1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
44 
45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46 {
47 	struct rtl_priv *rtlpriv = rtl_priv(hw);
48 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50 
51 	switch (variable) {
52 	case HW_VAR_RCR: {
53 			*((u32 *) (val)) = rtlpci->receive_config;
54 			break;
55 		}
56 	case HW_VAR_RF_STATE: {
57 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 			break;
59 		}
60 	case HW_VAR_FW_PSMODE_STATUS: {
61 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62 			break;
63 		}
64 	case HW_VAR_CORRECT_TSF: {
65 			u64 tsf;
66 			u32 *ptsf_low = (u32 *)&tsf;
67 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68 
69 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71 
72 			*((u64 *) (val)) = tsf;
73 
74 			break;
75 		}
76 	case HW_VAR_MRC: {
77 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 			break;
79 		}
80 	case HAL_DEF_WOWLAN:
81 		break;
82 	default: {
83 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
84 			 "switch case %#x not processed\n", variable);
85 			break;
86 		}
87 	}
88 }
89 
90 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
91 {
92 	struct rtl_priv *rtlpriv = rtl_priv(hw);
93 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
94 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
95 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
96 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
97 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
98 
99 	switch (variable) {
100 	case HW_VAR_ETHER_ADDR:{
101 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
102 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
103 			break;
104 		}
105 	case HW_VAR_BASIC_RATE:{
106 			u16 rate_cfg = ((u16 *) val)[0];
107 			u8 rate_index = 0;
108 
109 			if (rtlhal->version == VERSION_8192S_ACUT)
110 				rate_cfg = rate_cfg & 0x150;
111 			else
112 				rate_cfg = rate_cfg & 0x15f;
113 
114 			rate_cfg |= 0x01;
115 
116 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
117 			rtl_write_byte(rtlpriv, RRSR + 1,
118 				       (rate_cfg >> 8) & 0xff);
119 
120 			while (rate_cfg > 0x1) {
121 				rate_cfg = (rate_cfg >> 1);
122 				rate_index++;
123 			}
124 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
125 
126 			break;
127 		}
128 	case HW_VAR_BSSID:{
129 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
130 			rtl_write_word(rtlpriv, BSSIDR + 4,
131 				       ((u16 *)(val + 4))[0]);
132 			break;
133 		}
134 	case HW_VAR_SIFS:{
135 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
136 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
137 			break;
138 		}
139 	case HW_VAR_SLOT_TIME:{
140 			u8 e_aci;
141 
142 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
143 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
144 
145 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
146 
147 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
148 				rtlpriv->cfg->ops->set_hw_reg(hw,
149 						HW_VAR_AC_PARAM,
150 						(&e_aci));
151 			}
152 			break;
153 		}
154 	case HW_VAR_ACK_PREAMBLE:{
155 			u8 reg_tmp;
156 			u8 short_preamble = (bool) (*val);
157 			reg_tmp = (mac->cur_40_prime_sc) << 5;
158 			if (short_preamble)
159 				reg_tmp |= 0x80;
160 
161 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
162 			break;
163 		}
164 	case HW_VAR_AMPDU_MIN_SPACE:{
165 			u8 min_spacing_to_set;
166 			u8 sec_min_space;
167 
168 			min_spacing_to_set = *val;
169 			if (min_spacing_to_set <= 7) {
170 				if (rtlpriv->sec.pairwise_enc_algorithm ==
171 				    NO_ENCRYPTION)
172 					sec_min_space = 0;
173 				else
174 					sec_min_space = 1;
175 
176 				if (min_spacing_to_set < sec_min_space)
177 					min_spacing_to_set = sec_min_space;
178 				if (min_spacing_to_set > 5)
179 					min_spacing_to_set = 5;
180 
181 				mac->min_space_cfg =
182 						((mac->min_space_cfg & 0xf8) |
183 						min_spacing_to_set);
184 
185 				*val = min_spacing_to_set;
186 
187 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
188 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
189 					 mac->min_space_cfg);
190 
191 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
192 					       mac->min_space_cfg);
193 			}
194 			break;
195 		}
196 	case HW_VAR_SHORTGI_DENSITY:{
197 			u8 density_to_set;
198 
199 			density_to_set = *val;
200 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
201 			mac->min_space_cfg |= (density_to_set << 3);
202 
203 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
204 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
205 				 mac->min_space_cfg);
206 
207 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
208 				       mac->min_space_cfg);
209 
210 			break;
211 		}
212 	case HW_VAR_AMPDU_FACTOR:{
213 			u8 factor_toset;
214 			u8 regtoset;
215 			u8 factorlevel[18] = {
216 				2, 4, 4, 7, 7, 13, 13,
217 				13, 2, 7, 7, 13, 13,
218 				15, 15, 15, 15, 0};
219 			u8 index = 0;
220 
221 			factor_toset = *val;
222 			if (factor_toset <= 3) {
223 				factor_toset = (1 << (factor_toset + 2));
224 				if (factor_toset > 0xf)
225 					factor_toset = 0xf;
226 
227 				for (index = 0; index < 17; index++) {
228 					if (factorlevel[index] > factor_toset)
229 						factorlevel[index] =
230 								 factor_toset;
231 				}
232 
233 				for (index = 0; index < 8; index++) {
234 					regtoset = ((factorlevel[index * 2]) |
235 						    (factorlevel[index *
236 						    2 + 1] << 4));
237 					rtl_write_byte(rtlpriv,
238 						       AGGLEN_LMT_L + index,
239 						       regtoset);
240 				}
241 
242 				regtoset = ((factorlevel[16]) |
243 					    (factorlevel[17] << 4));
244 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
245 
246 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
247 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
248 					 factor_toset);
249 			}
250 			break;
251 		}
252 	case HW_VAR_AC_PARAM:{
253 			u8 e_aci = *val;
254 			rtl92s_dm_init_edca_turbo(hw);
255 
256 			if (rtlpci->acm_method != EACMWAY2_SW)
257 				rtlpriv->cfg->ops->set_hw_reg(hw,
258 						 HW_VAR_ACM_CTRL,
259 						 &e_aci);
260 			break;
261 		}
262 	case HW_VAR_ACM_CTRL:{
263 			u8 e_aci = *val;
264 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
265 							mac->ac[0].aifs));
266 			u8 acm = p_aci_aifsn->f.acm;
267 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
268 
269 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
270 				   0x0 : 0x1);
271 
272 			if (acm) {
273 				switch (e_aci) {
274 				case AC0_BE:
275 					acm_ctrl |= AcmHw_BeqEn;
276 					break;
277 				case AC2_VI:
278 					acm_ctrl |= AcmHw_ViqEn;
279 					break;
280 				case AC3_VO:
281 					acm_ctrl |= AcmHw_VoqEn;
282 					break;
283 				default:
284 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
285 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
286 						 acm);
287 					break;
288 				}
289 			} else {
290 				switch (e_aci) {
291 				case AC0_BE:
292 					acm_ctrl &= (~AcmHw_BeqEn);
293 					break;
294 				case AC2_VI:
295 					acm_ctrl &= (~AcmHw_ViqEn);
296 					break;
297 				case AC3_VO:
298 					acm_ctrl &= (~AcmHw_VoqEn);
299 					break;
300 				default:
301 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
302 						 "switch case %#x not processed\n",
303 						 e_aci);
304 					break;
305 				}
306 			}
307 
308 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
309 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
310 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
311 			break;
312 		}
313 	case HW_VAR_RCR:{
314 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
315 			rtlpci->receive_config = ((u32 *) (val))[0];
316 			break;
317 		}
318 	case HW_VAR_RETRY_LIMIT:{
319 			u8 retry_limit = val[0];
320 
321 			rtl_write_word(rtlpriv, RETRY_LIMIT,
322 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
323 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
324 			break;
325 		}
326 	case HW_VAR_DUAL_TSF_RST: {
327 			break;
328 		}
329 	case HW_VAR_EFUSE_BYTES: {
330 			rtlefuse->efuse_usedbytes = *((u16 *) val);
331 			break;
332 		}
333 	case HW_VAR_EFUSE_USAGE: {
334 			rtlefuse->efuse_usedpercentage = *val;
335 			break;
336 		}
337 	case HW_VAR_IO_CMD: {
338 			break;
339 		}
340 	case HW_VAR_WPA_CONFIG: {
341 			rtl_write_byte(rtlpriv, REG_SECR, *val);
342 			break;
343 		}
344 	case HW_VAR_SET_RPWM:{
345 			break;
346 		}
347 	case HW_VAR_H2C_FW_PWRMODE:{
348 			break;
349 		}
350 	case HW_VAR_FW_PSMODE_STATUS: {
351 			ppsc->fw_current_inpsmode = *((bool *) val);
352 			break;
353 		}
354 	case HW_VAR_H2C_FW_JOINBSSRPT:{
355 			break;
356 		}
357 	case HW_VAR_AID:{
358 			break;
359 		}
360 	case HW_VAR_CORRECT_TSF:{
361 			break;
362 		}
363 	case HW_VAR_MRC: {
364 			bool bmrc_toset = *((bool *)val);
365 			u8 u1bdata = 0;
366 
367 			if (bmrc_toset) {
368 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
369 					      MASKBYTE0, 0x33);
370 				u1bdata = (u8)rtl_get_bbreg(hw,
371 						ROFDM1_TRXPATHENABLE,
372 						MASKBYTE0);
373 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
374 					      MASKBYTE0,
375 					      ((u1bdata & 0xf0) | 0x03));
376 				u1bdata = (u8)rtl_get_bbreg(hw,
377 						ROFDM0_TRXPATHENABLE,
378 						MASKBYTE1);
379 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
380 					      MASKBYTE1,
381 					      (u1bdata | 0x04));
382 
383 				/* Update current settings. */
384 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
385 			} else {
386 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
387 					      MASKBYTE0, 0x13);
388 				u1bdata = (u8)rtl_get_bbreg(hw,
389 						 ROFDM1_TRXPATHENABLE,
390 						 MASKBYTE0);
391 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
392 					      MASKBYTE0,
393 					      ((u1bdata & 0xf0) | 0x01));
394 				u1bdata = (u8)rtl_get_bbreg(hw,
395 						ROFDM0_TRXPATHENABLE,
396 						MASKBYTE1);
397 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
