xref: /openbmc/linux/drivers/net/wireless/realtek/rtlwifi/rtl8192se/hw.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 
26 #include "../wifi.h"
27 #include "../efuse.h"
28 #include "../base.h"
29 #include "../regd.h"
30 #include "../cam.h"
31 #include "../ps.h"
32 #include "../pci.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "dm.h"
37 #include "fw.h"
38 #include "led.h"
39 #include "hw.h"
40 
41 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
42 {
43 	struct rtl_priv *rtlpriv = rtl_priv(hw);
44 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
45 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46 
47 	switch (variable) {
48 	case HW_VAR_RCR: {
49 			*((u32 *) (val)) = rtlpci->receive_config;
50 			break;
51 		}
52 	case HW_VAR_RF_STATE: {
53 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
54 			break;
55 		}
56 	case HW_VAR_FW_PSMODE_STATUS: {
57 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
58 			break;
59 		}
60 	case HW_VAR_CORRECT_TSF: {
61 			u64 tsf;
62 			u32 *ptsf_low = (u32 *)&tsf;
63 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
64 
65 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
66 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
67 
68 			*((u64 *) (val)) = tsf;
69 
70 			break;
71 		}
72 	case HW_VAR_MRC: {
73 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
74 			break;
75 		}
76 	case HAL_DEF_WOWLAN:
77 		break;
78 	default:
79 		pr_err("switch case %#x not processed\n", variable);
80 		break;
81 	}
82 }
83 
84 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
85 {
86 	struct rtl_priv *rtlpriv = rtl_priv(hw);
87 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
88 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
89 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
90 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
91 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
92 
93 	switch (variable) {
94 	case HW_VAR_ETHER_ADDR:{
95 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
96 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
97 			break;
98 		}
99 	case HW_VAR_BASIC_RATE:{
100 			u16 rate_cfg = ((u16 *) val)[0];
101 			u8 rate_index = 0;
102 
103 			if (rtlhal->version == VERSION_8192S_ACUT)
104 				rate_cfg = rate_cfg & 0x150;
105 			else
106 				rate_cfg = rate_cfg & 0x15f;
107 
108 			rate_cfg |= 0x01;
109 
110 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
111 			rtl_write_byte(rtlpriv, RRSR + 1,
112 				       (rate_cfg >> 8) & 0xff);
113 
114 			while (rate_cfg > 0x1) {
115 				rate_cfg = (rate_cfg >> 1);
116 				rate_index++;
117 			}
118 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
119 
120 			break;
121 		}
122 	case HW_VAR_BSSID:{
123 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
124 			rtl_write_word(rtlpriv, BSSIDR + 4,
125 				       ((u16 *)(val + 4))[0]);
126 			break;
127 		}
128 	case HW_VAR_SIFS:{
129 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
130 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
131 			break;
132 		}
133 	case HW_VAR_SLOT_TIME:{
134 			u8 e_aci;
135 
136 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
137 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
138 
139 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
140 
141 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
142 				rtlpriv->cfg->ops->set_hw_reg(hw,
143 						HW_VAR_AC_PARAM,
144 						(&e_aci));
145 			}
146 			break;
147 		}
148 	case HW_VAR_ACK_PREAMBLE:{
149 			u8 reg_tmp;
150 			u8 short_preamble = (bool) (*val);
151 			reg_tmp = (mac->cur_40_prime_sc) << 5;
152 			if (short_preamble)
153 				reg_tmp |= 0x80;
154 
155 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
156 			break;
157 		}
158 	case HW_VAR_AMPDU_MIN_SPACE:{
159 			u8 min_spacing_to_set;
160 			u8 sec_min_space;
161 
162 			min_spacing_to_set = *val;
163 			if (min_spacing_to_set <= 7) {
164 				if (rtlpriv->sec.pairwise_enc_algorithm ==
165 				    NO_ENCRYPTION)
166 					sec_min_space = 0;
167 				else
168 					sec_min_space = 1;
169 
170 				if (min_spacing_to_set < sec_min_space)
171 					min_spacing_to_set = sec_min_space;
172 				if (min_spacing_to_set > 5)
173 					min_spacing_to_set = 5;
174 
175 				mac->min_space_cfg =
176 						((mac->min_space_cfg & 0xf8) |
177 						min_spacing_to_set);
178 
179 				*val = min_spacing_to_set;
180 
181 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
182 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
183 					 mac->min_space_cfg);
184 
185 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
186 					       mac->min_space_cfg);
187 			}
188 			break;
189 		}
190 	case HW_VAR_SHORTGI_DENSITY:{
191 			u8 density_to_set;
192 
193 			density_to_set = *val;
194 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
195 			mac->min_space_cfg |= (density_to_set << 3);
196 
197 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
198 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
199 				 mac->min_space_cfg);
200 
201 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
202 				       mac->min_space_cfg);
203 
204 			break;
205 		}
206 	case HW_VAR_AMPDU_FACTOR:{
207 			u8 factor_toset;
208 			u8 regtoset;
209 			u8 factorlevel[18] = {
210 				2, 4, 4, 7, 7, 13, 13,
211 				13, 2, 7, 7, 13, 13,
212 				15, 15, 15, 15, 0};
213 			u8 index = 0;
214 
215 			factor_toset = *val;
216 			if (factor_toset <= 3) {
217 				factor_toset = (1 << (factor_toset + 2));
218 				if (factor_toset > 0xf)
219 					factor_toset = 0xf;
220 
221 				for (index = 0; index < 17; index++) {
222 					if (factorlevel[index] > factor_toset)
223 						factorlevel[index] =
224 								 factor_toset;
225 				}
226 
227 				for (index = 0; index < 8; index++) {
228 					regtoset = ((factorlevel[index * 2]) |
229 						    (factorlevel[index *
230 						    2 + 1] << 4));
231 					rtl_write_byte(rtlpriv,
232 						       AGGLEN_LMT_L + index,
233 						       regtoset);
234 				}
235 
236 				regtoset = ((factorlevel[16]) |
237 					    (factorlevel[17] << 4));
238 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
239 
240 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
241 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
242 					 factor_toset);
243 			}
244 			break;
245 		}
246 	case HW_VAR_AC_PARAM:{
247 			u8 e_aci = *val;
248 			rtl92s_dm_init_edca_turbo(hw);
249 
250 			if (rtlpci->acm_method != EACMWAY2_SW)
251 				rtlpriv->cfg->ops->set_hw_reg(hw,
252 						 HW_VAR_ACM_CTRL,
253 						 &e_aci);
254 			break;
255 		}
256 	case HW_VAR_ACM_CTRL:{
257 			u8 e_aci = *val;
258 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
259 							mac->ac[0].aifs));
260 			u8 acm = p_aci_aifsn->f.acm;
261 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
262 
263 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
264 				   0x0 : 0x1);
265 
266 			if (acm) {
267 				switch (e_aci) {
268 				case AC0_BE:
269 					acm_ctrl |= AcmHw_BeqEn;
270 					break;
271 				case AC2_VI:
272 					acm_ctrl |= AcmHw_ViqEn;
273 					break;
274 				case AC3_VO:
275 					acm_ctrl |= AcmHw_VoqEn;
276 					break;
277 				default:
278 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
279 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
280 						 acm);
281 					break;
282 				}
283 			} else {
284 				switch (e_aci) {
285 				case AC0_BE:
286 					acm_ctrl &= (~AcmHw_BeqEn);
287 					break;
288 				case AC2_VI:
289 					acm_ctrl &= (~AcmHw_ViqEn);
290 					break;
291 				case AC3_VO:
292 					acm_ctrl &= (~AcmHw_VoqEn);
293 					break;
294 				default:
295 					pr_err("switch case %#x not processed\n",
296 					       e_aci);
297 					break;
298 				}
299 			}
300 
301 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
302 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
303 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
304 			break;
305 		}
306 	case HW_VAR_RCR:{
307 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
308 			rtlpci->receive_config = ((u32 *) (val))[0];
309 			break;
310 		}
311 	case HW_VAR_RETRY_LIMIT:{
312 			u8 retry_limit = val[0];
313 
314 			rtl_write_word(rtlpriv, RETRY_LIMIT,
315 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
316 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
317 			break;
318 		}
319 	case HW_VAR_DUAL_TSF_RST: {
320 			break;
321 		}
322 	case HW_VAR_EFUSE_BYTES: {
323 			rtlefuse->efuse_usedbytes = *((u16 *) val);
324 			break;
325 		}
326 	case HW_VAR_EFUSE_USAGE: {
327 			rtlefuse->efuse_usedpercentage = *val;
328 			break;
329 		}
330 	case HW_VAR_IO_CMD: {
331 			break;
332 		}
333 	case HW_VAR_WPA_CONFIG: {
334 			rtl_write_byte(rtlpriv, REG_SECR, *val);
335 			break;
336 		}
337 	case HW_VAR_SET_RPWM:{
338 			break;
339 		}
340 	case HW_VAR_H2C_FW_PWRMODE:{
341 			break;
342 		}
343 	case HW_VAR_FW_PSMODE_STATUS: {
344 			ppsc->fw_current_inpsmode = *((bool *) val);
345 			break;
346 		}
347 	case HW_VAR_H2C_FW_JOINBSSRPT:{
348 			break;
349 		}
350 	case HW_VAR_AID:{
351 			break;
352 		}
353 	case HW_VAR_CORRECT_TSF:{
354 			break;
355 		}
356 	case HW_VAR_MRC: {
357 			bool bmrc_toset = *((bool *)val);
358 			u8 u1bdata = 0;
359 
360 			if (bmrc_toset) {
361 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
362 					      MASKBYTE0, 0x33);
363 				u1bdata = (u8)rtl_get_bbreg(hw,
364 						ROFDM1_TRXPATHENABLE,
365 						MASKBYTE0);
366 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
367 					      MASKBYTE0,
368 					      ((u1bdata & 0xf0) | 0x03));
369 				u1bdata = (u8)rtl_get_bbreg(hw,
370 						ROFDM0_TRXPATHENABLE,
371 						MASKBYTE1);
372 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
373 					      MASKBYTE1,
374 					      (u1bdata | 0x04));
375 
376 				/* Update current settings. */
377 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
378 			} else {
379 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
380 					      MASKBYTE0, 0x13);
381 				u1bdata = (u8)rtl_get_bbreg(hw,
382 						 ROFDM1_TRXPATHENABLE,
383 						 MASKBYTE0);
384 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
385 					      MASKBYTE0,
