1 /****************************************************************************** 2 * 3 * Copyright(c) 2009-2012 Realtek Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 * Contact Information: 22 * wlanfae <wlanfae@realtek.com> 23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, 24 * Hsinchu 300, Taiwan. 25 * 26 * Larry Finger <Larry.Finger@lwfinger.net> 27 * 28 *****************************************************************************/ 29 30 #include "../wifi.h" 31 #include "../efuse.h" 32 #include "../base.h" 33 #include "../regd.h" 34 #include "../cam.h" 35 #include "../ps.h" 36 #include "../pci.h" 37 #include "reg.h" 38 #include "def.h" 39 #include "phy.h" 40 #include "dm.h" 41 #include "fw.h" 42 #include "led.h" 43 #include "hw.h" 44 45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 46 { 47 struct rtl_priv *rtlpriv = rtl_priv(hw); 48 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 49 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 50 51 switch (variable) { 52 case HW_VAR_RCR: { 53 *((u32 *) (val)) = rtlpci->receive_config; 54 break; 55 } 56 case HW_VAR_RF_STATE: { 57 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; 58 break; 59 } 60 case HW_VAR_FW_PSMODE_STATUS: { 61 *((bool *) (val)) = ppsc->fw_current_inpsmode; 62 break; 63 } 64 case HW_VAR_CORRECT_TSF: { 65 u64 tsf; 66 u32 *ptsf_low = (u32 *)&tsf; 67 u32 *ptsf_high = ((u32 *)&tsf) + 1; 68 69 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4)); 70 *ptsf_low = rtl_read_dword(rtlpriv, TSFR); 71 72 *((u64 *) (val)) = tsf; 73 74 break; 75 } 76 case HW_VAR_MRC: { 77 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch; 78 break; 79 } 80 default: { 81 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 82 "switch case not processed\n"); 83 break; 84 } 85 } 86 } 87 88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 89 { 90 struct rtl_priv *rtlpriv = rtl_priv(hw); 91 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 92 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 93 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 94 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 95 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 96 97 switch (variable) { 98 case HW_VAR_ETHER_ADDR:{ 99 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]); 100 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]); 101 break; 102 } 103 case HW_VAR_BASIC_RATE:{ 104 u16 rate_cfg = ((u16 *) val)[0]; 105 u8 rate_index = 0; 106 107 if (rtlhal->version == VERSION_8192S_ACUT) 108 rate_cfg = rate_cfg & 0x150; 109 else 110 rate_cfg = rate_cfg & 0x15f; 111 112 rate_cfg |= 0x01; 113 114 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff); 115 rtl_write_byte(rtlpriv, RRSR + 1, 116 (rate_cfg >> 8) & 0xff); 117 118 while (rate_cfg > 0x1) { 119 rate_cfg = (rate_cfg >> 1); 120 rate_index++; 121 } 122 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index); 123 124 break; 125 } 126 case HW_VAR_BSSID:{ 127 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]); 128 rtl_write_word(rtlpriv, BSSIDR + 4, 129 ((u16 *)(val + 4))[0]); 130 break; 131 } 132 case HW_VAR_SIFS:{ 133 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]); 134 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]); 135 break; 136 } 137 case HW_VAR_SLOT_TIME:{ 138 u8 e_aci; 139 140 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 141 "HW_VAR_SLOT_TIME %x\n", val[0]); 142 143 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]); 144 145 for (e_aci = 0; e_aci < AC_MAX; e_aci++) { 146 rtlpriv->cfg->ops->set_hw_reg(hw, 147 HW_VAR_AC_PARAM, 148 (&e_aci)); 149 } 150 break; 151 } 152 case HW_VAR_ACK_PREAMBLE:{ 153 u8 reg_tmp; 154 u8 short_preamble = (bool) (*val); 155 reg_tmp = (mac->cur_40_prime_sc) << 5; 156 if (short_preamble) 157 reg_tmp |= 0x80; 158 159 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp); 160 break; 161 } 162 case HW_VAR_AMPDU_MIN_SPACE:{ 163 u8 min_spacing_to_set; 164 u8 sec_min_space; 165 166 min_spacing_to_set = *val; 167 if (min_spacing_to_set <= 7) { 168 if (rtlpriv->sec.pairwise_enc_algorithm == 169 NO_ENCRYPTION) 170 sec_min_space = 0; 171 else 172 sec_min_space = 1; 173 174 if (min_spacing_to_set < sec_min_space) 175 min_spacing_to_set = sec_min_space; 176 if (min_spacing_to_set > 5) 177 min_spacing_to_set = 5; 178 179 mac->min_space_cfg = 180 ((mac->min_space_cfg & 0xf8) | 181 min_spacing_to_set); 182 183 *val = min_spacing_to_set; 184 185 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 186 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", 187 mac->min_space_cfg); 188 189 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 190 mac->min_space_cfg); 191 } 192 break; 193 } 194 case HW_VAR_SHORTGI_DENSITY:{ 195 u8 density_to_set; 196 197 density_to_set = *val; 198 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; 199 mac->min_space_cfg |= (density_to_set << 3); 200 201 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 202 "Set HW_VAR_SHORTGI_DENSITY: %#x\n", 203 mac->min_space_cfg); 204 205 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 206 mac->min_space_cfg); 207 208 break; 209 } 210 case HW_VAR_AMPDU_FACTOR:{ 211 u8 factor_toset; 212 u8 regtoset; 213 u8 factorlevel[18] = { 214 2, 4, 4, 7, 7, 13, 13, 215 13, 2, 7, 7, 13, 13, 216 15, 15, 15, 15, 0}; 217 u8 index = 0; 218 219 factor_toset = *val; 220 if (factor_toset <= 3) { 221 factor_toset = (1 << (factor_toset + 2)); 222 if (factor_toset > 0xf) 223 factor_toset = 0xf; 224 225 for (index = 0; index < 17; index++) { 226 if (factorlevel[index] > factor_toset) 227 factorlevel[index] = 228 factor_toset; 229 } 230 231 for (index = 0; index < 8; index++) { 232 regtoset = ((factorlevel[index * 2]) | 233 (factorlevel[index * 234 2 + 1] << 4)); 235 rtl_write_byte(rtlpriv, 236 AGGLEN_LMT_L + index, 237 regtoset); 238 } 239 240 regtoset = ((factorlevel[16]) | 241 (factorlevel[17] << 4)); 242 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset); 243 244 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 245 "Set HW_VAR_AMPDU_FACTOR: %#x\n", 246 factor_toset); 247 } 248 break; 249 } 250 case HW_VAR_AC_PARAM:{ 251 u8 e_aci = *val; 252 rtl92s_dm_init_edca_turbo(hw); 253 254 if (rtlpci->acm_method != EACMWAY2_SW) 255 rtlpriv->cfg->ops->set_hw_reg(hw, 256 HW_VAR_ACM_CTRL, 257 &e_aci); 258 break; 259 } 260 case HW_VAR_ACM_CTRL:{ 261 u8 e_aci = *val; 262 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&( 263 mac->ac[0].aifs)); 264 u8 acm = p_aci_aifsn->f.acm; 265 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl); 266 267 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 268 0x0 : 0x1); 269 270 if (acm) { 271 switch (e_aci) { 272 case AC0_BE: 273 acm_ctrl |= AcmHw_BeqEn; 274 break; 275 case AC2_VI: 276 acm_ctrl |= AcmHw_ViqEn; 277 break; 278 case AC3_VO: 279 acm_ctrl |= AcmHw_VoqEn; 280 break; 281 default: 282 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 283 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", 284 acm); 285 break; 286 } 287 } else { 288 switch (e_aci) { 289 case AC0_BE: 290 acm_ctrl &= (~AcmHw_BeqEn); 291 break; 292 case AC2_VI: 293 acm_ctrl &= (~AcmHw_ViqEn); 294 break; 295 case AC3_VO: 296 acm_ctrl &= (~AcmHw_VoqEn); 297 break; 298 default: 299 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 300 "switch case not processed\n"); 301 break; 302 } 303 } 304 305 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, 306 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl); 307 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl); 308 break; 309 } 310 case HW_VAR_RCR:{ 311 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]); 312 rtlpci->receive_config = ((u32 *) (val))[0]; 313 break; 314 } 315 case HW_VAR_RETRY_LIMIT:{ 316 u8 retry_limit = val[0]; 317 318 rtl_write_word(rtlpriv, RETRY_LIMIT, 319 retry_limit << RETRY_LIMIT_SHORT_SHIFT | 320 retry_limit << RETRY_LIMIT_LONG_SHIFT); 321 break; 322 } 323 case HW_VAR_DUAL_TSF_RST: { 324 break; 325 } 326 case HW_VAR_EFUSE_BYTES: { 327 rtlefuse->efuse_usedbytes = *((u16 *) val); 328 break; 329 } 330 case HW_VAR_EFUSE_USAGE: { 331 rtlefuse->efuse_usedpercentage = *val; 332 break; 333 } 334 case HW_VAR_IO_CMD: { 335 break; 336 } 337 case HW_VAR_WPA_CONFIG: { 338 rtl_write_byte(rtlpriv, REG_SECR, *val); 339 break; 340 } 341 case HW_VAR_SET_RPWM:{ 342 break; 343 } 344 case HW_VAR_H2C_FW_PWRMODE:{ 345 break; 346 } 347 case HW_VAR_FW_PSMODE_STATUS: { 348 ppsc->fw_current_inpsmode = *((bool *) val); 349 break; 350 } 351 case HW_VAR_H2C_FW_JOINBSSRPT:{ 352 break; 353 } 354 case HW_VAR_AID:{ 355 break; 356 } 357 case HW_VAR_CORRECT_TSF:{ 358 break; 359 } 360 case HW_VAR_MRC: { 361 bool bmrc_toset = *((bool *)val); 362 u8 u1bdata = 0; 363 364 if (bmrc_toset) { 365 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 366 MASKBYTE0, 0x33); 367 u1bdata = (u8)rtl_get_bbreg(hw, 368 ROFDM1_TRXPATHENABLE, 369 MASKBYTE0); 370 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, 371 MASKBYTE0, 372 ((u1bdata & 0xf0) | 0x03)); 373 u1bdata = (u8)rtl_get_bbreg(hw, 374 ROFDM0_TRXPATHENABLE, 375 MASKBYTE1); 376 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 377 MASKBYTE1, 378 (u1bdata | 0x04)); 379 380 /* Update current settings. */ 381 rtlpriv->dm.current_mrc_switch = bmrc_toset; 382 } else { 383 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 384 MASKBYTE0, 0x13); 385 u1bdata = (u8)rtl_get_bbreg(hw, 386 ROFDM1_TRXPATHENABLE, 387 MASKBYTE0); 388 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, 389 MASKBYTE0, 390 ((u1bdata & 0xf0) | 0x01)); 391 u1bdata = (u8)rtl_get_bbreg(hw, 392 ROFDM0_TRXPATHENABLE, 393 MASKBYTE1); 394 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, 395 MASKBYTE1, (u1bdata & 0xfb)); 396 397 /* Update current settings. */ 398 rtlpriv->dm.current_mrc_switch = bmrc_toset; 399 } 400 401 break; 402 } 403 case HW_VAR_FW_LPS_ACTION: { 404 bool enter_fwlps = *((bool *)val); 405 u8 rpwm_val, fw_pwrmode; 406 bool fw_current_inps; 407 408 if (enter_fwlps) { 409 rpwm_val = 0x02; /* RF off */ 410 fw_current_inps = true; 411 rtlpriv->cfg->ops->set_hw_reg(hw, 412 HW_VAR_FW_PSMODE_STATUS, 