1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
44 
45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46 {
47 	struct rtl_priv *rtlpriv = rtl_priv(hw);
48 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50 
51 	switch (variable) {
52 	case HW_VAR_RCR: {
53 			*((u32 *) (val)) = rtlpci->receive_config;
54 			break;
55 		}
56 	case HW_VAR_RF_STATE: {
57 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 			break;
59 		}
60 	case HW_VAR_FW_PSMODE_STATUS: {
61 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62 			break;
63 		}
64 	case HW_VAR_CORRECT_TSF: {
65 			u64 tsf;
66 			u32 *ptsf_low = (u32 *)&tsf;
67 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68 
69 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71 
72 			*((u64 *) (val)) = tsf;
73 
74 			break;
75 		}
76 	case HW_VAR_MRC: {
77 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 			break;
79 		}
80 	default: {
81 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82 			 "switch case not processed\n");
83 			break;
84 		}
85 	}
86 }
87 
88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
89 {
90 	struct rtl_priv *rtlpriv = rtl_priv(hw);
91 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_ETHER_ADDR:{
99 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101 			break;
102 		}
103 	case HW_VAR_BASIC_RATE:{
104 			u16 rate_cfg = ((u16 *) val)[0];
105 			u8 rate_index = 0;
106 
107 			if (rtlhal->version == VERSION_8192S_ACUT)
108 				rate_cfg = rate_cfg & 0x150;
109 			else
110 				rate_cfg = rate_cfg & 0x15f;
111 
112 			rate_cfg |= 0x01;
113 
114 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115 			rtl_write_byte(rtlpriv, RRSR + 1,
116 				       (rate_cfg >> 8) & 0xff);
117 
118 			while (rate_cfg > 0x1) {
119 				rate_cfg = (rate_cfg >> 1);
120 				rate_index++;
121 			}
122 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
123 
124 			break;
125 		}
126 	case HW_VAR_BSSID:{
127 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128 			rtl_write_word(rtlpriv, BSSIDR + 4,
129 				       ((u16 *)(val + 4))[0]);
130 			break;
131 		}
132 	case HW_VAR_SIFS:{
133 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135 			break;
136 		}
137 	case HW_VAR_SLOT_TIME:{
138 			u8 e_aci;
139 
140 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
142 
143 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
144 
145 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146 				rtlpriv->cfg->ops->set_hw_reg(hw,
147 						HW_VAR_AC_PARAM,
148 						(&e_aci));
149 			}
150 			break;
151 		}
152 	case HW_VAR_ACK_PREAMBLE:{
153 			u8 reg_tmp;
154 			u8 short_preamble = (bool) (*val);
155 			reg_tmp = (mac->cur_40_prime_sc) << 5;
156 			if (short_preamble)
157 				reg_tmp |= 0x80;
158 
159 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160 			break;
161 		}
162 	case HW_VAR_AMPDU_MIN_SPACE:{
163 			u8 min_spacing_to_set;
164 			u8 sec_min_space;
165 
166 			min_spacing_to_set = *val;
167 			if (min_spacing_to_set <= 7) {
168 				if (rtlpriv->sec.pairwise_enc_algorithm ==
169 				    NO_ENCRYPTION)
170 					sec_min_space = 0;
171 				else
172 					sec_min_space = 1;
173 
174 				if (min_spacing_to_set < sec_min_space)
175 					min_spacing_to_set = sec_min_space;
176 				if (min_spacing_to_set > 5)
177 					min_spacing_to_set = 5;
178 
179 				mac->min_space_cfg =
180 						((mac->min_space_cfg & 0xf8) |
181 						min_spacing_to_set);
182 
183 				*val = min_spacing_to_set;
184 
185 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 					 mac->min_space_cfg);
188 
189 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190 					       mac->min_space_cfg);
191 			}
192 			break;
193 		}
194 	case HW_VAR_SHORTGI_DENSITY:{
195 			u8 density_to_set;
196 
197 			density_to_set = *val;
198 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199 			mac->min_space_cfg |= (density_to_set << 3);
200 
201 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 				 mac->min_space_cfg);
204 
205 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206 				       mac->min_space_cfg);
207 
208 			break;
209 		}
210 	case HW_VAR_AMPDU_FACTOR:{
211 			u8 factor_toset;
212 			u8 regtoset;
213 			u8 factorlevel[18] = {
214 				2, 4, 4, 7, 7, 13, 13,
215 				13, 2, 7, 7, 13, 13,
216 				15, 15, 15, 15, 0};
217 			u8 index = 0;
218 
219 			factor_toset = *val;
220 			if (factor_toset <= 3) {
221 				factor_toset = (1 << (factor_toset + 2));
222 				if (factor_toset > 0xf)
223 					factor_toset = 0xf;
224 
225 				for (index = 0; index < 17; index++) {
226 					if (factorlevel[index] > factor_toset)
227 						factorlevel[index] =
228 								 factor_toset;
229 				}
230 
231 				for (index = 0; index < 8; index++) {
232 					regtoset = ((factorlevel[index * 2]) |
233 						    (factorlevel[index *
234 						    2 + 1] << 4));
235 					rtl_write_byte(rtlpriv,
236 						       AGGLEN_LMT_L + index,
237 						       regtoset);
238 				}
239 
240 				regtoset = ((factorlevel[16]) |
241 					    (factorlevel[17] << 4));
242 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
243 
244 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246 					 factor_toset);
247 			}
248 			break;
249 		}
250 	case HW_VAR_AC_PARAM:{
251 			u8 e_aci = *val;
252 			rtl92s_dm_init_edca_turbo(hw);
253 
254 			if (rtlpci->acm_method != EACMWAY2_SW)
255 				rtlpriv->cfg->ops->set_hw_reg(hw,
256 						 HW_VAR_ACM_CTRL,
257 						 &e_aci);
258 			break;
259 		}
260 	case HW_VAR_ACM_CTRL:{
261 			u8 e_aci = *val;
262 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263 							mac->ac[0].aifs));
264 			u8 acm = p_aci_aifsn->f.acm;
265 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
266 
267 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268 				   0x0 : 0x1);
269 
270 			if (acm) {
271 				switch (e_aci) {
272 				case AC0_BE:
273 					acm_ctrl |= AcmHw_BeqEn;
274 					break;
275 				case AC2_VI:
276 					acm_ctrl |= AcmHw_ViqEn;
277 					break;
278 				case AC3_VO:
279 					acm_ctrl |= AcmHw_VoqEn;
280 					break;
281 				default:
282 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284 						 acm);
285 					break;
286 				}
287 			} else {
288 				switch (e_aci) {
289 				case AC0_BE:
290 					acm_ctrl &= (~AcmHw_BeqEn);
291 					break;
292 				case AC2_VI:
293 					acm_ctrl &= (~AcmHw_ViqEn);
294 					break;
295 				case AC3_VO:
296 					acm_ctrl &= (~AcmHw_VoqEn);
297 					break;
298 				default:
299 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300 						 "switch case not processed\n");
301 					break;
302 				}
303 			}
304 
305 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308 			break;
309 		}
310 	case HW_VAR_RCR:{
311 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312 			rtlpci->receive_config = ((u32 *) (val))[0];
313 			break;
314 		}
315 	case HW_VAR_RETRY_LIMIT:{
316 			u8 retry_limit = val[0];
317 
318 			rtl_write_word(rtlpriv, RETRY_LIMIT,
319 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
321 			break;
322 		}
323 	case HW_VAR_DUAL_TSF_RST: {
324 			break;
325 		}
326 	case HW_VAR_EFUSE_BYTES: {
327 			rtlefuse->efuse_usedbytes = *((u16 *) val);
328 			break;
329 		}
330 	case HW_VAR_EFUSE_USAGE: {
331 			rtlefuse->efuse_usedpercentage = *val;
332 			break;
333 		}
334 	case HW_VAR_IO_CMD: {
335 			break;
336 		}
337 	case HW_VAR_WPA_CONFIG: {
338 			rtl_write_byte(rtlpriv, REG_SECR, *val);
339 			break;
340 		}
341 	case HW_VAR_SET_RPWM:{
342 			break;
343 		}
344 	case HW_VAR_H2C_FW_PWRMODE:{
345 			break;
346 		}
347 	case HW_VAR_FW_PSMODE_STATUS: {
348 			ppsc->fw_current_inpsmode = *((bool *) val);
349 			break;
350 		}
351 	case HW_VAR_H2C_FW_JOINBSSRPT:{
352 			break;
353 		}
354 	case HW_VAR_AID:{
355 			break;
356 		}
357 	case HW_VAR_CORRECT_TSF:{
358 			break;
359 		}
360 	case HW_VAR_MRC: {
361 			bool bmrc_toset = *((bool *)val);
362 			u8 u1bdata = 0;
363 
364 			if (bmrc_toset) {
365 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366 					      MASKBYTE0, 0x33);
367 				u1bdata = (u8)rtl_get_bbreg(hw,
368 						ROFDM1_TRXPATHENABLE,
369 						MASKBYTE0);
370 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371 					      MASKBYTE0,
372 					      ((u1bdata & 0xf0) | 0x03));
373 				u1bdata = (u8)rtl_get_bbreg(hw,
374 						ROFDM0_TRXPATHENABLE,
375 						MASKBYTE1);
376 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377 					      MASKBYTE1,
378 					      (u1bdata | 0x04));
379 
380 				/* Update current settings. */
381 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
382 			} else {
383 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384 					      MASKBYTE0, 0x13);
385 				u1bdata = (u8)rtl_get_bbreg(hw,
386 						 ROFDM1_TRXPATHENABLE,
387 						 MASKBYTE0);
388 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389 					      MASKBYTE0,
390 					      ((u1bdata & 0xf0) | 0x01));
391 				u1bdata = (u8)rtl_get_bbreg(hw,
392 						ROFDM0_TRXPATHENABLE,
393 						MASKBYTE1);
394 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395 					      MASKBYTE1, (u1bdata & 0xfb));
396 
397 				/* Update current settings. */
398 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
399 			}
400 
401 			break;
402 		}
403 	case HW_VAR_FW_LPS_ACTION: {
404 		bool enter_fwlps = *((bool *)val);
405 		u8 rpwm_val, fw_pwrmode;
406 		bool fw_current_inps;
407 
408 		if (enter_fwlps) {
409 			rpwm_val = 0x02;	/* RF off */
410 			fw_current_inps = true;
411 			rtlpriv->cfg->ops->set_hw_reg(hw,
412 					HW_VAR_FW_PSMODE_STATUS,
413 					(u8 *)(&fw_current_inps));
414 			rtlpriv->cfg->ops->set_hw_reg(hw,
415 					HW_VAR_H2C_FW_PWRMODE,
416 					&ppsc->fwctrl_psmode);
417 