386 					      ((u1bdata & 0xf0) | 0x01));
387 				u1bdata = (u8)rtl_get_bbreg(hw,
388 						ROFDM0_TRXPATHENABLE,
389 						MASKBYTE1);
390 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
391 					      MASKBYTE1, (u1bdata & 0xfb));
392 
393 				/* Update current settings. */
394 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
395 			}
396 
397 			break;
398 		}
399 	case HW_VAR_FW_LPS_ACTION: {
400 		bool enter_fwlps = *((bool *)val);
401 		u8 rpwm_val, fw_pwrmode;
402 		bool fw_current_inps;
403 
404 		if (enter_fwlps) {
405 			rpwm_val = 0x02;	/* RF off */
406 			fw_current_inps = true;
407 			rtlpriv->cfg->ops->set_hw_reg(hw,
408 					HW_VAR_FW_PSMODE_STATUS,
409 					(u8 *)(&fw_current_inps));
410 			rtlpriv->cfg->ops->set_hw_reg(hw,
411 					HW_VAR_H2C_FW_PWRMODE,
412 					&ppsc->fwctrl_psmode);
413 
414 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
415 						      &rpwm_val);
416 		} else {
417 			rpwm_val = 0x0C;	/* RF on */
418 			fw_pwrmode = FW_PS_ACTIVE_MODE;
419 			fw_current_inps = false;
420 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
421 						      &rpwm_val);
422 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
423 						      &fw_pwrmode);
424 
425 			rtlpriv->cfg->ops->set_hw_reg(hw,
426 					HW_VAR_FW_PSMODE_STATUS,
427 					(u8 *)(&fw_current_inps));
428 		}
429 		break; }
430 	default:
431 		pr_err("switch case %#x not processed\n", variable);
432 		break;
433 	}
434 
435 }
436 
437 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
438 {
439 	struct rtl_priv *rtlpriv = rtl_priv(hw);
440 	u8 sec_reg_value = 0x0;
441 
442 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
443 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
444 		 rtlpriv->sec.pairwise_enc_algorithm,
445 		 rtlpriv->sec.group_enc_algorithm);
446 
447 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
448 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
449 			 "not open hw encryption\n");
450 		return;
451 	}
452 
453 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
454 
455 	if (rtlpriv->sec.use_defaultkey) {
456 		sec_reg_value |= SCR_TXUSEDK;
457 		sec_reg_value |= SCR_RXUSEDK;
458 	}
459 
460 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
461 		 sec_reg_value);
462 
463 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
464 
465 }
466 
467 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
468 {
469 	struct rtl_priv *rtlpriv = rtl_priv(hw);
470 	u8 waitcount = 100;
471 	bool bresult = false;
472 	u8 tmpvalue;
473 
474 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
475 
476 	/* Wait the MAC synchronized. */
477 	udelay(400);
478 
479 	/* Check if it is set ready. */
480 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
481 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
482 
483 	if ((data & (BIT(6) | BIT(7))) == false) {
484 		waitcount = 100;
485 		tmpvalue = 0;
486 
487 		while (1) {
488 			waitcount--;
489 
490 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
491 			if ((tmpvalue & BIT(6)))
492 				break;
493 
494 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
495 			if (waitcount == 0)
496 				break;
497 
498 			udelay(10);
499 		}
500 
501 		if (waitcount == 0)
502 			bresult = false;
503 		else
504 			bresult = true;
505 	}
506 
507 	return bresult;
508 }
509 
510 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
511 {
512 	struct rtl_priv *rtlpriv = rtl_priv(hw);
513 	u8 u1tmp;
514 
515 	/* The following config GPIO function */
516 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
517 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
518 
519 	/* config GPIO3 to input */
520 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
521 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
522 
523 }
524 
525 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
526 {
527 	struct rtl_priv *rtlpriv = rtl_priv(hw);
528 	u8 u1tmp;
529 	u8 retval = ERFON;
530 
531 	/* The following config GPIO function */
532 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
533 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
534 
535 	/* config GPIO3 to input */
536 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
537 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
538 
539 	/* On some of the platform, driver cannot read correct
540 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
541 	mdelay(10);
542 
543 	/* check GPIO3 */
544 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
545 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
546 
547 	return retval;
548 }
549 
550 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
551 {
552 	struct rtl_priv *rtlpriv = rtl_priv(hw);
553 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
554 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
555 
556 	u8 i;
557 	u8 tmpu1b;
558 	u16 tmpu2b;
559 	u8 pollingcnt = 20;
560 
561 	if (rtlpci->first_init) {
562 		/* Reset PCIE Digital */
563 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
564 		tmpu1b &= 0xFE;
565 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
566 		udelay(1);
567 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
568 	}
569 
570 	/* Switch to SW IO control */
571 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
572 	if (tmpu1b & BIT(7)) {
573 		tmpu1b &= ~(BIT(6) | BIT(7));
574 
575 		/* Set failed, return to prevent hang. */
576 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
577 			return;
578 	}
579 
580 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
581 	udelay(50);
582 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
583 	udelay(50);
584 
585 	/* Clear FW RPWM for FW control LPS.*/
586 	rtl_write_byte(rtlpriv, RPWM, 0x0);
587 
588 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
589 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
590 	tmpu1b &= 0x73;
591 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
592 	/* wait for BIT 10/11/15 to pull high automatically!! */
593 	mdelay(1);
594 
595 	rtl_write_byte(rtlpriv, CMDR, 0);
596 	rtl_write_byte(rtlpriv, TCR, 0);
597 
598 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
599 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
600 	tmpu1b |= 0x08;
601 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
602 	tmpu1b &= ~(BIT(3));
603 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
604 
605 	/* Enable AFE clock source */
606 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
607 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
608 	/* Delay 1.5ms */
609 	mdelay(2);
610 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
611 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
612 
613 	/* Enable AFE Macro Block's Bandgap */
614 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
615 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
616 	mdelay(1);
617 
618 	/* Enable AFE Mbias */
619 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
620 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
621 	mdelay(1);
622 
623 	/* Enable LDOA15 block	*/
624 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
625 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
626 
627 	/* Set Digital Vdd to Retention isolation Path. */
628 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
629 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
630 
631 	/* For warm reboot NIC disappera bug. */
632 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
633 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
634 
635 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
636 
637 	/* Enable AFE PLL Macro Block */
638 	/* We need to delay 100u before enabling PLL. */
639 	udelay(200);
640 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
641 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
642 
643 	/* for divider reset  */
644 	udelay(100);
645 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
646 		       BIT(4) | BIT(6)));
647 	udelay(10);
648 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
649 	udelay(10);
650 
651 	/* Enable MAC 80MHZ clock  */
652 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
653 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
654 	mdelay(1);
655 
656 	/* Release isolation AFE PLL & MD */
657 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
658 
659 	/* Enable MAC clock */
660 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
661 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
662 
663 	/* Enable Core digital and enable IOREG R/W */
664 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
665 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
666 
667 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
668 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
669 
670 	/* enable REG_EN */
671 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
672 
673 	/* Switch the control path. */
674 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
675 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
676 
677 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
678 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
679 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
680 		return; /* Set failed, return to prevent hang. */
681 
682 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
683 
684 	/* MH We must enable the section of code to prevent load IMEM fail. */
685 	/* Load MAC register from WMAc temporarily We simulate macreg. */
686 	/* txt HW will provide MAC txt later  */
687 	rtl_write_byte(rtlpriv, 0x6, 0x30);
688 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
689 
690 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
691 
692 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
693 
694 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
695 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
696 	rtl_write_byte(rtlpriv, 0xde, 0xff);
697 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
698 
699 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
700 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
701 
702 	for (i = 0; i < 32; i++)