398 					      MASKBYTE1, (u1bdata & 0xfb));
399 
400 				/* Update current settings. */
401 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
402 			}
403 
404 			break;
405 		}
406 	case HW_VAR_FW_LPS_ACTION: {
407 		bool enter_fwlps = *((bool *)val);
408 		u8 rpwm_val, fw_pwrmode;
409 		bool fw_current_inps;
410 
411 		if (enter_fwlps) {
412 			rpwm_val = 0x02;	/* RF off */
413 			fw_current_inps = true;
414 			rtlpriv->cfg->ops->set_hw_reg(hw,
415 					HW_VAR_FW_PSMODE_STATUS,
416 					(u8 *)(&fw_current_inps));
417 			rtlpriv->cfg->ops->set_hw_reg(hw,
418 					HW_VAR_H2C_FW_PWRMODE,
419 					&ppsc->fwctrl_psmode);
420 
421 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
422 						      &rpwm_val);
423 		} else {
424 			rpwm_val = 0x0C;	/* RF on */
425 			fw_pwrmode = FW_PS_ACTIVE_MODE;
426 			fw_current_inps = false;
427 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
428 						      &rpwm_val);
429 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
430 						      &fw_pwrmode);
431 
432 			rtlpriv->cfg->ops->set_hw_reg(hw,
433 					HW_VAR_FW_PSMODE_STATUS,
434 					(u8 *)(&fw_current_inps));
435 		}
436 		break; }
437 	default:
438 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
439 			 "switch case %#x not processed\n", variable);
440 		break;
441 	}
442 
443 }
444 
445 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
446 {
447 	struct rtl_priv *rtlpriv = rtl_priv(hw);
448 	u8 sec_reg_value = 0x0;
449 
450 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
451 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
452 		 rtlpriv->sec.pairwise_enc_algorithm,
453 		 rtlpriv->sec.group_enc_algorithm);
454 
455 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
456 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
457 			 "not open hw encryption\n");
458 		return;
459 	}
460 
461 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
462 
463 	if (rtlpriv->sec.use_defaultkey) {
464 		sec_reg_value |= SCR_TXUSEDK;
465 		sec_reg_value |= SCR_RXUSEDK;
466 	}
467 
468 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
469 		 sec_reg_value);
470 
471 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
472 
473 }
474 
475 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
476 {
477 	struct rtl_priv *rtlpriv = rtl_priv(hw);
478 	u8 waitcount = 100;
479 	bool bresult = false;
480 	u8 tmpvalue;
481 
482 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
483 
484 	/* Wait the MAC synchronized. */
485 	udelay(400);
486 
487 	/* Check if it is set ready. */
488 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
489 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
490 
491 	if ((data & (BIT(6) | BIT(7))) == false) {
492 		waitcount = 100;
493 		tmpvalue = 0;
494 
495 		while (1) {
496 			waitcount--;
497 
498 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
499 			if ((tmpvalue & BIT(6)))
500 				break;
501 
502 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
503 			if (waitcount == 0)
504 				break;
505 
506 			udelay(10);
507 		}
508 
509 		if (waitcount == 0)
510 			bresult = false;
511 		else
512 			bresult = true;
513 	}
514 
515 	return bresult;
516 }
517 
518 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
519 {
520 	struct rtl_priv *rtlpriv = rtl_priv(hw);
521 	u8 u1tmp;
522 
523 	/* The following config GPIO function */
524 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
525 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
526 
527 	/* config GPIO3 to input */
528 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
529 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
530 
531 }
532 
533 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
534 {
535 	struct rtl_priv *rtlpriv = rtl_priv(hw);
536 	u8 u1tmp;
537 	u8 retval = ERFON;
538 
539 	/* The following config GPIO function */
540 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
541 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
542 
543 	/* config GPIO3 to input */
544 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
545 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
546 
547 	/* On some of the platform, driver cannot read correct
548 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
549 	mdelay(10);
550 
551 	/* check GPIO3 */
552 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
553 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
554 
555 	return retval;
556 }
557 
558 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
559 {
560 	struct rtl_priv *rtlpriv = rtl_priv(hw);
561 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
562 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
563 
564 	u8 i;
565 	u8 tmpu1b;
566 	u16 tmpu2b;
567 	u8 pollingcnt = 20;
568 
569 	if (rtlpci->first_init) {
570 		/* Reset PCIE Digital */
571 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
572 		tmpu1b &= 0xFE;
573 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
574 		udelay(1);
575 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
576 	}
577 
578 	/* Switch to SW IO control */
579 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
580 	if (tmpu1b & BIT(7)) {
581 		tmpu1b &= ~(BIT(6) | BIT(7));
582 
583 		/* Set failed, return to prevent hang. */
584 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
585 			return;
586 	}
587 
588 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
589 	udelay(50);
590 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
591 	udelay(50);
592 
593 	/* Clear FW RPWM for FW control LPS.*/
594 	rtl_write_byte(rtlpriv, RPWM, 0x0);
595 
596 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
597 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
598 	tmpu1b &= 0x73;
599 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
600 	/* wait for BIT 10/11/15 to pull high automatically!! */
601 	mdelay(1);
602 
603 	rtl_write_byte(rtlpriv, CMDR, 0);
604 	rtl_write_byte(rtlpriv, TCR, 0);
605 
606 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
607 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
608 	tmpu1b |= 0x08;
609 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
610 	tmpu1b &= ~(BIT(3));
611 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
612 
613 	/* Enable AFE clock source */
614 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
615 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
616 	/* Delay 1.5ms */
617 	mdelay(2);
618 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
619 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
620 
621 	/* Enable AFE Macro Block's Bandgap */
622 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
623 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
624 	mdelay(1);
625 
626 	/* Enable AFE Mbias */
627 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
628 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
629 	mdelay(1);
630 
631 	/* Enable LDOA15 block	*/
632 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
633 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
634 
635 	/* Set Digital Vdd to Retention isolation Path. */
636 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
637 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
638 
639 	/* For warm reboot NIC disappera bug. */
640 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
641 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
642 
643 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
644 
645 	/* Enable AFE PLL Macro Block */
646 	/* We need to delay 100u before enabling PLL. */
647 	udelay(200);
648 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
649 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
650 
651 	/* for divider reset  */
652 	udelay(100);
653 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
654 		       BIT(4) | BIT(6)));
655 	udelay(10);
656 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
657 	udelay(10);
658 
659 	/* Enable MAC 80MHZ clock  */
660 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
661 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
662 	mdelay(1);
663 
664 	/* Release isolation AFE PLL & MD */
665 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
666 
667 	/* Enable MAC clock */
668 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
669 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
670 
671 	/* Enable Core digital and enable IOREG R/W */
672 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
673 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
674 
675 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
676 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
677 
678 	/* enable REG_EN */
679 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
680 
681 	/* Switch the control path. */
682 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
683 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
684 
685 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
686 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
687 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
688 		return; /* Set failed, return to prevent hang. */
689 
690 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
691 
692 	/* MH We must enable the section of code to prevent load IMEM fail. */
693 	/* Load MAC register from WMAc temporarily We simulate macreg. */
694 	/* txt HW will provide MAC txt later  */
695 	rtl_write_byte(rtlpriv, 0x6, 0x30);
696 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
697 
698 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
699 
700 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
701 
702 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
703 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
704 	rtl_write_byte(rtlpriv, 0xde, 0xff);
705 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
706 
707 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
708 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
709 
710 	for (i = 0; i < 32; i++)