418 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
419 						      &rpwm_val);
420 		} else {
421 			rpwm_val = 0x0C;	/* RF on */
422 			fw_pwrmode = FW_PS_ACTIVE_MODE;
423 			fw_current_inps = false;
424 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
425 						      &rpwm_val);
426 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
427 						      &fw_pwrmode);
428 
429 			rtlpriv->cfg->ops->set_hw_reg(hw,
430 					HW_VAR_FW_PSMODE_STATUS,
431 					(u8 *)(&fw_current_inps));
432 		}
433 		break; }
434 	default:
435 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
436 			 "switch case not processed\n");
437 		break;
438 	}
439 
440 }
441 
442 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
443 {
444 	struct rtl_priv *rtlpriv = rtl_priv(hw);
445 	u8 sec_reg_value = 0x0;
446 
447 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
448 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
449 		 rtlpriv->sec.pairwise_enc_algorithm,
450 		 rtlpriv->sec.group_enc_algorithm);
451 
452 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
453 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
454 			 "not open hw encryption\n");
455 		return;
456 	}
457 
458 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
459 
460 	if (rtlpriv->sec.use_defaultkey) {
461 		sec_reg_value |= SCR_TXUSEDK;
462 		sec_reg_value |= SCR_RXUSEDK;
463 	}
464 
465 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
466 		 sec_reg_value);
467 
468 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
469 
470 }
471 
472 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
473 {
474 	struct rtl_priv *rtlpriv = rtl_priv(hw);
475 	u8 waitcount = 100;
476 	bool bresult = false;
477 	u8 tmpvalue;
478 
479 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
480 
481 	/* Wait the MAC synchronized. */
482 	udelay(400);
483 
484 	/* Check if it is set ready. */
485 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
486 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
487 
488 	if ((data & (BIT(6) | BIT(7))) == false) {
489 		waitcount = 100;
490 		tmpvalue = 0;
491 
492 		while (1) {
493 			waitcount--;
494 
495 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
496 			if ((tmpvalue & BIT(6)))
497 				break;
498 
499 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
500 			if (waitcount == 0)
501 				break;
502 
503 			udelay(10);
504 		}
505 
506 		if (waitcount == 0)
507 			bresult = false;
508 		else
509 			bresult = true;
510 	}
511 
512 	return bresult;
513 }
514 
515 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
516 {
517 	struct rtl_priv *rtlpriv = rtl_priv(hw);
518 	u8 u1tmp;
519 
520 	/* The following config GPIO function */
521 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
522 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
523 
524 	/* config GPIO3 to input */
525 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
526 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
527 
528 }
529 
530 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
531 {
532 	struct rtl_priv *rtlpriv = rtl_priv(hw);
533 	u8 u1tmp;
534 	u8 retval = ERFON;
535 
536 	/* The following config GPIO function */
537 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
538 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
539 
540 	/* config GPIO3 to input */
541 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
542 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
543 
544 	/* On some of the platform, driver cannot read correct
545 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
546 	mdelay(10);
547 
548 	/* check GPIO3 */
549 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
550 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
551 
552 	return retval;
553 }
554 
555 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
556 {
557 	struct rtl_priv *rtlpriv = rtl_priv(hw);
558 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
559 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
560 
561 	u8 i;
562 	u8 tmpu1b;
563 	u16 tmpu2b;
564 	u8 pollingcnt = 20;
565 
566 	if (rtlpci->first_init) {
567 		/* Reset PCIE Digital */
568 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
569 		tmpu1b &= 0xFE;
570 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
571 		udelay(1);
572 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
573 	}
574 
575 	/* Switch to SW IO control */
576 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
577 	if (tmpu1b & BIT(7)) {
578 		tmpu1b &= ~(BIT(6) | BIT(7));
579 
580 		/* Set failed, return to prevent hang. */
581 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
582 			return;
583 	}
584 
585 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
586 	udelay(50);
587 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
588 	udelay(50);
589 
590 	/* Clear FW RPWM for FW control LPS.*/
591 	rtl_write_byte(rtlpriv, RPWM, 0x0);
592 
593 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
594 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
595 	tmpu1b &= 0x73;
596 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
597 	/* wait for BIT 10/11/15 to pull high automatically!! */
598 	mdelay(1);
599 
600 	rtl_write_byte(rtlpriv, CMDR, 0);
601 	rtl_write_byte(rtlpriv, TCR, 0);
602 
603 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
604 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
605 	tmpu1b |= 0x08;
606 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
607 	tmpu1b &= ~(BIT(3));
608 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
609 
610 	/* Enable AFE clock source */
611 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
612 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
613 	/* Delay 1.5ms */
614 	mdelay(2);
615 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
616 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
617 
618 	/* Enable AFE Macro Block's Bandgap */
619 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
620 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
621 	mdelay(1);
622 
623 	/* Enable AFE Mbias */
624 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
625 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
626 	mdelay(1);
627 
628 	/* Enable LDOA15 block	*/
629 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
630 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
631 
632 	/* Set Digital Vdd to Retention isolation Path. */
633 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
634 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
635 
636 	/* For warm reboot NIC disappera bug. */
637 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
638 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
639 
640 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
641 
642 	/* Enable AFE PLL Macro Block */
643 	/* We need to delay 100u before enabling PLL. */
644 	udelay(200);
645 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
646 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
647 
648 	/* for divider reset  */
649 	udelay(100);
650 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
651 		       BIT(4) | BIT(6)));
652 	udelay(10);
653 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
654 	udelay(10);
655 
656 	/* Enable MAC 80MHZ clock  */
657 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
658 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
659 	mdelay(1);
660 
661 	/* Release isolation AFE PLL & MD */
662 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
663 
664 	/* Enable MAC clock */
665 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
666 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
667 
668 	/* Enable Core digital and enable IOREG R/W */
669 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
670 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
671 
672 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
673 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
674 
675 	/* enable REG_EN */
676 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
677 
678 	/* Switch the control path. */
679 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
680 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
681 
682 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
683 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
684 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
685 		return; /* Set failed, return to prevent hang. */
686 
687 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
688 
689 	/* MH We must enable the section of code to prevent load IMEM fail. */
690 	/* Load MAC register from WMAc temporarily We simulate macreg. */
691 	/* txt HW will provide MAC txt later  */
692 	rtl_write_byte(rtlpriv, 0x6, 0x30);
693 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
694 
695 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
696 
697 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
698 
699 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
700 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
701 	rtl_write_byte(rtlpriv, 0xde, 0xff);
702 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
703 
704 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
705 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
706 
707 	for (i = 0; i < 32; i++)
708 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
709 
710 	rtl_write_byte(rtlpriv, 0x236, 0xff);
711 
712 	rtl_write_byte(rtlpriv, 0x503, 0x22);
713 
714 	if (ppsc->support_aspm && !ppsc->support_backdoor)
715 		rtl_write_byte(rtlpriv, 0x560, 0x40);
716 	else
717 		rtl_write_byte(rtlpriv, 0x560, 0x00);
718 