413 (u8 *)(&fw_current_inps)); 414 rtlpriv->cfg->ops->set_hw_reg(hw, 415 HW_VAR_H2C_FW_PWRMODE, 416 &ppsc->fwctrl_psmode); 417 418 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, 419 &rpwm_val); 420 } else { 421 rpwm_val = 0x0C; /* RF on */ 422 fw_pwrmode = FW_PS_ACTIVE_MODE; 423 fw_current_inps = false; 424 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, 425 &rpwm_val); 426 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, 427 &fw_pwrmode); 428 429 rtlpriv->cfg->ops->set_hw_reg(hw, 430 HW_VAR_FW_PSMODE_STATUS, 431 (u8 *)(&fw_current_inps)); 432 } 433 break; } 434 default: 435 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 436 "switch case not processed\n"); 437 break; 438 } 439 440 } 441 442 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw) 443 { 444 struct rtl_priv *rtlpriv = rtl_priv(hw); 445 u8 sec_reg_value = 0x0; 446 447 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 448 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", 449 rtlpriv->sec.pairwise_enc_algorithm, 450 rtlpriv->sec.group_enc_algorithm); 451 452 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { 453 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 454 "not open hw encryption\n"); 455 return; 456 } 457 458 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; 459 460 if (rtlpriv->sec.use_defaultkey) { 461 sec_reg_value |= SCR_TXUSEDK; 462 sec_reg_value |= SCR_RXUSEDK; 463 } 464 465 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", 466 sec_reg_value); 467 468 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); 469 470 } 471 472 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data) 473 { 474 struct rtl_priv *rtlpriv = rtl_priv(hw); 475 u8 waitcount = 100; 476 bool bresult = false; 477 u8 tmpvalue; 478 479 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); 480 481 /* Wait the MAC synchronized. */ 482 udelay(400); 483 484 /* Check if it is set ready. */ 485 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 486 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7))); 487 488 if ((data & (BIT(6) | BIT(7))) == false) { 489 waitcount = 100; 490 tmpvalue = 0; 491 492 while (1) { 493 waitcount--; 494 495 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 496 if ((tmpvalue & BIT(6))) 497 break; 498 499 pr_err("wait for BIT(6) return value %x\n", tmpvalue); 500 if (waitcount == 0) 501 break; 502 503 udelay(10); 504 } 505 506 if (waitcount == 0) 507 bresult = false; 508 else 509 bresult = true; 510 } 511 512 return bresult; 513 } 514 515 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw) 516 { 517 struct rtl_priv *rtlpriv = rtl_priv(hw); 518 u8 u1tmp; 519 520 /* The following config GPIO function */ 521 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); 522 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); 523 524 /* config GPIO3 to input */ 525 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; 526 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); 527 528 } 529 530 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw) 531 { 532 struct rtl_priv *rtlpriv = rtl_priv(hw); 533 u8 u1tmp; 534 u8 retval = ERFON; 535 536 /* The following config GPIO function */ 537 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); 538 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); 539 540 /* config GPIO3 to input */ 541 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; 542 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); 543 544 /* On some of the platform, driver cannot read correct 545 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */ 546 mdelay(10); 547 548 /* check GPIO3 */ 549 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE); 550 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF; 551 552 return retval; 553 } 554 555 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw) 556 { 557 struct rtl_priv *rtlpriv = rtl_priv(hw); 558 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 559 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 560 561 u8 i; 562 u8 tmpu1b; 563 u16 tmpu2b; 564 u8 pollingcnt = 20; 565 566 if (rtlpci->first_init) { 567 /* Reset PCIE Digital */ 568 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 569 tmpu1b &= 0xFE; 570 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 571 udelay(1); 572 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0)); 573 } 574 575 /* Switch to SW IO control */ 576 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 577 if (tmpu1b & BIT(7)) { 578 tmpu1b &= ~(BIT(6) | BIT(7)); 579 580 /* Set failed, return to prevent hang. */ 581 if (!_rtl92se_halset_sysclk(hw, tmpu1b)) 582 return; 583 } 584 585 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); 586 udelay(50); 587 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 588 udelay(50); 589 590 /* Clear FW RPWM for FW control LPS.*/ 591 rtl_write_byte(rtlpriv, RPWM, 0x0); 592 593 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */ 594 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 595 tmpu1b &= 0x73; 596 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 597 /* wait for BIT 10/11/15 to pull high automatically!! */ 598 mdelay(1); 599 600 rtl_write_byte(rtlpriv, CMDR, 0); 601 rtl_write_byte(rtlpriv, TCR, 0); 602 603 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ 604 tmpu1b = rtl_read_byte(rtlpriv, 0x562); 605 tmpu1b |= 0x08; 606 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 607 tmpu1b &= ~(BIT(3)); 608 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 609 610 /* Enable AFE clock source */ 611 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); 612 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); 613 /* Delay 1.5ms */ 614 mdelay(2); 615 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); 616 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); 617 618 /* Enable AFE Macro Block's Bandgap */ 619 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 620 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); 621 mdelay(1); 622 623 /* Enable AFE Mbias */ 624 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 625 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); 626 mdelay(1); 627 628 /* Enable LDOA15 block */ 629 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); 630 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); 631 632 /* Set Digital Vdd to Retention isolation Path. */ 633 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); 634 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); 635 636 /* For warm reboot NIC disappera bug. */ 637 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 638 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); 639 640 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); 641 642 /* Enable AFE PLL Macro Block */ 643 /* We need to delay 100u before enabling PLL. */ 644 udelay(200); 645 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); 646 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 647 648 /* for divider reset */ 649 udelay(100); 650 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | 651 BIT(4) | BIT(6))); 652 udelay(10); 653 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 654 udelay(10); 655 656 /* Enable MAC 80MHZ clock */ 657 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); 658 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); 659 mdelay(1); 660 661 /* Release isolation AFE PLL & MD */ 662 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); 663 664 /* Enable MAC clock */ 665 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 666 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); 667 668 /* Enable Core digital and enable IOREG R/W */ 669 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 670 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); 671 672 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 673 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7))); 674 675 /* enable REG_EN */ 676 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); 677 678 /* Switch the control path. */ 679 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 680 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); 681 682 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 683 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); 684 if (!_rtl92se_halset_sysclk(hw, tmpu1b)) 685 return; /* Set failed, return to prevent hang. */ 686 687 rtl_write_word(rtlpriv, CMDR, 0x07FC); 688 689 /* MH We must enable the section of code to prevent load IMEM fail. */ 690 /* Load MAC register from WMAc temporarily We simulate macreg. */ 691 /* txt HW will provide MAC txt later */ 692 rtl_write_byte(rtlpriv, 0x6, 0x30); 693 rtl_write_byte(rtlpriv, 0x49, 0xf0); 694 695 rtl_write_byte(rtlpriv, 0x4b, 0x81); 696 697 rtl_write_byte(rtlpriv, 0xb5, 0x21); 698 699 rtl_write_byte(rtlpriv, 0xdc, 0xff); 700 rtl_write_byte(rtlpriv, 0xdd, 0xff); 701 rtl_write_byte(rtlpriv, 0xde, 0xff); 702 rtl_write_byte(rtlpriv, 0xdf, 0xff); 703 704 rtl_write_byte(rtlpriv, 0x11a, 0x00); 705 rtl_write_byte(rtlpriv, 0x11b, 0x00); 706 707 for (i = 0; i < 32; i++) 708 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b); 709 710 rtl_write_byte(rtlpriv, 0x236, 0xff); 711 712 rtl_write_byte(rtlpriv, 0x503, 0x22); 713 714 if (ppsc->support_aspm && !ppsc->support_backdoor) 715 rtl_write_byte(rtlpriv, 0x560, 0x40); 716 else 717 rtl_write_byte(rtlpriv, 0x560, 0x00); 718 719 rtl_write_byte(rtlpriv, DBG_PORT, 0x91); 720 721 /* Set RX Desc Address */ 722 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma); 723 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma); 724 725 /* Set TX Desc Address */ 726 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma); 727 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma); 728 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma); 729 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma); 730 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma); 731 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma); 732 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma); 733 