711 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
712 
713 	rtl_write_byte(rtlpriv, 0x236, 0xff);
714 
715 	rtl_write_byte(rtlpriv, 0x503, 0x22);
716 
717 	if (ppsc->support_aspm && !ppsc->support_backdoor)
718 		rtl_write_byte(rtlpriv, 0x560, 0x40);
719 	else
720 		rtl_write_byte(rtlpriv, 0x560, 0x00);
721 
722 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
723 
724 	/* Set RX Desc Address */
725 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
726 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
727 
728 	/* Set TX Desc Address */
729 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
730 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
734 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
735 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
736 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
737 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
738 
739 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
740 
741 	/* To make sure that TxDMA can ready to download FW. */
742 	/* We should reset TxDMA if IMEM RPT was not ready. */
743 	do {
744 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
745 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
746 			break;
747 
748 		udelay(5);
749 	} while (pollingcnt--);
750 
751 	if (pollingcnt <= 0) {
752 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
753 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
754 			 tmpu1b);
755 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
756 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
757 		udelay(2);
758 		/* Reset TxDMA */
759 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
760 	}
761 
762 	/* After MACIO reset,we must refresh LED state. */
763 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
764 	   (ppsc->rfoff_reason == 0)) {
765 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
766 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
767 		enum rf_pwrstate rfpwr_state_toset;
768 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
769 
770 		if (rfpwr_state_toset == ERFON)
771 			rtl92se_sw_led_on(hw, pLed0);
772 	}
773 }
774 
775 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
776 {
777 	struct rtl_priv *rtlpriv = rtl_priv(hw);
778 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
779 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
780 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
781 	u8 i;
782 	u16 tmpu2b;
783 
784 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
785 
786 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
787 	/* Turn on 0x40 Command register */
788 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
789 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
790 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
791 
792 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
793 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
794 			TXDMAPRE2FULL);
795 
796 	/* Set RCR	*/
797 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
798 
799 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
800 
801 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
802 	/* Set CCK/OFDM SIFS */
803 	/* CCK SIFS shall always be 10us. */
804 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
805 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
806 
807 	/* Set AckTimeout */
808 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
809 
810 	/* Beacon related */
811 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
812 	rtl_write_word(rtlpriv, ATIMWND, 2);
813 
814 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
815 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
816 	/* Firmware allocate now, associate with FW internal setting.!!! */
817 
818 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
819 	/* 5.3 Set driver info, we only accept PHY status now. */
820 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
821 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
822 
823 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
824 	/* Set RRSR to all legacy rate and HT rate
825 	 * CCK rate is supported by default.
826 	 * CCK rate will be filtered out only when associated
827 	 * AP does not support it.
828 	 * Only enable ACK rate to OFDM 24M
829 	 * Disable RRSR for CCK rate in A-Cut	*/
830 
831 	if (rtlhal->version == VERSION_8192S_ACUT)
832 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
833 	else if (rtlhal->version == VERSION_8192S_BCUT)
834 		rtl_write_byte(rtlpriv, RRSR, 0xff);
835 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
836 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
837 
838 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
839 	/* fallback to CCK rate */
840 	for (i = 0; i < 8; i++) {
841 		/*Disable RRSR for CCK rate in A-Cut */
842 		if (rtlhal->version == VERSION_8192S_ACUT)
843 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
844 	}
845 
846 	/* Different rate use different AMPDU size */
847 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
848 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
849 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
850 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
851 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
852 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
853 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
854 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
855 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
856 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
857 
858 	/* Set Data / Response auto rate fallack retry count */
859 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
860 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
861 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
862 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
863 
864 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
865 	/* Set all rate to support SG */
866 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
867 
868 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
869 	/* Set NAV protection length */
870 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
871 	/* CF-END Threshold */
872 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
873 	/* Set AMPDU minimum space */
874 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
875 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
876 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
877 
878 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
879 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
880 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
881 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
882 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
883 
884 	/* 14. Set driver info, we only accept PHY status now. */
885 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
886 
887 	/* 15. For EEPROM R/W Workaround */
888 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
889 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
890 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
891 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
892 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
893 
894 	/* 17. For EFUSE */
895 	/* We may R/W EFUSE in EEPROM mode */
896 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
897 		u8	tempval;
898 
899 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
900 		tempval &= 0xFE;
901 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
902 
903 		/* Change Program timing */
904 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
905 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
906 	}
907 
908 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
909 
910 }
911 
912 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
913 {
914 	struct rtl_priv *rtlpriv = rtl_priv(hw);
915 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
916 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
917 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
918 
919 	u8 reg_bw_opmode = 0;
920 	u32 reg_rrsr = 0;
921 	u8 regtmp = 0;
922 
923 	reg_bw_opmode = BW_OPMODE_20MHZ;
924 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
925 
926 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
927 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
928 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
929 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
930 
931 	/* Set Retry Limit here */
932 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
933 			(u8 *)(&rtlpci->shortretry_limit));
934 
935 	rtl_write_byte(rtlpriv, MLT, 0x8f);
936 
937 	/* For Min Spacing configuration. */
938 	switch (rtlphy->rf_type) {
939 	case RF_1T2R:
940 	case RF_1T1R:
941 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
942 		break;
943 	case RF_2T2R:
944 	case RF_2T2R_GREEN:
945 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
946 		break;
947 	}
948 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
949 }
950 
951 int rtl92se_hw_init(struct ieee80211_hw *hw)
952 {
953 	struct rtl_priv *rtlpriv = rtl_priv(hw);
954 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
955 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
956 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
957 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
958 	u8 tmp_byte = 0;
959 	unsigned long flags;
960 	bool rtstatus = true;
961 	u8 tmp_u1b;
962 	int err = false;
963 	u8 i;
964 	int wdcapra_add[] = {
965 		EDCAPARA_BE, EDCAPARA_BK,
966 		EDCAPARA_VI, EDCAPARA_VO};
967 	u8 secr_value = 0x0;
968 
969 	rtlpci->being_init_adapter = true;
970 
971 	/* As this function can take a very long time (up to 350 ms)
972 	 * and can be called with irqs disabled, reenable the irqs
973 	 * to let the other devices continue being serviced.
974 	 *
975 	 * It is safe doing so since our own interrupts will only be enabled
976 	 * in a subsequent step.