719 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
720 
721 	/* Set RX Desc Address */
722 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
723 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
724 
725 	/* Set TX Desc Address */
726 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
727 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
728 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
729 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
730 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
734 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
735 
736 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
737 
738 	/* To make sure that TxDMA can ready to download FW. */
739 	/* We should reset TxDMA if IMEM RPT was not ready. */
740 	do {
741 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
742 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
743 			break;
744 
745 		udelay(5);
746 	} while (pollingcnt--);
747 
748 	if (pollingcnt <= 0) {
749 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
750 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
751 			 tmpu1b);
752 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
753 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
754 		udelay(2);
755 		/* Reset TxDMA */
756 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
757 	}
758 
759 	/* After MACIO reset,we must refresh LED state. */
760 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
761 	   (ppsc->rfoff_reason == 0)) {
762 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
763 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
764 		enum rf_pwrstate rfpwr_state_toset;
765 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
766 
767 		if (rfpwr_state_toset == ERFON)
768 			rtl92se_sw_led_on(hw, pLed0);
769 	}
770 }
771 
772 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
773 {
774 	struct rtl_priv *rtlpriv = rtl_priv(hw);
775 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
776 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
777 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
778 	u8 i;
779 	u16 tmpu2b;
780 
781 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
782 
783 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
784 	/* Turn on 0x40 Command register */
785 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
786 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
787 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
788 
789 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
790 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
791 			TXDMAPRE2FULL);
792 
793 	/* Set RCR	*/
794 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
795 
796 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
797 
798 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
799 	/* Set CCK/OFDM SIFS */
800 	/* CCK SIFS shall always be 10us. */
801 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
802 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
803 
804 	/* Set AckTimeout */
805 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
806 
807 	/* Beacon related */
808 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
809 	rtl_write_word(rtlpriv, ATIMWND, 2);
810 
811 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
812 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
813 	/* Firmware allocate now, associate with FW internal setting.!!! */
814 
815 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
816 	/* 5.3 Set driver info, we only accept PHY status now. */
817 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
818 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
819 
820 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
821 	/* Set RRSR to all legacy rate and HT rate
822 	 * CCK rate is supported by default.
823 	 * CCK rate will be filtered out only when associated
824 	 * AP does not support it.
825 	 * Only enable ACK rate to OFDM 24M
826 	 * Disable RRSR for CCK rate in A-Cut	*/
827 
828 	if (rtlhal->version == VERSION_8192S_ACUT)
829 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
830 	else if (rtlhal->version == VERSION_8192S_BCUT)
831 		rtl_write_byte(rtlpriv, RRSR, 0xff);
832 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
833 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
834 
835 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
836 	/* fallback to CCK rate */
837 	for (i = 0; i < 8; i++) {
838 		/*Disable RRSR for CCK rate in A-Cut */
839 		if (rtlhal->version == VERSION_8192S_ACUT)
840 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
841 	}
842 
843 	/* Different rate use different AMPDU size */
844 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
845 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
846 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
847 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
848 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
849 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
850 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
851 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
852 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
853 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
854 
855 	/* Set Data / Response auto rate fallack retry count */
856 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
857 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
858 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
859 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
860 
861 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
862 	/* Set all rate to support SG */
863 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
864 
865 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
866 	/* Set NAV protection length */
867 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
868 	/* CF-END Threshold */
869 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
870 	/* Set AMPDU minimum space */
871 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
872 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
873 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
874 
875 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
876 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
877 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
878 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
879 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
880 
881 	/* 14. Set driver info, we only accept PHY status now. */
882 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
883 
884 	/* 15. For EEPROM R/W Workaround */
885 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
886 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
887 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
888 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
889 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
890 
891 	/* 17. For EFUSE */
892 	/* We may R/W EFUSE in EEPROM mode */
893 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
894 		u8	tempval;
895 
896 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
897 		tempval &= 0xFE;
898 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
899 
900 		/* Change Program timing */
901 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
902 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
903 	}
904 
905 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
906 
907 }
908 
909 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
910 {
911 	struct rtl_priv *rtlpriv = rtl_priv(hw);
912 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
913 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
914 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
915 
916 	u8 reg_bw_opmode = 0;
917 	u32 reg_rrsr = 0;
918 	u8 regtmp = 0;
919 
920 	reg_bw_opmode = BW_OPMODE_20MHZ;
921 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
922 
923 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
924 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
925 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
926 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
927 
928 	/* Set Retry Limit here */
929 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
930 			(u8 *)(&rtlpci->shortretry_limit));
931 
932 	rtl_write_byte(rtlpriv, MLT, 0x8f);
933 
934 	/* For Min Spacing configuration. */
935 	switch (rtlphy->rf_type) {
936 	case RF_1T2R:
937 	case RF_1T1R:
938 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
939 		break;
940 	case RF_2T2R:
941 	case RF_2T2R_GREEN:
942 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
943 		break;
944 	}
945 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
946 }
947 
948 int rtl92se_hw_init(struct ieee80211_hw *hw)
949 {
950 	struct rtl_priv *rtlpriv = rtl_priv(hw);
951 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
952 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
953 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
954 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
955 	u8 tmp_byte = 0;
956 	unsigned long flags;
957 	bool rtstatus = true;
958 	u8 tmp_u1b;
959 	int err = false;
960 	u8 i;
961 	int wdcapra_add[] = {
962 		EDCAPARA_BE, EDCAPARA_BK,
963 		EDCAPARA_VI, EDCAPARA_VO};
964 	u8 secr_value = 0x0;
965 
966 	rtlpci->being_init_adapter = true;
967 
968 	/* As this function can take a very long time (up to 350 ms)
969 	 * and can be called with irqs disabled, reenable the irqs
970 	 * to let the other devices continue being serviced.
971 	 *
972 	 * It is safe doing so since our own interrupts will only be enabled
973 	 * in a subsequent step.