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma); 734 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma); 735 736 rtl_write_word(rtlpriv, CMDR, 0x37FC); 737 738 /* To make sure that TxDMA can ready to download FW. */ 739 /* We should reset TxDMA if IMEM RPT was not ready. */ 740 do { 741 tmpu1b = rtl_read_byte(rtlpriv, TCR); 742 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE) 743 break; 744 745 udelay(5); 746 } while (pollingcnt--); 747 748 if (pollingcnt <= 0) { 749 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 750 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n", 751 tmpu1b); 752 tmpu1b = rtl_read_byte(rtlpriv, CMDR); 753 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN)); 754 udelay(2); 755 /* Reset TxDMA */ 756 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN); 757 } 758 759 /* After MACIO reset,we must refresh LED state. */ 760 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) || 761 (ppsc->rfoff_reason == 0)) { 762 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); 763 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); 764 enum rf_pwrstate rfpwr_state_toset; 765 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw); 766 767 if (rfpwr_state_toset == ERFON) 768 rtl92se_sw_led_on(hw, pLed0); 769 } 770 } 771 772 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw) 773 { 774 struct rtl_priv *rtlpriv = rtl_priv(hw); 775 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 776 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 777 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 778 u8 i; 779 u16 tmpu2b; 780 781 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */ 782 783 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */ 784 /* Turn on 0x40 Command register */ 785 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN | 786 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN | 787 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN)); 788 789 /* Set TCR TX DMA pre 2 FULL enable bit */ 790 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) | 791 TXDMAPRE2FULL); 792 793 /* Set RCR */ 794 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); 795 796 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */ 797 798 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */ 799 /* Set CCK/OFDM SIFS */ 800 /* CCK SIFS shall always be 10us. */ 801 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a); 802 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010); 803 804 /* Set AckTimeout */ 805 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40); 806 807 /* Beacon related */ 808 rtl_write_word(rtlpriv, BCN_INTERVAL, 100); 809 rtl_write_word(rtlpriv, ATIMWND, 2); 810 811 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */ 812 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */ 813 /* Firmware allocate now, associate with FW internal setting.!!! */ 814 815 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */ 816 /* 5.3 Set driver info, we only accept PHY status now. */ 817 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */ 818 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6)); 819 820 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */ 821 /* Set RRSR to all legacy rate and HT rate 822 * CCK rate is supported by default. 823 * CCK rate will be filtered out only when associated 824 * AP does not support it. 825 * Only enable ACK rate to OFDM 24M 826 * Disable RRSR for CCK rate in A-Cut */ 827 828 if (rtlhal->version == VERSION_8192S_ACUT) 829 rtl_write_byte(rtlpriv, RRSR, 0xf0); 830 else if (rtlhal->version == VERSION_8192S_BCUT) 831 rtl_write_byte(rtlpriv, RRSR, 0xff); 832 rtl_write_byte(rtlpriv, RRSR + 1, 0x01); 833 rtl_write_byte(rtlpriv, RRSR + 2, 0x00); 834 835 /* A-Cut IC do not support CCK rate. We forbid ARFR to */ 836 /* fallback to CCK rate */ 837 for (i = 0; i < 8; i++) { 838 /*Disable RRSR for CCK rate in A-Cut */ 839 if (rtlhal->version == VERSION_8192S_ACUT) 840 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0); 841 } 842 843 /* Different rate use different AMPDU size */ 844 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */ 845 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f); 846 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */ 847 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442); 848 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */ 849 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7); 850 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */ 851 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772); 852 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */ 853 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd); 854 855 /* Set Data / Response auto rate fallack retry count */ 856 rtl_write_dword(rtlpriv, DARFRC, 0x04010000); 857 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605); 858 rtl_write_dword(rtlpriv, RARFRC, 0x04010000); 859 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605); 860 861 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */ 862 /* Set all rate to support SG */ 863 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF); 864 865 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */ 866 /* Set NAV protection length */ 867 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080); 868 /* CF-END Threshold */ 869 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF); 870 /* Set AMPDU minimum space */ 871 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07); 872 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */ 873 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00); 874 875 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */ 876 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */ 877 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */ 878 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */ 879 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */ 880 881 /* 14. Set driver info, we only accept PHY status now. */ 882 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4); 883 884 /* 15. For EEPROM R/W Workaround */ 885 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */ 886 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN); 887 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13)); 888 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL); 889 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8))); 890 891 /* 17. For EFUSE */ 892 /* We may R/W EFUSE in EEPROM mode */ 893 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { 894 u8 tempval; 895 896 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1); 897 tempval &= 0xFE; 898 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval); 899 900 /* Change Program timing */ 901 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72); 902 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n"); 903 } 904 905 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n"); 906 907 } 908 909 static void _rtl92se_hw_configure(struct ieee80211_hw *hw) 910 { 911 struct rtl_priv *rtlpriv = rtl_priv(hw); 912 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 913 struct rtl_phy *rtlphy = &(rtlpriv->phy); 914 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 915 916 u8 reg_bw_opmode = 0; 917 u32 reg_rrsr = 0; 918 u8 regtmp = 0; 919 920 reg_bw_opmode = BW_OPMODE_20MHZ; 921 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; 922 923 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL); 924 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp; 925 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr); 926 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); 927 928 /* Set Retry Limit here */ 929 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT, 930 (u8 *)(&rtlpci->shortretry_limit)); 931 932 rtl_write_byte(rtlpriv, MLT, 0x8f); 933 934 /* For Min Spacing configuration. */ 935 switch (rtlphy->rf_type) { 936 case RF_1T2R: 937 case RF_1T1R: 938 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); 939 break; 940 case RF_2T2R: 941 case RF_2T2R_GREEN: 942 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); 943 break; 944 } 945 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg); 946 } 947 948 int rtl92se_hw_init(struct ieee80211_hw *hw) 949 { 950 struct rtl_priv *rtlpriv = rtl_priv(hw); 951 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 952 struct rtl_phy *rtlphy = &(rtlpriv->phy); 953 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 954 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 955 u8 tmp_byte = 0; 956 unsigned long flags; 957 bool rtstatus = true; 958 u8 tmp_u1b; 959 int err = false; 960 u8 i; 961 int wdcapra_add[] = { 962 EDCAPARA_BE, EDCAPARA_BK, 963 EDCAPARA_VI, EDCAPARA_VO}; 964 u8 secr_value = 0x0; 965 966 rtlpci->being_init_adapter = true; 967 968 /* As this function can take a very long time (up to 350 ms) 969 * and can be called with irqs disabled, reenable the irqs 970 * to let the other devices continue being serviced. 