703 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
704 
705 	rtl_write_byte(rtlpriv, 0x236, 0xff);
706 
707 	rtl_write_byte(rtlpriv, 0x503, 0x22);
708 
709 	if (ppsc->support_aspm && !ppsc->support_backdoor)
710 		rtl_write_byte(rtlpriv, 0x560, 0x40);
711 	else
712 		rtl_write_byte(rtlpriv, 0x560, 0x00);
713 
714 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
715 
716 	/* Set RX Desc Address */
717 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
718 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
719 
720 	/* Set TX Desc Address */
721 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
722 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
723 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
724 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
725 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
726 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
727 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
728 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
729 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
730 
731 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
732 
733 	/* To make sure that TxDMA can ready to download FW. */
734 	/* We should reset TxDMA if IMEM RPT was not ready. */
735 	do {
736 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
737 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
738 			break;
739 
740 		udelay(5);
741 	} while (pollingcnt--);
742 
743 	if (pollingcnt <= 0) {
744 		pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
745 		       tmpu1b);
746 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
747 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
748 		udelay(2);
749 		/* Reset TxDMA */
750 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
751 	}
752 
753 	/* After MACIO reset,we must refresh LED state. */
754 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
755 	   (ppsc->rfoff_reason == 0)) {
756 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
757 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
758 		enum rf_pwrstate rfpwr_state_toset;
759 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
760 
761 		if (rfpwr_state_toset == ERFON)
762 			rtl92se_sw_led_on(hw, pLed0);
763 	}
764 }
765 
766 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
767 {
768 	struct rtl_priv *rtlpriv = rtl_priv(hw);
769 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
770 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
771 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
772 	u8 i;
773 	u16 tmpu2b;
774 
775 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
776 
777 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
778 	/* Turn on 0x40 Command register */
779 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
780 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
781 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
782 
783 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
784 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
785 			TXDMAPRE2FULL);
786 
787 	/* Set RCR	*/
788 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
789 
790 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
791 
792 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
793 	/* Set CCK/OFDM SIFS */
794 	/* CCK SIFS shall always be 10us. */
795 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
796 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
797 
798 	/* Set AckTimeout */
799 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
800 
801 	/* Beacon related */
802 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
803 	rtl_write_word(rtlpriv, ATIMWND, 2);
804 
805 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
806 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
807 	/* Firmware allocate now, associate with FW internal setting.!!! */
808 
809 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
810 	/* 5.3 Set driver info, we only accept PHY status now. */
811 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
812 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
813 
814 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
815 	/* Set RRSR to all legacy rate and HT rate
816 	 * CCK rate is supported by default.
817 	 * CCK rate will be filtered out only when associated
818 	 * AP does not support it.
819 	 * Only enable ACK rate to OFDM 24M
820 	 * Disable RRSR for CCK rate in A-Cut	*/
821 
822 	if (rtlhal->version == VERSION_8192S_ACUT)
823 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
824 	else if (rtlhal->version == VERSION_8192S_BCUT)
825 		rtl_write_byte(rtlpriv, RRSR, 0xff);
826 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
827 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
828 
829 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
830 	/* fallback to CCK rate */
831 	for (i = 0; i < 8; i++) {
832 		/*Disable RRSR for CCK rate in A-Cut */
833 		if (rtlhal->version == VERSION_8192S_ACUT)
834 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
835 	}
836 
837 	/* Different rate use different AMPDU size */
838 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
839 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
840 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
841 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
842 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
843 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
844 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
845 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
846 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
847 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
848 
849 	/* Set Data / Response auto rate fallack retry count */
850 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
851 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
852 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
853 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
854 
855 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
856 	/* Set all rate to support SG */
857 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
858 
859 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
860 	/* Set NAV protection length */
861 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
862 	/* CF-END Threshold */
863 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
864 	/* Set AMPDU minimum space */
865 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
866 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
867 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
868 
869 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
870 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
871 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
872 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
873 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
874 
875 	/* 14. Set driver info, we only accept PHY status now. */
876 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
877 
878 	/* 15. For EEPROM R/W Workaround */
879 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
880 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
881 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
882 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
883 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
884 
885 	/* 17. For EFUSE */
886 	/* We may R/W EFUSE in EEPROM mode */
887 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
888 		u8	tempval;
889 
890 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
891 		tempval &= 0xFE;
892 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
893 
894 		/* Change Program timing */
895 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
896 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
897 	}
898 
899 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
900 
901 }
902 
903 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
904 {
905 	struct rtl_priv *rtlpriv = rtl_priv(hw);
906 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
907 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
908 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
909 
910 	u8 reg_bw_opmode = 0;
911 	u32 reg_rrsr = 0;
912 	u8 regtmp = 0;
913 
914 	reg_bw_opmode = BW_OPMODE_20MHZ;
915 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
916 
917 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
918 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
919 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
920 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
921 
922 	/* Set Retry Limit here */
923 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
924 			(u8 *)(&rtlpci->shortretry_limit));
925 
926 	rtl_write_byte(rtlpriv, MLT, 0x8f);
927 
928 	/* For Min Spacing configuration. */
929 	switch (rtlphy->rf_type) {
930 	case RF_1T2R:
931 	case RF_1T1R:
932 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
933 		break;
934 	case RF_2T2R:
935 	case RF_2T2R_GREEN:
936 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
937 		break;
938 	}
939 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
940 }
941 
942 int rtl92se_hw_init(struct ieee80211_hw *hw)
943 {
944 	struct rtl_priv *rtlpriv = rtl_priv(hw);
945 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
946 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
947 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
948 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
949 	u8 tmp_byte = 0;
950 	unsigned long flags;
951 	bool rtstatus = true;
952 	u8 tmp_u1b;
953 	int err = false;
954 	u8 i;
955 	int wdcapra_add[] = {
956 		EDCAPARA_BE, EDCAPARA_BK,
957 		EDCAPARA_VI, EDCAPARA_VO};
958 	u8 secr_value = 0x0;
959 
960 	rtlpci->being_init_adapter = true;
961 
962 	/* As this function can take a very long time (up to 350 ms)
963 	 * and can be called with irqs disabled, reenable the irqs
964 	 * to let the other devices continue being serviced.
965 	 *
966 	 * It is safe doing so since our own interrupts will only be enabled
967 	 * in a subsequent step.