977 	 */
978 	local_save_flags(flags);
979 	local_irq_enable();
980 
981 	rtlpriv->intf_ops->disable_aspm(hw);
982 
983 	/* 1. MAC Initialize */
984 	/* Before FW download, we have to set some MAC register */
985 	_rtl92se_macconfig_before_fwdownload(hw);
986 
987 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
988 			PMC_FSM) >> 16) & 0xF);
989 
990 	rtl8192se_gpiobit3_cfg_inputmode(hw);
991 
992 	/* 2. download firmware */
993 	rtstatus = rtl92s_download_fw(hw);
994 	if (!rtstatus) {
995 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
996 			 "Failed to download FW. Init HW without FW now... "
997 			 "Please copy FW into /lib/firmware/rtlwifi\n");
998 		err = 1;
999 		goto exit;
1000 	}
1001 
1002 	/* After FW download, we have to reset MAC register */
1003 	_rtl92se_macconfig_after_fwdownload(hw);
1004 
1005 	/*Retrieve default FW Cmd IO map. */
1006 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1007 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1008 
1009 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1010 	if (!rtl92s_phy_mac_config(hw)) {
1011 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1012 		err = rtstatus;
1013 		goto exit;
1014 	}
1015 
1016 	/* because last function modify RCR, so we update
1017 	 * rcr var here, or TP will unstable for receive_config
1018 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1019 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1020 	 */
1021 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1022 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1023 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1024 
1025 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1026 	/* We must set flag avoid BB/RF config period later!! */
1027 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1028 
1029 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1030 	if (!rtl92s_phy_bb_config(hw)) {
1031 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1032 		err = rtstatus;
1033 		goto exit;
1034 	}
1035 
1036 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1037 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1038 
1039 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1040 
1041 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1042 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1043 	if (rtlhal->version == VERSION_8192S_ACUT)
1044 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1045 	else
1046 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1047 
1048 	if (!rtl92s_phy_rf_config(hw)) {
1049 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1050 		err = rtstatus;
1051 		goto exit;
1052 	}
1053 
1054 	/* After read predefined TXT, we must set BB/MAC/RF
1055 	 * register as our requirement */
1056 
1057 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1058 							   (enum radio_path)0,
1059 							   RF_CHNLBW,
1060 							   RFREG_OFFSET_MASK);
1061 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1062 							   (enum radio_path)1,
1063 							   RF_CHNLBW,
1064 							   RFREG_OFFSET_MASK);
1065 
1066 	/*---- Set CCK and OFDM Block "ON"----*/
1067 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1068 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1069 
1070 	/*3 Set Hardware(Do nothing now) */
1071 	_rtl92se_hw_configure(hw);
1072 
1073 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1074 	/* TX power index for different rate set. */
1075 	/* Get original hw reg values */
1076 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1077 	/* Write correct tx power index */
1078 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1079 
1080 	/* We must set MAC address after firmware download. */
1081 	for (i = 0; i < 6; i++)
1082 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1083 
1084 	/* EEPROM R/W workaround */
1085 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1086 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1087 
1088 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1089 
1090 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1091 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1092 		tmp_byte = tmp_byte | BIT(5);
1093 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1094 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1095 	}
1096 
1097 	/* We enable high power and RA related mechanism after NIC
1098 	 * initialized. */
1099 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1100 		/* Fw v.53 and later. */
1101 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1102 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1103 		/* Fw v.52. */
1104 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1105 		rtl92s_phy_chk_fwcmd_iodone(hw);
1106 	} else {
1107 		/* Compatible earlier FW version. */
1108 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1109 		rtl92s_phy_chk_fwcmd_iodone(hw);
1110 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1111 		rtl92s_phy_chk_fwcmd_iodone(hw);
1112 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1113 		rtl92s_phy_chk_fwcmd_iodone(hw);
1114 	}
1115 
1116 	/* Add to prevent ASPM bug. */
1117 	/* Always enable hst and NIC clock request. */
1118 	rtl92s_phy_switch_ephy_parameter(hw);
1119 
1120 	/* Security related
1121 	 * 1. Clear all H/W keys.
1122 	 * 2. Enable H/W encryption/decryption. */
1123 	rtl_cam_reset_all_entry(hw);
1124 	secr_value |= SCR_TXENCENABLE;
1125 	secr_value |= SCR_RXENCENABLE;
1126 	secr_value |= SCR_NOSKMC;
1127 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1128 
1129 	for (i = 0; i < 4; i++)
1130 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1131 
1132 	if (rtlphy->rf_type == RF_1T2R) {
1133 		bool mrc2set = true;
1134 		/* Turn on B-Path */
1135 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1136 	}
1137 
1138 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1139 	rtl92s_dm_init(hw);
1140 exit:
1141 	local_irq_restore(flags);
1142 	rtlpci->being_init_adapter = false;
1143 	return err;
1144 }
1145 
1146 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1147 {
1148 	/* This is a stub. */
1149 }
1150 
1151 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1152 {
1153 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1154 	u32 reg_rcr;
1155 
1156 	if (rtlpriv->psc.rfpwr_state != ERFON)
1157 		return;
1158 
1159 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1160 
1161 	if (check_bssid) {
1162 		reg_rcr |= (RCR_CBSSID);
1163 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1164 	} else if (!check_bssid) {
1165 		reg_rcr &= (~RCR_CBSSID);
1166 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1167 	}
1168 
1169 }
1170 
1171 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1172 				     enum nl80211_iftype type)
1173 {
1174 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1175 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1176 	u32 temp;
1177 	bt_msr &= ~MSR_LINK_MASK;
1178 
1179 	switch (type) {
1180 	case NL80211_IFTYPE_UNSPECIFIED:
1181 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1182 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1183 			 "Set Network type to NO LINK!\n");
1184 		break;
1185 	case NL80211_IFTYPE_ADHOC:
1186 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1187 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1188 			 "Set Network type to Ad Hoc!\n");
1189 		break;
1190 	case NL80211_IFTYPE_STATION:
1191 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1192 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1193 			 "Set Network type to STA!\n");
1194 		break;
1195 	case NL80211_IFTYPE_AP:
1196 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1197 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1198 			 "Set Network type to AP!\n");
1199 		break;
1200 	default:
1201 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1202 			 "Network type %d not supported!\n", type);
1203 		return 1;
1204 
1205 	}
1206 
1207 	if (type != NL80211_IFTYPE_AP &&
1208 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1209 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1210 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1211 
1212 	temp = rtl_read_dword(rtlpriv, TCR);
1213 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1214 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1215 
1216 
1217 	return 0;
1218 }
1219 
1220 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1221 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1222 {
1223 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1224 
1225 	if (_rtl92se_set_media_status(hw, type))
1226 		return -EOPNOTSUPP;
1227 
1228 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1229 		if (type != NL80211_IFTYPE_AP)
1230 			rtl92se_set_check_bssid(hw, true);
1231 	} else {
1232 		rtl92se_set_check_bssid(hw, false);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1239 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1240 {
1241 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1242 	rtl92s_dm_init_edca_turbo(hw);
1243 
1244 	switch (aci) {
1245 	case AC1_BK:
1246 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1247 		break;
1248 	case AC0_BE:
1249 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1250 		break;
1251 	case AC2_VI:
1252 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1253 		break;
1254 	case AC3_VO:
1255 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1256 		break;
1257 	default:
1258 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1259 		break;
1260 	}
1261 }
1262 
1263 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1264 {
1265 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1266 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1267 
1268 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1269 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1270 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1271 	rtlpci->irq_enabled = true;
1272 }
1273 
1274 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1275 {
1276 	struct rtl_priv *rtlpriv;
1277 	struct rtl_pci *rtlpci;
1278 
1279 	rtlpriv = rtl_priv(hw);
1280 	/* if firmware not available, no interrupts */
1281 	if (!rtlpriv || !rtlpriv->max_fw_size)
1282 		return;
1283 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1284 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1285 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1286 	rtlpci->irq_enabled = false;
1287 }
1288 
1289 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1290 {
1291 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1292 	u8 waitcnt = 100;
1293 	bool result = false;
1294 	u8 tmp;
1295 
1296 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1297 
1298 	/* Wait the MAC synchronized. */
1299 	udelay(400);
1300 
1301 	/* Check if it is set ready. */
1302 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1303 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1304 
1305 	if ((data & (BIT(6) | BIT(7))) == false) {
1306 		waitcnt = 100;
1307 		tmp = 0;
1308 
1309 		while (1) {
1310 			waitcnt--;
1311 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1312 
1313 			if ((tmp & BIT(6)))
1314 				break;
1315 
1316 			pr_err("wait for BIT(6) return value %x\n", tmp);
1317 
1318 			if (waitcnt == 0)
1319 				break;
1320 			udelay(10);
1321 		}
1322 
1323 		if (waitcnt == 0)
1324 			result = false;
1325 		else
1326 			result = true;
1327 	}
1328 
1329 	return result;
1330 }
1331 
1332 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1333 {