971 * 972 * It is safe doing so since our own interrupts will only be enabled 973 * in a subsequent step. 974 */ 975 local_save_flags(flags); 976 local_irq_enable(); 977 978 rtlpriv->intf_ops->disable_aspm(hw); 979 980 /* 1. MAC Initialize */ 981 /* Before FW download, we have to set some MAC register */ 982 _rtl92se_macconfig_before_fwdownload(hw); 983 984 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv, 985 PMC_FSM) >> 16) & 0xF); 986 987 rtl8192se_gpiobit3_cfg_inputmode(hw); 988 989 /* 2. download firmware */ 990 rtstatus = rtl92s_download_fw(hw); 991 if (!rtstatus) { 992 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 993 "Failed to download FW. Init HW without FW now... " 994 "Please copy FW into /lib/firmware/rtlwifi\n"); 995 err = 1; 996 goto exit; 997 } 998 999 /* After FW download, we have to reset MAC register */ 1000 _rtl92se_macconfig_after_fwdownload(hw); 1001 1002 /*Retrieve default FW Cmd IO map. */ 1003 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR); 1004 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK); 1005 1006 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */ 1007 if (!rtl92s_phy_mac_config(hw)) { 1008 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n"); 1009 err = rtstatus; 1010 goto exit; 1011 } 1012 1013 /* because last function modify RCR, so we update 1014 * rcr var here, or TP will unstable for receive_config 1015 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx 1016 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 1017 */ 1018 rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR); 1019 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); 1020 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); 1021 1022 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */ 1023 /* We must set flag avoid BB/RF config period later!! */ 1024 rtl_write_dword(rtlpriv, CMDR, 0x37FC); 1025 1026 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */ 1027 if (!rtl92s_phy_bb_config(hw)) { 1028 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n"); 1029 err = rtstatus; 1030 goto exit; 1031 } 1032 1033 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */ 1034 /* Before initalizing RF. We can not use FW to do RF-R/W. */ 1035 1036 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; 1037 1038 /* Before RF-R/W we must execute the IO from Scott's suggestion. */ 1039 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB); 1040 if (rtlhal->version == VERSION_8192S_ACUT) 1041 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07); 1042 else 1043 rtl_write_byte(rtlpriv, RF_CTRL, 0x07); 1044 1045 if (!rtl92s_phy_rf_config(hw)) { 1046 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n"); 1047 err = rtstatus; 1048 goto exit; 1049 } 1050 1051 /* After read predefined TXT, we must set BB/MAC/RF 1052 * register as our requirement */ 1053 1054 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw, 1055 (enum radio_path)0, 1056 RF_CHNLBW, 1057 RFREG_OFFSET_MASK); 1058 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw, 1059 (enum radio_path)1, 1060 RF_CHNLBW, 1061 RFREG_OFFSET_MASK); 1062 1063 /*---- Set CCK and OFDM Block "ON"----*/ 1064 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); 1065 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); 1066 1067 /*3 Set Hardware(Do nothing now) */ 1068 _rtl92se_hw_configure(hw); 1069 1070 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ 1071 /* TX power index for different rate set. */ 1072 /* Get original hw reg values */ 1073 rtl92s_phy_get_hw_reg_originalvalue(hw); 1074 /* Write correct tx power index */ 1075 rtl92s_phy_set_txpower(hw, rtlphy->current_channel); 1076 1077 /* We must set MAC address after firmware download. */ 1078 for (i = 0; i < 6; i++) 1079 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); 1080 1081 /* EEPROM R/W workaround */ 1082 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG); 1083 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3))); 1084 1085 rtl_write_byte(rtlpriv, 0x4d, 0x0); 1086 1087 if (hal_get_firmwareversion(rtlpriv) >= 0x49) { 1088 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4)); 1089 tmp_byte = tmp_byte | BIT(5); 1090 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte); 1091 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF); 1092 } 1093 1094 /* We enable high power and RA related mechanism after NIC 1095 * initialized. */ 1096 if (hal_get_firmwareversion(rtlpriv) >= 0x35) { 1097 /* Fw v.53 and later. */ 1098 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT); 1099 } else if (hal_get_firmwareversion(rtlpriv) == 0x34) { 1100 /* Fw v.52. */ 1101 rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT); 1102 rtl92s_phy_chk_fwcmd_iodone(hw); 1103 } else { 1104 /* Compatible earlier FW version. */ 1105 rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET); 1106 rtl92s_phy_chk_fwcmd_iodone(hw); 1107 rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE); 1108 rtl92s_phy_chk_fwcmd_iodone(hw); 1109 rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH); 1110 rtl92s_phy_chk_fwcmd_iodone(hw); 1111 } 1112 1113 /* Add to prevent ASPM bug. */ 1114 /* Always enable hst and NIC clock request. */ 1115 rtl92s_phy_switch_ephy_parameter(hw); 1116 1117 /* Security related 1118 * 1. Clear all H/W keys. 1119 * 2. Enable H/W encryption/decryption. */ 1120 rtl_cam_reset_all_entry(hw); 1121 secr_value |= SCR_TXENCENABLE; 1122 secr_value |= SCR_RXENCENABLE; 1123 secr_value |= SCR_NOSKMC; 1124 rtl_write_byte(rtlpriv, REG_SECR, secr_value); 1125 1126 for (i = 0; i < 4; i++) 1127 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322); 1128 1129 if (rtlphy->rf_type == RF_1T2R) { 1130 bool mrc2set = true; 1131 /* Turn on B-Path */ 1132 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set); 1133 } 1134 1135 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON); 1136 rtl92s_dm_init(hw); 1137 exit: 1138 local_irq_restore(flags); 1139 rtlpci->being_init_adapter = false; 1140 return err; 1141 } 1142 1143 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr) 1144 { 1145 /* This is a stub. */ 1146 } 1147 1148 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) 1149 { 1150 struct rtl_priv *rtlpriv = rtl_priv(hw); 1151 u32 reg_rcr; 1152 1153 if (rtlpriv->psc.rfpwr_state != ERFON) 1154 return; 1155 1156 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1157 1158 if (check_bssid) { 1159 reg_rcr |= (RCR_CBSSID); 1160 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1161 } else if (!check_bssid) { 1162 reg_rcr &= (~RCR_CBSSID); 1163 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1164 } 1165 1166 } 1167 1168 static int _rtl92se_set_media_status(struct ieee80211_hw *hw, 1169 enum nl80211_iftype type) 1170 { 1171 struct rtl_priv *rtlpriv = rtl_priv(hw); 1172 u8 bt_msr = rtl_read_byte(rtlpriv, MSR); 1173 u32 temp; 1174 bt_msr &= ~MSR_LINK_MASK; 1175 1176 switch (type) { 1177 case NL80211_IFTYPE_UNSPECIFIED: 1178 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT); 1179 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1180 "Set Network type to NO LINK!\n"); 1181 break; 1182 case NL80211_IFTYPE_ADHOC: 1183 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT); 1184 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1185 "Set Network type to Ad Hoc!\n"); 1186 break; 1187 case NL80211_IFTYPE_STATION: 1188 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT); 1189 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1190 "Set Network type to STA!\n"); 1191 break; 1192 case NL80211_IFTYPE_AP: 1193 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT); 1194 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1195 "Set Network type to AP!\n"); 1196 break; 1197 default: 1198 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 1199 "Network type %d not supported!\n", type); 1200 return 1; 1201 1202 } 1203 1204 if (type != NL80211_IFTYPE_AP && 1205 rtlpriv->mac80211.link_state < MAC80211_LINKED) 1206 bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK; 1207 rtl_write_byte(rtlpriv, MSR, bt_msr); 1208 1209 temp = rtl_read_dword(rtlpriv, TCR); 1210 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8))); 1211 rtl_write_dword(rtlpriv, TCR, temp | BIT(8)); 1212 1213 1214 return 0; 1215 } 1216 1217 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */ 1218 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) 1219 { 1220 struct rtl_priv *rtlpriv = rtl_priv(hw); 1221 1222 if (_rtl92se_set_media_status(hw, type)) 1223 return -EOPNOTSUPP; 1224 1225 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { 1226 if (type != NL80211_IFTYPE_AP) 1227 rtl92se_set_check_bssid(hw, true); 1228 } else { 1229 rtl92se_set_check_bssid(hw, false); 1230 } 1231 1232 return 0; 1233 } 1234 1235 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ 1236 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci) 1237 { 1238 struct rtl_priv *rtlpriv = rtl_priv(hw); 1239 rtl92s_dm_init_edca_turbo(hw); 1240 1241 switch (aci) { 1242 case AC1_BK: 1243 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f); 1244 break; 1245 case AC0_BE: 1246 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */ 1247 break; 1248 case AC2_VI: 1249 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322); 1250 break; 1251 case AC3_VO: 1252 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222); 1253 break; 1254 default: 1255 RT_ASSERT(false, "invalid aci: %d !\n", aci); 1256 break; 1257 } 1258 } 1259 1260 void rtl92se_enable_interrupt(struct ieee80211_hw *hw) 1261 { 1262 struct rtl_priv *rtlpriv = rtl_priv(hw); 1263 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1264 1265 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]); 1266 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */ 1267 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F); 1268 rtlpci->irq_enabled = true; 1269 } 1270 1271 void rtl92se_disable_interrupt(struct ieee80211_hw *hw) 1272 { 1273 struct rtl_priv *rtlpriv; 1274 struct rtl_pci *rtlpci; 1275 1276 rtlpriv = rtl_priv(hw); 1277 /* if firmware not available, no interrupts */ 1278 if (!rtlpriv || !rtlpriv->max_fw_size) 1279 return; 1280 rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1281 rtl_write_dword(rtlpriv, INTA_MASK, 0); 1282 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0); 1283 rtlpci->irq_enabled = false; 1284 } 1285 1286 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data) 1287 { 1288 struct rtl_priv *rtlpriv = rtl_priv(hw); 1289 u8 waitcnt = 100; 1290 bool result = false; 1291 u8 tmp; 1292 1293 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); 1294 1295 /* Wait the MAC synchronized. */ 1296 udelay(400); 1297 1298 /* Check if it is set ready. */ 1299 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 1300 result = ((tmp & BIT(7)) == (data & BIT(7))); 1301 1302 if ((data & (BIT(6) | BIT(7))) == false) { 1303 waitcnt = 100; 1304 tmp = 0; 1305 1306 while (1) { 1307 waitcnt--; 1308 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); 1309 1310 if ((tmp & BIT(6))) 1311 break; 1312 1313 pr_err("wait for BIT(6) return value %x\n", tmp); 1314 1315 if (waitcnt == 0) 1316 break; 1317 