRELESS_VHT;
1022 		} else if (sta->ht_cap.ht_supported) {
1023 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1024 				   RA_MASK_OFDM_IN_HT_2G;
1025 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1026 				       WIRELESS_HT;
1027 		} else if (sta->supp_rates[0] <= 0xf) {
1028 			wireless_set = WIRELESS_CCK;
1029 		} else {
1030 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1031 		}
1032 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1033 	} else {
1034 		rtw_err(rtwdev, "Unknown band type\n");
1035 		wireless_set = 0;
1036 	}
1037 
1038 	switch (sta->bandwidth) {
1039 	case IEEE80211_STA_RX_BW_80:
1040 		bw_mode = RTW_CHANNEL_WIDTH_80;
1041 		is_support_sgi = sta->vht_cap.vht_supported &&
1042 				 (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1043 		break;
1044 	case IEEE80211_STA_RX_BW_40:
1045 		bw_mode = RTW_CHANNEL_WIDTH_40;
1046 		is_support_sgi = sta->ht_cap.ht_supported &&
1047 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1048 		break;
1049 	default:
1050 		bw_mode = RTW_CHANNEL_WIDTH_20;
1051 		is_support_sgi = sta->ht_cap.ht_supported &&
1052 				 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1053 		break;
1054 	}
1055 
1056 	if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
1057 		tx_num = 2;
1058 		rf_type = RF_2T2R;
1059 	} else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
1060 		tx_num = 2;
1061 		rf_type = RF_2T2R;
1062 	}
1063 
1064 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1065 
1066 	ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
1067 				       wireless_set);
1068 
1069 	si->bw_mode = bw_mode;
1070 	si->stbc_en = stbc_en;
1071 	si->ldpc_en = ldpc_en;
1072 	si->rf_type = rf_type;
1073 	si->wireless_set = wireless_set;
1074 	si->sgi_enable = is_support_sgi;
1075 	si->vht_enable = is_vht_enable;
1076 	si->ra_mask = ra_mask;
1077 	si->rate_id = rate_id;
1078 
1079 	rtw_fw_send_ra_info(rtwdev, si);
1080 }
1081 
1082 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1083 {
1084 	struct rtw_chip_info *chip = rtwdev->chip;
1085 	struct rtw_fw_state *fw;
1086 
1087 	fw = &rtwdev->fw;
1088 	wait_for_completion(&fw->completion);
1089 	if (!fw->firmware)
1090 		return -EINVAL;
1091 
1092 	if (chip->wow_fw_name) {
1093 		fw = &rtwdev->wow_fw;
1094 		wait_for_completion(&fw->completion);
1095 		if (!fw->firmware)
1096 			return -EINVAL;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1103 						       struct rtw_fw_state *fw)
1104 {
1105 	struct rtw_chip_info *chip = rtwdev->chip;
1106 
1107 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1108 	    !fw->feature)
1109 		return LPS_DEEP_MODE_NONE;
1110 
1111 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1112 	    (fw->feature & FW_FEATURE_PG))
1113 		return LPS_DEEP_MODE_PG;
1114 
1115 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1116 	    (fw->feature & FW_FEATURE_LCLK))
1117 		return LPS_DEEP_MODE_LCLK;
1118 
1119 	return LPS_DEEP_MODE_NONE;
1120 }
1121 
1122 static int rtw_power_on(struct rtw_dev *rtwdev)
1123 {
1124 	struct rtw_chip_info *chip = rtwdev->chip;
1125 	struct rtw_fw_state *fw = &rtwdev->fw;
1126 	bool wifi_only;
1127 	int ret;
1128 
1129 	ret = rtw_hci_setup(rtwdev);
1130 	if (ret) {
1131 		rtw_err(rtwdev, "failed to setup hci\n");
1132 		goto err;
1133 	}
1134 
1135 	/* power on MAC before firmware downloaded */
1136 	ret = rtw_mac_power_on(rtwdev);
1137 	if (ret) {
1138 		rtw_err(rtwdev, "failed to power on mac\n");
1139 		goto err;
1140 	}
1141 
1142 	ret = rtw_wait_firmware_completion(rtwdev);
1143 	if (ret) {
1144 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1145 		goto err_off;
1146 	}
1147 
1148 	ret = rtw_download_firmware(rtwdev, fw);
1149 	if (ret) {
1150 		rtw_err(rtwdev, "failed to download firmware\n");
1151 		goto err_off;
1152 	}
1153 
1154 	/* config mac after firmware downloaded */
1155 	ret = rtw_mac_init(rtwdev);
1156 	if (ret) {
1157 		rtw_err(rtwdev, "failed to configure mac\n");