968 	 */
969 	local_save_flags(flags);
970 	local_irq_enable();
971 
972 	rtlpriv->intf_ops->disable_aspm(hw);
973 
974 	/* 1. MAC Initialize */
975 	/* Before FW download, we have to set some MAC register */
976 	_rtl92se_macconfig_before_fwdownload(hw);
977 
978 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
979 			PMC_FSM) >> 16) & 0xF);
980 
981 	rtl8192se_gpiobit3_cfg_inputmode(hw);
982 
983 	/* 2. download firmware */
984 	rtstatus = rtl92s_download_fw(hw);
985 	if (!rtstatus) {
986 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
987 			 "Failed to download FW. Init HW without FW now... "
988 			 "Please copy FW into /lib/firmware/rtlwifi\n");
989 		err = 1;
990 		goto exit;
991 	}
992 
993 	/* After FW download, we have to reset MAC register */
994 	_rtl92se_macconfig_after_fwdownload(hw);
995 
996 	/*Retrieve default FW Cmd IO map. */
997 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
998 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
999 
1000 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1001 	if (!rtl92s_phy_mac_config(hw)) {
1002 		pr_err("MAC Config failed\n");
1003 		err = rtstatus;
1004 		goto exit;
1005 	}
1006 
1007 	/* because last function modify RCR, so we update
1008 	 * rcr var here, or TP will unstable for receive_config
1009 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1010 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1011 	 */
1012 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1013 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1014 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1015 
1016 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1017 	/* We must set flag avoid BB/RF config period later!! */
1018 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1019 
1020 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1021 	if (!rtl92s_phy_bb_config(hw)) {
1022 		pr_err("BB Config failed\n");
1023 		err = rtstatus;
1024 		goto exit;
1025 	}
1026 
1027 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1028 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1029 
1030 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1031 
1032 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1033 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1034 	if (rtlhal->version == VERSION_8192S_ACUT)
1035 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1036 	else
1037 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1038 
1039 	if (!rtl92s_phy_rf_config(hw)) {
1040 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1041 		err = rtstatus;
1042 		goto exit;
1043 	}
1044 
1045 	/* After read predefined TXT, we must set BB/MAC/RF
1046 	 * register as our requirement */
1047 
1048 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1049 							   (enum radio_path)0,
1050 							   RF_CHNLBW,
1051 							   RFREG_OFFSET_MASK);
1052 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1053 							   (enum radio_path)1,
1054 							   RF_CHNLBW,
1055 							   RFREG_OFFSET_MASK);
1056 
1057 	/*---- Set CCK and OFDM Block "ON"----*/
1058 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1059 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1060 
1061 	/*3 Set Hardware(Do nothing now) */
1062 	_rtl92se_hw_configure(hw);
1063 
1064 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1065 	/* TX power index for different rate set. */
1066 	/* Get original hw reg values */
1067 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1068 	/* Write correct tx power index */
1069 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1070 
1071 	/* We must set MAC address after firmware download. */
1072 	for (i = 0; i < 6; i++)
1073 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1074 
1075 	/* EEPROM R/W workaround */
1076 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1077 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1078 
1079 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1080 
1081 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1082 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1083 		tmp_byte = tmp_byte | BIT(5);
1084 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1085 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1086 	}
1087 
1088 	/* We enable high power and RA related mechanism after NIC
1089 	 * initialized. */
1090 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1091 		/* Fw v.53 and later. */
1092 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1093 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1094 		/* Fw v.52. */
1095 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1096 		rtl92s_phy_chk_fwcmd_iodone(hw);
1097 	} else {
1098 		/* Compatible earlier FW version. */
1099 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1100 		rtl92s_phy_chk_fwcmd_iodone(hw);
1101 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1102 		rtl92s_phy_chk_fwcmd_iodone(hw);
1103 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1104 		rtl92s_phy_chk_fwcmd_iodone(hw);
1105 	}
1106 
1107 	/* Add to prevent ASPM bug. */
1108 	/* Always enable hst and NIC clock request. */
1109 	rtl92s_phy_switch_ephy_parameter(hw);
1110 
1111 	/* Security related
1112 	 * 1. Clear all H/W keys.
1113 	 * 2. Enable H/W encryption/decryption. */
1114 	rtl_cam_reset_all_entry(hw);
1115 	secr_value |= SCR_TXENCENABLE;
1116 	secr_value |= SCR_RXENCENABLE;
1117 	secr_value |= SCR_NOSKMC;
1118 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1119 
1120 	for (i = 0; i < 4; i++)
1121 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1122 
1123 	if (rtlphy->rf_type == RF_1T2R) {
1124 		bool mrc2set = true;
1125 		/* Turn on B-Path */
1126 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1127 	}
1128 
1129 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1130 	rtl92s_dm_init(hw);
1131 exit:
1132 	local_irq_restore(flags);
1133 	rtlpci->being_init_adapter = false;
1134 	return err;
1135 }
1136 
1137 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1138 {
1139 	/* This is a stub. */
1140 }
1141 
1142 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1143 {
1144 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1145 	u32 reg_rcr;
1146 
1147 	if (rtlpriv->psc.rfpwr_state != ERFON)
1148 		return;
1149 
1150 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1151 
1152 	if (check_bssid) {
1153 		reg_rcr |= (RCR_CBSSID);
1154 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1155 	} else if (!check_bssid) {
1156 		reg_rcr &= (~RCR_CBSSID);
1157 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1158 	}
1159 
1160 }
1161 
1162 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1163 				     enum nl80211_iftype type)
1164 {
1165 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1166 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1167 	u32 temp;
1168 	bt_msr &= ~MSR_LINK_MASK;
1169 
1170 	switch (type) {
1171 	case NL80211_IFTYPE_UNSPECIFIED:
1172 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1173 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1174 			 "Set Network type to NO LINK!\n");
1175 		break;
1176 	case NL80211_IFTYPE_ADHOC:
1177 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1178 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1179 			 "Set Network type to Ad Hoc!\n");
1180 		break;
1181 	case NL80211_IFTYPE_STATION:
1182 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1183 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1184 			 "Set Network type to STA!\n");
1185 		break;
1186 	case NL80211_IFTYPE_AP:
1187 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1188 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1189 			 "Set Network type to AP!\n");
1190 		break;
1191 	default:
1192 		pr_err("Network type %d not supported!\n", type);
1193 		return 1;
1194 
1195 	}
1196 
1197 	if (type != NL80211_IFTYPE_AP &&
1198 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1199 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1200 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1201 
1202 	temp = rtl_read_dword(rtlpriv, TCR);
1203 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1204 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1205 
1206 
1207 	return 0;
1208 }
1209 
1210 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1211 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1212 {
1213 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1214 
1215 	if (_rtl92se_set_media_status(hw, type))
1216 		return -EOPNOTSUPP;
1217 
1218 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1219 		if (type != NL80211_IFTYPE_AP)
1220 			rtl92se_set_check_bssid(hw, true);
1221 	} else {
1222 		rtl92se_set_check_bssid(hw, false);
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1229 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1230 {
1231 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1232 	rtl92s_dm_init_edca_turbo(hw);
1233 
1234 	switch (aci) {
1235 	case AC1_BK:
1236 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1237 		break;
1238 	case AC0_BE:
1239 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1240 		break;
1241 	case AC2_VI:
1242 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1243 		break;
1244 	case AC3_VO:
1245 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1246 		break;
1247 	default:
1248 		WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
1249 		break;
1250 	}
1251 }
1252 
1253 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1254 {
1255 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1256 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1257 
1258 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1259 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1260 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1261 	rtlpci->irq_enabled = true;
1262 }
1263 
1264 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1265 {
1266 	struct rtl_priv *rtlpriv;
1267 	struct rtl_pci *rtlpci;
1268 
1269 	rtlpriv = rtl_priv(hw);
1270 	/* if firmware not available, no interrupts */
1271 	if (!rtlpriv || !rtlpriv->max_fw_size)
1272 		return;
1273 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1274 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1275 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1276 	rtlpci->irq_enabled = false;
1277 }
1278 
1279 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1280 {
1281 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1282 	u8 waitcnt = 100;
1283 	bool result = false;
1284 	u8 tmp;
1285 
1286 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1287 
1288 	/* Wait the MAC synchronized. */
1289 	udelay(400);
1290 
1291 	/* Check if it is set ready. */
1292 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1293 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1294 
1295 	if ((data & (BIT(6) | BIT(7))) == false) {
1296 		waitcnt = 100;
1297 		tmp = 0;
1298 
1299 		while (1) {
1300 			waitcnt--;
1301 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1302 
1303 			if ((tmp & BIT(6)))
1304 				break;
1305 
1306 			pr_err("wait for BIT(6) return value %x\n", tmp);
1307 
1308 			if (waitcnt == 0)
1309 				break;
1310 			udelay(10);
1311 		}
1312 
1313 		if (waitcnt == 0)
1314 			result = false;
1315 		else
1316 			result = true;
1317 	}
1318 
1319 	return result;
1320 }
1321 
1322 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1323 {