1334 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1335 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1336 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1337 	u8 u1btmp;
1338 
1339 	if (rtlhal->driver_going2unload)
1340 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1341 
1342 	/* Power save for BB/RF */
1343 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1344 	u1btmp |= BIT(0);
1345 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1346 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1347 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1348 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1349 	udelay(100);
1350 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1351 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1352 	udelay(10);
1353 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1354 	udelay(10);
1355 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1356 	udelay(10);
1357 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1358 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1359 
1360 	if (rtlhal->driver_going2unload) {
1361 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1362 		u1btmp &= ~(BIT(0));
1363 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1364 	}
1365 
1366 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1367 
1368 	/* Add description. After switch control path. register
1369 	 * after page1 will be invisible. We can not do any IO
1370 	 * for register>0x40. After resume&MACIO reset, we need
1371 	 * to remember previous reg content. */
1372 	if (u1btmp & BIT(7)) {
1373 		u1btmp &= ~(BIT(6) | BIT(7));
1374 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1375 			pr_err("Switch ctrl path fail\n");
1376 			return;
1377 		}
1378 	}
1379 
1380 	/* Power save for MAC */
1381 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1382 		!rtlhal->driver_going2unload) {
1383 		/* enable LED function */
1384 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1385 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1386 	} else {
1387 		/* LED function disable. Power range is about 8mA now. */
1388 		/* if write 0xF1 disconnet_pci power
1389 		 *	 ifconfig wlan0 down power are both high 35:70 */
1390 		/* if write oxF9 disconnet_pci power
1391 		 * ifconfig wlan0 down power are both low  12:45*/
1392 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1393 	}
1394 
1395 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1396 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1397 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1398 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1399 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1400 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1401 
1402 }
1403 
1404 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1405 {
1406 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1407 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1408 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1409 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1410 
1411 	if (rtlpci->up_first_time == 1)
1412 		return;
1413 
1414 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1415 		rtl92se_sw_led_on(hw, pLed0);
1416 	else
1417 		rtl92se_sw_led_off(hw, pLed0);
1418 }
1419 
1420 
1421 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1422 {
1423 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1424 	u16 tmpu2b;
1425 	u8 tmpu1b;
1426 
1427 	rtlpriv->psc.pwrdomain_protect = true;
1428 
1429 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1430 	if (tmpu1b & BIT(7)) {
1431 		tmpu1b &= ~(BIT(6) | BIT(7));
1432 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1433 			rtlpriv->psc.pwrdomain_protect = false;
1434 			return;
1435 		}
1436 	}
1437 
1438 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1439 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1440 
1441 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1442 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1443 
1444 	/* If IPS we need to turn LED on. So we not
1445 	 * not disable BIT 3/7 of reg3. */
1446 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1447 		tmpu1b &= 0xFB;
1448 	else
1449 		tmpu1b &= 0x73;
1450 
1451 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1452 	/* wait for BIT 10/11/15 to pull high automatically!! */
1453 	mdelay(1);
1454 
1455 	rtl_write_byte(rtlpriv, CMDR, 0);
1456 	rtl_write_byte(rtlpriv, TCR, 0);
1457 
1458 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1459 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1460 	tmpu1b |= 0x08;
1461 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1462 	tmpu1b &= ~(BIT(3));
1463 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1464 
1465 	/* Enable AFE clock source */
1466 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1467 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1468 	/* Delay 1.5ms */
1469 	udelay(1500);
1470 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1471 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1472 
1473 	/* Enable AFE Macro Block's Bandgap */
1474 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1475 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1476 	mdelay(1);
1477 
1478 	/* Enable AFE Mbias */
1479 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1480 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1481 	mdelay(1);
1482 
1483 	/* Enable LDOA15 block */
1484 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1485 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1486 
1487 	/* Set Digital Vdd to Retention isolation Path. */
1488 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1489 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1490 
1491 
1492 	/* For warm reboot NIC disappera bug. */
1493 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1494 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1495 
1496 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1497 
1498 	/* Enable AFE PLL Macro Block */
1499 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1500 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1501 	/* Enable MAC 80MHZ clock */
1502 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1503 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1504 	mdelay(1);
1505 
1506 	/* Release isolation AFE PLL & MD */
1507 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1508 
1509 	/* Enable MAC clock */
1510 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1511 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1512 
1513 	/* Enable Core digital and enable IOREG R/W */
1514 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1515 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1516 	/* enable REG_EN */
1517 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1518 
1519 	/* Switch the control path. */
1520 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1521 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1522 
1523 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1524 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1525 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1526 		rtlpriv->psc.pwrdomain_protect = false;
1527 		return;
1528 	}
1529 
1530 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1531 
1532 	/* After MACIO reset,we must refresh LED state. */
1533 	_rtl92se_gen_refreshledstate(hw);
1534 
1535 	rtlpriv->psc.pwrdomain_protect = false;
1536 }
1537 
1538 void rtl92se_card_disable(struct ieee80211_hw *hw)
1539 {
1540 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1541 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1542 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1543 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1544 	enum nl80211_iftype opmode;
1545 	u8 wait = 30;
1546 
1547 	rtlpriv->intf_ops->enable_aspm(hw);
1548 
1549 	if (rtlpci->driver_is_goingto_unload ||
1550 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1551 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1552 
1553 	/* we should chnge GPIO to input mode
1554 	 * this will drop away current about 25mA*/
1555 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1556 
1557 	/* this is very important for ips power save */
1558 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1559 		if (rtlpriv->psc.pwrdomain_protect)
1560 			mdelay(20);
1561 		else
1562 			break;
1563 	}
1564 
1565 	mac->link_state = MAC80211_NOLINK;
1566 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1567 	_rtl92se_set_media_status(hw, opmode);
1568 
1569 	_rtl92s_phy_set_rfhalt(hw);
1570 	udelay(100);
1571 }
1572 
1573 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1574 			     u32 *p_intb)
1575 {
1576 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1577 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1578 
1579 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1580 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1581 
1582 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1583 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1584 }
1585 
1586 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1587 {
1588 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1589 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1590 	u16 bcntime_cfg = 0;
1591 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1592 	u16 atim_window = 2;
1593 
1594 	/* ATIM Window (in unit of TU). */
1595 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1596 
1597 	/* Beacon interval (in unit of TU). */
1598 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1599 
1600 	/* DrvErlyInt (in unit of TU). (Time to send
1601 	 * interrupt to notify driver to change
1602 	 * beacon content) */
1603 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1604 
1605 	/* BcnDMATIM(in unit of us). Indicates the
1606 	 * time before TBTT to perform beacon queue DMA  */
1607 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1608 
1609 	/* Force beacon frame transmission even
1610 	 * after receiving beacon frame from
1611 	 * other ad hoc STA */
1612 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1613 
1614 	/* Beacon Time Configuration */
1615 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1616 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1617 
1618 	/* TODO: bcn_ifs may required to be changed on ASIC */
1619 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1620 
1621 	/*for beacon changed */
1622 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1623 }
1624 
1625 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1626 {
1627 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1628 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1629 	u16 bcn_interval = mac->beacon_interval;
1630 
1631 	/* Beacon interval (in unit of TU). */
1632 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1633 	/* 2008.10.24 added by tynli for beacon changed. */
1634 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1635 }
1636 
1637 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1638 		u32 add_msr, u32 rm_msr)
1639 {
1640 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1641 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1642 
1643 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1644 		 add_msr, rm_msr);
1645 
1646 	if (add_msr)
1647 		rtlpci->irq_mask[0] |= add_msr;
1648 
1649 	if (rm_msr)
1650 		rtlpci->irq_mask[0] &= (~rm_msr);
1651 
1652 	rtl92se_disable_interrupt(hw);
1653 	rtl92se_enable_interrupt(hw);
1654 }
1655 