1158 		goto err_off;
1159 	}
1160 
1161 	chip->ops->phy_set_param(rtwdev);
1162 
1163 	ret = rtw_hci_start(rtwdev);
1164 	if (ret) {
1165 		rtw_err(rtwdev, "failed to start hci\n");
1166 		goto err_off;
1167 	}
1168 
1169 	/* send H2C after HCI has started */
1170 	rtw_fw_send_general_info(rtwdev);
1171 	rtw_fw_send_phydm_info(rtwdev);
1172 
1173 	wifi_only = !rtwdev->efuse.btcoex;
1174 	rtw_coex_power_on_setting(rtwdev);
1175 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1176 
1177 	return 0;
1178 
1179 err_off:
1180 	rtw_mac_power_off(rtwdev);
1181 
1182 err:
1183 	return ret;
1184 }
1185 
1186 int rtw_core_start(struct rtw_dev *rtwdev)
1187 {
1188 	int ret;
1189 
1190 	ret = rtw_power_on(rtwdev);
1191 	if (ret)
1192 		return ret;
1193 
1194 	rtw_sec_enable_sec_engine(rtwdev);
1195 
1196 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1197 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1198 
1199 	/* rcr reset after powered on */
1200 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1201 
1202 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1203 				     RTW_WATCH_DOG_DELAY_TIME);
1204 
1205 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1206 
1207 	return 0;
1208 }
1209 
1210 static void rtw_power_off(struct rtw_dev *rtwdev)
1211 {
1212 	rtw_hci_stop(rtwdev);
1213 	rtw_coex_power_off_setting(rtwdev);
1214 	rtw_mac_power_off(rtwdev);
1215 }
1216 
1217 void rtw_core_stop(struct rtw_dev *rtwdev)
1218 {
1219 	struct rtw_coex *coex = &rtwdev->coex;
1220 
1221 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1222 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1223 
1224 	mutex_unlock(&rtwdev->mutex);
1225 
1226 	cancel_work_sync(&rtwdev->c2h_work);
1227 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1228 	cancel_delayed_work_sync(&coex->bt_relink_work);
1229 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1230 	cancel_delayed_work_sync(&coex->defreeze_work);
1231 	cancel_delayed_work_sync(&coex->wl_remain_work);
1232 	cancel_delayed_work_sync(&coex->bt_remain_work);
1233 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1234 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1235 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1236 
1237 	mutex_lock(&rtwdev->mutex);
1238 
1239 	rtw_power_off(rtwdev);
1240 }
1241 
1242 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1243 			    struct ieee80211_sta_ht_cap *ht_cap)
1244 {
1245 	struct rtw_efuse *efuse = &rtwdev->efuse;
1246 
1247 	ht_cap->ht_supported = true;
1248 	ht_cap->cap = 0;
1249 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1250 			IEEE80211_HT_CAP_MAX_AMSDU |
1251 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1252 
1253 	if (rtw_chip_has_rx_ldpc(rtwdev))
1254 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1255 
1256 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1257 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1258 				IEEE80211_HT_CAP_DSSSCCK40 |
1259 				IEEE80211_HT_CAP_SGI_40;
1260 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1261 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1262 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1263 	if (efuse->hw_cap.nss > 1) {
1264 		ht_cap->mcs.rx_mask[0] = 0xFF;
1265 		ht_cap->mcs.rx_mask[1] = 0xFF;
1266 		ht_cap->mcs.rx_mask[4] = 0x01;
1267 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1268 	} else {
1269 		ht_cap->mcs.rx_mask[0] = 0xFF;
1270 		ht_cap->mcs.rx_mask[1] = 0x00;
1271 		ht_cap->mcs.rx_mask[4] = 0x01;
1272 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1273 	}
1274 }
1275 
1276 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1277 			     struct ieee80211_sta_vht_cap *vht_cap)
1278 {
1279 	struct rtw_efuse *efuse = &rtwdev->efuse;
1280 	u16 mcs_map;
1281 	__le16 highest;
1282 
1283 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1284 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1285 		return;