974 	 */
975 	local_save_flags(flags);
976 	local_irq_enable();
977 
978 	rtlpriv->intf_ops->disable_aspm(hw);
979 
980 	/* 1. MAC Initialize */
981 	/* Before FW download, we have to set some MAC register */
982 	_rtl92se_macconfig_before_fwdownload(hw);
983 
984 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
985 			PMC_FSM) >> 16) & 0xF);
986 
987 	rtl8192se_gpiobit3_cfg_inputmode(hw);
988 
989 	/* 2. download firmware */
990 	rtstatus = rtl92s_download_fw(hw);
991 	if (!rtstatus) {
992 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
993 			 "Failed to download FW. Init HW without FW now... "
994 			 "Please copy FW into /lib/firmware/rtlwifi\n");
995 		err = 1;
996 		goto exit;
997 	}
998 
999 	/* After FW download, we have to reset MAC register */
1000 	_rtl92se_macconfig_after_fwdownload(hw);
1001 
1002 	/*Retrieve default FW Cmd IO map. */
1003 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1004 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1005 
1006 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1007 	if (!rtl92s_phy_mac_config(hw)) {
1008 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1009 		err = rtstatus;
1010 		goto exit;
1011 	}
1012 
1013 	/* because last function modify RCR, so we update
1014 	 * rcr var here, or TP will unstable for receive_config
1015 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1016 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1017 	 */
1018 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1019 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1020 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1021 
1022 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1023 	/* We must set flag avoid BB/RF config period later!! */
1024 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1025 
1026 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1027 	if (!rtl92s_phy_bb_config(hw)) {
1028 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1029 		err = rtstatus;
1030 		goto exit;
1031 	}
1032 
1033 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1034 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1035 
1036 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1037 
1038 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1039 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1040 	if (rtlhal->version == VERSION_8192S_ACUT)
1041 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1042 	else
1043 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1044 
1045 	if (!rtl92s_phy_rf_config(hw)) {
1046 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1047 		err = rtstatus;
1048 		goto exit;
1049 	}
1050 
1051 	/* After read predefined TXT, we must set BB/MAC/RF
1052 	 * register as our requirement */
1053 
1054 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1055 							   (enum radio_path)0,
1056 							   RF_CHNLBW,
1057 							   RFREG_OFFSET_MASK);
1058 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1059 							   (enum radio_path)1,
1060 							   RF_CHNLBW,
1061 							   RFREG_OFFSET_MASK);
1062 
1063 	/*---- Set CCK and OFDM Block "ON"----*/
1064 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1065 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1066 
1067 	/*3 Set Hardware(Do nothing now) */
1068 	_rtl92se_hw_configure(hw);
1069 
1070 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1071 	/* TX power index for different rate set. */
1072 	/* Get original hw reg values */
1073 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1074 	/* Write correct tx power index */
1075 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1076 
1077 	/* We must set MAC address after firmware download. */
1078 	for (i = 0; i < 6; i++)
1079 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1080 
1081 	/* EEPROM R/W workaround */
1082 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1083 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1084 
1085 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1086 
1087 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1088 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1089 		tmp_byte = tmp_byte | BIT(5);
1090 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1091 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1092 	}
1093 
1094 	/* We enable high power and RA related mechanism after NIC
1095 	 * initialized. */
1096 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1097 		/* Fw v.53 and later. */
1098 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1099 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1100 		/* Fw v.52. */
1101 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1102 		rtl92s_phy_chk_fwcmd_iodone(hw);
1103 	} else {
1104 		/* Compatible earlier FW version. */
1105 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1106 		rtl92s_phy_chk_fwcmd_iodone(hw);
1107 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1108 		rtl92s_phy_chk_fwcmd_iodone(hw);
1109 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1110 		rtl92s_phy_chk_fwcmd_iodone(hw);
1111 	}
1112 
1113 	/* Add to prevent ASPM bug. */
1114 	/* Always enable hst and NIC clock request. */
1115 	rtl92s_phy_switch_ephy_parameter(hw);
1116 
1117 	/* Security related
1118 	 * 1. Clear all H/W keys.
1119 	 * 2. Enable H/W encryption/decryption. */
1120 	rtl_cam_reset_all_entry(hw);
1121 	secr_value |= SCR_TXENCENABLE;
1122 	secr_value |= SCR_RXENCENABLE;
1123 	secr_value |= SCR_NOSKMC;
1124 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1125 
1126 	for (i = 0; i < 4; i++)
1127 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1128 
1129 	if (rtlphy->rf_type == RF_1T2R) {
1130 		bool mrc2set = true;
1131 		/* Turn on B-Path */
1132 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1133 	}
1134 
1135 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1136 	rtl92s_dm_init(hw);
1137 exit:
1138 	local_irq_restore(flags);
1139 	rtlpci->being_init_adapter = false;
1140 	return err;
1141 }
1142 
1143 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1144 {
1145 	/* This is a stub. */
1146 }
1147 
1148 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1149 {
1150 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1151 	u32 reg_rcr;
1152 
1153 	if (rtlpriv->psc.rfpwr_state != ERFON)
1154 		return;
1155 
1156 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1157 
1158 	if (check_bssid) {
1159 		reg_rcr |= (RCR_CBSSID);
1160 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1161 	} else if (!check_bssid) {
1162 		reg_rcr &= (~RCR_CBSSID);
1163 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1164 	}
1165 
1166 }
1167 
1168 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1169 				     enum nl80211_iftype type)
1170 {
1171 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1172 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1173 	u32 temp;
1174 	bt_msr &= ~MSR_LINK_MASK;
1175 
1176 	switch (type) {
1177 	case NL80211_IFTYPE_UNSPECIFIED:
1178 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1179 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1180 			 "Set Network type to NO LINK!\n");
1181 		break;
1182 	case NL80211_IFTYPE_ADHOC:
1183 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1184 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1185 			 "Set Network type to Ad Hoc!\n");
1186 		break;
1187 	case NL80211_IFTYPE_STATION:
1188 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1189 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1190 			 "Set Network type to STA!\n");
1191 		break;
1192 	case NL80211_IFTYPE_AP:
1193 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1194 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1195 			 "Set Network type to AP!\n");
1196 		break;
1197 	default:
1198 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1199 			 "Network type %d not supported!\n", type);
1200 		return 1;
1201 
1202 	}
1203 
1204 	if (type != NL80211_IFTYPE_AP &&
1205 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1206 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1207 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1208 
1209 	temp = rtl_read_dword(rtlpriv, TCR);
1210 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1211 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1212 
1213 
1214 	return 0;
1215 }
1216 
1217 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1218 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1219 {
1220 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1221 
1222 	if (_rtl92se_set_media_status(hw, type))
1223 		return -EOPNOTSUPP;
1224 
1225 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1226 		if (type != NL80211_IFTYPE_AP)
1227 			rtl92se_set_check_bssid(hw, true);
1228 	} else {
1229 		rtl92se_set_check_bssid(hw, false);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1236 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1237 {
1238 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1239 	rtl92s_dm_init_edca_turbo(hw);
1240 
1241 	switch (aci) {
1242 	case AC1_BK:
1243 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1244 		break;
1245 	case AC0_BE:
1246 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1247 		break;
1248 	case AC2_VI:
1249 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1250 		break;
1251 	case AC3_VO:
1252 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1253 		break;
1254 	default:
1255 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1256 		break;
1257 	}
1258 }
1259 
1260 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1261 {
1262 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1263 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1264 
1265 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1266 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1267 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1268 	rtlpci->irq_enabled = true;
1269 }
1270 
1271 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1272 {
1273 	struct rtl_priv *rtlpriv;
1274 	struct rtl_pci *rtlpci;
1275 
1276 	rtlpriv = rtl_priv(hw);
1277 	/* if firmware not available, no interrupts */
1278 	if (!rtlpriv || !rtlpriv->max_fw_size)
1279 		return;
1280 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1281 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1282 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1283 	rtlpci->irq_enabled = false;
1284 }
1285 
1286 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1287 {
1288 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1289 	u8 waitcnt = 100;
1290 	bool result = false;
1291 	u8 tmp;
1292 
1293 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1294 
1295 	/* Wait the MAC synchronized. */
1296 	udelay(400);
1297 
1298 	/* Check if it is set ready. */
1299 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1300 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1301 
1302 	if ((data & (BIT(6) | BIT(7))) == false) {
1303 		waitcnt = 100;
1304 		tmp = 0;
1305 
1306 		while (1) {
1307 			waitcnt--;
1308 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1309 
1310 			if ((tmp & BIT(6)))
1311 				break;
1312 
1313 			pr_err("wait for BIT(6) return value %x\n", tmp);
1314 
1315 			if (waitcnt == 0)
1316 				break;
1317 			udelay(10);
1318 		}
1319 
1320 		if (waitcnt == 0)
1321 			result = false;
1322 		else
1323 			result = true;
1324 	}
1325 
1326 	return result;
1327 }
1328 
1329 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1330 {