udelay(10); 1318 } 1319 1320 if (waitcnt == 0) 1321 result = false; 1322 else 1323 result = true; 1324 } 1325 1326 return result; 1327 } 1328 1329 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw) 1330 { 1331 struct rtl_priv *rtlpriv = rtl_priv(hw); 1332 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1333 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1334 u8 u1btmp; 1335 1336 if (rtlhal->driver_going2unload) 1337 rtl_write_byte(rtlpriv, 0x560, 0x0); 1338 1339 /* Power save for BB/RF */ 1340 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL); 1341 u1btmp |= BIT(0); 1342 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp); 1343 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0); 1344 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF); 1345 rtl_write_word(rtlpriv, CMDR, 0x57FC); 1346 udelay(100); 1347 rtl_write_word(rtlpriv, CMDR, 0x77FC); 1348 rtl_write_byte(rtlpriv, PHY_CCA, 0x0); 1349 udelay(10); 1350 rtl_write_word(rtlpriv, CMDR, 0x37FC); 1351 udelay(10); 1352 rtl_write_word(rtlpriv, CMDR, 0x77FC); 1353 udelay(10); 1354 rtl_write_word(rtlpriv, CMDR, 0x57FC); 1355 rtl_write_word(rtlpriv, CMDR, 0x0000); 1356 1357 if (rtlhal->driver_going2unload) { 1358 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1)); 1359 u1btmp &= ~(BIT(0)); 1360 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp); 1361 } 1362 1363 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1364 1365 /* Add description. After switch control path. register 1366 * after page1 will be invisible. We can not do any IO 1367 * for register>0x40. After resume&MACIO reset, we need 1368 * to remember previous reg content. */ 1369 if (u1btmp & BIT(7)) { 1370 u1btmp &= ~(BIT(6) | BIT(7)); 1371 if (!_rtl92s_set_sysclk(hw, u1btmp)) { 1372 pr_err("Switch ctrl path fail\n"); 1373 return; 1374 } 1375 } 1376 1377 /* Power save for MAC */ 1378 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS && 1379 !rtlhal->driver_going2unload) { 1380 /* enable LED function */ 1381 rtl_write_byte(rtlpriv, 0x03, 0xF9); 1382 /* SW/HW radio off or halt adapter!! For example S3/S4 */ 1383 } else { 1384 /* LED function disable. Power range is about 8mA now. */ 1385 /* if write 0xF1 disconnet_pci power 1386 * ifconfig wlan0 down power are both high 35:70 */ 1387 /* if write oxF9 disconnet_pci power 1388 * ifconfig wlan0 down power are both low 12:45*/ 1389 rtl_write_byte(rtlpriv, 0x03, 0xF9); 1390 } 1391 1392 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70); 1393 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68); 1394 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00); 1395 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 1396 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E); 1397 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 1398 1399 } 1400 1401 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw) 1402 { 1403 struct rtl_priv *rtlpriv = rtl_priv(hw); 1404 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1405 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); 1406 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); 1407 1408 if (rtlpci->up_first_time == 1) 1409 return; 1410 1411 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS) 1412 rtl92se_sw_led_on(hw, pLed0); 1413 else 1414 rtl92se_sw_led_off(hw, pLed0); 1415 } 1416 1417 1418 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw) 1419 { 1420 struct rtl_priv *rtlpriv = rtl_priv(hw); 1421 u16 tmpu2b; 1422 u8 tmpu1b; 1423 1424 rtlpriv->psc.pwrdomain_protect = true; 1425 1426 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1427 if (tmpu1b & BIT(7)) { 1428 tmpu1b &= ~(BIT(6) | BIT(7)); 1429 if (!_rtl92s_set_sysclk(hw, tmpu1b)) { 1430 rtlpriv->psc.pwrdomain_protect = false; 1431 return; 1432 } 1433 } 1434 1435 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); 1436 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); 1437 1438 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */ 1439 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); 1440 1441 /* If IPS we need to turn LED on. So we not 1442 * not disable BIT 3/7 of reg3. */ 1443 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW)) 1444 tmpu1b &= 0xFB; 1445 else 1446 tmpu1b &= 0x73; 1447 1448 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); 1449 /* wait for BIT 10/11/15 to pull high automatically!! */ 1450 mdelay(1); 1451 1452 rtl_write_byte(rtlpriv, CMDR, 0); 1453 rtl_write_byte(rtlpriv, TCR, 0); 1454 1455 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ 1456 tmpu1b = rtl_read_byte(rtlpriv, 0x562); 1457 tmpu1b |= 0x08; 1458 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 1459 tmpu1b &= ~(BIT(3)); 1460 rtl_write_byte(rtlpriv, 0x562, tmpu1b); 1461 1462 /* Enable AFE clock source */ 1463 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); 1464 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); 1465 /* Delay 1.5ms */ 1466 udelay(1500); 1467 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); 1468 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); 1469 1470 /* Enable AFE Macro Block's Bandgap */ 1471 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 1472 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); 1473 mdelay(1); 1474 1475 /* Enable AFE Mbias */ 1476 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); 1477 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); 1478 mdelay(1); 1479 1480 /* Enable LDOA15 block */ 1481 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); 1482 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); 1483 1484 /* Set Digital Vdd to Retention isolation Path. */ 1485 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); 1486 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); 1487 1488 1489 /* For warm reboot NIC disappera bug. */ 1490 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 1491 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); 1492 1493 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); 1494 1495 /* Enable AFE PLL Macro Block */ 1496 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); 1497 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); 1498 /* Enable MAC 80MHZ clock */ 1499 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); 1500 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); 1501 mdelay(1); 1502 1503 /* Release isolation AFE PLL & MD */ 1504 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); 1505 1506 /* Enable MAC clock */ 1507 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 1508 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); 1509 1510 /* Enable Core digital and enable IOREG R/W */ 1511 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); 1512 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); 1513 /* enable REG_EN */ 1514 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); 1515 1516 /* Switch the control path. */ 1517 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); 1518 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); 1519 1520 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); 1521 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); 1522 if (!_rtl92s_set_sysclk(hw, tmpu1b)) { 1523 rtlpriv->psc.pwrdomain_protect = false; 1524 return; 1525 } 1526 1527 rtl_write_word(rtlpriv, CMDR, 0x37FC); 1528 1529 /* After MACIO reset,we must refresh LED state. */ 1530 _rtl92se_gen_refreshledstate(hw); 1531 1532 rtlpriv->psc.pwrdomain_protect = false; 1533 } 1534 1535 void rtl92se_card_disable(struct ieee80211_hw *hw) 1536 { 1537 struct rtl_priv *rtlpriv = rtl_priv(hw); 1538 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1539 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1540 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1541 enum nl80211_iftype opmode; 1542 u8 wait = 30; 1543 1544 rtlpriv->intf_ops->enable_aspm(hw); 1545 1546 if (rtlpci->driver_is_goingto_unload || 1547 ppsc->rfoff_reason > RF_CHANGE_BY_PS) 1548 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); 1549 1550 /* we should chnge GPIO to input mode 1551 * this will drop away current about 25mA*/ 1552 rtl8192se_gpiobit3_cfg_inputmode(hw); 1553 1554 /* this is very important for ips power save */ 1555 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) { 1556 if (rtlpriv->psc.pwrdomain_protect) 1557 mdelay(20); 1558 else 1559 break; 1560 } 1561 1562 mac->link_state = MAC80211_NOLINK; 1563 opmode = NL80211_IFTYPE_UNSPECIFIED; 1564 _rtl92se_set_media_status(hw, opmode); 1565 1566 _rtl92s_phy_set_rfhalt(hw); 1567 udelay(100); 1568 } 1569 1570 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, 1571 u32 *p_intb) 1572 { 1573 struct rtl_priv *rtlpriv = rtl_priv(hw); 1574 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1575 1576 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; 1577 rtl_write_dword(rtlpriv, ISR, *p_inta); 1578 1579 *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1]; 1580 rtl_write_dword(rtlpriv, ISR + 4, *p_intb); 1581 } 1582 1583 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw) 1584 { 1585 struct rtl_priv *rtlpriv = rtl_priv(hw); 1586 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1587 u16 bcntime_cfg = 0; 1588 u16 bcn_cw = 6, bcn_ifs = 0xf; 1589 u16 atim_window = 2; 1590 1591 /* ATIM Window (in unit of TU). */ 1592 rtl_write_word(rtlpriv, ATIMWND, atim_window); 1593 1594 /* Beacon interval (in unit of TU). */ 1595 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval); 1596 1597 /* DrvErlyInt (in unit of TU). (Time to send 1598 * interrupt to notify driver to change 1599 * beacon content) */ 1600 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4); 1601 1602 /* BcnDMATIM(in unit of us). Indicates the 1603 * time before TBTT to perform beacon queue DMA */ 1604 rtl_write_word(rtlpriv, BCN_DMATIME, 256); 1605 1606 /* Force beacon frame transmission even 1607 * after receiving beacon frame from 1608 * other ad hoc STA */ 1609 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100); 1610 1611 /* Beacon Time Configuration */ 1612 if (mac->opmode == NL80211_IFTYPE_ADHOC) 1613 