1324 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1325 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1326 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1327 	u8 u1btmp;
1328 
1329 	if (rtlhal->driver_going2unload)
1330 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1331 
1332 	/* Power save for BB/RF */
1333 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1334 	u1btmp |= BIT(0);
1335 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1336 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1337 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1338 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1339 	udelay(100);
1340 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1341 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1342 	udelay(10);
1343 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1344 	udelay(10);
1345 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1346 	udelay(10);
1347 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1348 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1349 
1350 	if (rtlhal->driver_going2unload) {
1351 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1352 		u1btmp &= ~(BIT(0));
1353 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1354 	}
1355 
1356 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1357 
1358 	/* Add description. After switch control path. register
1359 	 * after page1 will be invisible. We can not do any IO
1360 	 * for register>0x40. After resume&MACIO reset, we need
1361 	 * to remember previous reg content. */
1362 	if (u1btmp & BIT(7)) {
1363 		u1btmp &= ~(BIT(6) | BIT(7));
1364 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1365 			pr_err("Switch ctrl path fail\n");
1366 			return;
1367 		}
1368 	}
1369 
1370 	/* Power save for MAC */
1371 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1372 		!rtlhal->driver_going2unload) {
1373 		/* enable LED function */
1374 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1375 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1376 	} else {
1377 		/* LED function disable. Power range is about 8mA now. */
1378 		/* if write 0xF1 disconnet_pci power
1379 		 *	 ifconfig wlan0 down power are both high 35:70 */
1380 		/* if write oxF9 disconnet_pci power
1381 		 * ifconfig wlan0 down power are both low  12:45*/
1382 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1383 	}
1384 
1385 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1386 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1387 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1388 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1389 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1390 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1391 
1392 }
1393 
1394 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1395 {
1396 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1397 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1398 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1399 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1400 
1401 	if (rtlpci->up_first_time == 1)
1402 		return;
1403 
1404 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1405 		rtl92se_sw_led_on(hw, pLed0);
1406 	else
1407 		rtl92se_sw_led_off(hw, pLed0);
1408 }
1409 
1410 
1411 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1412 {
1413 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1414 	u16 tmpu2b;
1415 	u8 tmpu1b;
1416 
1417 	rtlpriv->psc.pwrdomain_protect = true;
1418 
1419 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1420 	if (tmpu1b & BIT(7)) {
1421 		tmpu1b &= ~(BIT(6) | BIT(7));
1422 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1423 			rtlpriv->psc.pwrdomain_protect = false;
1424 			return;
1425 		}
1426 	}
1427 
1428 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1429 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1430 
1431 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1432 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1433 
1434 	/* If IPS we need to turn LED on. So we not
1435 	 * not disable BIT 3/7 of reg3. */
1436 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1437 		tmpu1b &= 0xFB;
1438 	else
1439 		tmpu1b &= 0x73;
1440 
1441 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1442 	/* wait for BIT 10/11/15 to pull high automatically!! */
1443 	mdelay(1);
1444 
1445 	rtl_write_byte(rtlpriv, CMDR, 0);
1446 	rtl_write_byte(rtlpriv, TCR, 0);
1447 
1448 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1449 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1450 	tmpu1b |= 0x08;
1451 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1452 	tmpu1b &= ~(BIT(3));
1453 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1454 
1455 	/* Enable AFE clock source */
1456 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1457 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1458 	/* Delay 1.5ms */
1459 	udelay(1500);
1460 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1461 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1462 
1463 	/* Enable AFE Macro Block's Bandgap */
1464 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1465 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1466 	mdelay(1);
1467 
1468 	/* Enable AFE Mbias */
1469 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1470 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1471 	mdelay(1);
1472 
1473 	/* Enable LDOA15 block */
1474 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1475 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1476 
1477 	/* Set Digital Vdd to Retention isolation Path. */
1478 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1479 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1480 
1481 
1482 	/* For warm reboot NIC disappera bug. */
1483 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1484 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1485 
1486 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1487 
1488 	/* Enable AFE PLL Macro Block */
1489 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1490 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1491 	/* Enable MAC 80MHZ clock */
1492 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1493 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1494 	mdelay(1);
1495 
1496 	/* Release isolation AFE PLL & MD */
1497 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1498 
1499 	/* Enable MAC clock */
1500 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1501 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1502 
1503 	/* Enable Core digital and enable IOREG R/W */
1504 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1505 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1506 	/* enable REG_EN */
1507 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1508 
1509 	/* Switch the control path. */
1510 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1511 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1512 
1513 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1514 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1515 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1516 		rtlpriv->psc.pwrdomain_protect = false;
1517 		return;
1518 	}
1519 
1520 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1521 
1522 	/* After MACIO reset,we must refresh LED state. */
1523 	_rtl92se_gen_refreshledstate(hw);
1524 
1525 	rtlpriv->psc.pwrdomain_protect = false;
1526 }
1527 
1528 void rtl92se_card_disable(struct ieee80211_hw *hw)
1529 {
1530 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1531 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1532 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1533 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1534 	enum nl80211_iftype opmode;
1535 	u8 wait = 30;
1536 
1537 	rtlpriv->intf_ops->enable_aspm(hw);
1538 
1539 	if (rtlpci->driver_is_goingto_unload ||
1540 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1541 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1542 
1543 	/* we should chnge GPIO to input mode
1544 	 * this will drop away current about 25mA*/
1545 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1546 
1547 	/* this is very important for ips power save */
1548 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1549 		if (rtlpriv->psc.pwrdomain_protect)
1550 			mdelay(20);
1551 		else
1552 			break;
1553 	}
1554 
1555 	mac->link_state = MAC80211_NOLINK;
1556 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1557 	_rtl92se_set_media_status(hw, opmode);
1558 
1559 	_rtl92s_phy_set_rfhalt(hw);
1560 	udelay(100);
1561 }
1562 
1563 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1564 			     u32 *p_intb)
1565 {
1566 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1567 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1568 
1569 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1570 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1571 
1572 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1573 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1574 }
1575 
1576 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1577 {
1578 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1579 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1580 	u16 bcntime_cfg = 0;
1581 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1582 	u16 atim_window = 2;
1583 
1584 	/* ATIM Window (in unit of TU). */
1585 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1586 
1587 	/* Beacon interval (in unit of TU). */
1588 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1589 
1590 	/* DrvErlyInt (in unit of TU). (Time to send
1591 	 * interrupt to notify driver to change
1592 	 * beacon content) */
1593 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1594 
1595 	/* BcnDMATIM(in unit of us). Indicates the
1596 	 * time before TBTT to perform beacon queue DMA  */
1597 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1598 
1599 	/* Force beacon frame transmission even
1600 	 * after receiving beacon frame from
1601 	 * other ad hoc STA */
1602 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1603 
1604 	/* Beacon Time Configuration */
1605 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1606 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1607 
1608 	/* TODO: bcn_ifs may required to be changed on ASIC */
1609 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1610 
1611 	/*for beacon changed */
1612 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1613 }
1614 
1615 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1616 {
1617 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1618 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1619 	u16 bcn_interval = mac->beacon_interval;
1620 
1621 	/* Beacon interval (in unit of TU). */
1622 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1623 	/* 2008.10.24 added by tynli for beacon changed. */
1624 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1625 }
1626 
1627 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1628 		u32 add_msr, u32 rm_msr)
1629 {
1630 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1631 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1632 
1633 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1634 		 add_msr, rm_msr);
1635 
1636 	if (add_msr)
1637 		rtlpci->irq_mask[0] |= add_msr;
1638 
1639 	if (rm_msr)
1640 		rtlpci->irq_mask[0] &= (~rm_msr);
1641 
1642 	rtl92se_disable_interrupt(hw);
1643 	rtl92se_enable_interrupt(hw);
1644 }