1331 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1332 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1333 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1334 	u8 u1btmp;
1335 
1336 	if (rtlhal->driver_going2unload)
1337 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1338 
1339 	/* Power save for BB/RF */
1340 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1341 	u1btmp |= BIT(0);
1342 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1343 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1344 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1345 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1346 	udelay(100);
1347 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1348 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1349 	udelay(10);
1350 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1351 	udelay(10);
1352 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1353 	udelay(10);
1354 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1355 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1356 
1357 	if (rtlhal->driver_going2unload) {
1358 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1359 		u1btmp &= ~(BIT(0));
1360 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1361 	}
1362 
1363 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1364 
1365 	/* Add description. After switch control path. register
1366 	 * after page1 will be invisible. We can not do any IO
1367 	 * for register>0x40. After resume&MACIO reset, we need
1368 	 * to remember previous reg content. */
1369 	if (u1btmp & BIT(7)) {
1370 		u1btmp &= ~(BIT(6) | BIT(7));
1371 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1372 			pr_err("Switch ctrl path fail\n");
1373 			return;
1374 		}
1375 	}
1376 
1377 	/* Power save for MAC */
1378 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1379 		!rtlhal->driver_going2unload) {
1380 		/* enable LED function */
1381 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1382 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1383 	} else {
1384 		/* LED function disable. Power range is about 8mA now. */
1385 		/* if write 0xF1 disconnet_pci power
1386 		 *	 ifconfig wlan0 down power are both high 35:70 */
1387 		/* if write oxF9 disconnet_pci power
1388 		 * ifconfig wlan0 down power are both low  12:45*/
1389 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1390 	}
1391 
1392 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1393 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1394 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1395 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1396 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1397 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1398 
1399 }
1400 
1401 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1402 {
1403 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1404 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1405 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1406 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1407 
1408 	if (rtlpci->up_first_time == 1)
1409 		return;
1410 
1411 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1412 		rtl92se_sw_led_on(hw, pLed0);
1413 	else
1414 		rtl92se_sw_led_off(hw, pLed0);
1415 }
1416 
1417 
1418 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1419 {
1420 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1421 	u16 tmpu2b;
1422 	u8 tmpu1b;
1423 
1424 	rtlpriv->psc.pwrdomain_protect = true;
1425 
1426 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1427 	if (tmpu1b & BIT(7)) {
1428 		tmpu1b &= ~(BIT(6) | BIT(7));
1429 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1430 			rtlpriv->psc.pwrdomain_protect = false;
1431 			return;
1432 		}
1433 	}
1434 
1435 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1436 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1437 
1438 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1439 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1440 
1441 	/* If IPS we need to turn LED on. So we not
1442 	 * not disable BIT 3/7 of reg3. */
1443 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1444 		tmpu1b &= 0xFB;
1445 	else
1446 		tmpu1b &= 0x73;
1447 
1448 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1449 	/* wait for BIT 10/11/15 to pull high automatically!! */
1450 	mdelay(1);
1451 
1452 	rtl_write_byte(rtlpriv, CMDR, 0);
1453 	rtl_write_byte(rtlpriv, TCR, 0);
1454 
1455 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1456 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1457 	tmpu1b |= 0x08;
1458 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1459 	tmpu1b &= ~(BIT(3));
1460 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1461 
1462 	/* Enable AFE clock source */
1463 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1464 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1465 	/* Delay 1.5ms */
1466 	udelay(1500);
1467 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1468 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1469 
1470 	/* Enable AFE Macro Block's Bandgap */
1471 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1472 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1473 	mdelay(1);
1474 
1475 	/* Enable AFE Mbias */
1476 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1477 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1478 	mdelay(1);
1479 
1480 	/* Enable LDOA15 block */
1481 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1482 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1483 
1484 	/* Set Digital Vdd to Retention isolation Path. */
1485 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1486 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1487 
1488 
1489 	/* For warm reboot NIC disappera bug. */
1490 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1491 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1492 
1493 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1494 
1495 	/* Enable AFE PLL Macro Block */
1496 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1497 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1498 	/* Enable MAC 80MHZ clock */
1499 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1500 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1501 	mdelay(1);
1502 
1503 	/* Release isolation AFE PLL & MD */
1504 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1505 
1506 	/* Enable MAC clock */
1507 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1508 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1509 
1510 	/* Enable Core digital and enable IOREG R/W */
1511 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1512 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1513 	/* enable REG_EN */
1514 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1515 
1516 	/* Switch the control path. */
1517 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1518 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1519 
1520 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1521 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1522 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1523 		rtlpriv->psc.pwrdomain_protect = false;
1524 		return;
1525 	}
1526 
1527 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1528 
1529 	/* After MACIO reset,we must refresh LED state. */
1530 	_rtl92se_gen_refreshledstate(hw);
1531 
1532 	rtlpriv->psc.pwrdomain_protect = false;
1533 }
1534 
1535 void rtl92se_card_disable(struct ieee80211_hw *hw)
1536 {
1537 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1538 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1539 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1540 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1541 	enum nl80211_iftype opmode;
1542 	u8 wait = 30;
1543 
1544 	rtlpriv->intf_ops->enable_aspm(hw);
1545 
1546 	if (rtlpci->driver_is_goingto_unload ||
1547 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1548 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1549 
1550 	/* we should chnge GPIO to input mode
1551 	 * this will drop away current about 25mA*/
1552 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1553 
1554 	/* this is very important for ips power save */
1555 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1556 		if (rtlpriv->psc.pwrdomain_protect)
1557 			mdelay(20);
1558 		else
1559 			break;
1560 	}
1561 
1562 	mac->link_state = MAC80211_NOLINK;
1563 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1564 	_rtl92se_set_media_status(hw, opmode);
1565 
1566 	_rtl92s_phy_set_rfhalt(hw);
1567 	udelay(100);
1568 }
1569 
1570 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1571 			     u32 *p_intb)
1572 {
1573 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1574 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1575 
1576 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1577 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1578 
1579 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1580 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1581 }
1582 
1583 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1584 {
1585 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1586 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1587 	u16 bcntime_cfg = 0;
1588 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1589 	u16 atim_window = 2;
1590 
1591 	/* ATIM Window (in unit of TU). */
1592 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1593 
1594 	/* Beacon interval (in unit of TU). */
1595 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1596 
1597 	/* DrvErlyInt (in unit of TU). (Time to send
1598 	 * interrupt to notify driver to change
1599 	 * beacon content) */
1600 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1601 
1602 	/* BcnDMATIM(in unit of us). Indicates the
1603 	 * time before TBTT to perform beacon queue DMA  */
1604 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1605 
1606 	/* Force beacon frame transmission even
1607 	 * after receiving beacon frame from
1608 	 * other ad hoc STA */
1609 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1610 
1611 	/* Beacon Time Configuration */
1612 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1613 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1614 
1615 	/* TODO: bcn_ifs may required to be changed on ASIC */
1616 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1617 
1618 	/*for beacon changed */
1619 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1620 }
1621 
1622 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1623 {
1624 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1625 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1626 	u16 bcn_interval = mac->beacon_interval;
1627 
1628 	/* Beacon interval (in unit of TU). */
1629 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1630 	/* 2008.10.24 added by tynli for beacon changed. */
1631 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1632 }
1633 
1634 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1635 		u32 add_msr, u32 rm_msr)
1636 {
1637 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1638 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1639 
1640 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1641 		 add_msr, rm_msr);
1642 
1643 	if (add_msr)
1644 		rtlpci->irq_mask[0] |= add_msr;
1645 
1646 	if (rm_msr)
1647 		rtlpci->irq_mask[0] &= (~rm_msr);
1648 
1649 	rtl92se_disable_interrupt(hw);
1650 	rtl92se_enable_interrupt(hw);
1651 }
1652 