1286 
1287 	vht_cap->vht_supported = true;
1288 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1289 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1290 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1291 		       IEEE80211_VHT_CAP_HTC_VHT |
1292 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1293 		       0;
1294 	if (rtwdev->hal.rf_path_num > 1)
1295 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1296 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1297 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1298 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1299 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1300 
1301 	if (rtw_chip_has_rx_ldpc(rtwdev))
1302 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1303 
1304 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1305 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1306 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1307 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1308 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1309 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1310 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1311 	if (efuse->hw_cap.nss > 1) {
1312 		highest = cpu_to_le16(780);
1313 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1314 	} else {
1315 		highest = cpu_to_le16(390);
1316 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1317 	}
1318 
1319 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1320 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1321 	vht_cap->vht_mcs.rx_highest = highest;
1322 	vht_cap->vht_mcs.tx_highest = highest;
1323 }
1324 
1325 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1326 				   struct rtw_chip_info *chip)
1327 {
1328 	struct rtw_dev *rtwdev = hw->priv;
1329 	struct ieee80211_supported_band *sband;
1330 
1331 	if (chip->band & RTW_BAND_2G) {
1332 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1333 		if (!sband)
1334 			goto err_out;
1335 		if (chip->ht_supported)
1336 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1337 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1338 	}
1339 
1340 	if (chip->band & RTW_BAND_5G) {
1341 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1342 		if (!sband)
1343 			goto err_out;
1344 		if (chip->ht_supported)
1345 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1346 		if (chip->vht_supported)
1347 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1348 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1349 	}
1350 
1351 	return;
1352 
1353 err_out:
1354 	rtw_err(rtwdev, "failed to set supported band\n");
1355 }
1356 
1357 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1358 				     struct rtw_chip_info *chip)
1359 {
1360 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1361 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1362 }
1363 
1364 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1365 				      struct rtw_fw_state *fw)
1366 {
1367 	u32 feature;
1368 	const struct rtw_fw_hdr *fw_hdr =
1369 				(const struct rtw_fw_hdr *)fw->firmware->data;
1370 
1371 	feature = le32_to_cpu(fw_hdr->feature);
1372 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1373 }
1374 
1375 static void __update_firmware_info(struct rtw_dev *rtwdev,
1376 				   struct rtw_fw_state *fw)
1377 {
1378 	const struct rtw_fw_hdr *fw_hdr =
1379 				(const struct rtw_fw_hdr *)fw->firmware->data;
1380 
1381 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1382 	fw->version = le16_to_cpu(fw_hdr->version);
1383 	fw->sub_version = fw_hdr->subversion;
1384 	fw->sub_index = fw_hdr->subindex;
1385 
1386 	__update_firmware_feature(rtwdev, fw);
1387 }
1388 
1389 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1390 					  struct rtw_fw_state *fw)
1391 {
1392 	struct rtw_fw_hdr_legacy *legacy =
1393 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1394 
1395 	fw->h2c_version = 0;