1645 
1646 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1647 {
1648 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1649 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1650 	u8 efuse_id;
1651 
1652 	rtlhal->ic_class = IC_INFERIORITY_A;
1653 
1654 	/* Only retrieving while using EFUSE. */
1655 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1656 		!rtlefuse->autoload_failflag) {
1657 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1658 
1659 		if (efuse_id == 0xfe)
1660 			rtlhal->ic_class = IC_INFERIORITY_B;
1661 	}
1662 }
1663 
1664 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1665 {
1666 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1667 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1668 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1669 	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1670 	u16 i, usvalue;
1671 	u16	eeprom_id;
1672 	u8 tempval;
1673 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1674 	u8 rf_path, index;
1675 
1676 	switch (rtlefuse->epromtype) {
1677 	case EEPROM_BOOT_EFUSE:
1678 		rtl_efuse_shadow_map_update(hw);
1679 		break;
1680 
1681 	case EEPROM_93C46:
1682 		pr_err("RTL819X Not boot from eeprom, check it !!\n");
1683 		return;
1684 
1685 	default:
1686 		dev_warn(dev, "no efuse data\n");
1687 		return;
1688 	}
1689 
1690 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1691 	       HWSET_MAX_SIZE_92S);
1692 
1693 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1694 		      hwinfo, HWSET_MAX_SIZE_92S);
1695 
1696 	eeprom_id = *((u16 *)&hwinfo[0]);
1697 	if (eeprom_id != RTL8190_EEPROM_ID) {
1698 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1699 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1700 		rtlefuse->autoload_failflag = true;
1701 	} else {
1702 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1703 		rtlefuse->autoload_failflag = false;
1704 	}
1705 
1706 	if (rtlefuse->autoload_failflag)
1707 		return;
1708 
1709 	_rtl8192se_get_IC_Inferiority(hw);
1710 
1711 	/* Read IC Version && Channel Plan */
1712 	/* VID, DID	 SE	0xA-D */
1713 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1714 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1715 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1716 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1717 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1718 
1719 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1720 		 "EEPROMId = 0x%4x\n", eeprom_id);
1721 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1722 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1723 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1724 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1725 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1726 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1727 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1728 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1729 
1730 	for (i = 0; i < 6; i += 2) {
1731 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1732 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1733 	}
1734 
1735 	for (i = 0; i < 6; i++)
1736 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1737 
1738 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1739 
1740 	/* Get Tx Power Level by Channel */
1741 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1742 	/* 92S suupport RF A & B */
1743 	for (rf_path = 0; rf_path < 2; rf_path++) {
1744 		for (i = 0; i < 3; i++) {
1745 			/* Read CCK RF A & B Tx power  */
1746 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1747 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1748 
1749 			/* Read OFDM RF A & B Tx power for 1T */
1750 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1751 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1752 
1753 			/* Read OFDM RF A & B Tx power for 2T */
1754 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1755 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1756 				   rf_path * 3 + i];
1757 		}
1758 	}
1759 
1760 	for (rf_path = 0; rf_path < 2; rf_path++)
1761 		for (i = 0; i < 3; i++)
1762 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1763 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1764 				rf_path, i,
1765 				rtlefuse->eeprom_chnlarea_txpwr_cck
1766 				[rf_path][i]);
1767 	for (rf_path = 0; rf_path < 2; rf_path++)
1768 		for (i = 0; i < 3; i++)
1769 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1770 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1771 				rf_path, i,
1772 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1773 				[rf_path][i]);
1774 	for (rf_path = 0; rf_path < 2; rf_path++)
1775 		for (i = 0; i < 3; i++)
1776 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1777 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1778 				rf_path, i,
1779 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1780 				[rf_path][i]);
1781 
1782 	for (rf_path = 0; rf_path < 2; rf_path++) {
1783 
1784 		/* Assign dedicated channel tx power */
1785 		for (i = 0; i < 14; i++)	{
1786 			/* channel 1~3 use the same Tx Power Level. */
1787 			if (i < 3)
1788 				index = 0;
1789 			/* Channel 4-8 */
1790 			else if (i < 8)
1791 				index = 1;
1792 			/* Channel 9-14 */
1793 			else
1794 				index = 2;
1795 
1796 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1797 			 * tx power */
1798 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1799 				rtlefuse->eeprom_chnlarea_txpwr_cck
1800 							[rf_path][index];
1801 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1802 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1803 							[rf_path][index];
1804 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1805 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1806 							[rf_path][index];
1807 		}
1808 
1809 		for (i = 0; i < 14; i++) {
1810 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1811 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1812 				rf_path, i,
1813 				rtlefuse->txpwrlevel_cck[rf_path][i],
1814 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1815 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1816 		}
1817 	}
1818 
1819 	for (rf_path = 0; rf_path < 2; rf_path++) {
1820 		for (i = 0; i < 3; i++) {
1821 			/* Read Power diff limit. */
1822 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1823 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1824 		}
1825 	}
1826 
1827 	for (rf_path = 0; rf_path < 2; rf_path++) {
1828 		/* Fill Pwr group */
1829 		for (i = 0; i < 14; i++) {
1830 			/* Chanel 1-3 */
1831 			if (i < 3)
1832 				index = 0;
1833 			/* Channel 4-8 */
1834 			else if (i < 8)
1835 				index = 1;
1836 			/* Channel 9-13 */
1837 			else
1838 				index = 2;
1839 
1840 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1841 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1842 				0xf);
1843 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1844 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1845 				0xf0) >> 4);
1846 
1847 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1848 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1849 				rf_path, i,
1850 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1851 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1852 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1853 				rf_path, i,
1854 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1855 			}
1856 	}
1857 
1858 	for (i = 0; i < 14; i++) {
1859 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1860 		/* channel 1-3 */
1861 		if (i < 3)
1862 			index = 0;
1863 		/* Channel 4-8 */
1864 		else if (i < 8)
1865 			index = 1;
1866 		/* Channel 9-14 */
1867 		else
1868 			index = 2;
1869 
1870 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1871 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1872 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1873 						 ((tempval >> 4) & 0xF);
1874 
1875 		/* Read OFDM<->HT tx power diff */
1876 		/* Channel 1-3 */
1877 		if (i < 3)
1878 			index = 0;
1879 		/* Channel 4-8 */
1880 		else if (i < 8)
1881 			index = 0x11;
1882 		/* Channel 9-14 */
1883 		else
1884 			index = 1;
1885 
1886 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1887 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1888 				 (tempval & 0xF);
1889 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1890 				 ((tempval >> 4) & 0xF);
1891 
1892 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1893 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1894 	}
1895 
1896 	rtlefuse->eeprom_regulatory = 0;
1897 	if (rtlefuse->eeprom_version >= 2) {
1898 		/* BIT(0)~2 */
1899 		if (rtlefuse->eeprom_version >= 4)
1900 			rtlefuse->eeprom_regulatory =
1901 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1902 		else /* BIT(0) */
1903 			rtlefuse->eeprom_regulatory =
1904 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1905 	}
1906 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1907 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1908 
1909 	for (i = 0; i < 14; i++)
1910 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1911 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1912 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1913 	for (i = 0; i < 14; i++)
1914 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1915 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1916 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1917 	for (i = 0; i < 14; i++)
1918 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1919 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1920 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1921 	for (i = 0; i < 14; i++)
1922 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1923 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1924 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1925 
1926 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1927 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1928 
1929 	/* Read RF-indication and Tx Power gain
1930 	 * index diff of legacy to HT OFDM rate. */
1931 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1932 	rtlefuse->eeprom_txpowerdiff = tempval;
1933 	rtlefuse->legacy_httxpowerdiff =
1934 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1935 
1936 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1938 
1939 	/* Get TSSI value for each path. */
1940 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1941 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1942 	usvalue = hwinfo[EEPROM_TSSI_B];
1943 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1944 
1945 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1946 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1947 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1948 
1949 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1950 	/* and read ThermalMeter from EEPROM */
1951 	tempval = hwinfo[EEPROM_THERMALMETER];
1952 	rtlefuse->eeprom_thermalmeter = tempval;
1953 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1954 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1955 
1956 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1957 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1958 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1959 
1960 	/* Read CrystalCap from EEPROM */
1961 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1962 	rtlefuse->eeprom_crystalcap = tempval;
1963 	/* CrystalCap, BIT(12)~15 */