1653 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1654 {
1655 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1656 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1657 	u8 efuse_id;
1658 
1659 	rtlhal->ic_class = IC_INFERIORITY_A;
1660 
1661 	/* Only retrieving while using EFUSE. */
1662 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1663 		!rtlefuse->autoload_failflag) {
1664 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1665 
1666 		if (efuse_id == 0xfe)
1667 			rtlhal->ic_class = IC_INFERIORITY_B;
1668 	}
1669 }
1670 
1671 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1672 {
1673 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1674 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1675 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1676 	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1677 	u16 i, usvalue;
1678 	u16	eeprom_id;
1679 	u8 tempval;
1680 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1681 	u8 rf_path, index;
1682 
1683 	switch (rtlefuse->epromtype) {
1684 	case EEPROM_BOOT_EFUSE:
1685 		rtl_efuse_shadow_map_update(hw);
1686 		break;
1687 
1688 	case EEPROM_93C46:
1689 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1690 			 "RTL819X Not boot from eeprom, check it !!\n");
1691 		return;
1692 
1693 	default:
1694 		dev_warn(dev, "no efuse data\n");
1695 		return;
1696 	}
1697 
1698 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1699 	       HWSET_MAX_SIZE_92S);
1700 
1701 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1702 		      hwinfo, HWSET_MAX_SIZE_92S);
1703 
1704 	eeprom_id = *((u16 *)&hwinfo[0]);
1705 	if (eeprom_id != RTL8190_EEPROM_ID) {
1706 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1707 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1708 		rtlefuse->autoload_failflag = true;
1709 	} else {
1710 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1711 		rtlefuse->autoload_failflag = false;
1712 	}
1713 
1714 	if (rtlefuse->autoload_failflag)
1715 		return;
1716 
1717 	_rtl8192se_get_IC_Inferiority(hw);
1718 
1719 	/* Read IC Version && Channel Plan */
1720 	/* VID, DID	 SE	0xA-D */
1721 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1722 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1723 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1724 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1725 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1726 
1727 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1728 		 "EEPROMId = 0x%4x\n", eeprom_id);
1729 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1730 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1731 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1732 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1733 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1734 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1735 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1736 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1737 
1738 	for (i = 0; i < 6; i += 2) {
1739 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1740 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1741 	}
1742 
1743 	for (i = 0; i < 6; i++)
1744 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1745 
1746 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1747 
1748 	/* Get Tx Power Level by Channel */
1749 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1750 	/* 92S suupport RF A & B */
1751 	for (rf_path = 0; rf_path < 2; rf_path++) {
1752 		for (i = 0; i < 3; i++) {
1753 			/* Read CCK RF A & B Tx power  */
1754 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1755 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1756 
1757 			/* Read OFDM RF A & B Tx power for 1T */
1758 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1759 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1760 
1761 			/* Read OFDM RF A & B Tx power for 2T */
1762 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1763 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1764 				   rf_path * 3 + i];
1765 		}
1766 	}
1767 
1768 	for (rf_path = 0; rf_path < 2; rf_path++)
1769 		for (i = 0; i < 3; i++)
1770 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1771 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1772 				rf_path, i,
1773 				rtlefuse->eeprom_chnlarea_txpwr_cck
1774 				[rf_path][i]);
1775 	for (rf_path = 0; rf_path < 2; rf_path++)
1776 		for (i = 0; i < 3; i++)
1777 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1778 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1779 				rf_path, i,
1780 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1781 				[rf_path][i]);
1782 	for (rf_path = 0; rf_path < 2; rf_path++)
1783 		for (i = 0; i < 3; i++)
1784 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1785 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1786 				rf_path, i,
1787 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1788 				[rf_path][i]);
1789 
1790 	for (rf_path = 0; rf_path < 2; rf_path++) {
1791 
1792 		/* Assign dedicated channel tx power */
1793 		for (i = 0; i < 14; i++)	{
1794 			/* channel 1~3 use the same Tx Power Level. */
1795 			if (i < 3)
1796 				index = 0;
1797 			/* Channel 4-8 */
1798 			else if (i < 8)
1799 				index = 1;
1800 			/* Channel 9-14 */
1801 			else
1802 				index = 2;
1803 
1804 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1805 			 * tx power */
1806 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1807 				rtlefuse->eeprom_chnlarea_txpwr_cck
1808 							[rf_path][index];
1809 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1810 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1811 							[rf_path][index];
1812 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1813 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1814 							[rf_path][index];
1815 		}
1816 
1817 		for (i = 0; i < 14; i++) {
1818 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1819 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1820 				rf_path, i,
1821 				rtlefuse->txpwrlevel_cck[rf_path][i],
1822 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1823 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1824 		}
1825 	}
1826 
1827 	for (rf_path = 0; rf_path < 2; rf_path++) {
1828 		for (i = 0; i < 3; i++) {
1829 			/* Read Power diff limit. */
1830 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1831 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1832 		}
1833 	}
1834 
1835 	for (rf_path = 0; rf_path < 2; rf_path++) {
1836 		/* Fill Pwr group */
1837 		for (i = 0; i < 14; i++) {
1838 			/* Chanel 1-3 */
1839 			if (i < 3)
1840 				index = 0;
1841 			/* Channel 4-8 */
1842 			else if (i < 8)
1843 				index = 1;
1844 			/* Channel 9-13 */
1845 			else
1846 				index = 2;
1847 
1848 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1849 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1850 				0xf);
1851 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1852 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1853 				0xf0) >> 4);
1854 
1855 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1856 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1857 				rf_path, i,
1858 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1859 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1860 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1861 				rf_path, i,
1862 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1863 			}
1864 	}
1865 
1866 	for (i = 0; i < 14; i++) {
1867 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1868 		/* channel 1-3 */
1869 		if (i < 3)
1870 			index = 0;
1871 		/* Channel 4-8 */
1872 		else if (i < 8)
1873 			index = 1;
1874 		/* Channel 9-14 */
1875 		else
1876 			index = 2;
1877 
1878 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1879 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1880 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1881 						 ((tempval >> 4) & 0xF);
1882 
1883 		/* Read OFDM<->HT tx power diff */
1884 		/* Channel 1-3 */
1885 		if (i < 3)
1886 			index = 0;
1887 		/* Channel 4-8 */
1888 		else if (i < 8)
1889 			index = 0x11;
1890 		/* Channel 9-14 */
1891 		else
1892 			index = 1;
1893 
1894 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1895 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1896 				 (tempval & 0xF);
1897 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1898 				 ((tempval >> 4) & 0xF);
1899 
1900 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1901 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1902 	}
1903 
1904 	rtlefuse->eeprom_regulatory = 0;
1905 	if (rtlefuse->eeprom_version >= 2) {
1906 		/* BIT(0)~2 */
1907 		if (rtlefuse->eeprom_version >= 4)
1908 			rtlefuse->eeprom_regulatory =
1909 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1910 		else /* BIT(0) */
1911 			rtlefuse->eeprom_regulatory =
1912 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1913 	}
1914 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1915 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1916 
1917 	for (i = 0; i < 14; i++)
1918 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1919 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1920 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1921 	for (i = 0; i < 14; i++)
1922 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1923 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1924 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1925 	for (i = 0; i < 14; i++)
1926 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1927 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1928 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1929 	for (i = 0; i < 14; i++)
1930 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1931 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1932 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1933 
1934 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1935 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1936 
1937 	/* Read RF-indication and Tx Power gain
1938 	 * index diff of legacy to HT OFDM rate. */
1939 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1940 	rtlefuse->eeprom_txpowerdiff = tempval;
1941 	rtlefuse->legacy_httxpowerdiff =
1942 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1943 
1944 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1945 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1946 
1947 	/* Get TSSI value for each path. */
1948 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1949 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1950 	usvalue = hwinfo[EEPROM_TSSI_B];
1951 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1952 
1953 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1954 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1955 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1956 
1957 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1958 	/* and read ThermalMeter from EEPROM */
1959 	tempval = hwinfo[EEPROM_THERMALMETER];
1960 	rtlefuse->eeprom_thermalmeter = tempval;
1961 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1962 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1963 
1964 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1965 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1966 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1967 
1968 	/* Read CrystalCap from EEPROM */
1969 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1970 	rtlefuse->eeprom_crystalcap = tempval;