1396 	fw->version = le16_to_cpu(legacy->version);
1397 	fw->sub_version = legacy->subversion1;
1398 	fw->sub_index = legacy->subversion2;
1399 }
1400 
1401 static void update_firmware_info(struct rtw_dev *rtwdev,
1402 				 struct rtw_fw_state *fw)
1403 {
1404 	if (rtw_chip_wcpu_11n(rtwdev))
1405 		__update_firmware_info_legacy(rtwdev, fw);
1406 	else
1407 		__update_firmware_info(rtwdev, fw);
1408 }
1409 
1410 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1411 {
1412 	struct rtw_fw_state *fw = context;
1413 	struct rtw_dev *rtwdev = fw->rtwdev;
1414 
1415 	if (!firmware || !firmware->data) {
1416 		rtw_err(rtwdev, "failed to request firmware\n");
1417 		complete_all(&fw->completion);
1418 		return;
1419 	}
1420 
1421 	fw->firmware = firmware;
1422 	update_firmware_info(rtwdev, fw);
1423 	complete_all(&fw->completion);
1424 
1425 	rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1426 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1427 }
1428 
1429 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1430 {
1431 	const char *fw_name;
1432 	struct rtw_fw_state *fw;
1433 	int ret;
1434 
1435 	switch (type) {
1436 	case RTW_WOWLAN_FW:
1437 		fw = &rtwdev->wow_fw;
1438 		fw_name = rtwdev->chip->wow_fw_name;
1439 		break;
1440 
1441 	case RTW_NORMAL_FW:
1442 		fw = &rtwdev->fw;
1443 		fw_name = rtwdev->chip->fw_name;
1444 		break;
1445 
1446 	default:
1447 		rtw_warn(rtwdev, "unsupported firmware type\n");
1448 		return -ENOENT;
1449 	}
1450 
1451 	fw->rtwdev = rtwdev;
1452 	init_completion(&fw->completion);
1453 
1454 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1455 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1456 	if (ret) {
1457 		rtw_err(rtwdev, "failed to async firmware request\n");
1458 		return ret;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1465 {
1466 	struct rtw_chip_info *chip = rtwdev->chip;
1467 	struct rtw_hal *hal = &rtwdev->hal;
1468 	struct rtw_efuse *efuse = &rtwdev->efuse;
1469 
1470 	switch (rtw_hci_type(rtwdev)) {
1471 	case RTW_HCI_TYPE_PCIE:
1472 		rtwdev->hci.rpwm_addr = 0x03d9;
1473 		rtwdev->hci.cpwm_addr = 0x03da;
1474 		break;
1475 	default:
1476 		rtw_err(rtwdev, "unsupported hci type\n");
1477 		return -EINVAL;
1478 	}
1479 
1480 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1481 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1482 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1483 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1484 		hal->rf_type = RF_2T2R;
1485 		hal->rf_path_num = 2;
1486 		hal->antenna_tx = BB_PATH_AB;
1487 		hal->antenna_rx = BB_PATH_AB;
1488 	} else {
1489 		hal->rf_type = RF_1T1R;
1490 		hal->rf_path_num = 1;
1491 		hal->antenna_tx = BB_PATH_A;
1492 		hal->antenna_rx = BB_PATH_A;
1493 	}
1494 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1495 			  hal->rf_path_num;
1496 
1497 	efuse->physical_size = chip->phy_efuse_size;
1498 	efuse->logical_size = chip->log_efuse_size;
1499 	efuse->protect_size = chip->ptct_efuse_size;
1500 
1501 	/* default use ack */
1502 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1503 
1504 	hal->bfee_sts_cap = 3;
1505 
1506 	return 0;
1507 }
1508 
1509 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1510 {
1511 	struct rtw_fw_state *fw = &rtwdev->fw;
1512 	int ret;
1513 
1514 	ret = rtw_hci_setup(rtwdev);
1515 	if (ret) {
1516 		rtw_err(rtwdev, "failed to setup hci\n");
1517 		goto err;
1518 	}
1519 
1520 	ret = rtw_mac_power_on(rtwdev);
1521 	if (ret) {
1522 		rtw_err(rtwdev, "failed to power on mac\n");
1523 		goto err;
1524 	}
1525 
1526 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1527 
1528 	wait_for_completion(&fw->completion);
1529 	if (!fw->firmware) {
1530 		ret = -EINVAL;
1531 		rtw_err(rtwdev, "failed to load firmware\n");
1532 		goto err;
1533 	}
1534 
1535 	ret = rtw_download_firmware(rtwdev, fw);
1536 	if (ret) {
1537 		rtw_err(rtwdev, "failed to download firmware\n");
1538 		goto err_off;
1539 	}
1540 