1964 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1965 
1966 	/* Read IC Version && Channel Plan */
1967 	/* Version ID, Channel plan */
1968 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1969 	rtlefuse->txpwr_fromeprom = true;
1970 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1971 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1972 
1973 	/* Read Customer ID or Board Type!!! */
1974 	tempval = hwinfo[EEPROM_BOARDTYPE];
1975 	/* Change RF type definition */
1976 	if (tempval == 0)
1977 		rtlphy->rf_type = RF_2T2R;
1978 	else if (tempval == 1)
1979 		rtlphy->rf_type = RF_1T2R;
1980 	else if (tempval == 2)
1981 		rtlphy->rf_type = RF_1T2R;
1982 	else if (tempval == 3)
1983 		rtlphy->rf_type = RF_1T1R;
1984 
1985 	/* 1T2R but 1SS (1x1 receive combining) */
1986 	rtlefuse->b1x1_recvcombine = false;
1987 	if (rtlphy->rf_type == RF_1T2R) {
1988 		tempval = rtl_read_byte(rtlpriv, 0x07);
1989 		if (!(tempval & BIT(0))) {
1990 			rtlefuse->b1x1_recvcombine = true;
1991 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1992 				 "RF_TYPE=1T2R but only 1SS\n");
1993 		}
1994 	}
1995 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1996 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1997 
1998 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
1999 		 rtlefuse->eeprom_oemid);
2000 
2001 	/* set channel paln to world wide 13 */
2002 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2003 }
2004 
2005 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2006 {
2007 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2008 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2009 	u8 tmp_u1b = 0;
2010 
2011 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2012 
2013 	if (tmp_u1b & BIT(4)) {
2014 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2015 		rtlefuse->epromtype = EEPROM_93C46;
2016 	} else {
2017 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2018 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2019 	}
2020 
2021 	if (tmp_u1b & BIT(5)) {
2022 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2023 		rtlefuse->autoload_failflag = false;
2024 		_rtl92se_read_adapter_info(hw);
2025 	} else {
2026 		pr_err("Autoload ERR!!\n");
2027 		rtlefuse->autoload_failflag = true;
2028 	}
2029 }
2030 
2031 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2032 					  struct ieee80211_sta *sta)
2033 {
2034 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2035 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2036 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2037 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2038 	u32 ratr_value;
2039 	u8 ratr_index = 0;
2040 	u8 nmode = mac->ht_enable;
2041 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2042 	u16 shortgi_rate = 0;
2043 	u32 tmp_ratr_value = 0;
2044 	u8 curtxbw_40mhz = mac->bw_40;
2045 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2046 				1 : 0;
2047 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2048 				1 : 0;
2049 	enum wireless_mode wirelessmode = mac->mode;
2050 
2051 	if (rtlhal->current_bandtype == BAND_ON_5G)
2052 		ratr_value = sta->supp_rates[1] << 4;
2053 	else
2054 		ratr_value = sta->supp_rates[0];
2055 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2056 		ratr_value = 0xfff;
2057 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2058 			sta->ht_cap.mcs.rx_mask[0] << 12);
2059 	switch (wirelessmode) {
2060 	case WIRELESS_MODE_B:
2061 		ratr_value &= 0x0000000D;
2062 		break;
2063 	case WIRELESS_MODE_G:
2064 		ratr_value &= 0x00000FF5;
2065 		break;
2066 	case WIRELESS_MODE_N_24G:
2067 	case WIRELESS_MODE_N_5G:
2068 		nmode = 1;
2069 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2070 			ratr_value &= 0x0007F005;
2071 		} else {
2072 			u32 ratr_mask;
2073 
2074 			if (get_rf_type(rtlphy) == RF_1T2R ||
2075 			    get_rf_type(rtlphy) == RF_1T1R) {
2076 				if (curtxbw_40mhz)
2077 					ratr_mask = 0x000ff015;
2078 				else
2079 					ratr_mask = 0x000ff005;
2080 			} else {
2081 				if (curtxbw_40mhz)
2082 					ratr_mask = 0x0f0ff015;
2083 				else
2084 					ratr_mask = 0x0f0ff005;
2085 			}
2086 
2087 			ratr_value &= ratr_mask;
2088 		}
2089 		break;
2090 	default:
2091 		if (rtlphy->rf_type == RF_1T2R)
2092 			ratr_value &= 0x000ff0ff;
2093 		else
2094 			ratr_value &= 0x0f0ff0ff;
2095 
2096 		break;
2097 	}
2098 
2099 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2100 		ratr_value &= 0x0FFFFFFF;
2101 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2102 		ratr_value &= 0x0FFFFFF0;
2103 
2104 	if (nmode && ((curtxbw_40mhz &&
2105 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2106 						 curshortgi_20mhz))) {
2107 
2108 		ratr_value |= 0x10000000;
2109 		tmp_ratr_value = (ratr_value >> 12);
2110 
2111 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2112 			if ((1 << shortgi_rate) & tmp_ratr_value)
2113 				break;
2114 		}
2115 
2116 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2117 		    (shortgi_rate << 4) | (shortgi_rate);
2118 
2119 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2120 	}
2121 
2122 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2123 	if (ratr_value & 0xfffff000)
2124 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2125 	else
2126 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2127 
2128 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2129 		 rtl_read_dword(rtlpriv, ARFR0));
2130 }
2131 
2132 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2133 					 struct ieee80211_sta *sta,
2134 					 u8 rssi_level)
2135 {
2136 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2137 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2138 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2139 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2140 	struct rtl_sta_info *sta_entry = NULL;
2141 	u32 ratr_bitmap;
2142 	u8 ratr_index = 0;
2143 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2144 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2145 				1 : 0;
2146 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2147 				1 : 0;
2148 	enum wireless_mode wirelessmode = 0;
2149 	bool shortgi = false;
2150 	u32 ratr_value = 0;
2151 	u8 shortgi_rate = 0;
2152 	u32 mask = 0;
2153 	u32 band = 0;
2154 	bool bmulticast = false;
2155 	u8 macid = 0;
2156 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2157 
2158 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2159 	wirelessmode = sta_entry->wireless_mode;
2160 	if (mac->opmode == NL80211_IFTYPE_STATION)
2161 		curtxbw_40mhz = mac->bw_40;
2162 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2163 		mac->opmode == NL80211_IFTYPE_ADHOC)
2164 		macid = sta->aid + 1;
2165 
2166 	if (rtlhal->current_bandtype == BAND_ON_5G)
2167 		ratr_bitmap = sta->supp_rates[1] << 4;
2168 	else
2169 		ratr_bitmap = sta->supp_rates[0];
2170 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2171 		ratr_bitmap = 0xfff;
2172 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2173 			sta->ht_cap.mcs.rx_mask[0] << 12);
2174 	switch (wirelessmode) {
2175 	case WIRELESS_MODE_B:
2176 		band |= WIRELESS_11B;
2177 		ratr_index = RATR_INX_WIRELESS_B;
2178 		if (ratr_bitmap & 0x0000000c)
2179 			ratr_bitmap &= 0x0000000d;
2180 		else
2181 			ratr_bitmap &= 0x0000000f;
2182 		break;
2183 	case WIRELESS_MODE_G:
2184 		band |= (WIRELESS_11G | WIRELESS_11B);
2185 		ratr_index = RATR_INX_WIRELESS_GB;
2186 
2187 		if (rssi_level == 1)
2188 			ratr_bitmap &= 0x00000f00;
2189 		else if (rssi_level == 2)
2190 			ratr_bitmap &= 0x00000ff0;
2191 		else
2192 			ratr_bitmap &= 0x00000ff5;
2193 		break;
2194 	case WIRELESS_MODE_A:
2195 		band |= WIRELESS_11A;
2196 		ratr_index = RATR_INX_WIRELESS_A;
2197 		ratr_bitmap &= 0x00000ff0;
2198 		break;
2199 	case WIRELESS_MODE_N_24G:
2200 	case WIRELESS_MODE_N_5G:
2201 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2202 		ratr_index = RATR_INX_WIRELESS_NGB;
2203 
2204 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2205 			if (rssi_level == 1)
2206 				ratr_bitmap &= 0x00070000;
2207 			else if (rssi_level == 2)
2208 				ratr_bitmap &= 0x0007f000;
2209 			else
2210 				ratr_bitmap &= 0x0007f005;
2211 		} else {
2212 			if (rtlphy->rf_type == RF_1T2R ||
2213 				rtlphy->rf_type == RF_1T1R) {
2214 				if (rssi_level == 1) {
2215 						ratr_bitmap &= 0x000f0000;
2216 				} else if (rssi_level == 3) {
2217 					ratr_bitmap &= 0x000fc000;
2218 				} else if (rssi_level == 5) {
2219 						ratr_bitmap &= 0x000ff000;
2220 				} else {
2221 					if (curtxbw_40mhz)
2222 						ratr_bitmap &= 0x000ff015;
2223 					else
2224 						ratr_bitmap &= 0x000ff005;
2225 				}
2226 			} else {
2227 				if (rssi_level == 1) {
2228 					ratr_bitmap &= 0x0f8f0000;
2229 				} else if (rssi_level == 3) {
2230 					ratr_bitmap &= 0x0f8fc000;
2231 				} else if (rssi_level == 5) {
2232 					ratr_bitmap &= 0x0f8ff000;
2233 				} else {
2234 					if (curtxbw_40mhz)
2235 						ratr_bitmap &= 0x0f8ff015;
2236 					else
2237 						ratr_bitmap &= 0x0f8ff005;
2238 				}
2239 			}
2240 		}
2241 
2242 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2243 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2244 			if (macid == 0)
2245 				shortgi = true;
2246 			else if (macid == 1)
2247 				shortgi = false;
2248 		}
2249 		break;
2250 	default:
2251 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2252 		ratr_index = RATR_INX_WIRELESS_NGB;
2253 
2254 		if (rtlphy->rf_type == RF_1T2R)
2255 			ratr_bitmap &= 0x000ff0ff;
2256 		else
2257 			ratr_bitmap &= 0x0f8ff0ff;
2258 		break;
2259 	}
2260 	sta_entry->ratr_index = ratr_index;
2261 
2262 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2263 		ratr_bitmap &= 0x0FFFFFFF;
2264 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2265 		ratr_bitmap &= 0x0FFFFFF0;
2266 
2267 	if (shortgi) {
2268 		ratr_bitmap |= 0x10000000;
2269 		/* Get MAX MCS available. */
2270 		ratr_value = (ratr_bitmap >> 12);
2271 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2272 			if ((1 << shortgi_rate) & ratr_value)
2273 				break;
2274 		}
2275 
2276 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2277 			(shortgi_rate << 4) | (shortgi_rate);
2278 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2279 	}
2280 
2281 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2282 
2283 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2284 		 mask, ratr_bitmap);
2285 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2286 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2287 
2288 	if (macid != 0)
2289 		sta_entry->ratr_index = ratr_index;
2290 }
2291 
2292 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2293 		struct ieee80211_sta *sta, u8 rssi_level)
2294 {
2295 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2296 
2297 	if (rtlpriv->dm.useramask)
2298 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2299 	else
2300 		rtl92se_update_hal_rate_table(hw, sta);
2301 }
2302 
2303 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2304 {
2305 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2306 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2307 	u16 sifs_timer;
2308 
2309 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2310 				      &mac->slot_time);
2311 	sifs_timer = 0x0e0e;
2312 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2313 
2314 }
2315 
2316 /* this ifunction is for RFKILL, it's different with windows,
2317  * because UI will disable wireless when GPIO Radio Off.