1656 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1657 {
1658 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1659 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1660 	u8 efuse_id;
1661 
1662 	rtlhal->ic_class = IC_INFERIORITY_A;
1663 
1664 	/* Only retrieving while using EFUSE. */
1665 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1666 		!rtlefuse->autoload_failflag) {
1667 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1668 
1669 		if (efuse_id == 0xfe)
1670 			rtlhal->ic_class = IC_INFERIORITY_B;
1671 	}
1672 }
1673 
1674 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1675 {
1676 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1677 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1678 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1679 	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1680 	u16 i, usvalue;
1681 	u16	eeprom_id;
1682 	u8 tempval;
1683 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1684 	u8 rf_path, index;
1685 
1686 	switch (rtlefuse->epromtype) {
1687 	case EEPROM_BOOT_EFUSE:
1688 		rtl_efuse_shadow_map_update(hw);
1689 		break;
1690 
1691 	case EEPROM_93C46:
1692 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1693 			 "RTL819X Not boot from eeprom, check it !!\n");
1694 		return;
1695 
1696 	default:
1697 		dev_warn(dev, "no efuse data\n");
1698 		return;
1699 	}
1700 
1701 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1702 	       HWSET_MAX_SIZE_92S);
1703 
1704 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1705 		      hwinfo, HWSET_MAX_SIZE_92S);
1706 
1707 	eeprom_id = *((u16 *)&hwinfo[0]);
1708 	if (eeprom_id != RTL8190_EEPROM_ID) {
1709 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1710 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1711 		rtlefuse->autoload_failflag = true;
1712 	} else {
1713 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1714 		rtlefuse->autoload_failflag = false;
1715 	}
1716 
1717 	if (rtlefuse->autoload_failflag)
1718 		return;
1719 
1720 	_rtl8192se_get_IC_Inferiority(hw);
1721 
1722 	/* Read IC Version && Channel Plan */
1723 	/* VID, DID	 SE	0xA-D */
1724 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1725 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1726 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1727 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1728 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1729 
1730 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1731 		 "EEPROMId = 0x%4x\n", eeprom_id);
1732 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1733 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1734 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1735 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1736 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1737 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1738 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1739 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1740 
1741 	for (i = 0; i < 6; i += 2) {
1742 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1743 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1744 	}
1745 
1746 	for (i = 0; i < 6; i++)
1747 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1748 
1749 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1750 
1751 	/* Get Tx Power Level by Channel */
1752 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1753 	/* 92S suupport RF A & B */
1754 	for (rf_path = 0; rf_path < 2; rf_path++) {
1755 		for (i = 0; i < 3; i++) {
1756 			/* Read CCK RF A & B Tx power  */
1757 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1758 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1759 
1760 			/* Read OFDM RF A & B Tx power for 1T */
1761 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1762 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1763 
1764 			/* Read OFDM RF A & B Tx power for 2T */
1765 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1766 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1767 				   rf_path * 3 + i];
1768 		}
1769 	}
1770 
1771 	for (rf_path = 0; rf_path < 2; rf_path++)
1772 		for (i = 0; i < 3; i++)
1773 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1774 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1775 				rf_path, i,
1776 				rtlefuse->eeprom_chnlarea_txpwr_cck
1777 				[rf_path][i]);
1778 	for (rf_path = 0; rf_path < 2; rf_path++)
1779 		for (i = 0; i < 3; i++)
1780 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1781 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1782 				rf_path, i,
1783 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1784 				[rf_path][i]);
1785 	for (rf_path = 0; rf_path < 2; rf_path++)
1786 		for (i = 0; i < 3; i++)
1787 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1788 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1789 				rf_path, i,
1790 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1791 				[rf_path][i]);
1792 
1793 	for (rf_path = 0; rf_path < 2; rf_path++) {
1794 
1795 		/* Assign dedicated channel tx power */
1796 		for (i = 0; i < 14; i++)	{
1797 			/* channel 1~3 use the same Tx Power Level. */
1798 			if (i < 3)
1799 				index = 0;
1800 			/* Channel 4-8 */
1801 			else if (i < 8)
1802 				index = 1;
1803 			/* Channel 9-14 */
1804 			else
1805 				index = 2;
1806 
1807 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1808 			 * tx power */
1809 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1810 				rtlefuse->eeprom_chnlarea_txpwr_cck
1811 							[rf_path][index];
1812 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1813 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1814 							[rf_path][index];
1815 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1816 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1817 							[rf_path][index];
1818 		}
1819 
1820 		for (i = 0; i < 14; i++) {
1821 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1822 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1823 				rf_path, i,
1824 				rtlefuse->txpwrlevel_cck[rf_path][i],
1825 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1826 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1827 		}
1828 	}
1829 
1830 	for (rf_path = 0; rf_path < 2; rf_path++) {
1831 		for (i = 0; i < 3; i++) {
1832 			/* Read Power diff limit. */
1833 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1834 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1835 		}
1836 	}
1837 
1838 	for (rf_path = 0; rf_path < 2; rf_path++) {
1839 		/* Fill Pwr group */
1840 		for (i = 0; i < 14; i++) {
1841 			/* Chanel 1-3 */
1842 			if (i < 3)
1843 				index = 0;
1844 			/* Channel 4-8 */
1845 			else if (i < 8)
1846 				index = 1;
1847 			/* Channel 9-13 */
1848 			else
1849 				index = 2;
1850 
1851 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1852 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1853 				0xf);
1854 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1855 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1856 				0xf0) >> 4);
1857 
1858 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1859 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1860 				rf_path, i,
1861 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1862 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1863 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1864 				rf_path, i,
1865 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1866 			}
1867 	}
1868 
1869 	for (i = 0; i < 14; i++) {
1870 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1871 		/* channel 1-3 */
1872 		if (i < 3)
1873 			index = 0;
1874 		/* Channel 4-8 */
1875 		else if (i < 8)
1876 			index = 1;
1877 		/* Channel 9-14 */
1878 		else
1879 			index = 2;
1880 
1881 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1882 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1883 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1884 						 ((tempval >> 4) & 0xF);
1885 
1886 		/* Read OFDM<->HT tx power diff */
1887 		/* Channel 1-3 */
1888 		if (i < 3)
1889 			index = 0;
1890 		/* Channel 4-8 */
1891 		else if (i < 8)
1892 			index = 0x11;
1893 		/* Channel 9-14 */
1894 		else
1895 			index = 1;
1896 
1897 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1898 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1899 				 (tempval & 0xF);
1900 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1901 				 ((tempval >> 4) & 0xF);
1902 
1903 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1904 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1905 	}
1906 
1907 	rtlefuse->eeprom_regulatory = 0;
1908 	if (rtlefuse->eeprom_version >= 2) {
1909 		/* BIT(0)~2 */
1910 		if (rtlefuse->eeprom_version >= 4)
1911 			rtlefuse->eeprom_regulatory =
1912 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1913 		else /* BIT(0) */
1914 			rtlefuse->eeprom_regulatory =
1915 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1916 	}
1917 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1918 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1919 
1920 	for (i = 0; i < 14; i++)
1921 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1922 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1923 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1924 	for (i = 0; i < 14; i++)
1925 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1926 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1927 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1928 	for (i = 0; i < 14; i++)
1929 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1930 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1931 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1932 	for (i = 0; i < 14; i++)
1933 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1934 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1935 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1936 
1937 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1938 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1939 
1940 	/* Read RF-indication and Tx Power gain
1941 	 * index diff of legacy to HT OFDM rate. */
1942 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1943 	rtlefuse->eeprom_txpowerdiff = tempval;
1944 	rtlefuse->legacy_httxpowerdiff =
1945 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1946 
1947 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1948 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1949 
1950 	/* Get TSSI value for each path. */
1951 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1952 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1953 	usvalue = hwinfo[EEPROM_TSSI_B];
1954 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1955 
1956 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1957 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1958 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1959 
1960 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1961 	/* and read ThermalMeter from EEPROM */
1962 	tempval = hwinfo[EEPROM_THERMALMETER];
1963 	rtlefuse->eeprom_thermalmeter = tempval;
1964 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1965 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1966 
1967 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1968 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1969 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1970 
1971 	/* Read CrystalCap from EEPROM */
1972 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1973 	rtlefuse->eeprom_crystalcap = tempval;