1541 	return 0;
1542 
1543 err_off:
1544 	rtw_mac_power_off(rtwdev);
1545 
1546 err:
1547 	return ret;
1548 }
1549 
1550 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1551 {
1552 	struct rtw_efuse *efuse = &rtwdev->efuse;
1553 	u8 hw_feature[HW_FEATURE_LEN];
1554 	u8 id;
1555 	u8 bw;
1556 	int i;
1557 
1558 	id = rtw_read8(rtwdev, REG_C2HEVT);
1559 	if (id != C2H_HW_FEATURE_REPORT) {
1560 		rtw_err(rtwdev, "failed to read hw feature report\n");
1561 		return -EBUSY;
1562 	}
1563 
1564 	for (i = 0; i < HW_FEATURE_LEN; i++)
1565 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1566 
1567 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1568 
1569 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1570 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1571 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1572 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1573 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1574 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1575 
1576 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1577 
1578 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1579 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1580 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1581 
1582 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1583 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1584 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1585 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1586 
1587 	return 0;
1588 }
1589 
1590 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1591 {
1592 	rtw_hci_stop(rtwdev);
1593 	rtw_mac_power_off(rtwdev);
1594 }
1595 
1596 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1597 {
1598 	struct rtw_efuse *efuse = &rtwdev->efuse;
1599 	int ret;
1600 
1601 	mutex_lock(&rtwdev->mutex);
1602 
1603 	/* power on mac to read efuse */
1604 	ret = rtw_chip_efuse_enable(rtwdev);
1605 	if (ret)
1606 		goto out_unlock;
1607 
1608 	ret = rtw_parse_efuse_map(rtwdev);
1609 	if (ret)
1610 		goto out_disable;
1611 
1612 	ret = rtw_dump_hw_feature(rtwdev);
1613 	if (ret)
1614 		goto out_disable;
1615 
1616 	ret = rtw_check_supported_rfe(rtwdev);
1617 	if (ret)
1618 		goto out_disable;
1619 
1620 	if (efuse->crystal_cap == 0xff)
1621 		efuse->crystal_cap = 0;
1622 	if (efuse->pa_type_2g == 0xff)
1623 		efuse->pa_type_2g = 0;
1624 	if (efuse->pa_type_5g == 0xff)
1625 		efuse->pa_type_5g = 0;
1626 	if (efuse->lna_type_2g == 0xff)
1627 		efuse->lna_type_2g = 0;
1628 	if (efuse->lna_type_5g == 0xff)
1629 		efuse->lna_type_5g = 0;
1630 	if (efuse->channel_plan == 0xff)
1631 		efuse->channel_plan = 0x7f;
1632 	if (efuse->rf_board_option == 0xff)
1633 		efuse->rf_board_option = 0;
1634 	if (efuse->bt_setting & BIT(0))
1635 		efuse->share_ant = true;
1636 	if (efuse->regd == 0xff)
1637 		efuse->regd = 0;
1638 	if (efuse->tx_bb_swing_setting_2g == 0xff)
1639 		efuse->tx_bb_swing_setting_2g = 0;
1640 	if (efuse->tx_bb_swing_setting_5g == 0xff)
1641 		efuse->tx_bb_swing_setting_5g = 0;
1642 
1643 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1644 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1645 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1646 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1647 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1648 
1649 out_disable:
1650 	rtw_chip_efuse_disable(rtwdev);
1651 
1652 out_unlock:
1653 	mutex_unlock(&rtwdev->mutex);
1654 	return ret;
1655 }
1656 
1657 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1658 {
1659 	struct rtw_hal *hal = &rtwdev->hal;
1660 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1661 
1662 	if (!rfe_def)
1663 		return -ENODEV;
1664 
1665 	rtw_phy_setup_phy_cond(rtwdev, 0);
1666 
1667 	rtw_phy_init_tx_power(rtwdev);
1668 	if (rfe_def->agc_btg_tbl)
1669 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1670 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1671 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1672 	rtw_phy_tx_power_by_rate_config(hal);