1971 	/* CrystalCap, BIT(12)~15 */
1972 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1973 
1974 	/* Read IC Version && Channel Plan */
1975 	/* Version ID, Channel plan */
1976 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1977 	rtlefuse->txpwr_fromeprom = true;
1978 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1979 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1980 
1981 	/* Read Customer ID or Board Type!!! */
1982 	tempval = hwinfo[EEPROM_BOARDTYPE];
1983 	/* Change RF type definition */
1984 	if (tempval == 0)
1985 		rtlphy->rf_type = RF_2T2R;
1986 	else if (tempval == 1)
1987 		rtlphy->rf_type = RF_1T2R;
1988 	else if (tempval == 2)
1989 		rtlphy->rf_type = RF_1T2R;
1990 	else if (tempval == 3)
1991 		rtlphy->rf_type = RF_1T1R;
1992 
1993 	/* 1T2R but 1SS (1x1 receive combining) */
1994 	rtlefuse->b1x1_recvcombine = false;
1995 	if (rtlphy->rf_type == RF_1T2R) {
1996 		tempval = rtl_read_byte(rtlpriv, 0x07);
1997 		if (!(tempval & BIT(0))) {
1998 			rtlefuse->b1x1_recvcombine = true;
1999 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
2000 				 "RF_TYPE=1T2R but only 1SS\n");
2001 		}
2002 	}
2003 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
2004 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
2005 
2006 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
2007 		 rtlefuse->eeprom_oemid);
2008 
2009 	/* set channel paln to world wide 13 */
2010 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2011 }
2012 
2013 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2014 {
2015 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2016 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2017 	u8 tmp_u1b = 0;
2018 
2019 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2020 
2021 	if (tmp_u1b & BIT(4)) {
2022 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2023 		rtlefuse->epromtype = EEPROM_93C46;
2024 	} else {
2025 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2026 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2027 	}
2028 
2029 	if (tmp_u1b & BIT(5)) {
2030 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2031 		rtlefuse->autoload_failflag = false;
2032 		_rtl92se_read_adapter_info(hw);
2033 	} else {
2034 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2035 		rtlefuse->autoload_failflag = true;
2036 	}
2037 }
2038 
2039 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2040 					  struct ieee80211_sta *sta)
2041 {
2042 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2043 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2044 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2045 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2046 	u32 ratr_value;
2047 	u8 ratr_index = 0;
2048 	u8 nmode = mac->ht_enable;
2049 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2050 	u16 shortgi_rate = 0;
2051 	u32 tmp_ratr_value = 0;
2052 	u8 curtxbw_40mhz = mac->bw_40;
2053 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2054 				1 : 0;
2055 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2056 				1 : 0;
2057 	enum wireless_mode wirelessmode = mac->mode;
2058 
2059 	if (rtlhal->current_bandtype == BAND_ON_5G)
2060 		ratr_value = sta->supp_rates[1] << 4;
2061 	else
2062 		ratr_value = sta->supp_rates[0];
2063 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2064 		ratr_value = 0xfff;
2065 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2066 			sta->ht_cap.mcs.rx_mask[0] << 12);
2067 	switch (wirelessmode) {
2068 	case WIRELESS_MODE_B:
2069 		ratr_value &= 0x0000000D;
2070 		break;
2071 	case WIRELESS_MODE_G:
2072 		ratr_value &= 0x00000FF5;
2073 		break;
2074 	case WIRELESS_MODE_N_24G:
2075 	case WIRELESS_MODE_N_5G:
2076 		nmode = 1;
2077 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2078 			ratr_value &= 0x0007F005;
2079 		} else {
2080 			u32 ratr_mask;
2081 
2082 			if (get_rf_type(rtlphy) == RF_1T2R ||
2083 			    get_rf_type(rtlphy) == RF_1T1R) {
2084 				if (curtxbw_40mhz)
2085 					ratr_mask = 0x000ff015;
2086 				else
2087 					ratr_mask = 0x000ff005;
2088 			} else {
2089 				if (curtxbw_40mhz)
2090 					ratr_mask = 0x0f0ff015;
2091 				else
2092 					ratr_mask = 0x0f0ff005;
2093 			}
2094 
2095 			ratr_value &= ratr_mask;
2096 		}
2097 		break;
2098 	default:
2099 		if (rtlphy->rf_type == RF_1T2R)
2100 			ratr_value &= 0x000ff0ff;
2101 		else
2102 			ratr_value &= 0x0f0ff0ff;
2103 
2104 		break;
2105 	}
2106 
2107 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2108 		ratr_value &= 0x0FFFFFFF;
2109 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2110 		ratr_value &= 0x0FFFFFF0;
2111 
2112 	if (nmode && ((curtxbw_40mhz &&
2113 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2114 						 curshortgi_20mhz))) {
2115 
2116 		ratr_value |= 0x10000000;
2117 		tmp_ratr_value = (ratr_value >> 12);
2118 
2119 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2120 			if ((1 << shortgi_rate) & tmp_ratr_value)
2121 				break;
2122 		}
2123 
2124 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2125 		    (shortgi_rate << 4) | (shortgi_rate);
2126 
2127 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2128 	}
2129 
2130 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2131 	if (ratr_value & 0xfffff000)
2132 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2133 	else
2134 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2135 
2136 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2137 		 rtl_read_dword(rtlpriv, ARFR0));
2138 }
2139 
2140 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2141 					 struct ieee80211_sta *sta,
2142 					 u8 rssi_level)
2143 {
2144 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2145 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2146 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2147 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2148 	struct rtl_sta_info *sta_entry = NULL;
2149 	u32 ratr_bitmap;
2150 	u8 ratr_index = 0;
2151 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2152 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2153 				1 : 0;
2154 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2155 				1 : 0;
2156 	enum wireless_mode wirelessmode = 0;
2157 	bool shortgi = false;
2158 	u32 ratr_value = 0;
2159 	u8 shortgi_rate = 0;
2160 	u32 mask = 0;
2161 	u32 band = 0;
2162 	bool bmulticast = false;
2163 	u8 macid = 0;
2164 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2165 
2166 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2167 	wirelessmode = sta_entry->wireless_mode;
2168 	if (mac->opmode == NL80211_IFTYPE_STATION)
2169 		curtxbw_40mhz = mac->bw_40;
2170 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2171 		mac->opmode == NL80211_IFTYPE_ADHOC)
2172 		macid = sta->aid + 1;
2173 
2174 	if (rtlhal->current_bandtype == BAND_ON_5G)
2175 		ratr_bitmap = sta->supp_rates[1] << 4;
2176 	else
2177 		ratr_bitmap = sta->supp_rates[0];
2178 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2179 		ratr_bitmap = 0xfff;
2180 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2181 			sta->ht_cap.mcs.rx_mask[0] << 12);
2182 	switch (wirelessmode) {
2183 	case WIRELESS_MODE_B:
2184 		band |= WIRELESS_11B;
2185 		ratr_index = RATR_INX_WIRELESS_B;
2186 		if (ratr_bitmap & 0x0000000c)
2187 			ratr_bitmap &= 0x0000000d;
2188 		else
2189 			ratr_bitmap &= 0x0000000f;
2190 		break;
2191 	case WIRELESS_MODE_G:
2192 		band |= (WIRELESS_11G | WIRELESS_11B);
2193 		ratr_index = RATR_INX_WIRELESS_GB;
2194 
2195 		if (rssi_level == 1)
2196 			ratr_bitmap &= 0x00000f00;
2197 		else if (rssi_level == 2)
2198 			ratr_bitmap &= 0x00000ff0;
2199 		else
2200 			ratr_bitmap &= 0x00000ff5;
2201 		break;
2202 	case WIRELESS_MODE_A:
2203 		band |= WIRELESS_11A;
2204 		ratr_index = RATR_INX_WIRELESS_A;
2205 		ratr_bitmap &= 0x00000ff0;
2206 		break;
2207 	case WIRELESS_MODE_N_24G:
2208 	case WIRELESS_MODE_N_5G:
2209 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2210 		ratr_index = RATR_INX_WIRELESS_NGB;
2211 
2212 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2213 			if (rssi_level == 1)
2214 				ratr_bitmap &= 0x00070000;
2215 			else if (rssi_level == 2)
2216 				ratr_bitmap &= 0x0007f000;
2217 			else
2218 				ratr_bitmap &= 0x0007f005;
2219 		} else {
2220 			if (rtlphy->rf_type == RF_1T2R ||
2221 				rtlphy->rf_type == RF_1T1R) {
2222 				if (rssi_level == 1) {
2223 						ratr_bitmap &= 0x000f0000;
2224 				} else if (rssi_level == 3) {
2225 					ratr_bitmap &= 0x000fc000;
2226 				} else if (rssi_level == 5) {
2227 						ratr_bitmap &= 0x000ff000;
2228 				} else {
2229 					if (curtxbw_40mhz)
2230 						ratr_bitmap &= 0x000ff015;
2231 					else
2232 						ratr_bitmap &= 0x000ff005;
2233 				}
2234 			} else {
2235 				if (rssi_level == 1) {
2236 					ratr_bitmap &= 0x0f8f0000;
2237 				} else if (rssi_level == 3) {
2238 					ratr_bitmap &= 0x0f8fc000;
2239 				} else if (rssi_level == 5) {
2240 					ratr_bitmap &= 0x0f8ff000;
2241 				} else {
2242 					if (curtxbw_40mhz)
2243 						ratr_bitmap &= 0x0f8ff015;
2244 					else
2245 						ratr_bitmap &= 0x0f8ff005;
2246 				}
2247 			}
2248 		}
2249 
2250 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2251 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2252 			if (macid == 0)
2253 				shortgi = true;
2254 			else if (macid == 1)
2255 				shortgi = false;
2256 		}
2257 		break;
2258 	default:
2259 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2260 		ratr_index = RATR_INX_WIRELESS_NGB;
2261 
2262 		if (rtlphy->rf_type == RF_1T2R)
2263 			ratr_bitmap &= 0x000ff0ff;
2264 		else
2265 			ratr_bitmap &= 0x0f8ff0ff;
2266 		break;
2267 	}
2268 	sta_entry->ratr_index = ratr_index;
2269 
2270 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2271 		ratr_bitmap &= 0x0FFFFFFF;
2272 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2273 		ratr_bitmap &= 0x0FFFFFF0;
2274 
2275 	if (shortgi) {
2276 		ratr_bitmap |= 0x10000000;
2277 		/* Get MAX MCS available. */
2278 		ratr_value = (ratr_bitmap >> 12);
2279 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2280 			if ((1 << shortgi_rate) & ratr_value)
2281 				break;
2282 		}
2283 
2284 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2285 			(shortgi_rate << 4) | (shortgi_rate);
2286 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2287 	}
2288 
2289 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2290 
2291 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2292 		 mask, ratr_bitmap);
2293 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2294 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2295 
2296 	if (macid != 0)
2297 		sta_entry->ratr_index = ratr_index;
2298 }
2299 
2300 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2301 		struct ieee80211_sta *sta, u8 rssi_level)
2302 {
2303 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2304 
2305 	if (rtlpriv->dm.useramask)
2306 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2307 	else
2308 		rtl92se_update_hal_rate_table(hw, sta);
2309 }
2310 
2311 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2312 {
2313 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2314 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2315 	u16 sifs_timer;
2316 
2317 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2318 				      &mac->slot_time);
2319 	sifs_timer = 0x0e0e;
2320 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2321 
2322 }
2323 
2324 /* this ifunction is for RFKILL, it's different with windows,
2325  * because UI will disable wireless when GPIO Radio Off.