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT); 1614 1615 /* TODO: bcn_ifs may required to be changed on ASIC */ 1616 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS; 1617 1618 /*for beacon changed */ 1619 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval); 1620 } 1621 1622 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw) 1623 { 1624 struct rtl_priv *rtlpriv = rtl_priv(hw); 1625 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1626 u16 bcn_interval = mac->beacon_interval; 1627 1628 /* Beacon interval (in unit of TU). */ 1629 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval); 1630 /* 2008.10.24 added by tynli for beacon changed. */ 1631 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval); 1632 } 1633 1634 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw, 1635 u32 add_msr, u32 rm_msr) 1636 { 1637 struct rtl_priv *rtlpriv = rtl_priv(hw); 1638 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1639 1640 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", 1641 add_msr, rm_msr); 1642 1643 if (add_msr) 1644 rtlpci->irq_mask[0] |= add_msr; 1645 1646 if (rm_msr) 1647 rtlpci->irq_mask[0] &= (~rm_msr); 1648 1649 rtl92se_disable_interrupt(hw); 1650 rtl92se_enable_interrupt(hw); 1651 } 1652 1653 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw) 1654 { 1655 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1656 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1657 u8 efuse_id; 1658 1659 rtlhal->ic_class = IC_INFERIORITY_A; 1660 1661 /* Only retrieving while using EFUSE. */ 1662 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) && 1663 !rtlefuse->autoload_failflag) { 1664 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET); 1665 1666 if (efuse_id == 0xfe) 1667 rtlhal->ic_class = IC_INFERIORITY_B; 1668 } 1669 } 1670 1671 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw) 1672 { 1673 struct rtl_priv *rtlpriv = rtl_priv(hw); 1674 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1675 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1676 struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev; 1677 u16 i, usvalue; 1678 u16 eeprom_id; 1679 u8 tempval; 1680 u8 hwinfo[HWSET_MAX_SIZE_92S]; 1681 u8 rf_path, index; 1682 1683 switch (rtlefuse->epromtype) { 1684 case EEPROM_BOOT_EFUSE: 1685 rtl_efuse_shadow_map_update(hw); 1686 break; 1687 1688 case EEPROM_93C46: 1689 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 1690 "RTL819X Not boot from eeprom, check it !!\n"); 1691 return; 1692 1693 default: 1694 dev_warn(dev, "no efuse data\n"); 1695 return; 1696 } 1697 1698 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 1699 HWSET_MAX_SIZE_92S); 1700 1701 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", 1702 hwinfo, HWSET_MAX_SIZE_92S); 1703 1704 eeprom_id = *((u16 *)&hwinfo[0]); 1705 if (eeprom_id != RTL8190_EEPROM_ID) { 1706 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 1707 "EEPROM ID(%#x) is invalid!!\n", eeprom_id); 1708 rtlefuse->autoload_failflag = true; 1709 } else { 1710 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 1711 rtlefuse->autoload_failflag = false; 1712 } 1713 1714 if (rtlefuse->autoload_failflag) 1715 return; 1716 1717 _rtl8192se_get_IC_Inferiority(hw); 1718 1719 /* Read IC Version && Channel Plan */ 1720 /* VID, DID SE 0xA-D */ 1721 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; 1722 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; 1723 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; 1724 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; 1725 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; 1726 1727 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1728 "EEPROMId = 0x%4x\n", eeprom_id); 1729 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1730 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); 1731 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1732 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); 1733 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1734 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); 1735 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1736 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); 1737 1738 for (i = 0; i < 6; i += 2) { 1739 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; 1740 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; 1741 } 1742 1743 for (i = 0; i < 6; i++) 1744 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); 1745 1746 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); 1747 1748 /* Get Tx Power Level by Channel */ 1749 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */ 1750 /* 92S suupport RF A & B */ 1751 for (rf_path = 0; rf_path < 2; rf_path++) { 1752 for (i = 0; i < 3; i++) { 1753 /* Read CCK RF A & B Tx power */ 1754 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = 1755 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i]; 1756 1757 /* Read OFDM RF A & B Tx power for 1T */ 1758 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = 1759 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i]; 1760 1761 /* Read OFDM RF A & B Tx power for 2T */ 1762 rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i] 1763 = hwinfo[EEPROM_TXPOWERBASE + 12 + 1764 rf_path * 3 + i]; 1765 } 1766 } 1767 1768 for (rf_path = 0; rf_path < 2; rf_path++) 1769 for (i = 0; i < 3; i++) 1770 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1771 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", 1772 rf_path, i, 1773 rtlefuse->eeprom_chnlarea_txpwr_cck 1774 [rf_path][i]); 1775 for (rf_path = 0; rf_path < 2; rf_path++) 1776 for (i = 0; i < 3; i++) 1777 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1778 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", 1779 rf_path, i, 1780 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s 1781 [rf_path][i]); 1782 for (rf_path = 0; rf_path < 2; rf_path++) 1783 for (i = 0; i < 3; i++) 1784 RTPRINT(rtlpriv, FINIT, INIT_EEPROM, 1785 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", 1786 rf_path, i, 1787 rtlefuse->eprom_chnl_txpwr_ht40_2sdf 1788 [rf_path][i]); 1789 1790 for (rf_path = 0; rf_path < 2; rf_path++) { 1791 1792 /* Assign dedicated channel tx power */ 1793 for (i = 0; i < 14; i++) { 1794 /* channel 1~3 use the same Tx Power Level. */ 1795 if (i < 3) 1796 index = 0; 1797 /* Channel 4-8 */ 1798 else if (i < 8) 1799 index = 1; 1800 /* Channel 9-14 */ 1801 else 1802 index = 2; 1803 1804 /* Record A & B CCK /OFDM - 1T/2T Channel area 1805 * tx power */ 1806 rtlefuse->txpwrlevel_cck[rf_path][i] = 1807 rtlefuse->eeprom_chnlarea_txpwr_cck 1808 [rf_path][index]; 1809 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = 1810 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s 1811 [rf_path][index]; 1812 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 1813 rtlefuse->eprom_chnl_txpwr_ht40_2sdf 1814 [rf_path][index]; 1815 } 1816 1817 for (i = 0; i < 14; i++) { 1818 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1819 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", 1820 rf_path, i, 1821 rtlefuse->txpwrlevel_cck[rf_path][i], 1822 rtlefuse->txpwrlevel_ht40_1s[rf_path][i], 1823 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); 1824 } 1825 } 1826 1827 for (rf_path = 0; rf_path < 2; rf_path++) { 1828 for (i = 0; i < 3; i++) { 1829 /* Read Power diff limit. */ 1830 rtlefuse->eeprom_pwrgroup[rf_path][i] = 1831 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i]; 1832 } 1833 } 1834 1835 for (rf_path = 0; rf_path < 2; rf_path++) { 1836 /* Fill Pwr group */ 1837 for (i = 0; i < 14; i++) { 1838 /* Chanel 1-3 */ 1839 if (i < 3) 1840 index = 0; 1841 /* Channel 4-8 */ 1842 else if (i < 8) 1843 index = 1; 1844 /* Channel 9-13 */ 1845 else 1846 index = 2; 1847 1848 rtlefuse->pwrgroup_ht20[rf_path][i] = 1849 (rtlefuse->eeprom_pwrgroup[rf_path][index] & 1850 0xf); 1851 rtlefuse->pwrgroup_ht40[rf_path][i] = 1852 ((rtlefuse->eeprom_pwrgroup[rf_path][index] & 1853 0xf0) >> 4); 1854 1855 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1856 "RF-%d pwrgroup_ht20[%d] = 0x%x\n", 1857 rf_path, i, 1858 rtlefuse->pwrgroup_ht20[rf_path][i]); 1859 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1860 "RF-%d pwrgroup_ht40[%d] = 0x%x\n", 1861 rf_path, i, 1862 rtlefuse->pwrgroup_ht40[rf_path][i]); 1863 } 1864 } 1865 1866 for (i = 0; i < 14; i++) { 1867 /* Read tx power difference between HT OFDM 20/40 MHZ */ 1868 /* channel 1-3 */ 1869 if (i < 3) 1870 index = 0; 1871 /* Channel 4-8 */ 1872 else if (i < 8) 1873 index = 1; 1874 /* Channel 9-14 */ 1875 else 1876 index = 2; 1877 1878 tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff; 1879 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); 1880 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = 1881 ((tempval >> 4) & 0xF); 1882 1883 /* Read OFDM<->HT tx power diff */ 1884 /* Channel 1-3 */ 1885 if (i < 3) 1886 index = 0; 1887 /* Channel 4-8 */ 1888 else if (i < 8) 1889 index = 0x11; 1890 /* Channel 9-14 */ 1891 else 1892 index = 1; 1893 1894 tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff; 1895 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = 1896 (tempval & 0xF); 1897 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = 1898 ((tempval >> 4) & 0xF); 1899 1900 tempval = hwinfo[TX_PWR_SAFETY_CHK]; 1901 rtlefuse->txpwr_safetyflag = (tempval & 0x01); 1902 } 1903 1904 rtlefuse->eeprom_regulatory = 0; 1905 if (rtlefuse->eeprom_version >= 2) { 1906 /* BIT(0)~2 */ 1907 if (rtlefuse->eeprom_version >= 4) 1908 rtlefuse->eeprom_regulatory = 1909 (hwinfo[EEPROM_REGULATORY] & 0x7); 1910 else /* BIT(0) */ 1911 rtlefuse->eeprom_regulatory = 1912 (hwinfo[EEPROM_REGULATORY] & 0x1); 1913 } 1914 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1915 "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); 1916 1917 for (i = 0; i < 14; i++) 1918 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1919 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", 1920 i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); 1921 for (i = 0; i < 14; i++) 1922 