1673 	rtw_phy_tx_power_limit_config(hal);
1674 
1675 	return 0;
1676 }
1677 
1678 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1679 {
1680 	int ret;
1681 
1682 	ret = rtw_chip_parameter_setup(rtwdev);
1683 	if (ret) {
1684 		rtw_err(rtwdev, "failed to setup chip parameters\n");
1685 		goto err_out;
1686 	}
1687 
1688 	ret = rtw_chip_efuse_info_setup(rtwdev);
1689 	if (ret) {
1690 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
1691 		goto err_out;
1692 	}
1693 
1694 	ret = rtw_chip_board_info_setup(rtwdev);
1695 	if (ret) {
1696 		rtw_err(rtwdev, "failed to setup chip board info\n");
1697 		goto err_out;
1698 	}
1699 
1700 	return 0;
1701 
1702 err_out:
1703 	return ret;
1704 }
1705 EXPORT_SYMBOL(rtw_chip_info_setup);
1706 
1707 static void rtw_stats_init(struct rtw_dev *rtwdev)
1708 {
1709 	struct rtw_traffic_stats *stats = &rtwdev->stats;
1710 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1711 	int i;
1712 
1713 	ewma_tp_init(&stats->tx_ewma_tp);
1714 	ewma_tp_init(&stats->rx_ewma_tp);
1715 
1716 	for (i = 0; i < RTW_EVM_NUM; i++)
1717 		ewma_evm_init(&dm_info->ewma_evm[i]);
1718 	for (i = 0; i < RTW_SNR_NUM; i++)
1719 		ewma_snr_init(&dm_info->ewma_snr[i]);
1720 }
1721 
1722 int rtw_core_init(struct rtw_dev *rtwdev)
1723 {
1724 	struct rtw_chip_info *chip = rtwdev->chip;
1725 	struct rtw_coex *coex = &rtwdev->coex;
1726 	int ret;
1727 
1728 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1729 	INIT_LIST_HEAD(&rtwdev->txqs);
1730 
1731 	timer_setup(&rtwdev->tx_report.purge_timer,
1732 		    rtw_tx_report_purge_timer, 0);
1733 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1734 
1735 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1736 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1737 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1738 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1739 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1740 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1741 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1742 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1743 			  rtw_coex_bt_multi_link_remain_work);
1744 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1745 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1746 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1747 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1748 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1749 	skb_queue_head_init(&rtwdev->c2h_queue);
1750 	skb_queue_head_init(&rtwdev->coex.queue);
1751 	skb_queue_head_init(&rtwdev->tx_report.queue);
1752 
1753 	spin_lock_init(&rtwdev->rf_lock);
1754 	spin_lock_init(&rtwdev->h2c.lock);
1755 	spin_lock_init(&rtwdev->txq_lock);
1756 	spin_lock_init(&rtwdev->tx_report.q_lock);
1757 
1758 	mutex_init(&rtwdev->mutex);
1759 	mutex_init(&rtwdev->coex.mutex);
1760 	mutex_init(&rtwdev->hal.tx_power_mutex);
1761 
1762 	init_waitqueue_head(&rtwdev->coex.wait);
1763 	init_completion(&rtwdev->lps_leave_check);
1764 
1765 	rtwdev->sec.total_cam_num = 32;
1766 	rtwdev->hal.current_channel = 1;
1767 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1768 
1769 	rtw_stats_init(rtwdev);
1770 
1771 	/* default rx filter setting */
1772 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1773 			  BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1774 			  BIT_AB | BIT_AM | BIT_APM;
1775 
1776 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1777 	if (ret) {
1778 		rtw_warn(rtwdev, "no firmware loaded\n");
1779 		return ret;
1780 	}
1781 
1782 	if (chip->wow_fw_name) {
1783 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1784 		if (ret) {
1785 			rtw_warn(rtwdev, "no wow firmware loaded\n");
1786 			wait_for_completion(&rtwdev->fw.completion);
1787 			if (rtwdev->fw.firmware)
1788 				release_firmware(rtwdev->fw.firmware);