1974 	/* CrystalCap, BIT(12)~15 */
1975 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1976 
1977 	/* Read IC Version && Channel Plan */
1978 	/* Version ID, Channel plan */
1979 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1980 	rtlefuse->txpwr_fromeprom = true;
1981 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1982 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1983 
1984 	/* Read Customer ID or Board Type!!! */
1985 	tempval = hwinfo[EEPROM_BOARDTYPE];
1986 	/* Change RF type definition */
1987 	if (tempval == 0)
1988 		rtlphy->rf_type = RF_2T2R;
1989 	else if (tempval == 1)
1990 		rtlphy->rf_type = RF_1T2R;
1991 	else if (tempval == 2)
1992 		rtlphy->rf_type = RF_1T2R;
1993 	else if (tempval == 3)
1994 		rtlphy->rf_type = RF_1T1R;
1995 
1996 	/* 1T2R but 1SS (1x1 receive combining) */
1997 	rtlefuse->b1x1_recvcombine = false;
1998 	if (rtlphy->rf_type == RF_1T2R) {
1999 		tempval = rtl_read_byte(rtlpriv, 0x07);
2000 		if (!(tempval & BIT(0))) {
2001 			rtlefuse->b1x1_recvcombine = true;
2002 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
2003 				 "RF_TYPE=1T2R but only 1SS\n");
2004 		}
2005 	}
2006 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
2007 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
2008 
2009 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
2010 		 rtlefuse->eeprom_oemid);
2011 
2012 	/* set channel paln to world wide 13 */
2013 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2014 }
2015 
2016 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2017 {
2018 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2019 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2020 	u8 tmp_u1b = 0;
2021 
2022 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2023 
2024 	if (tmp_u1b & BIT(4)) {
2025 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2026 		rtlefuse->epromtype = EEPROM_93C46;
2027 	} else {
2028 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2029 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2030 	}
2031 
2032 	if (tmp_u1b & BIT(5)) {
2033 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2034 		rtlefuse->autoload_failflag = false;
2035 		_rtl92se_read_adapter_info(hw);
2036 	} else {
2037 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2038 		rtlefuse->autoload_failflag = true;
2039 	}
2040 }
2041 
2042 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2043 					  struct ieee80211_sta *sta)
2044 {
2045 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2046 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2047 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2048 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2049 	u32 ratr_value;
2050 	u8 ratr_index = 0;
2051 	u8 nmode = mac->ht_enable;
2052 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2053 	u16 shortgi_rate = 0;
2054 	u32 tmp_ratr_value = 0;
2055 	u8 curtxbw_40mhz = mac->bw_40;
2056 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2057 				1 : 0;
2058 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2059 				1 : 0;
2060 	enum wireless_mode wirelessmode = mac->mode;
2061 
2062 	if (rtlhal->current_bandtype == BAND_ON_5G)
2063 		ratr_value = sta->supp_rates[1] << 4;
2064 	else
2065 		ratr_value = sta->supp_rates[0];
2066 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2067 		ratr_value = 0xfff;
2068 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2069 			sta->ht_cap.mcs.rx_mask[0] << 12);
2070 	switch (wirelessmode) {
2071 	case WIRELESS_MODE_B:
2072 		ratr_value &= 0x0000000D;
2073 		break;
2074 	case WIRELESS_MODE_G:
2075 		ratr_value &= 0x00000FF5;
2076 		break;
2077 	case WIRELESS_MODE_N_24G:
2078 	case WIRELESS_MODE_N_5G:
2079 		nmode = 1;
2080 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2081 			ratr_value &= 0x0007F005;
2082 		} else {
2083 			u32 ratr_mask;
2084 
2085 			if (get_rf_type(rtlphy) == RF_1T2R ||
2086 			    get_rf_type(rtlphy) == RF_1T1R) {
2087 				if (curtxbw_40mhz)
2088 					ratr_mask = 0x000ff015;
2089 				else
2090 					ratr_mask = 0x000ff005;
2091 			} else {
2092 				if (curtxbw_40mhz)
2093 					ratr_mask = 0x0f0ff015;
2094 				else
2095 					ratr_mask = 0x0f0ff005;
2096 			}
2097 
2098 			ratr_value &= ratr_mask;
2099 		}
2100 		break;
2101 	default:
2102 		if (rtlphy->rf_type == RF_1T2R)
2103 			ratr_value &= 0x000ff0ff;
2104 		else
2105 			ratr_value &= 0x0f0ff0ff;
2106 
2107 		break;
2108 	}
2109 
2110 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2111 		ratr_value &= 0x0FFFFFFF;
2112 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2113 		ratr_value &= 0x0FFFFFF0;
2114 
2115 	if (nmode && ((curtxbw_40mhz &&
2116 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2117 						 curshortgi_20mhz))) {
2118 
2119 		ratr_value |= 0x10000000;
2120 		tmp_ratr_value = (ratr_value >> 12);
2121 
2122 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2123 			if ((1 << shortgi_rate) & tmp_ratr_value)
2124 				break;
2125 		}
2126 
2127 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2128 		    (shortgi_rate << 4) | (shortgi_rate);
2129 
2130 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2131 	}
2132 
2133 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2134 	if (ratr_value & 0xfffff000)
2135 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2136 	else
2137 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2138 
2139 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2140 		 rtl_read_dword(rtlpriv, ARFR0));
2141 }
2142 
2143 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2144 					 struct ieee80211_sta *sta,
2145 					 u8 rssi_level)
2146 {
2147 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2148 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2149 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2150 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2151 	struct rtl_sta_info *sta_entry = NULL;
2152 	u32 ratr_bitmap;
2153 	u8 ratr_index = 0;
2154 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2155 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2156 				1 : 0;
2157 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2158 				1 : 0;
2159 	enum wireless_mode wirelessmode = 0;
2160 	bool shortgi = false;
2161 	u32 ratr_value = 0;
2162 	u8 shortgi_rate = 0;
2163 	u32 mask = 0;
2164 	u32 band = 0;
2165 	bool bmulticast = false;
2166 	u8 macid = 0;
2167 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2168 
2169 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2170 	wirelessmode = sta_entry->wireless_mode;
2171 	if (mac->opmode == NL80211_IFTYPE_STATION)
2172 		curtxbw_40mhz = mac->bw_40;
2173 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2174 		mac->opmode == NL80211_IFTYPE_ADHOC)
2175 		macid = sta->aid + 1;
2176 
2177 	if (rtlhal->current_bandtype == BAND_ON_5G)
2178 		ratr_bitmap = sta->supp_rates[1] << 4;
2179 	else
2180 		ratr_bitmap = sta->supp_rates[0];
2181 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2182 		ratr_bitmap = 0xfff;
2183 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2184 			sta->ht_cap.mcs.rx_mask[0] << 12);
2185 	switch (wirelessmode) {
2186 	case WIRELESS_MODE_B:
2187 		band |= WIRELESS_11B;
2188 		ratr_index = RATR_INX_WIRELESS_B;
2189 		if (ratr_bitmap & 0x0000000c)
2190 			ratr_bitmap &= 0x0000000d;
2191 		else
2192 			ratr_bitmap &= 0x0000000f;
2193 		break;
2194 	case WIRELESS_MODE_G:
2195 		band |= (WIRELESS_11G | WIRELESS_11B);
2196 		ratr_index = RATR_INX_WIRELESS_GB;
2197 
2198 		if (rssi_level == 1)
2199 			ratr_bitmap &= 0x00000f00;
2200 		else if (rssi_level == 2)
2201 			ratr_bitmap &= 0x00000ff0;
2202 		else
2203 			ratr_bitmap &= 0x00000ff5;
2204 		break;
2205 	case WIRELESS_MODE_A:
2206 		band |= WIRELESS_11A;
2207 		ratr_index = RATR_INX_WIRELESS_A;
2208 		ratr_bitmap &= 0x00000ff0;
2209 		break;
2210 	case WIRELESS_MODE_N_24G:
2211 	case WIRELESS_MODE_N_5G:
2212 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2213 		ratr_index = RATR_INX_WIRELESS_NGB;
2214 
2215 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2216 			if (rssi_level == 1)
2217 				ratr_bitmap &= 0x00070000;
2218 			else if (rssi_level == 2)
2219 				ratr_bitmap &= 0x0007f000;
2220 			else
2221 				ratr_bitmap &= 0x0007f005;
2222 		} else {
2223 			if (rtlphy->rf_type == RF_1T2R ||
2224 				rtlphy->rf_type == RF_1T1R) {
2225 				if (rssi_level == 1) {
2226 						ratr_bitmap &= 0x000f0000;
2227 				} else if (rssi_level == 3) {
2228 					ratr_bitmap &= 0x000fc000;
2229 				} else if (rssi_level == 5) {
2230 						ratr_bitmap &= 0x000ff000;
2231 				} else {
2232 					if (curtxbw_40mhz)
2233 						ratr_bitmap &= 0x000ff015;
2234 					else
2235 						ratr_bitmap &= 0x000ff005;
2236 				}
2237 			} else {
2238 				if (rssi_level == 1) {
2239 					ratr_bitmap &= 0x0f8f0000;
2240 				} else if (rssi_level == 3) {
2241 					ratr_bitmap &= 0x0f8fc000;
2242 				} else if (rssi_level == 5) {
2243 					ratr_bitmap &= 0x0f8ff000;
2244 				} else {
2245 					if (curtxbw_40mhz)
2246 						ratr_bitmap &= 0x0f8ff015;
2247 					else
2248 						ratr_bitmap &= 0x0f8ff005;
2249 				}
2250 			}
2251 		}
2252 
2253 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2254 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2255 			if (macid == 0)
2256 				shortgi = true;
2257 			else if (macid == 1)
2258 				shortgi = false;
2259 		}
2260 		break;
2261 	default:
2262 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2263 		ratr_index = RATR_INX_WIRELESS_NGB;
2264 
2265 		if (rtlphy->rf_type == RF_1T2R)
2266 			ratr_bitmap &= 0x000ff0ff;
2267 		else
2268 			ratr_bitmap &= 0x0f8ff0ff;
2269 		break;
2270 	}
2271 	sta_entry->ratr_index = ratr_index;
2272 
2273 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2274 		ratr_bitmap &= 0x0FFFFFFF;
2275 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2276 		ratr_bitmap &= 0x0FFFFFF0;
2277 
2278 	if (shortgi) {
2279 		ratr_bitmap |= 0x10000000;
2280 		/* Get MAX MCS available. */
2281 		ratr_value = (ratr_bitmap >> 12);
2282 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2283 			if ((1 << shortgi_rate) & ratr_value)
2284 				break;
2285 		}
2286 
2287 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2288 			(shortgi_rate << 4) | (shortgi_rate);
2289 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2290 	}
2291 
2292 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2293 
2294 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2295 		 mask, ratr_bitmap);
2296 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2297 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2298 
2299 	if (macid != 0)
2300 		sta_entry->ratr_index = ratr_index;
2301 }
2302 
2303 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2304 		struct ieee80211_sta *sta, u8 rssi_level)
2305 {
2306 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2307 
2308 	if (rtlpriv->dm.useramask)
2309 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2310 	else
2311 		rtl92se_update_hal_rate_table(hw, sta);
2312 }
2313 
2314 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2315 {
2316 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2317 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2318 	u16 sifs_timer;
2319 
2320 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2321 				      &mac->slot_time);
2322 	sifs_timer = 0x0e0e;
2323 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2324 
2325 }
2326 
2327 /* this ifunction is for RFKILL, it's different with windows,
2328  * because UI will disable wireless when GPIO Radio Off.