2326  * And here we not check or Disable/Enable ASPM like windows*/
2327 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2328 {
2329 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2330 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2331 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2332 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2333 	unsigned long flag = 0;
2334 	bool actuallyset = false;
2335 	bool turnonbypowerdomain = false;
2336 
2337 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2338 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2339 		return false;
2340 
2341 	if (ppsc->swrf_processing)
2342 		return false;
2343 
2344 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2345 	if (ppsc->rfchange_inprogress) {
2346 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2347 		return false;
2348 	} else {
2349 		ppsc->rfchange_inprogress = true;
2350 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2351 	}
2352 
2353 	/* cur_rfstate = ppsc->rfpwr_state;*/
2354 
2355 	/* because after _rtl92s_phy_set_rfhalt, all power
2356 	 * closed, so we must open some power for GPIO check,
2357 	 * or we will always check GPIO RFOFF here,
2358 	 * And we should close power after GPIO check */
2359 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2360 		_rtl92se_power_domain_init(hw);
2361 		turnonbypowerdomain = true;
2362 	}
2363 
2364 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2365 
2366 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2367 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2368 			 "RFKILL-HW Radio ON, RF ON\n");
2369 
2370 		rfpwr_toset = ERFON;
2371 		ppsc->hwradiooff = false;
2372 		actuallyset = true;
2373 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2374 		RT_TRACE(rtlpriv, COMP_RF,
2375 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2376 
2377 		rfpwr_toset = ERFOFF;
2378 		ppsc->hwradiooff = true;
2379 		actuallyset = true;
2380 	}
2381 
2382 	if (actuallyset) {
2383 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2384 		ppsc->rfchange_inprogress = false;
2385 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2386 
2387 	/* this not include ifconfig wlan0 down case */
2388 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2389 	} else {
2390 		/* because power_domain_init may be happen when
2391 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2392 		 * and cause current increasing about 40 mA for ips,
2393 		 * rfoff and ifconfig down, so we set
2394 		 * _rtl92s_phy_set_rfhalt again here */
2395 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2396 			turnonbypowerdomain) {
2397 			_rtl92s_phy_set_rfhalt(hw);
2398 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2399 		}
2400 
2401 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2402 		ppsc->rfchange_inprogress = false;
2403 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2404 	}
2405 
2406 	*valid = 1;
2407 	return !ppsc->hwradiooff;
2408 
2409 }
2410 
2411 /* Is_wepkey just used for WEP used as group & pairwise key
2412  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2413 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2414 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2415 {
2416 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2417 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2418 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2419 	u8 *macaddr = p_macaddr;
2420 
2421 	u32 entry_id = 0;
2422 	bool is_pairwise = false;
2423 
2424 	static u8 cam_const_addr[4][6] = {
2425 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2426 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2427 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2428 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2429 	};
2430 	static u8 cam_const_broad[] = {
2431 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2432 	};
2433 
2434 	if (clear_all) {
2435 		u8 idx = 0;
2436 		u8 cam_offset = 0;
2437 		u8 clear_number = 5;
2438 
2439 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2440 
2441 		for (idx = 0; idx < clear_number; idx++) {
2442 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2443 			rtl_cam_empty_entry(hw, cam_offset + idx);
2444 
2445 			if (idx < 5) {
2446 				memset(rtlpriv->sec.key_buf[idx], 0,
2447 				       MAX_KEY_LEN);
2448 				rtlpriv->sec.key_len[idx] = 0;
2449 			}
2450 		}
2451 
2452 	} else {
2453 		switch (enc_algo) {
2454 		case WEP40_ENCRYPTION:
2455 			enc_algo = CAM_WEP40;
2456 			break;
2457 		case WEP104_ENCRYPTION:
2458 			enc_algo = CAM_WEP104;
2459 			break;
2460 		case TKIP_ENCRYPTION:
2461 			enc_algo = CAM_TKIP;
2462 			break;
2463 		case AESCCMP_ENCRYPTION:
2464 			enc_algo = CAM_AES;
2465 			break;
2466 		default:
2467 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2468 				 "switch case not processed\n");
2469 			enc_algo = CAM_TKIP;
2470 			break;
2471 		}
2472 
2473 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2474 			macaddr = cam_const_addr[key_index];
2475 			entry_id = key_index;
2476 		} else {
2477 			if (is_group) {
2478 				macaddr = cam_const_broad;
2479 				entry_id = key_index;
2480 			} else {
2481 				if (mac->opmode == NL80211_IFTYPE_AP) {
2482 					entry_id = rtl_cam_get_free_entry(hw,
2483 								 p_macaddr);
2484 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2485 						RT_TRACE(rtlpriv,
2486 							 COMP_SEC, DBG_EMERG,
2487 							 "Can not find free hw security cam entry\n");
2488 						return;
2489 					}
2490 				} else {
2491 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2492 				}
2493 
2494 				key_index = PAIRWISE_KEYIDX;
2495 				is_pairwise = true;
2496 			}
2497 		}
2498 
2499 		if (rtlpriv->sec.key_len[key_index] == 0) {
2500 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2501 				 "delete one entry, entry_id is %d\n",
2502 				 entry_id);
2503 			if (mac->opmode == NL80211_IFTYPE_AP)
2504 				rtl_cam_del_entry(hw, p_macaddr);
2505 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2506 		} else {
2507 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2508 				 "add one entry\n");
2509 			if (is_pairwise) {
2510 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2511 					 "set Pairwise key\n");
2512 
2513 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2514 					entry_id, enc_algo,
2515 					CAM_CONFIG_NO_USEDK,
2516 					rtlpriv->sec.key_buf[key_index]);
2517 			} else {
2518 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2519 					 "set group key\n");
2520 
2521 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2522 					rtl_cam_add_one_entry(hw,
2523 						rtlefuse->dev_addr,
2524 						PAIRWISE_KEYIDX,
2525 						CAM_PAIRWISE_KEY_POSITION,
2526 						enc_algo, CAM_CONFIG_NO_USEDK,
2527 						rtlpriv->sec.key_buf[entry_id]);
2528 				}
2529 
2530 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2531 					      entry_id, enc_algo,
2532 					      CAM_CONFIG_NO_USEDK,
2533 					      rtlpriv->sec.key_buf[entry_id]);
2534 			}
2535 
2536 		}
2537 	}
2538 }
2539 
2540 void rtl92se_suspend(struct ieee80211_hw *hw)
2541 {
2542 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2543 
2544 	rtlpci->up_first_time = true;
2545 }
2546 
2547 void rtl92se_resume(struct ieee80211_hw *hw)
2548 {
2549 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2550 	u32 val;
2551 
2552 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2553 	if ((val & 0x0000ff00) != 0)
2554 		pci_write_config_dword(rtlpci->pdev, 0x40,
2555 			val & 0xffff00ff);
2556 }
2557