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1923 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", 1924 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); 1925 for (i = 0; i < 14; i++) 1926 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1927 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", 1928 i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); 1929 for (i = 0; i < 14; i++) 1930 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1931 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", 1932 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); 1933 1934 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1935 "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag); 1936 1937 /* Read RF-indication and Tx Power gain 1938 * index diff of legacy to HT OFDM rate. */ 1939 tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff; 1940 rtlefuse->eeprom_txpowerdiff = tempval; 1941 rtlefuse->legacy_httxpowerdiff = 1942 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0]; 1943 1944 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1945 "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff); 1946 1947 /* Get TSSI value for each path. */ 1948 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A]; 1949 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8); 1950 usvalue = hwinfo[EEPROM_TSSI_B]; 1951 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff); 1952 1953 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", 1954 rtlefuse->eeprom_tssi[RF90_PATH_A], 1955 rtlefuse->eeprom_tssi[RF90_PATH_B]); 1956 1957 /* Read antenna tx power offset of B/C/D to A from EEPROM */ 1958 /* and read ThermalMeter from EEPROM */ 1959 tempval = hwinfo[EEPROM_THERMALMETER]; 1960 rtlefuse->eeprom_thermalmeter = tempval; 1961 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1962 "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); 1963 1964 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */ 1965 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f); 1966 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100; 1967 1968 /* Read CrystalCap from EEPROM */ 1969 tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4; 1970 rtlefuse->eeprom_crystalcap = tempval; 1971 /* CrystalCap, BIT(12)~15 */ 1972 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap; 1973 1974 /* Read IC Version && Channel Plan */ 1975 /* Version ID, Channel plan */ 1976 rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; 1977 rtlefuse->txpwr_fromeprom = true; 1978 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, 1979 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan); 1980 1981 /* Read Customer ID or Board Type!!! */ 1982 tempval = hwinfo[EEPROM_BOARDTYPE]; 1983 /* Change RF type definition */ 1984 if (tempval == 0) 1985 rtlphy->rf_type = RF_2T2R; 1986 else if (tempval == 1) 1987 rtlphy->rf_type = RF_1T2R; 1988 else if (tempval == 2) 1989 rtlphy->rf_type = RF_1T2R; 1990 else if (tempval == 3) 1991 rtlphy->rf_type = RF_1T1R; 1992 1993 /* 1T2R but 1SS (1x1 receive combining) */ 1994 rtlefuse->b1x1_recvcombine = false; 1995 if (rtlphy->rf_type == RF_1T2R) { 1996 tempval = rtl_read_byte(rtlpriv, 0x07); 1997 if (!(tempval & BIT(0))) { 1998 rtlefuse->b1x1_recvcombine = true; 1999 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 2000 "RF_TYPE=1T2R but only 1SS\n"); 2001 } 2002 } 2003 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine; 2004 rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID]; 2005 2006 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", 2007 rtlefuse->eeprom_oemid); 2008 2009 /* set channel paln to world wide 13 */ 2010 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; 2011 } 2012 2013 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw) 2014 { 2015 struct rtl_priv *rtlpriv = rtl_priv(hw); 2016 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2017 u8 tmp_u1b = 0; 2018 2019 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD); 2020 2021 if (tmp_u1b & BIT(4)) { 2022 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); 2023 rtlefuse->epromtype = EEPROM_93C46; 2024 } else { 2025 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); 2026 rtlefuse->epromtype = EEPROM_BOOT_EFUSE; 2027 } 2028 2029 if (tmp_u1b & BIT(5)) { 2030 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 2031 rtlefuse->autoload_failflag = false; 2032 _rtl92se_read_adapter_info(hw); 2033 } else { 2034 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); 2035 rtlefuse->autoload_failflag = true; 2036 } 2037 } 2038 2039 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw, 2040 struct ieee80211_sta *sta) 2041 { 2042 struct rtl_priv *rtlpriv = rtl_priv(hw); 2043 struct rtl_phy *rtlphy = &(rtlpriv->phy); 2044 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2045 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 2046 u32 ratr_value; 2047 u8 ratr_index = 0; 2048 u8 nmode = mac->ht_enable; 2049 u8 mimo_ps = IEEE80211_SMPS_OFF; 2050 u16 shortgi_rate = 0; 2051 u32 tmp_ratr_value = 0; 2052 u8 curtxbw_40mhz = mac->bw_40; 2053 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 2054 1 : 0; 2055 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 2056 1 : 0; 2057 enum wireless_mode wirelessmode = mac->mode; 2058 2059 if (rtlhal->current_bandtype == BAND_ON_5G) 2060 ratr_value = sta->supp_rates[1] << 4; 2061 else 2062 ratr_value = sta->supp_rates[0]; 2063 if (mac->opmode == NL80211_IFTYPE_ADHOC) 2064 ratr_value = 0xfff; 2065 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 2066 sta->ht_cap.mcs.rx_mask[0] << 12); 2067 switch (wirelessmode) { 2068 case WIRELESS_MODE_B: 2069 ratr_value &= 0x0000000D; 2070 break; 2071 case WIRELESS_MODE_G: 2072 ratr_value &= 0x00000FF5; 2073 break; 2074 case WIRELESS_MODE_N_24G: 2075 case WIRELESS_MODE_N_5G: 2076 nmode = 1; 2077 if (mimo_ps == IEEE80211_SMPS_STATIC) { 2078 ratr_value &= 0x0007F005; 2079 } else { 2080 u32 ratr_mask; 2081 2082 if (get_rf_type(rtlphy) == RF_1T2R || 2083 get_rf_type(rtlphy) == RF_1T1R) { 2084 if (curtxbw_40mhz) 2085 ratr_mask = 0x000ff015; 2086 else 2087 ratr_mask = 0x000ff005; 2088 } else { 2089 if (curtxbw_40mhz) 2090 ratr_mask = 0x0f0ff015; 2091 else 2092 ratr_mask = 0x0f0ff005; 2093 } 2094 2095 ratr_value &= ratr_mask; 2096 } 2097 break; 2098 default: 2099 if (rtlphy->rf_type == RF_1T2R) 2100 ratr_value &= 0x000ff0ff; 2101 else 2102 ratr_value &= 0x0f0ff0ff; 2103 2104 break; 2105 } 2106 2107 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) 2108 ratr_value &= 0x0FFFFFFF; 2109 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) 2110 ratr_value &= 0x0FFFFFF0; 2111 2112 if (nmode && ((curtxbw_40mhz && 2113 curshortgi_40mhz) || (!curtxbw_40mhz && 2114 curshortgi_20mhz))) { 2115 2116 ratr_value |= 0x10000000; 2117 tmp_ratr_value = (ratr_value >> 12); 2118 2119 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 2120 if ((1 << shortgi_rate) & tmp_ratr_value) 2121 break; 2122 } 2123 2124 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 2125 (shortgi_rate << 4) | (shortgi_rate); 2126 2127 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); 2128 } 2129 2130 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value); 2131 if (ratr_value & 0xfffff000) 2132 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N); 2133 else 2134 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG); 2135 2136 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", 2137 rtl_read_dword(rtlpriv, ARFR0)); 2138 } 2139 2140 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw, 2141 struct ieee80211_sta *sta, 2142 u8 rssi_level) 2143 { 2144 struct rtl_priv *rtlpriv = rtl_priv(hw); 2145 struct rtl_phy *rtlphy = &(rtlpriv->phy); 2146 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2147 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 2148 struct rtl_sta_info *sta_entry = NULL; 2149 u32 ratr_bitmap; 2150 u8 ratr_index = 0; 2151 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; 2152 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 2153 1 : 0; 2154 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 2155 1 : 0; 2156 enum wireless_mode wirelessmode = 0; 2157 bool shortgi = false; 2158 u32 ratr_value = 0; 2159 u8 shortgi_rate = 0; 2160 u32 mask = 0; 2161 u32 band = 0; 2162 bool bmulticast = false; 2163 u8 macid = 0; 2164 u8 mimo_ps = IEEE80211_SMPS_OFF; 2165 2166 sta_entry = (struct rtl_sta_info *) sta->drv_priv; 2167 wirelessmode = sta_entry->wireless_mode; 2168 if (mac->opmode == NL80211_IFTYPE_STATION) 2169 curtxbw_40mhz = mac->bw_40; 2170 else if (mac->opmode == NL80211_IFTYPE_AP || 2171 mac->opmode == NL80211_IFTYPE_ADHOC) 2172 macid = sta->aid + 1; 2173 2174 if (rtlhal->current_bandtype == BAND_ON_5G) 2175 ratr_bitmap = sta->supp_rates[1] << 4; 2176 else 2177 ratr_bitmap = sta->supp_rates[0]; 2178 if (mac->opmode == NL80211_IFTYPE_ADHOC) 2179 ratr_bitmap = 0xfff; 2180 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 2181 sta->ht_cap.mcs.rx_mask[0] << 12); 2182 switch (wirelessmode) { 2183 case WIRELESS_MODE_B: 2184 band |= WIRELESS_11B; 2185 ratr_index = RATR_INX_WIRELESS_B; 2186 if (ratr_bitmap & 0x0000000c) 2187 ratr_bitmap &= 0x0000000d; 2188 else 2189 ratr_bitmap &= 0x0000000f; 2190 break; 2191 case WIRELESS_MODE_G: 2192 band |= (WIRELESS_11G | WIRELESS_11B); 2193 ratr_index = RATR_INX_WIRELESS_GB; 2194 2195 if (rssi_level == 1) 2196 ratr_bitmap &= 0x00000f00; 2197 else if (rssi_level == 2) 2198 ratr_bitmap &= 0x00000ff0; 2199 else 2200 ratr_bitmap &= 0x00000ff5; 2201 break; 2202 case WIRELESS_MODE_A: 2203 band |= WIRELESS_11A; 2204 ratr_index = RATR_INX_WIRELESS_A; 2205 ratr_bitmap &= 0x00000ff0; 2206 break; 2207 case WIRELESS_MODE_N_24G: 2208 case WIRELESS_MODE_N_5G: 2209 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); 2210 ratr_index = RATR_INX_WIRELESS_NGB; 2211 2212 if (mimo_ps == IEEE80211_SMPS_STATIC) { 2213 if (rssi_level == 1) 2214 ratr_bitmap &= 0x00070000; 2215 else if (rssi_level == 2) 2216 ratr_bitmap &= 0x0007f000; 2217 else 2218 ratr_bitmap &= 0x0007f005; 2219 } else { 2220 if (rtlphy->rf_type == RF_1T2R || 2221 