1789 			return ret;
1790 		}
1791 	}
1792 
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(rtw_core_init);
1796 
1797 void rtw_core_deinit(struct rtw_dev *rtwdev)
1798 {
1799 	struct rtw_fw_state *fw = &rtwdev->fw;
1800 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
1801 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
1802 	unsigned long flags;
1803 
1804 	rtw_wait_firmware_completion(rtwdev);
1805 
1806 	if (fw->firmware)
1807 		release_firmware(fw->firmware);
1808 
1809 	if (wow_fw->firmware)
1810 		release_firmware(wow_fw->firmware);
1811 
1812 	destroy_workqueue(rtwdev->tx_wq);
1813 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1814 	skb_queue_purge(&rtwdev->tx_report.queue);
1815 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1816 
1817 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
1818 				 build_list) {
1819 		list_del(&rsvd_pkt->build_list);
1820 		kfree(rsvd_pkt);
1821 	}
1822 
1823 	mutex_destroy(&rtwdev->mutex);
1824 	mutex_destroy(&rtwdev->coex.mutex);
1825 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
1826 }
1827 EXPORT_SYMBOL(rtw_core_deinit);
1828 
1829 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1830 {
1831 	struct rtw_hal *hal = &rtwdev->hal;
1832 	int max_tx_headroom = 0;
1833 	int ret;
1834 
1835 	/* TODO: USB & SDIO may need extra room? */
1836 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1837 
1838 	hw->extra_tx_headroom = max_tx_headroom;
1839 	hw->queues = IEEE80211_NUM_ACS;
1840 	hw->txq_data_size = sizeof(struct rtw_txq);
1841 	hw->sta_data_size = sizeof(struct rtw_sta_info);
1842 	hw->vif_data_size = sizeof(struct rtw_vif);
1843 
1844 	ieee80211_hw_set(hw, SIGNAL_DBM);
1845 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1846 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1847 	ieee80211_hw_set(hw, MFP_CAPABLE);
1848 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1849 	ieee80211_hw_set(hw, SUPPORTS_PS);
1850 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1851 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1852 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1853 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
1854 	ieee80211_hw_set(hw, TX_AMSDU);
1855 
1856 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1857 				     BIT(NL80211_IFTYPE_AP) |
1858 				     BIT(NL80211_IFTYPE_ADHOC) |
1859 				     BIT(NL80211_IFTYPE_MESH_POINT);
1860 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
1861 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
1862 
1863 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1864 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1865 
1866 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1867 
1868 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
1869 
1870 #ifdef CONFIG_PM
1871 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
1872 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
1873 #endif
1874 	rtw_set_supported_band(hw, rtwdev->chip);
1875 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1876 
1877 	rtw_regd_init(rtwdev, rtw_regd_notifier);
1878 
1879 	ret = ieee80211_register_hw(hw);
1880 	if (ret) {
1881 		rtw_err(rtwdev, "failed to register hw\n");
1882 		return ret;
1883 	}
1884 
1885 	if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1886 		rtw_err(rtwdev, "regulatory_hint fail\n");
1887 
1888 	rtw_debugfs_init(rtwdev);
1889 
1890 	rtwdev->bf_info.bfer_mu_cnt = 0;
1891 	rtwdev->bf_info.bfer_su_cnt = 0;
1892 
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(rtw_register_hw);
1896 
1897 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1898 {
1899 	struct rtw_chip_info *chip = rtwdev->chip;
1900 
1901 	ieee80211_unregister_hw(hw);
1902 	rtw_unset_supported_band(hw, chip);
1903 }
1904 EXPORT_SYMBOL(rtw_unregister_hw);
1905 
1906 MODULE_AUTHOR("Realtek Corporation");
1907 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1908 MODULE_LICENSE("Dual BSD/GPL");
1909