2329  * And here we not check or Disable/Enable ASPM like windows*/
2330 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2331 {
2332 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2333 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2334 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2335 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2336 	unsigned long flag = 0;
2337 	bool actuallyset = false;
2338 	bool turnonbypowerdomain = false;
2339 
2340 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2341 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2342 		return false;
2343 
2344 	if (ppsc->swrf_processing)
2345 		return false;
2346 
2347 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2348 	if (ppsc->rfchange_inprogress) {
2349 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2350 		return false;
2351 	} else {
2352 		ppsc->rfchange_inprogress = true;
2353 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2354 	}
2355 
2356 	/* cur_rfstate = ppsc->rfpwr_state;*/
2357 
2358 	/* because after _rtl92s_phy_set_rfhalt, all power
2359 	 * closed, so we must open some power for GPIO check,
2360 	 * or we will always check GPIO RFOFF here,
2361 	 * And we should close power after GPIO check */
2362 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2363 		_rtl92se_power_domain_init(hw);
2364 		turnonbypowerdomain = true;
2365 	}
2366 
2367 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2368 
2369 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2370 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2371 			 "RFKILL-HW Radio ON, RF ON\n");
2372 
2373 		rfpwr_toset = ERFON;
2374 		ppsc->hwradiooff = false;
2375 		actuallyset = true;
2376 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2377 		RT_TRACE(rtlpriv, COMP_RF,
2378 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2379 
2380 		rfpwr_toset = ERFOFF;
2381 		ppsc->hwradiooff = true;
2382 		actuallyset = true;
2383 	}
2384 
2385 	if (actuallyset) {
2386 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2387 		ppsc->rfchange_inprogress = false;
2388 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2389 
2390 	/* this not include ifconfig wlan0 down case */
2391 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2392 	} else {
2393 		/* because power_domain_init may be happen when
2394 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2395 		 * and cause current increasing about 40 mA for ips,
2396 		 * rfoff and ifconfig down, so we set
2397 		 * _rtl92s_phy_set_rfhalt again here */
2398 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2399 			turnonbypowerdomain) {
2400 			_rtl92s_phy_set_rfhalt(hw);
2401 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2402 		}
2403 
2404 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2405 		ppsc->rfchange_inprogress = false;
2406 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2407 	}
2408 
2409 	*valid = 1;
2410 	return !ppsc->hwradiooff;
2411 
2412 }
2413 
2414 /* Is_wepkey just used for WEP used as group & pairwise key
2415  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2416 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2417 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2418 {
2419 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2420 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2421 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2422 	u8 *macaddr = p_macaddr;
2423 
2424 	u32 entry_id = 0;
2425 	bool is_pairwise = false;
2426 
2427 	static u8 cam_const_addr[4][6] = {
2428 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2429 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2430 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2431 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2432 	};
2433 	static u8 cam_const_broad[] = {
2434 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2435 	};
2436 
2437 	if (clear_all) {
2438 		u8 idx = 0;
2439 		u8 cam_offset = 0;
2440 		u8 clear_number = 5;
2441 
2442 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2443 
2444 		for (idx = 0; idx < clear_number; idx++) {
2445 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2446 			rtl_cam_empty_entry(hw, cam_offset + idx);
2447 
2448 			if (idx < 5) {
2449 				memset(rtlpriv->sec.key_buf[idx], 0,
2450 				       MAX_KEY_LEN);
2451 				rtlpriv->sec.key_len[idx] = 0;
2452 			}
2453 		}
2454 
2455 	} else {
2456 		switch (enc_algo) {
2457 		case WEP40_ENCRYPTION:
2458 			enc_algo = CAM_WEP40;
2459 			break;
2460 		case WEP104_ENCRYPTION:
2461 			enc_algo = CAM_WEP104;
2462 			break;
2463 		case TKIP_ENCRYPTION:
2464 			enc_algo = CAM_TKIP;
2465 			break;
2466 		case AESCCMP_ENCRYPTION:
2467 			enc_algo = CAM_AES;
2468 			break;
2469 		default:
2470 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2471 				 "switch case %#x not processed\n", enc_algo);
2472 			enc_algo = CAM_TKIP;
2473 			break;
2474 		}
2475 
2476 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2477 			macaddr = cam_const_addr[key_index];
2478 			entry_id = key_index;
2479 		} else {
2480 			if (is_group) {
2481 				macaddr = cam_const_broad;
2482 				entry_id = key_index;
2483 			} else {
2484 				if (mac->opmode == NL80211_IFTYPE_AP) {
2485 					entry_id = rtl_cam_get_free_entry(hw,
2486 								 p_macaddr);
2487 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2488 						RT_TRACE(rtlpriv,
2489 							 COMP_SEC, DBG_EMERG,
2490 							 "Can not find free hw security cam entry\n");
2491 						return;
2492 					}
2493 				} else {
2494 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2495 				}
2496 
2497 				key_index = PAIRWISE_KEYIDX;
2498 				is_pairwise = true;
2499 			}
2500 		}
2501 
2502 		if (rtlpriv->sec.key_len[key_index] == 0) {
2503 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2504 				 "delete one entry, entry_id is %d\n",
2505 				 entry_id);
2506 			if (mac->opmode == NL80211_IFTYPE_AP)
2507 				rtl_cam_del_entry(hw, p_macaddr);
2508 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2509 		} else {
2510 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2511 				 "add one entry\n");
2512 			if (is_pairwise) {
2513 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2514 					 "set Pairwise key\n");
2515 
2516 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2517 					entry_id, enc_algo,
2518 					CAM_CONFIG_NO_USEDK,
2519 					rtlpriv->sec.key_buf[key_index]);
2520 			} else {
2521 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2522 					 "set group key\n");
2523 
2524 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2525 					rtl_cam_add_one_entry(hw,
2526 						rtlefuse->dev_addr,
2527 						PAIRWISE_KEYIDX,
2528 						CAM_PAIRWISE_KEY_POSITION,
2529 						enc_algo, CAM_CONFIG_NO_USEDK,
2530 						rtlpriv->sec.key_buf[entry_id]);
2531 				}
2532 
2533 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2534 					      entry_id, enc_algo,
2535 					      CAM_CONFIG_NO_USEDK,
2536 					      rtlpriv->sec.key_buf[entry_id]);
2537 			}
2538 
2539 		}
2540 	}
2541 }
2542 
2543 void rtl92se_suspend(struct ieee80211_hw *hw)
2544 {
2545 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2546 
2547 	rtlpci->up_first_time = true;
2548 }
2549 
2550 void rtl92se_resume(struct ieee80211_hw *hw)
2551 {
2552 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2553 	u32 val;
2554 
2555 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2556 	if ((val & 0x0000ff00) != 0)
2557 		pci_write_config_dword(rtlpci->pdev, 0x40,
2558 			val & 0xffff00ff);
2559 }
2560