2318  * And here we not check or Disable/Enable ASPM like windows*/
2319 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2320 {
2321 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2322 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2323 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2324 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2325 	unsigned long flag = 0;
2326 	bool actuallyset = false;
2327 	bool turnonbypowerdomain = false;
2328 
2329 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2330 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2331 		return false;
2332 
2333 	if (ppsc->swrf_processing)
2334 		return false;
2335 
2336 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2337 	if (ppsc->rfchange_inprogress) {
2338 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2339 		return false;
2340 	} else {
2341 		ppsc->rfchange_inprogress = true;
2342 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2343 	}
2344 
2345 	/* cur_rfstate = ppsc->rfpwr_state;*/
2346 
2347 	/* because after _rtl92s_phy_set_rfhalt, all power
2348 	 * closed, so we must open some power for GPIO check,
2349 	 * or we will always check GPIO RFOFF here,
2350 	 * And we should close power after GPIO check */
2351 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2352 		_rtl92se_power_domain_init(hw);
2353 		turnonbypowerdomain = true;
2354 	}
2355 
2356 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2357 
2358 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2359 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2360 			 "RFKILL-HW Radio ON, RF ON\n");
2361 
2362 		rfpwr_toset = ERFON;
2363 		ppsc->hwradiooff = false;
2364 		actuallyset = true;
2365 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2366 		RT_TRACE(rtlpriv, COMP_RF,
2367 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2368 
2369 		rfpwr_toset = ERFOFF;
2370 		ppsc->hwradiooff = true;
2371 		actuallyset = true;
2372 	}
2373 
2374 	if (actuallyset) {
2375 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2376 		ppsc->rfchange_inprogress = false;
2377 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2378 
2379 	/* this not include ifconfig wlan0 down case */
2380 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2381 	} else {
2382 		/* because power_domain_init may be happen when
2383 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2384 		 * and cause current increasing about 40 mA for ips,
2385 		 * rfoff and ifconfig down, so we set
2386 		 * _rtl92s_phy_set_rfhalt again here */
2387 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2388 			turnonbypowerdomain) {
2389 			_rtl92s_phy_set_rfhalt(hw);
2390 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2391 		}
2392 
2393 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2394 		ppsc->rfchange_inprogress = false;
2395 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2396 	}
2397 
2398 	*valid = 1;
2399 	return !ppsc->hwradiooff;
2400 
2401 }
2402 
2403 /* Is_wepkey just used for WEP used as group & pairwise key
2404  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2405 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2406 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2407 {
2408 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2409 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2410 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2411 	u8 *macaddr = p_macaddr;
2412 
2413 	u32 entry_id = 0;
2414 	bool is_pairwise = false;
2415 
2416 	static u8 cam_const_addr[4][6] = {
2417 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2418 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2419 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2420 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2421 	};
2422 	static u8 cam_const_broad[] = {
2423 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2424 	};
2425 
2426 	if (clear_all) {
2427 		u8 idx = 0;
2428 		u8 cam_offset = 0;
2429 		u8 clear_number = 5;
2430 
2431 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2432 
2433 		for (idx = 0; idx < clear_number; idx++) {
2434 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2435 			rtl_cam_empty_entry(hw, cam_offset + idx);
2436 
2437 			if (idx < 5) {
2438 				memset(rtlpriv->sec.key_buf[idx], 0,
2439 				       MAX_KEY_LEN);
2440 				rtlpriv->sec.key_len[idx] = 0;
2441 			}
2442 		}
2443 
2444 	} else {
2445 		switch (enc_algo) {
2446 		case WEP40_ENCRYPTION:
2447 			enc_algo = CAM_WEP40;
2448 			break;
2449 		case WEP104_ENCRYPTION:
2450 			enc_algo = CAM_WEP104;
2451 			break;
2452 		case TKIP_ENCRYPTION:
2453 			enc_algo = CAM_TKIP;
2454 			break;
2455 		case AESCCMP_ENCRYPTION:
2456 			enc_algo = CAM_AES;
2457 			break;
2458 		default:
2459 			pr_err("switch case %#x not processed\n",
2460 			       enc_algo);
2461 			enc_algo = CAM_TKIP;
2462 			break;
2463 		}
2464 
2465 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2466 			macaddr = cam_const_addr[key_index];
2467 			entry_id = key_index;
2468 		} else {
2469 			if (is_group) {
2470 				macaddr = cam_const_broad;
2471 				entry_id = key_index;
2472 			} else {
2473 				if (mac->opmode == NL80211_IFTYPE_AP) {
2474 					entry_id = rtl_cam_get_free_entry(hw,
2475 								 p_macaddr);
2476 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2477 						pr_err("Can not find free hw security cam entry\n");
2478 						return;
2479 					}
2480 				} else {
2481 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2482 				}
2483 
2484 				key_index = PAIRWISE_KEYIDX;
2485 				is_pairwise = true;
2486 			}
2487 		}
2488 
2489 		if (rtlpriv->sec.key_len[key_index] == 0) {
2490 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2491 				 "delete one entry, entry_id is %d\n",
2492 				 entry_id);
2493 			if (mac->opmode == NL80211_IFTYPE_AP)
2494 				rtl_cam_del_entry(hw, p_macaddr);
2495 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2496 		} else {
2497 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2498 				 "add one entry\n");
2499 			if (is_pairwise) {
2500 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2501 					 "set Pairwise key\n");
2502 
2503 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2504 					entry_id, enc_algo,
2505 					CAM_CONFIG_NO_USEDK,
2506 					rtlpriv->sec.key_buf[key_index]);
2507 			} else {
2508 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2509 					 "set group key\n");
2510 
2511 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2512 					rtl_cam_add_one_entry(hw,
2513 						rtlefuse->dev_addr,
2514 						PAIRWISE_KEYIDX,
2515 						CAM_PAIRWISE_KEY_POSITION,
2516 						enc_algo, CAM_CONFIG_NO_USEDK,
2517 						rtlpriv->sec.key_buf[entry_id]);
2518 				}
2519 
2520 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2521 					      entry_id, enc_algo,
2522 					      CAM_CONFIG_NO_USEDK,
2523 					      rtlpriv->sec.key_buf[entry_id]);
2524 			}
2525 
2526 		}
2527 	}
2528 }
2529 
2530 void rtl92se_suspend(struct ieee80211_hw *hw)
2531 {
2532 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2533 
2534 	rtlpci->up_first_time = true;
2535 }
2536 
2537 void rtl92se_resume(struct ieee80211_hw *hw)
2538 {
2539 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2540 	u32 val;
2541 
2542 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2543 	if ((val & 0x0000ff00) != 0)
2544 		pci_write_config_dword(rtlpci->pdev, 0x40,
2545 			val & 0xffff00ff);
2546 }
2547