rtlphy->rf_type == RF_1T1R) { 2222 if (rssi_level == 1) { 2223 ratr_bitmap &= 0x000f0000; 2224 } else if (rssi_level == 3) { 2225 ratr_bitmap &= 0x000fc000; 2226 } else if (rssi_level == 5) { 2227 ratr_bitmap &= 0x000ff000; 2228 } else { 2229 if (curtxbw_40mhz) 2230 ratr_bitmap &= 0x000ff015; 2231 else 2232 ratr_bitmap &= 0x000ff005; 2233 } 2234 } else { 2235 if (rssi_level == 1) { 2236 ratr_bitmap &= 0x0f8f0000; 2237 } else if (rssi_level == 3) { 2238 ratr_bitmap &= 0x0f8fc000; 2239 } else if (rssi_level == 5) { 2240 ratr_bitmap &= 0x0f8ff000; 2241 } else { 2242 if (curtxbw_40mhz) 2243 ratr_bitmap &= 0x0f8ff015; 2244 else 2245 ratr_bitmap &= 0x0f8ff005; 2246 } 2247 } 2248 } 2249 2250 if ((curtxbw_40mhz && curshortgi_40mhz) || 2251 (!curtxbw_40mhz && curshortgi_20mhz)) { 2252 if (macid == 0) 2253 shortgi = true; 2254 else if (macid == 1) 2255 shortgi = false; 2256 } 2257 break; 2258 default: 2259 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); 2260 ratr_index = RATR_INX_WIRELESS_NGB; 2261 2262 if (rtlphy->rf_type == RF_1T2R) 2263 ratr_bitmap &= 0x000ff0ff; 2264 else 2265 ratr_bitmap &= 0x0f8ff0ff; 2266 break; 2267 } 2268 sta_entry->ratr_index = ratr_index; 2269 2270 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) 2271 ratr_bitmap &= 0x0FFFFFFF; 2272 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) 2273 ratr_bitmap &= 0x0FFFFFF0; 2274 2275 if (shortgi) { 2276 ratr_bitmap |= 0x10000000; 2277 /* Get MAX MCS available. */ 2278 ratr_value = (ratr_bitmap >> 12); 2279 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 2280 if ((1 << shortgi_rate) & ratr_value) 2281 break; 2282 } 2283 2284 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 2285 (shortgi_rate << 4) | (shortgi_rate); 2286 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); 2287 } 2288 2289 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf); 2290 2291 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n", 2292 mask, ratr_bitmap); 2293 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap); 2294 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8))); 2295 2296 if (macid != 0) 2297 sta_entry->ratr_index = ratr_index; 2298 } 2299 2300 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw, 2301 struct ieee80211_sta *sta, u8 rssi_level) 2302 { 2303 struct rtl_priv *rtlpriv = rtl_priv(hw); 2304 2305 if (rtlpriv->dm.useramask) 2306 rtl92se_update_hal_rate_mask(hw, sta, rssi_level); 2307 else 2308 rtl92se_update_hal_rate_table(hw, sta); 2309 } 2310 2311 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw) 2312 { 2313 struct rtl_priv *rtlpriv = rtl_priv(hw); 2314 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2315 u16 sifs_timer; 2316 2317 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, 2318 &mac->slot_time); 2319 sifs_timer = 0x0e0e; 2320 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); 2321 2322 } 2323 2324 /* this ifunction is for RFKILL, it's different with windows, 2325 * because UI will disable wireless when GPIO Radio Off. 2326 * And here we not check or Disable/Enable ASPM like windows*/ 2327 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) 2328 { 2329 struct rtl_priv *rtlpriv = rtl_priv(hw); 2330 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 2331 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2332 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */; 2333 unsigned long flag = 0; 2334 bool actuallyset = false; 2335 bool turnonbypowerdomain = false; 2336 2337 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */ 2338 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter)) 2339 return false; 2340 2341 if (ppsc->swrf_processing) 2342 return false; 2343 2344 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2345 if (ppsc->rfchange_inprogress) { 2346 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2347 return false; 2348 } else { 2349 ppsc->rfchange_inprogress = true; 2350 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2351 } 2352 2353 /* cur_rfstate = ppsc->rfpwr_state;*/ 2354 2355 /* because after _rtl92s_phy_set_rfhalt, all power 2356 * closed, so we must open some power for GPIO check, 2357 * or we will always check GPIO RFOFF here, 2358 * And we should close power after GPIO check */ 2359 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { 2360 _rtl92se_power_domain_init(hw); 2361 turnonbypowerdomain = true; 2362 } 2363 2364 rfpwr_toset = _rtl92se_rf_onoff_detect(hw); 2365 2366 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) { 2367 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, 2368 "RFKILL-HW Radio ON, RF ON\n"); 2369 2370 rfpwr_toset = ERFON; 2371 ppsc->hwradiooff = false; 2372 actuallyset = true; 2373 } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) { 2374 RT_TRACE(rtlpriv, COMP_RF, 2375 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n"); 2376 2377 rfpwr_toset = ERFOFF; 2378 ppsc->hwradiooff = true; 2379 actuallyset = true; 2380 } 2381 2382 if (actuallyset) { 2383 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2384 ppsc->rfchange_inprogress = false; 2385 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2386 2387 /* this not include ifconfig wlan0 down case */ 2388 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */ 2389 } else { 2390 /* because power_domain_init may be happen when 2391 * _rtl92s_phy_set_rfhalt, this will open some powers 2392 * and cause current increasing about 40 mA for ips, 2393 * rfoff and ifconfig down, so we set 2394 * _rtl92s_phy_set_rfhalt again here */ 2395 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC && 2396 turnonbypowerdomain) { 2397 _rtl92s_phy_set_rfhalt(hw); 2398 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 2399 } 2400 2401 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2402 ppsc->rfchange_inprogress = false; 2403 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2404 } 2405 2406 *valid = 1; 2407 return !ppsc->hwradiooff; 2408 2409 } 2410 2411 /* Is_wepkey just used for WEP used as group & pairwise key 2412 * if pairwise is AES ang group is WEP Is_wepkey == false.*/ 2413 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, 2414 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) 2415 { 2416 struct rtl_priv *rtlpriv = rtl_priv(hw); 2417 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2418 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2419 u8 *macaddr = p_macaddr; 2420 2421 u32 entry_id = 0; 2422 bool is_pairwise = false; 2423 2424 static u8 cam_const_addr[4][6] = { 2425 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 2426 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 2427 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, 2428 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} 2429 }; 2430 static u8 cam_const_broad[] = { 2431 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2432 }; 2433 2434 if (clear_all) { 2435 u8 idx = 0; 2436 u8 cam_offset = 0; 2437 u8 clear_number = 5; 2438 2439 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); 2440 2441 for (idx = 0; idx < clear_number; idx++) { 2442 rtl_cam_mark_invalid(hw, cam_offset + idx); 2443 rtl_cam_empty_entry(hw, cam_offset + idx); 2444 2445 if (idx < 5) { 2446 memset(rtlpriv->sec.key_buf[idx], 0, 2447 MAX_KEY_LEN); 2448 rtlpriv->sec.key_len[idx] = 0; 2449 } 2450 } 2451 2452 } else { 2453 switch (enc_algo) { 2454 case WEP40_ENCRYPTION: 2455 enc_algo = CAM_WEP40; 2456 break; 2457 case WEP104_ENCRYPTION: 2458 enc_algo = CAM_WEP104; 2459 break; 2460 case TKIP_ENCRYPTION: 2461 enc_algo = CAM_TKIP; 2462 break; 2463 case AESCCMP_ENCRYPTION: 2464 enc_algo = CAM_AES; 2465 break; 2466 default: 2467 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, 2468 "switch case not processed\n"); 2469 enc_algo = CAM_TKIP; 2470 break; 2471 } 2472 2473 if (is_wepkey || rtlpriv->sec.use_defaultkey) { 2474 macaddr = cam_const_addr[key_index]; 2475 entry_id = key_index; 2476 } else { 2477 if (is_group) { 2478 macaddr = cam_const_broad; 2479 entry_id = key_index; 2480 } else { 2481 if (mac->opmode == NL80211_IFTYPE_AP) { 2482 entry_id = rtl_cam_get_free_entry(hw, 2483 p_macaddr); 2484 if (entry_id >= TOTAL_CAM_ENTRY) { 2485 RT_TRACE(rtlpriv, 2486 COMP_SEC, DBG_EMERG, 2487 "Can not find free hw security cam entry\n"); 2488 return; 2489 } 2490 } else { 2491 entry_id = CAM_PAIRWISE_KEY_POSITION; 2492 } 2493 2494 key_index = PAIRWISE_KEYIDX; 2495 is_pairwise = true; 2496 } 2497 } 2498 2499 if (rtlpriv->sec.key_len[key_index] == 0) { 2500 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2501 "delete one entry, entry_id is %d\n", 2502 entry_id); 2503 if (mac->opmode == NL80211_IFTYPE_AP) 2504 rtl_cam_del_entry(hw, p_macaddr); 2505 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); 2506 } else { 2507 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2508 "add one entry\n"); 2509 if (is_pairwise) { 2510 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2511 "set Pairwise key\n"); 2512 2513 rtl_cam_add_one_entry(hw, macaddr, key_index, 2514 entry_id, enc_algo, 2515 CAM_CONFIG_NO_USEDK, 2516 rtlpriv->sec.key_buf[key_index]); 2517 } else { 2518 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2519 "set group key\n"); 2520 2521 if (mac->opmode == NL80211_IFTYPE_ADHOC) { 2522 rtl_cam_add_one_entry(hw, 2523 rtlefuse->dev_addr, 2524 PAIRWISE_KEYIDX, 2525 CAM_PAIRWISE_KEY_POSITION, 2526 enc_algo, CAM_CONFIG_NO_USEDK, 2527 rtlpriv->sec.key_buf[entry_id]); 2528 } 2529 2530 rtl_cam_add_one_entry(hw, macaddr, key_index, 2531 entry_id, enc_algo, 2532 CAM_CONFIG_NO_USEDK, 2533 rtlpriv->sec.key_buf[entry_id]); 2534 } 2535 2536 } 2537 } 2538 } 2539 2540 void rtl92se_suspend(struct ieee80211_hw *hw) 2541 { 2542 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2543 2544 rtlpci->up_first_time = true; 2545 } 2546 2547 void rtl92se_resume(struct ieee80211_hw *hw) 2548 { 2549 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2550 u32 val; 2551 2552 pci_read_config_dword(rtlpci->pdev, 0x40, &val); 2553 if ((val & 0x0000ff00) != 0) 2554 pci_write_config_dword(rtlpci->pdev, 0x40, 2555 val & 0xffff00ff); 2556 } 2557